
A Federated Tableau Algorithm for F-ALCI

George Voutsadakis1, Giora Slutzki1, Jie Bao2, and Vasant Honavar1

1 Iowa State University, Ames, IA 50011, USA,
2 Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract. Many semantic web applications require support for knowl-
edge representation and inference over a federation of multiple auto-
nomous ontology modules, without having to combine them in one loca-
tion. Federated ALCI or F-ALCI is a modular description logic, each of
whose modules is roughly an ALCI ontology (ALC with inverse roles). F-
ALCI supports importing of both concepts and roles across modules as
well as contextualized interpretation of logical connectives. We present a
federated tableau algorithm for reasoning with a collection of interlinked
F-ALCI ontology modules without the need to combine the modules
into a single ontology. Local reasoners apply tableau expansion rules as
in the ordinary ALCI tableau algorithm. Coordination is achieved by
message exchanges between local tableaux maintained by the individual
reasoners. We prove soundness and completeness of the federated tableau
algorithm and show that its worst-case running time is nondeterministic
doubly exponential in the size of the largest ontology module.

1 Introduction

In its traditional form the world-wide web consists of data that is geared to-
wards human understanding and processing. However, the rapid increase in the
amount and complexity of information available on the web calls for methods for
its automated analysis and interpretation. Thus, there is an increasing emphasis
on machine interpretable representations of information with the goal of trans-
forming the current web into a semantic web. The most common way to-date
to represent and reason about information on the semantic web is by organiz-
ing it into various ontologies, or clusters of domain-specific data. Each ontology
addresses a particular domain of knowledge. Ontologies are usually developed
and maintained independently by autonomous groups that borrow terminology,
facts, instances etc, from each other. They are usually built using ontology lan-
guages, such as OIL and OWL [12]. OWL is now recommended by the W3C con-
sortium [5]. Ontology languages are based on Description Logics (DLs), which
constitute a family of logic-based knowledge representation languages. They are
ordinarily decidable fragments of first-order logic or decidable extensions of those
fragments. They are often equipped with tableau-based decision procedures for
problems such as computing subsumption hierarchies of concepts, satisfiability
of concepts, or instances of a concept expression. In [13] a decision procedure for
the very expressive DL SHOIQ is presented. It extends a tableau algorithm for
SHIQ [14], which gave rise to several implemented reasoners [11, 17, 22].

2

The need to balance the requirement of autonomy against those of collabo-
ration in developing ontologies has recently led to increasing interest in modular
ontologies. These are ontologies that are physically and/or conceptually dis-
tributed. Each module of such an ontology is independently developed to address
specific aspects or subdomain of expertise of a large domain of knowledge. The
modules are interdependent in the sense that the various subdomains are most
conveniently described by borrowing concepts and data from each other. This
supports the autonomy of different groups engaged in developing ontology mod-
ules in their respective areas of expertise, eliminates duplication and redundancy
and encourages modularity in the construction of ontologies. Multiple modular
ontology languages have been proposed to facilitate such an autonomous collab-
orative development of ontologies. Among them, the best known are Distributed
Description Logics (DDL) [7], E-Connections [8, 15] and Package-Based Descrip-
tion Logics (P-DLs) [4].

Since its inception, the semantic web has been envisioned as a non-centralized,
highly distributed collection of ontologies with a degree of redundant and over-
lapping knowledge [6]. The decentralized nature of the web necessarily implies
that distant and diverse users will create and use their own local ontologies to
organize and reason about their data depending on their special needs. The in-
dependence and autonomy clearly makes it easier for these local communities to
revise, update, or modify their ontologies according to their own requirements
or to accommodate new data. This scenario calls for a distributed reasoning
approach in which ontologies have each its own reasoning capabilities and the
reasoners communicate with each other whenever a need arises. Computation-
ally, it is advantageous to do as much reasoning as possible at the local level,
taking advantage of the specific properties of the local environment. On many
occasions it is not even feasible to reason with a “centralized” ontology resulting
from integrating the various modules because its size is too large for such an in-
tegration to be efficient. In other cases, such an integration may not be possible
because the autonomous ontology modules can only selectively share information
with each other due to issues of security, privacy, copyright etc. These factors ac-
centuate the need for a federated approach to reasoning that does not require the
physical integration of the ontology modules. Numerous researchers, including
Serafini et al. [19, 21, 20] have argued eloquently in favor of the modular ap-
proach and even designed specific systems/architectures (DRAGO) to facilitate
decentralized reasoning over distributed ontologies. Some authors advocated par-
titioning of large ontologies into smaller but computationally “leaner & meaner”
and possibly more coherent ontologies [23, 18]. Against this background, several
algorithms have been presented for the three paradigms mentioned above. Ser-
afini et al. [19, 21, 20] introduced a tableau algorithm for reasoning with DDL.
Grau et al. [10, 9] present a tableau procedure for E-Connections. Finally, Bao
et al. [2] present distributed reasoning algorithms for P-DLs.

The main goal of this paper is to present a federated tableau-based algorithm
for the fully contextualized federated description logic F-ALCI, introduced in
[24]. Each of the F-ALCI modules is an ALCI ontology. One of the distinctive

3

features of this modular language is that it contextualizes all logical connec-
tives (contrast with P-DLs, where only negation is contextual). Moreover, it
allows greater semantic flexibility than P-DLs at the expense of some properties
that may be desirable in some contexts, but not in others, such as transitive
reusability of knowledge and preservation of concept unsatisfiability. We present
a nondeterministic doubly exponential federated tableau-based algorithm, that
allows us to test concept satisfiability in F-ALCI from a specific module’s point
of view. Among its novel features, specifically designed to handle contextualized
connectives, are: (a) a new normal form for concept expressions, called negation
local form, replacing negation normal form, (b) new “contextual” tableaux ex-
pansion rules and (c) a specially tailored synchronization mechanism based on
message exchanges. Although it is well-known (see [24]) that a F-ALCI ontology
can be integrated in a context sensitive way into a single ALCI ontology, the
algorithm presented here does not require such an integration.

2 F-ALCI Syntax and Semantics

Let G = 〈V, E〉, with V = {1, 2, . . . , n}, be a directed acyclic graph augmented
with loops. The nodes of this graph represent modules of the federated ontol-
ogy and the edges represent, roughly speaking, direct importing relations, i.e.,
allowable importing links through which a target module may import either
concepts or roles from the source module. For every node i ∈ V , the i-language
always includes a set Ci of i-concept names and a set Ri of i-role names. The
set R̂i of i-role expressions consists of expressions of the form R, R−, with
R ∈ Rj , (j, i) ∈ E (R− stands for the inverse of R). The set Ĉi of i-concept
expressions consists of recursively defined expressions of the form:

C ∈ Cj ,⊤j,⊥j ,¬jC, C ⊓j D, C ⊔j D, ∃jR.C, ∀jR.C, (j, i) ∈ E, (1)

where C, D ∈ Ĉi ∩ Ĉj and R ∈ R̂i ∩ R̂j . The i-formulas are of the form C ⊑ D,

with C, D ∈ Ĉi. A local TBox Ti is a finite set of i-formulas and a knowledge
base (KB) or TBox is a collection T = {Ti}i∈V .

We turn now to the semantics of F-ALCI. An interpretation I = 〈{Ii}i∈V ,

{rij}(i,j)∈E〉 consists of a family Ii = 〈∆i, ·i〉, i ∈ V , of local interpretations,
together with a family of image domain relations rij ⊆ ∆i × ∆j , (i, j) ∈ E,
such that rii = id∆i , for all i ∈ V . We require that at least one of the local
domains ∆i be nonempty. For a binary relation r ⊆ ∆i × ∆j , X ⊆ ∆i and
S ⊆ ∆i × ∆i, we set

r(X) := {y ∈ ∆j : (∃x ∈ X)((x, y) ∈ r)},

r(S) := {(z, w) ∈ ∆j × ∆j : (∃(x, y) ∈ S)((x, z), (y, w) ∈ r)}

to denote the images of X and S under the binary relation r. The basic features
of the local interpretation function ·i are as follows (see [24]):

– Ci ⊆ ∆i, for all C ∈ Ci,

4

– Ci = rji(C
j), for all (j, i) ∈ E and C ∈ Cj ∩ Ĉi,

– Ri ⊆ ∆i × ∆i, for all R ∈ Ri,
– Ri = rji(R

j), for all R ∈ Rj ∩ R̂i,
– ⊤i

j = rji(∆
j), ⊥i

j = ∅.

The recursive features of the local interpretation function ·i are as follows, for
all R ∈ R̂i and C, D ∈ Ĉi:

– R−
i
= Ri−

– (¬jC)i = rji(∆
j − Cj)

– (C ⊓j D)i = rji(C
j ∩ Dj)

– (C ⊔j D)i = rji(C
j ∪ Dj)

– (∃jR.C)i = rji({x ∈ ∆j : (∃y)((x, y) ∈ Rj and y ∈ Cj)})
– (∀jR.C)i = rji({x ∈ ∆j : (∀y)((x, y) ∈ Rj implies y ∈ Cj)})

For all i ∈ V , i-satisfiability, denoted by |=i, is defined by I |=i C ⊑ D iff
Ci ⊆ Di. Given a TBox T = {Ti}i∈V , I |=i Ti iff I |=i τ , for every τ ∈ Ti.
I |= T iff I |=i Ti, for every i ∈ V . An interpretation I = 〈{Ii}i∈V , {rij}(i,j)∈E〉
is a model of a F-ALCI KB T = {Ti}i∈V if I |= T .

Given a node w ∈ V , let Gw = 〈Vw , Ew〉 be the subgraph of G induced by the
subset of vertices of G from which the vertex w is reachable. Given a KB T =
{Ti}i∈V , let T ∗w = {Ti}i∈Vw

be the importing closure of w. T is consistent as
witnessed by a module Tw if T ∗w has a model I = 〈{Ii}i∈Vw

, {rij}(i,j)∈Ew
〉,

such that ∆w 6= ∅. A concept C is satisfiable as witnessed by Tw if there is
a model of T ∗w, such that Cw 6= ∅. A concept subsumption C ⊑ D is valid as
witnessed by Tw, denoted by C ⊑w D, if for every model of T ∗w, Cw ⊆ Dw. We
use C ≡w D as the abbreviation of C ⊑w D and D ⊑w D. It becomes clear from
these definitions that in F-ALCI the consistency, satisfiability and subsumption
problems are always answered from the local point of view of a witness module.
Furthermore, it is possible for different modules to draw different conclusions
from their own points of view.

3 Negation Local Form of Concept Expressions

Before introducing the notion of tableau for F-ALCI, we will discuss a special
normal form that we need in place of the negation normal form, which does
not seem to exist for F-ALCI-concept expressions. The need arises from the
fact that, in most tableaux algorithms for description logics, the input is first
transformed into negation normal form, i.e., a form in which negation occurs
only before concept names. To illustrate why the transformation to negation
normal form is problematic in the case of contextualized connectives, consider
the following example:

Example 1: Let T1 and T2 be two modules and assume that A and B are
concept names in C1 and that T2 is allowed to import names and connectives
from T1. Consider the extension

(¬2(A ⊓1 B))2 = ∆2\r12(A
1 ∩ B1).

5

Note that the expression ¬2A ⊔1 ¬2B does not even make sense because T1 is
not allowed to import concepts and connectives from T2. So the only hope for
a negation normal form for the concept expression ¬2(A ⊓1 B) in T2 would be
¬1A ⊔1 ¬1B. But its extension is

(¬1A ⊔1 ¬1B)2 = r12(∆
1\(A1 ∩ B1)),

which, since r12 is an arbitrary relation, is not guaranteed to equal ∆2\r12(A
1 ∩

B1). This example unveils some of the difficulties encountered when one at-
tempts to discover a possible normal form for concept expressions that deals
with negation and preserves the relevant semantics. �

In the present context, it will be assumed that all concepts are in a variant of
the negation normal form, which will be called negation local form (NLF). The
transformation to NLF affects only concept expressions containing i-negations
appearing in module Ti before other i-connectives. In this case, the i-negation
is pushed “inward” using a number of simple syntactical rules, similar to the
ones used to transform an ordinary ALC-formula into negation normal form.
The NLF of an i-concept C ∈ Ĉi is denoted by nlfi(C). It is defined recursively

on the structure of concepts in Ĉi by applying the following rules:

– nlfi(⊤j) = ⊤j , nlfi(⊥j) = ⊥j

– nlfi(¬j⊤k) =

{
⊥i, if j = k = i,

¬j⊤k, otherwise
, nlfi(¬j⊥k) =

{
⊤i, if j = k = i,

¬j⊥k, otherwise
,

for all (j, i) ∈ E

– nlfi(C) = C, for all (j, i) ∈ E and all C ∈ Cj;

– • nlfi(¬jC) = ¬jC, for all (j, i) ∈ E and all C ∈ Ck ∩ Ĉi ∩ Ĉj ;

• nlfi(¬j¬kC) =

{
nlfi(C), if j = k = i

¬j¬knlfi(C), otherwise
, (j, i) ∈ E,¬kC ∈ Ĉi ∩ Ĉj ;

• nlfi(¬j(C ⊓k D)) =

{
¬inlfi(C) ⊔i ¬inlfi(D), if i = j = k

¬j(nlfi(C) ⊓k nlfi(D)), otherwise
, for all (j,

i) ∈ E, C, D ∈ Ĉi ∩ Ĉj ;
• nlfi(¬j(C ⊔k D)) is similar;

• nlfi(¬j∀kR.C) =

{
∃iR.¬inlfi(C), if i = j = k

¬j∀kR.nlfi(C), otherwise
, for all (j, i) ∈ E and

∀kR.C ∈ Ĉi ∩ Ĉj ;
• nlfi(¬j∃kR.C) is similar;

– nlfi(C ⊓j D) = nlfj(C) ⊓j nlfj(D), for all (j, i) ∈ E;
– nlfi(C ⊔j D) = nlfj(C) ⊔j nlfj(D), for all (j, i) ∈ E;
– nlfi(∀jR.C) = ∀jR.nlfj(C), for all (j, i) ∈ E;
– nlfi(∃jR.C) = ∃jR.nlfj(C), for all (j, i) ∈ E.

Example 2: Consider the k-concept expression

C = ¬k((D ⊓i ¬j(E ⊔j F)) ⊔k ¬k(E ⊓l G)),

6

where D, E, F and G are concept names, i, j and k are distinct and the concept
expression is valid, i.e., the importing relations that allow building this concept
expression in Ĉk hold. If we apply nlfk to it, we get

nlfk(C) = ¬knlfk(D ⊓i ¬j(E ⊔j F)) ⊓k ¬knlfk(¬k(E ⊓l G))
= ¬k(nlfk(D) ⊓i nlfk(¬j(E ⊔j F)) ⊓k ¬k¬k(nlfk(E) ⊓l nlfk(G))
= ¬k(D ⊓i (¬j(nlfk(E) ⊔j nlfk(F)))) ⊓k (E ⊓l G)
= ¬k(D ⊓i (¬j(E ⊔j F))) ⊓k (E ⊓l G)

�

The next lemma asserts that the transformation from a concept C ∈ Ĉi into
its negation local form nlfi(C) does not change its meaning from the point of
view of module Ti.

Lemma 1 Let Σ = {Ti}i∈V be a F-ALCI KB, I = 〈{Ii}i∈V , {rij}i∈P∗
j
〉 an

interpretation for Σ, i ∈ V and C ∈ Ĉi. Then (nlfi(C))i = Ci.

Proof:

We employ structural induction on C.

Suppose, first, that (j, i) ∈ E and C ∈ Cj . Then (nnfi(C))i = Ci by the
definition of nnfi(C). Similarly (nnfi(⊤j))

i = ⊤i
j and (nnfi(⊥j))

i = ⊥i
j .

For C ⊓j D, we have

(nnfi(C ⊓j D))i = (nnfj(C) ⊓j nnfj(D))i (by the definition of nnfi)
= rj,i((nnfj(C))j ∩ (nnfj(D))j) (by the definition of ·i)
= rj,i(C

j ∩ Dj) (by the induction hypothesis)
= (C ⊓j D)i. (by the definition of ·i)

The case of C ⊔j D may be handled similarly.

For ∃jR.C, we get

(nnfi(∃jR.C))i = (∃jR.nnfj(C))i (by the definition of nnfi)
= rj,i({x ∈ ∆j : (∃y ∈ (nnfj(C))j)((x, y) ∈ Rj)})

(by the definition of ·i)
= rj,i({x ∈ ∆j : (∃y ∈ Cj)((x, y) ∈ Rj)})

(by the induction hypothesis)
= (∃jR.C)i. (by the definition of ·i)

The case of ∀jR.C may be handled similarly.

Next, we turn to negation and concentrate on the forms that do change. We
have

– (nlfi(¬i⊤i))
i = ⊥i

i = ∅ = ∆i\∆i = ∆i\⊤i
i = (¬i⊤i)

i.

– (nlfi(¬i⊥i))
i = ⊤i

i = ∆i = ∆i\∅ = ∆i\⊥i
i = (¬i⊥i)

i.

– (nlfi(¬i¬iC))i = Ci = ∆i\(∆i\Ci) = (¬i¬iC)i.

7

– For ¬i(C ⊓i D) we have

(nlfi(¬i(C ⊓i D)))i = (¬inlfi(C) ⊔i ¬inlfi(D))i

= (∆i\nlfi(C)i) ∪ (∆i\nlfi(D)i)
= (∆i\Ci) ∪ (∆i\Di)
= ∆i\(Ci ∩ Di)
= (¬i(C ⊓i D))i.

– The case of ¬j(C ⊔k D) is handled similarly.
– For ¬j∃kR.C we have

(nlfi(¬i∃iR.C))i = (∀iR.¬iC)i

= {x ∈ ∆i : (∀y)((x, y) ∈ Ri → y 6∈ Ci}
= ∆i\{x ∈ ∆i : (∃y)((x, y) ∈ Ri and y ∈ Ci)}
= ∆i\(∃iR.C)i

= (¬i∃iR.C)i.

– Finally, the case of ¬j∀kR.C is handled similarly.

�

As far as the NLF is concerned, the reader should notice that, in module Ti,
an i-negation is either followed by a concept name C ∈ Ĉi or by a concept C,
whose outermost connective is a j-connective, for some j 6= i. The first kind will
be called of type 1 and the second of type 2 with trace j. This observation
will be important for the formulation and analysis of the distributive algorithm
and will be called upon many times in the sequel.

4 Federated Tableaux for F-ALCI

Tableau-based algorithms are used to test satisfiability of concepts in descrip-
tion logics. The main idea behind the F-ALCI tableau algorithm is to construct
multiple, federated local tableaux, one for each module, using, to the furthest
extent possible, only knowledge locally available to that module. The coordina-
tion between local tableaux is achieved via inter-module messages which relate
pairs of elements across different local tableaux. In effect, this will build a repre-
sentation of possible image-domain relations rij , for (i, j) ∈ E. An i-subconcept
of an i-concept expression C is a substring of C, which forms also an i-concept
expression. We make this notion precise in Definition 2. It will be used in the
definition of a federated tableau for a F-ALCI-concept in NLF with respect to
a module Tw, that follows.

Definition 2 The i-subconcepts subi(C) of an F-ALCI concept C ∈ Ĉi in NLF

is inductively defined as:

subi(A) = {A}, A ∈
⋃

(j,i)∈E(Cj ∪ {⊤j,⊥j})

subi(C ⊞j D) = {C ⊞j D} ∪ subj(C) ∪ subj(D), ⊞ ∈ {⊓,⊔}, (j, i) ∈ E,

subi(⋊jR.C) = {⋊jR.C} ∪ subj(C), ⋊ ∈ {∃, ∀}, (j, i) ∈ E,

subi(¬jC) = {¬jC} ∪ subj(C), (j, i) ∈ E, j 6= i,

subi(¬iC) =

{
{¬iC} ∪ subi(C), if ¬iC is of type 1
{¬iC} ∪ subj(C), if ¬iC is of type 2 with trace j

8

Moreover, define, for every concept expression C ∈ Ĉi, Rol(C) ⊆ R̂i to be the
(finite) set of role expressions appearing in C.

For every module Ti, we define

CTi
= ⊤i ⊓i

l

C⊑D∈Ti

(nlfi(¬iC) ⊔i nlfi(D)),

where the
d

also refers to the i-th conjunction symbol.

Let Tw be a module and D ∈ Ĉw an F-ALCI concept in NLF. A federated
tableau for D with respect to Tw is a tuple M = 〈{Mi}i∈Vw

, {mij}(i,j)∈Ew
〉,

where each Mi is a local tableau, for i ∈ Vw , and mij is a tableau relation
from a local tableau Mi to a local tableau Mj , for (i, j) ∈ Ew.

Each local tableau is a tuple Mi = 〈Ui, Fi,Li〉, where

– Ui is a set of individuals,
– Fi ⊆ Ui × Ui is a binary relation on Ui,
– Lw is a label function that assigns elements of 2subw(D)∪subw(CTw) to indi-

viduals in Uw and elements of 2Rol(D)∪Rol(CTw) to pairs in Fw whereas Li is
a label function that assigns elements of 2subi(CTi

) to individuals in Ui and
elements of 2Rol(CTi

) to pairs in Fi, for i 6= w.

Each tableau relation mij is a subset of Ui × Uj , (i, j) ∈ Ew.
The federated tableau M should satisfy the following conditions:

(D1) there exists x ∈ Uw, such that D ∈ Lw(x);
(D2) for every x ∈ Ui, CTi

∈ Li(x);
(B1) C ∈ Li(x) iff there exists x′ ∈ Uj, with (x′, x) ∈ mji, such that C ∈ Lj(x

′),

for all C ∈ Ĉi ∩ (Cj ∪ {⊤j}), (j, i) ∈ Ew;
(B2) R ∈ Li(〈x, y〉) iff there exist x′, y′ ∈ Uj , with (x′, x), (y′, y) ∈ mji, such that

R ∈ Lj(〈x′, y′〉), for all R ∈ R̂i ∩Rj , (j, i) ∈ Ew;

(N1) if C ∈ Li(x), then ¬iC 6∈ Li(x), for every C ∈ Ĉi, such that ¬iC is of type
1;

(N2) if ¬iC ∈ Li(x) is of type 2 with trace j, then, if x′ ∈ Uj , with (x′, x) ∈ mji,

then ¬jC ∈ Lj(x
′), for all C ∈ Ĉi ∩ Ĉj , (j, i) ∈ Ew, j 6= i;

(N3) if ¬jC ∈ Li(x), then, there exists x′ ∈ Uj, with (x′, x) ∈ mji and ¬jC ∈

Lj(x
′), for all C ∈ Ĉi ∩ Ĉj , (j, i) ∈ Ew, j 6= i;

(A1) if C1 ⊓j C2 ∈ Li(x), then, if i = j, C1, C2 ∈ Li(x) and, if i 6= j, then, there
exists x′ ∈ Uj , with (x′, x) ∈ mji, such that C1 ⊓j C2 ∈ Lj(x

′), for every

C1, C2 ∈ Ĉi ∩ Ĉj and (j, i) ∈ Ew;
(A2) if C1⊔jC2 ∈ Li(x), then, if i = j, then C1 ∈ Li(x) or C2 ∈ Li(x) and, if i 6= j,

then, there exists x′ ∈ Uj , with (x′, x) ∈ mji, such that C1 ⊔j C2 ∈ Lj(x
′),

for every C1, C2 ∈ Ĉi ∩ Ĉj and (j, i) ∈ Ew;
(A3) if ∀jR.C ∈ Li(x) , then, if i = j, then, for all y ∈ Ui, such that R ∈ Li(〈x, y〉),

we have C ∈ Li(y), and, if i 6= j, then, there exists x′ ∈ Uj, with (x′, x) ∈

mji, such that ∀jR.C ∈ Lj(x
′), for all R ∈ R̂i ∩ R̂j , C ∈ Ĉi ∩ Ĉj , (j, i) ∈ Ew;

9

(A4) if ∃jR.C ∈ Li(x) , then, if i = j, then, there exists y ∈ Ui, such that
R ∈ Li(〈x, y〉) and C ∈ Li(y), and, if i 6= j, then, there exists x′ ∈ Uj ,

with (x′, x) ∈ mji, such that ∃jR.C ∈ Lj(x
′), for all R ∈ R̂i ∩ R̂j , C ∈

Ĉi ∩ Ĉj, (j, i) ∈ Ew.

Condition (D1) ensures that the interpretation of D in the model described
by the federated tableau is nonempty. Condition (D2) ensures the satisfiability
of all federated TBox axioms in the model. Conditions (B1) and (B2) stipulate
that the interpretations of imported concept names and imported role names
are inherited from their corresponding interpretations in their original module.
Conditions (N1)-(N3) guarantee that all relevant properties of the contextualized
negations will be satisfied in the resulting model. In particular, Conditions (N1)
and (N2) safeguard the consistency of the model. Conditions (A1)-(A4) ensure
the correctness of the interpretation of the remaining localized connectives.

The following two lemmas establish the correspondence between concept sat-
isfiability, and, thus, also between TBox consistency and concept subsumption,
and the existence of a federated tableau for that concept in F-ALCI.

Lemma 3 Let T = {Ti}i∈V be a F-ALCI KB and D be concept in Tw. If D

has a federated tableau w.r.t. Tw, then D is satisfiable as witnessed by Tw.

Proof:
For the “if” direction, let 〈{Mi}i∈Vw

, {mij}(i,j)∈Ew
〉, with Mi = 〈Ui, Fi,

Li〉, be a tableau for D w.r.t. T ∗w. Then, a federated model I = 〈{Ii}i∈Vw
,

{rij}(i,j)∈Ew
〉 of T ∗w may be defined as follows:

∆i = Ui;

Ai = {x ∈ Ui : A ∈ Li(x)}, for every i-concept name A;

Ri = {〈x, y〉 ∈ Fi : R ∈ Li(〈x, y〉}, for every i-role name R;

rij = mij .

By using induction on the structure of an i-concept, we show that

C ∈ Li(x) implies x ∈ Ci. (2)

– If C is an i-concept name, then C ∈ Li(x) if and only if, by the definition of
Ci, x ∈ Ci.

– If C is a j-concept name or ⊤j , j 6= i, and C ∈ Li(x), then, by Property
(B1), there exists x′ ∈ Uj , with (x′, x) ∈ mji = rji, such that C ∈ Lj(x

′).
Therefore x ∈ rji(x

′) ⊆ rji(C
j) = Ci.

– Suppose that ¬iC ∈ Li(x) is of type 1. Then, by Property (N1), C 6∈ Li(x),
whence
• If C ∈ Ci, then, by the definition of Ci, x 6∈ Ci and
• if C ∈ Cj , j 6= i, then x 6∈ Ci = rji(C

j) = mji(C
j), since otherwise,

by Property (B1) and the definition of Cj , there would exist x′ ∈ Uj ,
with (x′, x) ∈ mji = rji, such that x′ ∈ Cj , which would imply x ∈ Ci,
contradicting x 6∈ Ci.

10

– Suppose that ¬iC ∈ Li(x) is of type 2 with trace j. We must show that x ∈
(¬iC)i = ∆i\Ci = ∆i\rji(C

j). Suppose, to the contrary, that x ∈ rji(C
j).

Then, there exists x′ ∈ Uj , with (x′, x) ∈ mji, such that x′ ∈ Cj . But,
in that case, by Property (N2), ¬jC ∈ Lj(x

′), implying, by the induction
hypothesis, that x′ ∈ (¬jC)j = ∆j\Cj , a contradiction.

– For the last case involving negation, assume that ¬jC ∈ Li(x). Then by
Property (N3), there exists x′ ∈ Uj , with (x′, x) ∈ mji and ¬jC ∈ Lj(x

′).
Therefore, using the previous case, we get x ∈ mji(x

′) ⊆ mji((¬jC)j) =
mji(∆

j\Cj) = (¬jC)i.
– If C1 ⊓j C2 ∈ Li(x), then, by Property (A1), there exists x′ ∈ Uj , with

(x′, x) ∈ mji, such that C1 ∈ Lj(x
′) and C2 ∈ Lj(x

′). Therefore, using the

induction hypothesis, x ∈ mji(x
′) ⊆ mji(C

j
1 ∩ C

j
2) = mji((C1 ⊓j C2)

j) =
(C1 ⊓j C2)

i.
– The case C = C1 ⊔j C2 may be handled similarly, using Property (A2).
– If ∀jR.C ∈ Li(x), then, by Property (A3), there exists x′ ∈ Uj , with (x′, x) ∈

mji, such that, for all y′ ∈ Uj, with R ∈ Lj(〈x′, y′〉), C ∈ Lj(y
′). Thus,

by the definition of Rj , we get, using the induction hypothesis, that, there
exists x′ ∈ Uj, with (x′, x) ∈ mji, such that x′ ∈ (∀jR.C)j . Hence x ∈
mji((∀jR.C)j) = (∀jR.C)i.

– Finally, suppose that ∃jR.C ∈ Li(x). Then, by Property (A4), there exist
x′, y′ ∈ Uj , such that (x′, x) ∈ mji, R ∈ Lj(〈x

′, y′〉) and C ∈ Lj(y
′). Thus,

again using the definition of Rj and the induction hypothesis, we get that,
there exists x′ ∈ Uj , with (x′, x) ∈ mji, such that x′ ∈ (∃jR.C)j . This shows
that x ∈ mji(x

′) ⊆ mji((∃jR.C)j) = (∃jR.C)i.

Notice, now, that Dw 6= ∅. In fact, by Property (D1), there exists x ∈ Uw, such
that D ∈ Lw(x). Therefore, using Implication (2), x ∈ Dw 6= ∅. Finally, again
using Implication (2), it is shown that, if C ⊑ D is an i-formula, then Ci ⊆ Di.
In fact, using Properties (D2) and (A1), we get that ¬iC ⊔D ∈ Li(x). Thus, by
Property (A2), either ¬iC ∈ Li(x) or D ∈ Li(x). Therefore, by Implication (2),
x 6∈ Ci or x ∈ Di, whence Ci ⊆ Di, and, hence, Ii |= Ti. �

In Lemma 4, the converse is established, i.e., that, if an F-ALCI concept D

in a module Tw is satisfiable as witnessed by Tw, then it has a federated tableau
with respect to Tw.

Lemma 4 Let D be a concept in a module Tw of an F-ALCI KB T = {Ti}i∈V .

If D is satisfiable as witnessed by Tw, then D has a federated tableau w.r.t. Tw.

Proof:
Suppose that I = 〈{Ii}i∈Vw

, {rij}(i,j)∈Ew
〉 is a model of T ∗w, with Dw 6= ∅. A

federated tableau M = 〈{Mi}i∈Vw
, {mij}(i,j)∈Ew

〉 for T ∗w, with Mi = 〈Ui, Fi,Li〉,
may be defined as follows:

Ui = ∆i;

Fi =
⋃

{Ri : R ∈ R̂i};

11

Lw(x) = {C ∈ subw(D) ∪ subw(CTw
) : x ∈ Cw}, x ∈ ∆w;

Lw(〈x, y〉) = {R ∈ Rol(D) ∪ Rol(CTw
) : 〈x, y〉 ∈ Rw}, x, y ∈ ∆w;

Li(x) = {C ∈ subi(CTi
) : x ∈ Ci}, x ∈ ∆i, i 6= w;

Li(〈x, y〉) = {R ∈ Rol(CTi
) : 〈x, y〉 ∈ Ri}, x, y ∈ ∆i;

mij = rij .

We now verify that M is indeed a tableau for D w.r.t. Tw, i.e., that it satisfies
all conditions in the definition of a federated tableau (Conditions (D1)-(A4)).

(D1): Since Dw 6= ∅, there exists x ∈ Uw, such that D ∈ Lw(x).
(D2): Since Ii is a model of Ti, we have, for every x ∈ Ui, x ∈ Ci

Ti
, whence

CTi
∈ Li(x).

(B1): Suppose C ∈ Ĉi ∩ (Cj ∪ {⊤j}), (j, i) ∈ E. Then we have C ∈ Li(x) iff, by the
definition of Li(x), x ∈ Ci = rji(C

j) = mji(C
j) iff, there exists x′ ∈ Uj , with

(x′, x) ∈ mji, such that x′ ∈ Cj , iff, there exists x′ ∈ Uj , with (x′, x) ∈ mji,
such that C ∈ Lj(x

′).

(B2): Suppose that R ∈ R̂i ∩ Rj . Then R ∈ Li(〈x, y〉) iff (x, y) ∈ Ri = rji(R
j) =

mji(R
j) if and only if, there exist x′, y′ ∈ Uj , with (x′, x), (y′, y) ∈ mji, such

that (x′, y′) ∈ Rj iff R ∈ Lj(〈x′, y′〉).
(N1): If C ∈ Li(x), such that ¬iC is of type 1, then x ∈ Ci, whence x 6∈ ∆i\Ci =

(¬iC)i. Thus ¬iC 6∈ Li(x).
(N2): Suppose ¬iC ∈ Li(x) is of type 2 with trace j and x′ ∈ Uj , with (x′, x) ∈

mji = rji. For the sake of obtaining a contradiction, suppose that ¬jC 6∈
Lj(x

′). Then x′ 6∈ (¬jC)j = ∆j\Cj , i.e., x′ ∈ Cj . Therefore, x ∈ rji(C
j),

whence x 6∈ ∆i\rji(C
j) = (¬iC)i. This yields ¬iC 6∈ Li(x), which contra-

dicts our hypothesis.
(N3): Finally, suppose that C ∈ Ĉi ∩ Ĉj , (j, i) ∈ E, j 6= i, with ¬jC ∈ Li(x).

Thus x ∈ (¬jC)i = rji(∆
j\Cj). Thus, there exists x′ ∈ Uj , with (x′, x) ∈

rji = mji, such that x′ 6∈ Cj . But, then, x′ ∈ ∆j\Cj = (¬jC)j , whence
¬jC ∈ Lj(x

′).

(A1): If C1 ⊓j C2 ∈ Li(x), then x ∈ (C1 ⊓j C2)
i = rji(C

j
1 ∩C

j
2). Thus, there exists

x′ ∈ Uj , with (x′, x) ∈ rji = mji, such that x′ ∈ C
j
1 and x′ ∈ C

j
2 , i.e., such

that C1 ∈ Lj(x
′) and C2 ∈ Lj(x

′).
(A2): This case is handled very similarly to the previous one.
(A3): Suppose that ∀jR.C ∈ Li(x). Then

x ∈ (∀jR.C)i = rji({x
′ ∈ ∆j : (∀y′ ∈ ∆j)((x′, y′) ∈ Rj → y′ ∈ Cj)}).

This means that there exists x′ ∈ ∆j = Uj , with (x′, x) ∈ rji = mji, such
that, for all y′ ∈ ∆j = Uj, with (x′, y′) ∈ Rj , i.e., R ∈ Lj(〈x′, y′〉), y′ ∈ Cj ,
i.e., C ∈ Lj(y

′).
(A4): Finally, suppose that ∃jR.C ∈ Li(x). Then

x ∈ (∃jR.C)i = rji({x
′ ∈ ∆j : (∃y′ ∈ ∆j)((x′, y′) ∈ Rj and y′ ∈ Cj)}).

Thus, there exists x′ ∈ ∆j = Uj, with (x′, x) ∈ rji = mji, such that, there
exists a y′ ∈ ∆j = Uj , with (x′, y′) ∈ Rj , i.e., R ∈ Lj(〈x′, y′〉), and y′ ∈ Cj ,
i.e., C ∈ Lj(y

′).

12

�

By combining Lemmas 3 and 4, we obtain the first main result of the paper
establishing the equivalence between satisfiability and the existence of a tableau.

Theorem 5 Let T = {Ti}i∈V be a F-ALCI KB and D be a concept in module

Tw. Then D is satisfiable as witnessed by Tw iff D has a federated tableau with

respect to Tw.

5 Tableau Algorithm for F-ALCI

We now proceed to describe a sound and complete algorithm to determine the
existence of a tableau for an F-ALCI concept D with respect to a witness package
Tw. The algorithm allows a local tableau to be created and maintained by a
local reasoner. Thus, reasoning is carried out by a federation of reasoners that
communicate with each other via messages instead of a single reasoner over an
integrated ontology. Some implementation details, especially those concerning
synchronization issues of the federated reasoners, are omitted.

5.1 Federated Completion Graph

The algorithm works on a dynamically evolving federated completion graph,
which is a partial finite description of a tableau. A federated completion
graph is a set G = {Gi}i∈Vw

, of local completion graphs. A local completion
graph Gi = 〈Vi, Ei,Li〉, i ∈ Vw , consists of a finite set of finite trees, i.e., a forest,
where Vi and Ei are the corresponding sets of nodes and edges respectively, and
of a function Li, that assigns labels to nodes and edges in Gi, exactly as was
the case with local tableaux. Each node x in Vi represents an individual in the
corresponding tableau, denoted i : x, and is labeled with Li(x), a set of concepts
of which x is a member. Each edge 〈x, y〉 ∈ Ei represents an edge in the tableau,
and is labeled with Li(〈x, y〉), the set of roles of which it is an instance.

If R ∈ Li(〈x, y〉) or R− ∈ Li(〈y, x〉), y is said to be a local R-successor of
x and x is said to be a local R-predecessor of y. Local ancestors and local
descendants of a node are defined in the usual manner.

Every node x has associated with it a set of nodes org(x), which, informally
speaking, are the nodes from which x is related via image domain relations. If
(i : x) ∈ org(j : y) and (i, j) ∈ Ew, we say that node y ∈ Vj is an image of
node x ∈ Vi, that node x is a pre-image of node y, and that there is a graph
relation 〈x, y〉.

A typical federated completion graph consists of local successor relations
in local forests together with graph relations across forests in different local
reasoners. To construct a model for the ontology resulting by integrating all
modules, as was done in [3], a different technique is used here. One keeps all
forests disjoint, but uses the graph relations to map nodes in one forest to nodes
in other forests.

13

5.2 Federated Tableau Expansion

A federated F-ALCI completion graph is constructed by applying a set of tableau
expansion rules and by exchanging messages between local reasoners. The F-
ALCI expansion rules are adapted from the ALCI expansion rules. The label of
each node in each local completion graph Mi will contain CTi

, the internalization
of Ti. A local completion graph can create images or pre-images of its local nodes
in another local completion graph, as needed, during an expansion.

As in the tableau algorithm for ALCI, some nodes in the graph may be
blocked. The exact definition, whose main motivation is the detection of cycles
in tableau expansions, is as follows:

Definition 6 (Equality Blocking) For a federated completion graph of an F-

ALCI ontology, a node x is directly blocked by a node y, if both x and y are

in the same local completion graph Gi, for some i, y is a local ancestor of x,

and Li(x) = Li(y). Node x is indirectly blocked by a node y if one of x’s

local ancestors is directly blocked by y. Node x is blocked by y if it is directly

or indirectly blocked by y.

Equality blocking in F-ALCI only depends on the local information in com-
pletion graphs, i.e., a node is blocked only by its local ancestors.

A concept reporting message creates image or pre-image nodes and/or
propagates concept labels of a node to the corresponding image node or pre-
image node. We use S+= X to denote the operation of adding the elements of
the set X to a set S, i.e., the operation S = S∪X . We have five kinds of concept
reporting messages and each of these messages may be transmitted only once.

– A forward concept reporting message ri→j(x, C) executes the following
action: if there exists x′ ∈ Vj , such that x ∈ org(x′) and C 6∈ Lj(x

′), then
Lj(x

′)+= {C}.
– A soft backward concept reporting message rjL99i(x, C) executes the

following actions: if x′ ∈ Vj , with x′ ∈ org(x), then Lj(x
′)+ = {C}, if

C 6∈ Lj(x
′).

– A backward concept reporting message rj←i(x, C) executes the follow-
ing action: create an x′ ∈ Vj , with x′ ∈ org(x) and Lj(x

′) = {C}.
– A forward role reporting message ri→j(〈x, y〉, R) executes the following

action: if there exist x′, y′ ∈ Vj , such that x ∈ org(x′), y ∈ org(y′) and
R 6∈ Lj(〈x′, y′〉), then Lj(〈x′, y′〉)+= {R}.

– A backward role reporting message rj←i(〈x, y〉, R) executes the fol-
lowing action: create x′, y′ ∈ Vj , with x′ ∈ org(x), y′ ∈ org(y), and set
Lj(〈x′, y′〉) = {R}.

The expansion rules are:

– A rule ensuring that every element in Gi satisfies CTi
.

• D-rule: if CTi
6∈ Li(x), then Li(x)+= {CTi

}.
– Four rules imposing forward and backward concept and role compatibilities:

14

• FCN-rule: if C ∈ Lj(x), C ∈ Ĉi ∩ (Cj ∪ {⊤j}), (j, i) ∈ E, and x is not
blocked, then transmit rj→i(x, C).

• BCN-rule: if C ∈ Li(x), C ∈ Ĉi ∩ (Cj ∪ {⊤j}), (j, i) ∈ E, and x is not
blocked, then transmit rj←i(x, C).

• FRN-rule: if R ∈ Lj(〈x, y〉), R ∈ R̂i ∩Rj , (j, i) ∈ E, and x or y are not
blocked, then transmit rj→i(〈x, y〉, R).

• BRN-rule: if R ∈ Li(〈x, y〉), R ∈ R̂i ∩Rj , (j, i) ∈ E, and x or y are not
blocked, then transmit rj←i(〈x, y〉, R).

– Two negation rules (a local and a foreign one):

• L¬-rule: if ¬iC ∈ Li(x) is of type 2 with trace j, C ∈ Ĉi ∩ Ĉj, (j, i) ∈
E, i 6= j, and x is not blocked, then transmit rjL99i(x, nlfj(¬jC)).

• F¬-rule: if ¬jC ∈ Li(x), C ∈ Ĉi ∩ Ĉj , (j, i) ∈ E, i 6= j, and x is not
blocked, then transmit rj←i(x, nlfj(¬jC)).

– Two conjunction rules (a local and a foreign one):
• L⊓-rule: if C1 ⊓i C2 ∈ Li(x), x is not blocked, and {C1, C2} 6⊆ Li(x),

then Li(x)+= {C1, C2}.
• F⊓-rule: if C1⊓j C2 ∈ Li(x), (j, i) ∈ E, j 6= i, and x is not blocked, then

transmit rj←i(x, C1 ⊓j C2).
– Two disjunction rules (a local and a foreign one):

• L⊔-rule: if C1 ⊔i C2 ∈ Li(x), x is not blocked, and {C1, C2}∩Li(x) = ∅,
then Li(x)+= {C1} or Li(x)+= {C2}.

• F⊔-rule: if C1⊔j C2 ∈ Li(x), (j, i) ∈ E, j 6= i, and x is not blocked, then
transmit rj←i(x, C1 ⊔j C2).

– Two universal quantification rules (a local and a foreign one):
• L∀-rule: if ∀iR.C ∈ Li(x), x is not blocked and, there exists y ∈ Vi, with

R ∈ Li(〈x, y〉), then Li(y)+= {C}, if C 6∈ Li(y).
• F∀-rule: if ∀jR.C ∈ Li(x), (j, i) ∈ E, j 6= i, and x is not blocked, then

transmit rj←i(x, ∀jR.C).
– Two existential quantification rules (a local and a foreign one):

• L∃-rule: if ∃iR.C ∈ Li(x) and x is not blocked and x has no local R-
successor y, with C ∈ Li(y), then create a new node y ∈ Vi and set
Li(〈x, y〉) = {R} and Li(y) = {C}.

• F∃-rule: if ∃jR.C ∈ Li(x), (j, i) ∈ E, j 6= i, and x is not blocked, then
transmit rj←i(x, ∃jR.C).

All the rules presented above correspond to properties that the federated
tableau must satisfy. The D-rule makes sure that Property (D2) is satisfied.
The FCN (Forward Concept Name) and BCN (Backward Concept Name) rules
ensure that Property (B1) of a tableau is satisfied by the completion graphs.
Similarly, the FRN (Forward Role Name) and BRN (Backward Role Name) rules
take care of Property (B2). The negation, conjunction, disjunction, universal
and existential quantification rules have both an L (Local) and an F (Foreign)
version. These ten rules collectively make sure that all properties pertaining to
negation, conjunction, disjunction and the quantifiers, i.e., Properties (N1)-(A4),
of a tableau are satisfied by the completion graphs.

15

A federated completion graph is complete if no F-ALCI expansion rule can
be applied to it, and it is clash-free if there is no x in any local completion
graph Gi, such that both C and ¬iC are in Li(x), for some concept C.

For a satisfiability query of a concept D as witnessed by a module Tw, a
local completion graph Gw, with an initial node x0, with Lw(x0) = {D}, will
be created first. The F-ALCI tableau expansion rules will be applied until a
complete and clash-free federated completion graph is found or until all search
efforts for such a federated completion graph fail.

Example 3: We present a very simple example to illustrate how some of the
expansion rules and some of the concept reporting messages work in the algo-
rithm. Suppose that the underlying graph G is the complete graph on two nodes,
1 and 2. Module T1, corresponding to node 1, has two concept names A, B and
module T2, corresponding to node 2, does not have any concept names. Suppose
that T1 consists of the single subsumption A ⊑ B and that we want to check
the satisfiability of ¬2A ⊔1 B from the point of view of the second module. We
define CT1 = ⊤1 ⊓1 (¬1A ⊔1 B) and the algorithm is initialized by creating a
node x0 in G2, such that L2(x0) = {¬2A ⊔1 B}. (See Figure 1.)

Fig. 1. The distributed model of Example 2.

The F⊔-rule applies, whence a concept reporting message r1←2(x0,¬2A⊔1B)
is sent from module 2 to module 1. This creates a node x′0 in G1, with L1(x

′
0) =

{¬2A ⊔1 B}. We also have that org(x0) = {x′0}.
Next, the D-rule is applied to x′0, whence L1(x

′
0) = {⊤1⊓1 (¬1A⊔1B),¬2A⊔1

B}, and, then, the L⊓-rule and twice the L⊔-rule apply to obtain

L1(x
′
0) = {⊤1 ⊓1 (¬1A ⊔1 B),¬2A ⊔1 B,⊤1,¬1A ⊔1 B,¬1A,¬2A}.

Finally, the occurrence of ¬2A triggers an application of the F¬-rule, which
causes the transmission of a r2←1(x′0,¬2A) concept reporting message. A new
node x′′0 is created in G2, with label L2(x

′′
0) = {¬2A} and org(x′0) = {x′′0}.

As a consequence of this the L¬-rule is applied in G2 and an r1L992(x0,¬1A)
concept reporting message is delivered. This message, however, does not cause
any changes because there is no x in G1, such that x ∈ org(x′′0).

The final federated model I = 〈{Ii}i=1,2, {rij}i,j=1,2〉, therefore, consists of
∆1 = {x′0}, ∆

2 = {x0, x
′′
0}, with the interpretation A1 = B1 = ∅ and, for the

16

image domain relations we get

r12 = {(x′0, x0)}, r21 = {(x′′0 , x′0)}.

Since no clash occurred, the algorithm returns that ¬2A⊔1 B is satisfiable from
the point of view of T2. Indeed we have:

(¬2A ⊔1 B)2 = r12((¬2A ⊔1 B)1)
= r12((¬2A)1 ∪ B1)
= r12(r21(∆

2\A2) ∪ B1)
= r12(r21(∆

2\r12(A
1)) ∪ B1)

= r12(r21(∆
2) ∪ B1)

= r12({x
′
0})

= {x0}.

5.3 Synchronization

The federated tableau algorithm depends crucially on being able to synchronize
the processes occurring in each of the local reasoners. It must be ensured that,
at all times during the execution of the parallel threads of the algorithm, all
local processes, i.e., all applications of local expansion rules in the various local
completion graphs, refer to the same sequence of non-deterministic choices. This
may be achieved in a variety of different ways. One method was presented in
detail in [3] in the context of P-DLs. It uses clocks, timestamps and a token to
achieve synchronization and to implement efficient backtracking when a clash
occurs and another non-deterministic option has to be tried.

In the present paper, we prefer to give an abstract view of the synchroniza-
tion process without providing a detailed description of either the synchronizing
entities or the specific steps. There are many possible choices and which one is
adopted is a decision that can be relegated to the implementation of the algo-
rithm.

The guiding principle in building the local completion graphs in our case will
also be the sequence of applications of the L⊔-rules. Only one module is allowed
to apply the L⊔-rule at any particular time during the execution of the algorithm.
Otherwise, various other rules may be applied by the participating modules
simultaneously. A newly generated concept label or role label is accompanied by
a tag indicating the latest application of the L⊔-rule before its creation. New
labels can be created not only by the local rules, but also by the foreign rules that
involve concept and role reporting message transmissions. If a clash is detected
in a local completion graph, then all labels that have been created after the last
non-deterministic choice will be deleted and all nodes or edges without labels
will be purged. This returns the algorithm to the same state that preceded the
latest application of an L⊔-rule. Another non-deterministic choice that has not
been applied before will be made and the process will start again. This “pruning
operation” is necessary to restore all local completion graphs to their status just
before the choice which led to the clash, or to the initial status of the local
tableau, if no choice at all was ever made.

17

Note that local completion graphs may perform expansions on different rea-
soning subtasks concurrently. This improves the overall efficiency and scalability
of the reasoning process. Further, note that with the introduction of messages,
equality blocking in F-ALCI is dynamic: it can be established, broken and re-
established. Moreover, the completeness of a local completion graph is also dy-
namic. A complete local completion graph may become incomplete, i.e., some
expansion rules may become applicable, when a new reporting message arrives.

6 Correctness and Complexity

In order to show that the algorithm is a decision procedure for concept sat-
isfiability in F-ALCI, it is necessary to prove that the algorithm terminates,
that the models that can be constructed from clash-free and complete federated
completion graphs, generated from the algorithm, are valid with respect to the
semantics of the logic (soundness) and that the algorithm always finds a model
if one exists (completeness).

Termination and complexity of the algorithm is obtained by proving that
there is an upper bound for the total size of all local completion graphs. We use
the following notation throughout the analysis of the algorithm:

ni = |CTi
|, i 6= w; nw = |CTw

| + |D|;
si =

∑
(i,j)∈E nj , i 6= w; sw = nw,

where ni is the combined length of all i-formulas in Ti in negation local form and
si is the sum of the nj ’s for all j’s, such that Pj imports Pi. The reason why si

is important in the analysis of the federated algorithm is that all j-axioms that
contain an i-connective will cause a foreign rule to send a backward concept
reporting or a backward role reporting message to Pi to be processed. More
specifically, we have the following lemma:

Lemma 7 Let Σ = {Ti}i∈V be an F-ALCI KB, D ∈ Ĉw and m =
∑

i∈Vw
|Ti|.

The F-ALCI tableau algorithm runs in worst case non-deterministic O(2m ·∏
j∈Vw

22sj log sj
) time.

Proof:
We define f(x) = 22x log x

. We start with a set of observations:

– For every node that has no local predecessor (called local top node hence-

forth), its local descendants have a tree shape. This observation follows from
the form of the expansion rules.

– For every local top node j : x, j 6= w, x must be a preimage of a node in

another local completion graph Gi, such that (j, i) ∈ Ew. This holds because
such an x must be created by either a backward concept reporting message
triggered by an application of the BCN-rule or of a foreign rule or by a
backward role reporting message triggered by an application of the BRN-
rule.

18

– For all j, x, all local descendants of j : x in Gj, that are not successors,

are not preimages of nodes in any other local completion graph. This holds
because a local descendant of j : x, that is not a successor, is generated only
by an application of the L∃-rule, while a preimage node is created only by
an application of the the BCN, the BRN or a foreign rule.

Hence, 1) each local completion graph is a forest; 2) the root of every tree, i.e., a
local top node, in a local completion graph, except for the root of Gw, is “copied”
from, i.e., it is a preimage of, a node in another local completion graph.

Next we prove that the size of each local completion graph, hence also the
total size of the “global completion graph”, is limited.

First, due to subset blocking, for any local top node in Gj , the depth of its
local descendant tree is bounded by O(2sj) and its breadth is bounded by the
number of “∃j” in all

⋃
(j,i)∈E CTi

, for j 6= w, or in CTw
⊔D, for j = w, which is

smaller than sj . Thus, the size of the tree is bounded by O(sj
2sj

) = O(f(sj)).
Since there is only acyclic importing, we can put all modules {Ti}i∈Vw

in an
ordered list L, such that L1 = Tw and each module Ti comes in L before all
modules {Tj}j∈Vi

, in a way similar to topological sorting in DAG. Let #(Lj)
be the subscript of the module at Lj . Then, we have that the size of G#(Lj) is
bounded by:

|G#(L1)| : O(f(sw))

|G#(Lj)| : O
(∑

k<j

|G#(Lk)| × f(s#(Lj))
)
, for j > 1

This holds because there is only one local top node in G#(L1) = Gw (the original
node), and, for every j > 1 and p = #(Lj), the number of local top nodes in Gp

is limited by
∑

(p,q)∈Ew
|Gq|, i.e., by the total size of the local completion graphs

of modules that directly import Tp, since all nodes in Tp must be preimage nodes
of nodes in those local completion graphs. In the worst case, {Tq : (p, q) ∈ Ew}
contains all modules that are before j in L. On the other hand, the size of a tree
under a local top node in Gk is limited by f(sk).

Setting |G#(Lj)| = tj and ej = f(s#(Lj)), we obtain that tj is bounded by

O
(
(t1 + t2 + ... + tj−1) × ej

)
. (3)

Using induction, it will now be shown that tj is bounded by

O
(
2j−2 × e1 × ... × ej

)
, for j > 1. (4)

By Equation (3), when j = 2, t2 is bounded by O(t1 × e2) = O(e1 × e2), whence
Equation (4) holds. Let j > 2. Assuming, as the induction hypothesis, that,
for every 1 < k < j, Equation (4) holds, we have, by Equation (3), that tj is
bounded by

O
(
(t1 + t2 + · · · + tj−1) × ej

)
< O

(
(e1 + 20e1e2 + · · · + 2j−3e1e2 · · · ej−1)ej

)

< O
(
(1 + 20 + · · · + 2j−3) × e1e2 · · · ej

)

= O
(
2j−2e1e2 · · · ej

)

19

This finishes the induction step and concludes the proof of Equation (4). Hence,
the size of all local completion graphs is bounded by:

O

(
e1 +

∑

2≤j≤m

(
2j−2

∏

k≤j

ej

))
≤ O

(
2m−1 ×

∏

j∈Vw

f(sj)

)

< O

(
2m ×

∏

j∈Vw

22sj×log sj

)

�

Lemma 7 leads to the following theorem on the complexity of the federated
algorithm for deciding F-ALCI concept satisfiability.

Theorem 8 (Termination and Complexity) Let Σ be an F-ALCI ontology

and D ∈ Ĉw. The F-ALCI tableau algorithm runs in worst case 2NExpTime

w.r.t. the size of D and the sum of the sizes of the modules in {Ti}i∈Vw
.

Proof:
Let s = max{si : i ∈ Vw}. In general, m ≪ 2s log s. By Lemma 7, it follows

that the total size of all local completion graphs is bounded by

O
(
2m · 2m2(s+|D|) log (s+|D|)

)
< O

(
22(s+|D|)2

)
.

�

In the following two lemmas, soundness and completeness of the F-ALCI
algorithm are stated.

Theorem 9 (Soundness) If the F-ALCI algorithm yields a complete and clash-

free federated completion graph for a concept D w.r.t. a witness module Tw, then

D has a federated tableau w.r.t. Tw.

Proof:
Let G = {Gi}, with Gi = (Vi, Ei,L

g
i), be a complete and clash-free federated

completion graph generated by the F-ALCI algorithm. We will obtain a tableau
by “unraveling” blocked nodes and tableau relations. For a directly blocked
node x, we denote by bk(x) the node that directly blocks x. Thus, we have
Lg

i (x) ⊆ Lg
i (bk(x)). We define a tableau M = 〈{Mi}i∈Vw

, {mij}(i,j)∈Ew
〉, with

Mi = 〈Ui, Fi,Lm
i 〉, for D w.r.t. Tw in the following way:

Ui = {x ∈ Vi : x is not blocked};

Fi = Ei ↾U2
i
;

Lm
i (x) = Lg

i (x);

Lm
i (〈x, y〉) = Lg

i (〈x, y〉) ∪
⋃

z:y=bk(z)

Lg
i (〈x, z〉);

mij = {〈x, y〉 ∈ Ui × Uj | x ∈ org(y)}, for (i, j) ∈ Ew.

We show that M satisfies all tableau properties.

20

(D1): Since x0 ∈ Vw, x0 is not blocked (it does not have any ancestors), and
D ∈ Lg

w(x0), we get that x0 ∈ Uw and D ∈ Lm
w (x0).

(D2): Property (D2) holds because of the D-rule.
(B1): Suppose, first, that there exists x′ ∈ Uj, with (x′, x) ∈ mji, such that C ∈

Lm
j (x′). Then x′ ∈ Uj is not blocked and x′ ∈ org(x), whence, since C ∈

Lg
j (x
′), we get, by the FCN-rule, C ∈ Lg

i (x), i.e., C ∈ Lm
i (x) and the “if”

direction of Property (B1) holds.
Suppose, conversely, that C ∈ Lm

i (x). Then C ∈ Lg
i (x) and x is not blocked,

whence, by the BCN-rule, there exists x′ ∈ Vj , which is not blocked because
it is a local top node, such that x′ ∈ org(x) and C ∈ Lm

j (x′). Therefore,
(x′, x) ∈ mji and C ∈ Lg

j (x
′). Therefore, Property (B1) holds.

(B2): Suppose, first, that there exists x′, y′ ∈ Uj , with (x′, x), (y′, y) ∈ mji, such
that R ∈ Lm

j (〈x′, y′〉). Then x′, y′ ∈ Uj are not blocked and x′ ∈ org(x), y′ ∈
org(y) and R ∈ Lg

j (〈x
′, y′〉). Thus, by the FRN-rule, R ∈ Lg

i (〈x, y〉), i.e.,
R ∈ Lm

i (〈x, y〉) and the “if” direction of Property (B2) holds.
Suppose, conversely, that R ∈ Lm

i (〈x, y〉). Then x is not blocked and R ∈
Lg

i (〈x, y〉). Thus, by the BRN-rule, there exists x′, y′ ∈ Vj , with x′ ∈ org(x)
and y′ ∈ org(y), such that R ∈ Lg

j (〈x
′, y′〉) and x′, y′ cannot be blocked.

Hence R ∈ Lm
j (〈x′, y′〉) and Property (B2) holds.

(N1): This property follows directly by the hypothesis that G is a clash-free fed-
erated completion graph.

(N2): Suppose ¬iC ∈ Lm
i (x) is of type 2 with trace j and that x′ ∈ Uj , with

(x′, x) ∈ mji. Then ¬iC ∈ Lg
i (x), x′ ∈ Vj , with x′ ∈ org(x) and neither x

nor x′ are blocked. Hence, by the L¬-rule, ¬jC ∈ Lg
j (x
′). Therefore, ¬jC ∈

Lm
j (x′) and Property (N2) holds.

(N3): Suppose that ¬jC ∈ Lm
i (x). Then ¬jC ∈ Lg

i (x). Thus, by the F¬-rule, there
exists x′ ∈ Vj , with x′ ∈ org(x), such that ¬jC ∈ Lg

j (x
′). This shows that,

there exists x′ ∈ Uj , such that (x′, x) ∈ mji and ¬jC ∈ Lm
j (x′). So Property

(N3) holds.
(A1): Suppose that C1 ⊓j C2 ∈ Lm

i (x). Then C1 ⊓j C2 ∈ Lg
i (x). Therefore, if

j = i, by the L⊓-rule, we get that C1, C2 ∈ Lg
i (x), whence C1, C2 ∈ Lm

i (x).
On the other hand, if j 6= i, then, by the F⊓-rule, there exists x′ ∈ Vj , with
x′ ∈ org(x), such that C1⊓j C2 ∈ Lg

j (x
′). Hence, by the previous case, we get

that C1, C2 ∈ Lg
j (x
′), showing that, there exists x′ ∈ Uj, with (x′, x) ∈ mji,

such that C1, C2 ∈ Lm
j (x′). Thus, Property (A1) holds.

(A2): The proof of this case is very similar to that of Property (A1).
(A3): Suppose that ∀jR.C ∈ Lm

i (x). Then ∀jR.C ∈ Lg
i (x). If j = i and R ∈

Lm
i (〈x, y〉), then we have that R ∈ Lg

i (〈x, y〉), whence, by the L∀-rule, C ∈
Lg

i (y), showing that C ∈ Lm
i (y). If, on the other hand, j 6= i, we get, by the

F∀-rule, that there exists x′ ∈ Vj , with x′ ∈ org(x), with ∀jR.C ∈ Lg
j (x
′).

Thus, by the L∀-rule, as applied in the previous case, for all y′ ∈ Uj, with
R ∈ Lm

j (〈x′, y′〉), we get that C ∈ Lm
j (y′).

(A4): Suppose that ∃jR.C ∈ Lm
i (x). Then ∃jR.C ∈ Lg

i (x). If j = i, then, by the
L∃-rule, there exists y ∈ Vi, such that R ∈ Lg

i (〈x, y〉), with C ∈ Lg
i (y). Thus,

in this case, R ∈ Lm
i (〈x, y〉) and C ∈ Lm

i (y). If, on the other hand, j 6= i,
we get, by the F∀-rule, that there exists x′ ∈ Vj , with x′ ∈ org(x), with

21

∃jR.C ∈ Lg
j (x
′). Thus, by the L∃-rule, as applied in the previous case, there

exists y′ ∈ Uj, with R ∈ Lg
j (〈x

′, y′〉) and C ∈ Lg
j (y
′). Hence, we get that

R ∈ Lm
j (〈x′, y′〉) and C ∈ Lm

j (y′).

�

The following lemma shows that the federated algorithm is complete, i.e., that
it always finds a complete and clash-free federated completion graph whenever
there exists a federated tableau.

Theorem 10 (Completeness) If a concept D has a federated tableau w.r.t.

to a witness module Tw of an F-ALCI KB T = {Ti}i∈V , then the F-ALCI
algorithm produces a complete and clash-free federated completion graph for D

w.r.t. Tw.

Proof:
Let M = 〈{Mi}i∈Vw

, {mij}(i,j)∈Ew
〉, with Mi = 〈Ui, Fi,Lm

i 〉, be a tableau
for D w.r.t. Tw. We will use M to guide the application of the non-deterministic
L⊔-rule in a way that yields a complete and clash-free federated completion
graph G = {Gi}, with Gi = (Vi, Ei,L

g
i).

To construct G, we start with a single node x0 in the local tableau Mw,
with D ∈ Lm

w (x0). Such an x0 exists, since M is a tableau for D w.r.t. Tw. Let
π ⊆

⋃
i∈Vw

(Vi × Ui) be a function that maps all individuals in local completion
graphs to individuals in corresponding local tableaux. Initially, we have Vw =
{x0}, Lg

w(x0) = {D} , π(x0) = x0 and all Gi, i 6= w, being empty. Next, we apply
F-ALCI expansion rules to extend G and π, in such a way that the following
conditions always (inductively) hold:

Lg
i (x) ⊆ Lm

i (π(x))
if R ∈ Lg

i (〈x, y〉), then R ∈ Lm
i (〈π(x), π(y)〉)

if x ∈ org(y) in G, then 〈π(x), π(y)〉 ∈ mij in T , for (i, j) ∈ Ew

(5)

– D-rule: if CTi
6∈ Lg

i (x), then Lg
i (x)+= {CTi

}. Since, by Property (D2),
CTi

∈ Lm
i (π(x)), this rule can be applied without violating Conditions (5).

– FCN-rule: if C ∈ Lg
j (x), x is not blocked, then transmit rj→i(x, C), i.e., if

there exists x′ ∈ Vi, such that x ∈ org(x′), then C ∈ Lg
i (x
′). In that case, by

the induction hypothesis, C ∈ Lm
j (π(x)) and (π(x), π(x′)) ∈ mji, whence by

Property (B1), we obtain that C ∈ Lm
i (π(x′)). Thus, Conditions (5) are not

violated.
– BCN-rule: if C ∈ Lg

i (x), then transmit rj←i(x, C). This will create and
x′ ∈ Vj , with x′ ∈ org(x) and C ∈ Lg

j (x
′). Since C ∈ Lg

i (x), we get that
C ∈ Lm

i (π(x)), whence, by Property (B1) of a federated tableau, there exists
z ∈ Uj , with (π(x), z) ∈ mji, with C ∈ Lm

j (z). Set π(x′) = z. Then we have
that Lg

j (x
′) = {C} ⊆ Lm

j (z) = Lm
j (π(z)). Moreover, we get (π(x), π(x′)) =

(π(x), z) ∈ mji and, therefore, Conditions (5) are not violated.
– FRN-rule: if R ∈ Lg

j (〈x, y〉), x or y not blocked, then transmit rj→i(〈x, y〉,
R), i.e., if there exist x′, y′, such that x ∈ org(x′), y ∈ org(y′), then R ∈
Lg

j (〈x
′, y′〉). If R ∈ Lg

j (〈x, y〉), then R ∈ Lm
i (〈π(x), π(y)〉) and, if x ∈

22

org(x′), y ∈ org(y′), then (π(x), π(x′)), (π(y), π(y′)) ∈ mij , whence, by the
tableau Property (B2), we must have R ∈ Lm

j (〈π(x′), π(y′)〉), whence Prop-
erty (5) is not violated.

– BRN-rule: if R ∈ Lg
i (〈x, y〉) and x or y are not blocked, then transmit

rj←i(〈x, y〉, R), i.e., create x′, y′ ∈ Vj , with x′ ∈ org(x), y′ ∈ org(y), such that
R ∈ Lg

j (〈x
′, y′〉). Since R ∈ Lg

i (〈x, y〉), we get that R ∈ Lm
i (〈π(x), π(y)〉).

Therefore, by Property (B2), there exists z, w ∈ Uj, with (z, π(x)) ∈ mji and
(w, π(y)) ∈ mji, such that R ∈ Lm

j (〈z, w〉). Set π(x′) = z and π(y′) = w.
Then, we get that (π(x′), π(x)), (π(y′), π(y)) ∈ mji and R ∈ Lm

j (〈π(x′),
π(y′)〉). Thus, Conditions (5) are not violated.

– L¬-rule: if ¬iC ∈ Lg
i (x) is of type 2 with trace j and x is not blocked,

then transmit rjL99i(x,¬jC), i.e., if there exists x′ ∈ Vj , with x′ ∈ org(x),
then ¬jC ∈ Lg

j (x
′). Under these circumstances, we have, by the induction

hypothesis, that ¬iC ∈ Lm
i (π(x)) and (π(x′), π(x)) ∈ mji. Thus, by Property

(N2), we get that ¬jC ∈ Lm
j (π(x′)), showing that Conditions (5) are not

violated.
– F¬-rule: if ¬jC ∈ Lg

i (x) and x is not blocked, then transmit rj←i(x,¬jC),
i.e., create x′ ∈ Vj , with x′ ∈ org(x), such that ¬jC ∈ Lg

j (x
′). By the

induction hypothesis, we have that ¬jC ∈ Lm
i (π(x)). Thus, by Property

(N3), we get that, there exists z ∈ Uj , with (z, π(x)) ∈ mji, such that
¬jC ∈ Lm

j (z). If we set π(x′) = z, we get that (π(x′), π(x)) = (z, π(x)) ∈ mji

and ¬jC ∈ Lm
j (π(x′)). Hence, Conditions (5) are not violated.

– L⊓-rule: if C1 ⊓i C2 ∈ Lg
i (x) and x is not blocked, then C1, C2 ∈ Lg

i (x).
In this case, by the induction hypothesis, C1 ⊓i C2 ∈ Lm

i (π(x)). Thus, by
Property (A1), we get that C1, C2 ∈ Lm

i (π(x)), which shows that Conditions
(5) are not violated.

– F⊓-rule: if C1⊓jC2 ∈ Lg
i (x) and x is not blocked, then transmit rj←i(x, C1⊓j

C2), i.e., create x′ ∈ Vj , with x′ ∈ org(x), such that C1⊓j C2 ∈ Lg
j (x
′). In this

case, by the induction hypothesis, C1 ⊓j C2 ∈ Lm
i (π(x)). Thus, by Property

(A1), there exists z ∈ Uj, with (z, π(x)) ∈ mji, such that C1 ⊓j C2 ∈ Lm
j (z).

Hence, if we set π(x′) = z, we get that (π(x′), π(x)) = (z, π(x)) ∈ mji and
C1 ⊓j C2 ∈ Lm

j (π(x′)). Therefore, Conditions (5) are not violated.
– L⊔-rule: if C1 ⊔i C2 ∈ Lg

i (x) and x is not blocked, then C1 ∈ Lg
i (x) or

C2 ∈ Lg
i (x). In this case, by the induction hypothesis, C1 ⊔i C2 ∈ Lm

i (π(x)).
Thus, by Property (A2), we get that C1 ∈ Lm

i (π(x)) or C1 ∈ Lm
i (π(x)),

which shows that Conditions (5) are not violated.
– F⊔-rule: if C1⊔jC2 ∈ Lg

i (x) and x is not blocked, then transmit rj←i(x, C1⊔j

C2), i.e., create x′ ∈ Vj , with x′ ∈ org(x), such that C1⊔j C2 ∈ Lg
j (x
′). In this

case, by the induction hypothesis, C1 ⊔j C2 ∈ Lm
i (π(x)). Thus, by Property

(A2), there exists z ∈ Uj, with (z, π(x)) ∈ mji, such that C1 ⊔j C2 ∈ Lm
j (z).

Hence, if we set π(x′) = z, we get that (π(x′), π(x)) = (z, π(x)) ∈ mji and
C1 ⊔j C2 ∈ Lm

j (π(x′)). Therefore, Conditions (5) are not violated.
– L∀-rule: if ∀iR.C ∈ Lg

i (x), x is not blocked, and there exists y ∈ Vi, with
R ∈ Lg

i (〈x, y〉), then C ∈ Lg
i (y). In this case, by the induction hypothesis, we

get that ∀iR.C ∈ Lm
i (π(x)) and R ∈ Lm

i (〈π(x), π(y)〉), whence, by Property
(A3), C ∈ Lm

i (π(y)). Hence, Conditions (5) are not violated.

23

– F∀-rule: if ∀jR.C ∈ Lg
i (x) and x is not blocked, then transmit rj←i(x,

∀jR.C), i.e., create x′ ∈ Vj , with x′ ∈ org(x), such that ∀jR.C ∈ Lg
j (x
′). If

∀jR.C ∈ Lg
i (x), then, by the induction hypothesis, ∀jR.C ∈ Lg

m(x), whence,
by Property (A3), there exists z ∈ Uj, with (z, π(x)) ∈ mji such that,
for all w ∈ Uj, with R ∈ Lm

j (〈z, w〉), C ∈ Lm
j (w). Set π(x′) = z. Then

we have that (π(x′), π(x)) = (z, π(x)) ∈ mji and, by the previous case,
∀jR.C ∈ Lm

j (π(x′)).
– L∃-rule: if ∃iR.C ∈ Lg

i (x), x is not blocked, and there does not exist y ∈ Vi,
with R ∈ Lg

i (〈x, y〉) and C ∈ Lg
i (y), then create such a y. In this case, by the

induction hypothesis, we get that ∃iR.C ∈ Lm
i (π(x)), whence, by Property

(A4), there exists z ∈ Ui, such that R ∈ Lm
i (〈π(x), z〉) and C ∈ Lm

i (z). Set
π(y) = z. Then R ∈ Lm

i (〈π(x), π(y)〉) and C ∈ Lm
i (π(y)). Hence, Conditions

(5) are not violated.
– F∃-rule: if ∃jR.C ∈ Lg

i (x) and x is not blocked, then transmit rj←i(x,

∃jR.C), i.e., create x′ ∈ Vj , with x′ ∈ org(x), such that ∃jR.C ∈ Lg
j (x
′). If

∃jR.C ∈ Lg
i (x), then, by the induction hypothesis, ∃jR.C ∈ Lg

m(x), whence,
by Property (A4), there exist z, w ∈ Uj , with (z, π(x)) ∈ mji, R ∈ Lm

j (〈z, w〉)
and C ∈ Lm

j (w). Set π(x′) = z. Then we have that (π(x′), π(x)) = (z, π(x)) ∈
mji and, by the previous case, ∃jR.C ∈ Lm

j (π(x′)). Thus, Conditions (5) are
not violated in this case either.

G must be clash-free, since, if there existed i, x, C, such that {C,¬iC} ⊆ Lg
i (x),

then, by Conditions (5), {C,¬iC} ⊆ Lm
i (π(x)), which would contradict tableau

Property (N1) for M . Hence, whenever an expansion rule is applicable to G, it
can be applied in such a way that maintains Conditions (5). By Lemma 7, any
sequence of rule applications must terminate. Hence, we will obtain a complete
and clash-free completion graph G for D from M . �

By combining Theorems 8, 9 and 10, we obtain the following theorem, which
is the main result of the paper.

Theorem 11 Let Σ be an F-ALCI ontology and D ∈ Ĉw. The F-ALCI tableau

algorithm is a sound, complete, and terminating decision procedure for satisfia-

bility of D as witnessed by Tw. This decision procedure is in 2NExpTime w.r.t.

the size of D and the sum of the sizes of the modules in {Ti}i∈Vw
.

7 Summary and Discussion

Many semantic web applications require support for knowledge representation
and inference over a federation of multiple autonomous ontology modules, with-
out having to combine them in one location. Federated ALCI or F-ALCI is a
modular description logic, each of whose modules is roughly an ALCI ontology.
F-ALCI supports importing of both concepts and roles across modules as well
as contextualized interpretation of logical connectives. We have presented a fed-
erated tableau algorithm for deciding satisfiability of a concept expression from
a specific module’s point of view in F-ALCI. We have shown that the algorithm

24

is sound and complete and that its worst-case running time is non-deterministic
doubly exponential with respect to the size of the input concept and the sum of
the sizes of all modules in the federated ontology. From the complexity-theoretic
point of view, this is equivalent to being non-deterministic doubly exponential
with respect to the size of the input concept and the size of the largest module
in the federated ontology, since the number of modules is assumed to be fixed. In
the non-federated case, several tableau-based algorithms with high complexity
upper bounds have been optimized to perform well in practice [1]. We are cur-
rently in the process of implementing the federated algorithm. Experimentation
and further optimizations may lead to a practically useful federated F-ALCI
reasoner.

Acknowledgement This research was supported in part by the grant IIS
0639230 from the National Science Foundation.

References

1. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, 2001.

2. Jie Bao, Doina Caragea, and Vasant Honavar. A tableau-based federated reasoning
algorithm for modular ontologies. In IEEE/WIC/ACM International Conference
on Web Intelligence, pages 404–410. IEEE Press, 2006.

3. Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar. Distributed
reasoning with modular ALCPC ontologies. 2008.

4. Jie Bao, George Voutsadakis, Giora Slutzki, and Vasant Honavar. Ontology Modu-
larization, chapter Package based Description Logics. Berlin: Springer (In Press),
2008.

5. Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. Owl web ontology
language reference. Technical report, W3C, 2004.

6. T Berners-Lee, J Hendler, and Ora Lassila. The semantic web. Scientific American,
284(5):34–43, May 2001.

7. Alexander Borgida and Luciano Serafini. Distributed description logics: Assimilat-
ing information from peer sources. Journal of Data Semantics, 1:153–184, 2003.

8. Bernardo Cuenca Grau and Bijan Parsia. From shoq(d) toward e-connections. In
Description Logics, 2004.

9. Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Tableau algorithms for
e-connections of description logics. Technical report, University of Maryland In-
stitute for Advanced Computer Studies (UMIACS), TR 2004-72, 2004.

10. Bernardo Cuenca Grau, Bijan Parsia, and Evren Sirin. Working with multiple
ontologies on the semantic web. In McIlraith et al. [16], pages 620–634.

11. Volker Haarslev and Ralf Möller. Racer system description. In IJCAR, pages
701–706, 2001.

12. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ and
RDF to OWL: the making of a web ontology language. J. Web Sem., 1(1):7–26,
2003.

13. Ian Horrocks and Ulrike Sattler. A tableau decision procedure for SHOIQ. J.
Autom. Reasoning, 39(3):249–276, 2007.

25

14. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for expressive
description logics. In LPAR, pages 161–180, 1999.

15. Oliver Kutz, Carsten Lutz, Frank Wolter, and Michael Zakharyaschev. E-
connections of abstract description systems. Artif. Intell., 156(1):1–73, 2004.

16. Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors.
The Semantic Web - ISWC 2004: Third International Semantic Web Confer-
ence,Hiroshima, Japan, November 7-11, 2004. Proceedings, volume 3298 of Lecture
Notes in Computer Science. Springer, 2004.

17. Peter F. Patel-Schneider and Ian Horrocks. Dlp and fact. In TABLEAUX, pages
19–23, 1999.

18. Marie-Christine Rousset. Small can be beautiful in the semantic web. In McIlraith
et al. [16], pages 6–16.

19. Luciano Serafini, Alexander Borgida, and Andrei Tamilin. Aspects of distributed
and modular ontology reasoning. In IJCAI, pages 570–575, 2005.

20. Luciano Serafini and Andrei Tamilin. Local tableaux for reasoning in distributed
description logics. In Description Logics Workshop 2004, CEUR-WS Vol 104, 2004.

21. Luciano Serafini and Andrei Tamilin. Drago: Distributed reasoning architecture
for the semantic web. In ESWC, pages 361–376, 2005.

22. Evren Sirin and Bijan Parsia. Pellet: An OWL DL Reasoner. In Description Logics
Workshop, 2004.

23. Heiner Stuckenschmidt and Michel C. A. Klein. Integrity and change in modular
ontologies. In IJCAI, pages 900–908, 2003.

24. George Voutsadakis, Jie Bao, Giora Slutzki, and Vasant Honavar. Federated ALCI:
Preliminary report. WI 2008, To appear, 2008.

