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Abstract

Algebraic systems arise in categorical abstract algebraic logic and
form a generalization of universal algebras. They allow multiple sig-
natures and accommodate changes between signatures in the form
of signature morphisms as well as natural transformations on signa-
tures, which correspond to term operations in the universal algebraic
context. In a way similar to ordinary quasi-equational logic and qua-
sivarieties of universal algebras, one may define quasi-equations and
natural quasi-equations and the relation of satisfaction between al-
gebraic systems, on the one hand, and quasi-equations or natural
quasi-equations, on the other. They give rise, in the former case,
to quasi-equational theories and semantic quasi-varieties, and, in the
latter, to meta-quasi-equational theories and syntactic quasi-varieties.
More generally, one can treat in an analogous way generalized quasi-
equations, i.e., those with infinitely many hypotheses, which will be
referred to as guasi-equations, and corresponding classes of algebraic
systems, termed guasi-varieties. We study, and provide characteriza-
tions of, these theories and these classes of algebraic systems.
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1 Introduction

Abstract algebraic logic is the area of mathematical logic that studies the in-
teraction between logical systems, on the one hand, and classes of algebraic
structures on the other. These studies incorporate three very closely related
but distinct directions. In the first, which constitutes the backbone and uni-
fying theme of the field, the process by which classes of algebraic structures
are associated with given logical systems or classes of logical systems sharing
some common properties is studied. In the second, the focus is shifted on
the classes of algebraic structures and their properties, which are studied
and analyzed by algebraic techniques or, sometimes, using model theoretic
techniques, typically drawing on both logical and algebraic background and
properties. The third direction establishes connections between properties of
logical systems and corresponding algebraic properties of the classes of struc-
tures used for their algebraization, according to the general algebraization
process. All three directions are expounded upon in greater or lesser detail
in recent and relatively recent surveys, monographs and books on the field,
e.g., [4, 14, 8, 15, 13].

The main underlying logical structure that is used to formalize logical
systems in the classical (or universal algebraic) approach to the field is that
of a sentential logic or deductive system. One fixes a logical (or algebraic,
depending on the point of view) signature L and considers the free algebra
of formulas (or terms, respectively) FmL(V ) (TmL(V ), respectively), gen-
erated by a countably infinite set V of variables. A sentential logic or deduc-
tive system over L is a pair S = ⟨L,⊢S⟩, where ⊢S ⊆ P(FmL(V )) × FmL(V )
is a structural consequence relation on the set of L-formulas, i.e., it satis-
fies, for all Γ ∪∆ ∪ {ϕ} ⊆ FmL(V ) and every substitution (endomorphism)
σ ∶ FmL(V )→ FmL(V ),

• Γ ⊢S γ, for all γ ∈ Γ;

• Γ ⊢S ϕ implies ∆ ⊢S ϕ, if Γ ⊆ ∆;

• Γ ⊢S ϕ and ∆ ⊢S γ, for all γ ∈ Γ, imply ∆ ⊢S ϕ;

• Γ ⊢S ϕ implies σ(Γ) ⊢S σ(ϕ).

When the algebraization process is applied on a given deductive system
S = ⟨L,⊢S⟩, a class of L-algebras, in the sense of universal algebra [5, 22, 1], is
obtained as its corresponding algebraic counterpart. As pointed out in [4] (see
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also [13]), in general, this class is a generalized quasivariety of L-algebraic
systems, but, very often, it turns out that it is a variety. Depending on
the case, the theories of varieties or of generalized quasivarieties of universal
algebra can be brought to bear in the study of the original sentential logic or
class of sentential logics. This fact underlies the importance of both theories
in the study of logical systems.

From the early days of development, it became clear that the sentential
framework was not well suited in handling logical systems that encompass
multiple signatures and quantifiers. To deal with such logical systems one
would have to first recast them as sentential systems, as was done in Ap-
pendix C of [4] and then use, e.g., in the case of first-order logic, cylindric
[18] or polyadic [17] algebras to algebraize the sentential version of the sys-
tem. This unappealing process had led Diskin (unpublished notes, but see,
also, [11]) to consider using a categorical framework to incorporate changing
of signatures and substitutions in the object language, rather than delegat-
ing their handling to the metalanguage. At around the same time, in the
computer science domain of formal specification of data structures and pro-
gramming languages, Goguen and Burstall [16] introduced the structure of an
institution with a similar goal in mind, i.e., formalize multi-signature logics
with quantifiers in an abstract way. For an extensive and thorough study of
institutions from the model theoretic point of view, see [10]. Pigozzi, having
pointed out in [4] the artificiality of using sentential logics in the handling
of multi-signature systems, and being acquainted with both Diskin’s and
Goguen and Burstall’s work, suggested using institutions, instead of sen-
tential logics, as the underlying formal logical structure on which to base
and develop the algebraization process. Since the inspiration came from the
sentential framework, it was natural to take the simpler step of incorporat-
ing signature changing morphisms and substitutions in the object language,
but leaving the manipulation of the models (be it logical or algebraic struc-
tures) in the metalanguage. The appropriate structures that facilitated this
transition were π-institutions [12], structures constituting modifications of
institutions, that incorporate multiple signatures, but, instead of determin-
ing consequence model theoretically, adopt, as in deductive systems, an ax-
iomatic viewpoint. Later, under the influence of Font and Jansana’s work
[14], an enriched version of π-institutions, where, in addition to signature
changing morphisms, clones of operations were also incorporated in the ob-
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ject language, was considered in [30].1

According to current understanding [32], the categorical side of abstract
algebraic logic uses as its underlying structures these enhanced versions of
π-institutions, which are based (as sentential logics are based on an algebraic
signature and the free algebra of formulas) on algebraic systems, structures
that capture both the logical and and algebraic fundamentals underlying the
logical system under consideration.

An algebraic system F = ⟨Sign♭,SEN♭,N ♭⟩ consists of a category Sign♭ of
signatures, a sentence functor SEN♭ ∶ Sign♭ → Set, giving, for each signature
Σ ∈ ∣Sign♭∣, the set SEN♭(Σ) of Σ-sentences (and specifying how the signature
changing morphisms in Sign

♭ transform sentences) and a category N ♭ of
natural transformations on SEN♭, which formalizes the clone of algebraic
operations and satisfies certain closure properties (contains all projections,
is closed under generalized compositions and is closed under the formation
of tuples).

A π-institution is a pair I = ⟨F,C⟩, where F is an algebraic system (called
the base algebraic system of I) and C = {CΣ}Σ∈∣Sign♭∣ is a family of closure
operators, one for each signature Σ, that, in addition to the standard axioms
of closure operators (inflationarity, monotonicity and idempotence), satisfy
the so-called structurality rule, which stipulates that, for all Σ,Σ′ ∈ ∣Sign♭∣,
all f ∈ Sign♭(Σ,Σ′) and all Φ ⊆ SEN♭(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).

If a process analogous to the one applied in the sentential logic frame-
work, suitably modified, is now applied to π-institutions, one obtains a class
or classes of algebraic structures that form the algebraic counterpart of the
π-institution under consideration. In the same way that the ties between a
sentential logic and the corresponding class of algebraic structures classifies
logics into appropriate classes of an algebraic hierarchy, called the Leibniz
hierarchy (see, e.g., [8] or Chapter 6 of [13]), a similar analysis classifies π-
institutions into various classes depending on the strength of these ties (see
[32]). The main or core classes in the Leibniz hierarchy of sentential logics are
the protoalgebraic logics [3], the equivalential logics [6, 7], the truth equa-
tional logics [24], the weakly algebraizable [9] and the algebraizable logics

1Even though [30] is historically the first work written using this framework, it was
published much later than, e.g., [26], which is the first work using the same framework
that appeared in print.
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[4, 19]. These classes are surrounded by various weakenings and strength-
enings that contribute to the hierarchy pictured, e.g., in page 316 of [13]
or page xviii of [23]. Corresponding classes have also been introduced in the
hierarchy pertaining to logics formalized as π-institutions [27, 28, 29, 31, 25].2

But what are the algebraic structures that one considers in the π-insti-
tution framework in lieu of universal algebras, which are used in the alge-
braization of sentential logics? These are the so-called F-algebraic systems,
the study of whose classes forms the main object of the present work. An
F-algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, where A = ⟨Sign,SEN,N⟩ is
an algebraic system, such that there exists a surjective functor N ♭ → N

preserving all projection morphisms, and ⟨F,α⟩ ∶ F →A is a surjective mor-
phism, meaning that F ∶ Sign♭ → Sign is surjective on objects and full, and
αΣ ∶ SEN♭(Σ) → SEN(F (Σ)) is surjective, for all Σ ∈ ∣Sign♭∣. The class of all
F-algebraic systems is denoted AlgSys(F).

In the first installment of the work detailed here, we focused on analogs
of equational theories and varieties [33]. In this second part, we focus instead
on the theory of quasi-equations and generalized quasi-equations, referred to
as guasi-equations, on the one hand, and quasi-varieties and guasi-varieties
of algebraic systems, respectively, on the other.

When one wishes to study classes of F-algebraic systems defined by ob-
jects playing the role of equations in the universal algebraic context, there
are two possible choices. the first is to use pairs of Σ-sentences. These form
the family of F-equations defined by Eq(F) = {EqΣ(F)}Σ∈∣Sign♭∣, where, for
all Σ ∈ ∣Sign♭∣,

EqΣ(F) = SEN
♭(Σ)2 = {φ ≈ ψ ∶ φ,ψ ∈ SEN♭(Σ)}.

Here, the notation φ ≈ ψ is considered interchangeable with ⟨φ,ψ⟩. The
second choice is to use pairs of natural transformations σ, τ in N ♭. These
are referred to as natural F-equations and we define

NEq(F) = {σ ≈ τ ∶ σ, τ ∈ N ♭}.

By analogy, when one wishes to study classes o f F-algebraic systems
defined by objects playing the role of (generalized) quasi-equations in the

2The entire hierarchy constitutes the main subject of [32], in which many more classes
are introduced, based on refinements of the various properties used to define the core
classes.
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universal algebraic context, there are two similar choices. The first is to form
families of (generalized) F-quasi-equations defined by, respectively, GEq(F) =
{GEqΣ(F)}Σ∈∣Sign♭∣ and QEq(F) = {QEqΣ(F)}Σ∈∣Sign♭∣, where, for all Σ ∈
∣Sign♭∣,

GEqΣ(F) = {φ⃗ ≈ ψ⃗ → φ ≈ ψ ∶ φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ)};
QEqΣ(F) = {φ⃗ ≈ ψ⃗ → φ ≈ ψ ∶ φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ), ∣φ⃗∣ = ∣ψ⃗∣ < ω}.

Here, the notation φ⃗ ≈ ψ⃗ represents the sequence ⟨φi ≈ ψi ∶ i ∈ I⟩ of F-
equations. The second choice is to use natural F-equations instead of equa-
tions and we define

NGEq(F) = {σ⃗ ≈ τ⃗ → σ ≈ τ ∶ σ⃗, τ⃗ , σ, τ ∈ N ♭};
NQEq(F) = {σ⃗ ≈ τ⃗ → σ ≈ τ ∶ σ⃗, τ⃗ , σ, τ ∈ N ♭, ∣σ⃗∣ = ∣τ⃗ ∣ < ω}.

Having provided some motivation for studying classes of algebraic systems
as a necessary component in the process of algebraization of logical systems
and of its consequences, we now outline the contents of the present work.

In Section 2, we introduce the satisfaction relation by an F-algebraic
system of an F-guasi-equation and the restriction of that relation to F-quasi-
equations. These establish in the ordinary way a Galois connection and define
closure operators C and C∗, respectively, on the logical side, and GSem and
QSem, respectively, on the algebraic side. The former associate with a given
collectionX of F-guasi-equations (F-quasi-equations, respectively) the guasi-
(quasi-)equational theory consisting of all F-guasi- (quasi-)equations that are
satisfied by all F-algebraic systems satisfying all F-guasi- (quasi-)equations
in X . The latter associate in a corresponding way with a given class K of
F-algebraic systems the so-called semantic guasi- (quasi-)variety generated
by K.

The notion of a congruence system on an algebraic system is well known.
It consists of a family of equivalence relations, indexed by the signatures
of the algebraic system, that is invariant both under signature morphisms
and under the natural transformations of the algebraic system. It corre-
sponds to the notion of congruence and, among other things, it is possible
to consider quotients, which inherit many of the properties they possess in
universal algebra [30]. In the context of quasi- and guasi-equations, the role
of congruence systems is subsumed by that of quasi- and guasi-congruence
systems, respectively. These are collections of F-quasi- or guasi-equations,
respectively, whose equational reduct forms a congruence system and which,
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in addition, satisfy the property of modus ponens. Two special classes of
quasi- and guasi-congruence systems play a special role in obtaining char-
acterizations of theories. Complete quasi- and guasi-congruence systems are
those satisfying a completeness condition with respect to their equational
reducts and (completely) coverable ones are those that can be written as in-
tersections of all complete quasi- or guasi-congruence systems, respectively,
that contain them. It is shown in Proposition 8 that a class of quasi- or
guasi-equations forms a quasi- or guasi-equational theory, respectively, if it
is a coverable quasi- or guasi-congruence system, respectively.

Next, but still staying in Section 2, we turn to the characterization of
semantic quasi- and guasi-varieties of F-algebraic systems. We use opera-
tors on classes of F-algebraic systems so as to capture in this framework the
spirit of the well-known characterizations of varieties of universal algebras of
Birkhoff [2] (see, e.g., Theorem 11.9 of [5] or Theorem 4.41 of [1]) and that
of quasivaieties of universal algebras of Mal’cev [20, 21] (see, also, Theorems

0.4.4 and 0.4.5 in [8]). We use the operator
⊲

IΠ of closing under subdirect
intersections, which has already been introduced and used in [33] and two
new operators. The operator C closes under certifications and may be viewed
as an abstraction operator. Roughly speaking, an algebraic system each of
whose components satisfies the same equations as that of a (possibly signa-
ture dependent) “witness” algebraic system, already known to be in a class
K, is included in C(K). For the case of quasi-equations, to take into account
the underlying finitarity, we modify the certification operator to an operator
C∗ that involves directed unions. For details, see the definitions and related
discussion following Lemma 10. It is shown in Propositions 15 and 16 that a
class K of F-algebraic systems forms a semantic guasi-variety if and only if

it is closed under the operators C and
⊲

IΠ and a semantic quasi-variety if and

only if it is closed under C∗ and
⊲

IΠ.
In Section 3, we shift focus on the relation of satisfaction between F-

algebraic systems and natural F-quasi- and guasi-equations. These also es-
tablish Galois connections and give rise, each, to two closure operators; the
first to N∗ and QSyn and the second to N and GSyn. The operators N∗ and
N associate with a given collection R of natural F-quasi- or guasi-equations,
respectively, the equational metatheory consisting of all natural F-quasi- or
guasi-equations that satisfy all F-algebraic systems satisfying all quasi- or
guasi-equations in R. On the other hand, QSyn and GSyn associate with a
given class K of F-algebraic systems the syntactic quasi- and guasi-variety,
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respectively, generated by K, i.e., the class of all F-algebraic systems satisfy-
ing all natural F-quasi- or guasi-equations satisfied by all systems in K.

In the context of natural F-quasi- and guasi-equations, the place of quasi-
and guasi-congruence systems is assumed by meta-quasi and meta-guasi-
congruences, abbreviated to mqcongruences and mgcongruences, respectively.
These are collections of natural F-quasi- or guasi-equations, whose reducts
to natural equations form metacongruences and, moreover, satisfy a modus
ponens property. An mqcongruence or mgcongruence is called feasible if it
arises in a natural way from a coverable quasi- or guasi-congruence system,
respectively. Quasi-equational and guasi-equational metatheories are char-
acterized in Proposition 22 as being exactly the feasible mqcongruences and
mgcongruences, respectively, on F.

To characterize syntactic quasi- and guasi-varieties, we establish a rela-
tionship with semantic quasi- and guasi-varieties, respectively. We say that a
given class K of F-algebraic systems is quasi- or guasi-natural if the family of
F-quasi- or guasi-equations, respectively, that it satisfies is coextensive (i.e.,
has the same models as) the corresponding family induced by the natural
F-quasi- or guasi-equations that it satisfies. It is then shown in Proposition
30 that a class K constitutes a syntactic quasi- or guasi-variety if and only
if it is a quasi-natural semantic quasi-variety or a guasi-natural semantic
guasi-variety, respectively.

In Section 4, we focus on the closure operators C∗ and N∗, generating
quasi-equational and meta-quasi-equational theories, respectively, and the
underlying quasi-equational and meta-quasi-equational logics. We show how,
starting from a collection X of F-quasi-equations, checking whether a given
quasi-equation belongs to the quasi-equational theory C∗(X) can be reduced
to checking whether the conclusion belongs to the theory generated in a
structured step-wise fashion by X and the hypotheses. Similarly, starting
from a collection R of natural F-quasi-equations, we show how membership
in N∗(R) can be checked in an analogous way.

Finally, in Section 5, we concentrate on the operators QSem and GSem and
provide for each a Birkhoff HSP-style (or a Mal’cev SP-style) characteriza-
tion. Recalling that a class K of F-algebraic systems is a semantic (quasi-)
guasi-variety if and only if it is closed under (directed) certifications and

subdirect intersections, we show in Proposition 40 that QSem = C∗
⊲

IΠ and,

correspondingly, that GSem = C
⊲

IΠ.
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2 Quasi- and Guasi-Equations and

Semantic Quasi- and Guasi-Varieties

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Define a binary rela-
tion

⊧∗ ⊆ AlgSys(F) ×QEq(F)

by setting, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, every Σ ∈ ∣Sign♭∣
and all φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ) (with ∣φ⃗∣ = ∣ψ⃗∣ = n < ω, so that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈
QEqΣ(F)),

A ⊧∗
Σ
φ⃗ ≈ ψ⃗ → φ ≈ ψ iff
αΣ(φi) = αΣ(ψi), i < n, imply αΣ(φ) = αΣ(ψ).

More generally, we define a binary relation

⊧ ⊆ AlgSys(F) ×GEq(F)

by setting, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, every Σ ∈ ∣Sign♭∣
and all φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ),

A ⊧Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ iff
αΣ(φi) = αΣ(ψi), i ∈ I, imply αΣ(φ) = αΣ(ψ).

We shall use notation such as αΣ(φ⃗) = αΣ(ψ⃗) to denote the set of equalities
αΣ(φi) = αΣ(ψi), i < n, where φ⃗ = ⟨φ0, φ1, . . . , φn−1⟩ and ψ⃗ = ⟨ψ0, ψ1, . . . , ψn−1⟩,
and, similarly, for tuples over arbitrary index sets. Similar self-explanatory
abbreviations will be used throughout, hopefully without causing confusion.

The notation is extended to apply to collections of F-algebraic systems
and families of F-quasiequations by setting, for all K ⊆ AlgSys(F) and all
X ≤ QEq(F),

K ⊧∗ X iff, for all A ∈ K, all Σ ∈ ∣Sign♭∣ and all q ∈XΣ,
A ⊧∗

Σ
q.

It is also extended to apply to collections of F-algebraic systems and families
of F-guasiequations by setting, for all K ⊆ AlgSys(F) and all X ≤ GEq(F),

K ⊧X iff, for all A ∈ K, all Σ ∈ ∣Sign♭∣ and all g ∈XΣ,
A ⊧Σ g.
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It is clear that ⊧∗ determines a Galois connection between P(AlgSys(F)) and
P(QEq(F)) and that, similarly, ⊧ determines a Galois connection between
P(AlgSys(F)) and P(GEq(F)). Related to these Galois connections, we use
the following notational conventions.

First, given a class K of F-algebraic systems, we define the collection
QEq(K) = {QEqΣ(K)}Σ∈∣Sign♭∣, where, for all Σ ∈ ∣Sign

♭∣,

QEqΣ(K) = {q ∈ QEqΣ(F) ∶ K ⊧
∗
Σ q}.

Analogously, the collection GEq(K) = {GEqΣ(K)}Σ∈∣Sign♭∣ is defined by set-

ting, for all Σ ∈ ∣Sign♭∣,

GEqΣ(K) = {g ∈ GEqΣ(F) ∶ K ⊧Σ g}.

Next, given a family X = {XΣ}Σ∈∣Sign♭∣ of F-quasiequations, we define

Mod∗(X) = {A ∈ AlgSys(F) ∶ A ⊧∗ X}.

Similarly, given a family X = {XΣ}Σ∈∣Sign♭∣ of F-guasiequations, we define

Mod(X) = {A ∈ AlgSys(F) ∶ A ⊧X}.

Finally, for the closure operators associated with the Galois connection ⊧∗,
we set, for all X ≤ QEq(F) and all K ⊆ AlgSys(F),

C∗(X) = QEq(Mod∗(X));
QSem(K) = Mod∗(QEq(K)).

Moreover, for the closure operators associated with the Galois connection ⊧,
we set, for all X ≤ GEq(F) and all K ⊆ AlgSys(F),

C(X) = GEq(Mod(X));
GSem(K) = Mod(GEq(K)).

By the general theory of Galois connections, we know that the closed sets
of the closure operator C∗ are the ones of the form QEq(K) for a class K of
F-algebraic systems and those of the closure operator QSem are those of the
form Mod∗(X) for a family X of F-quasiequations. Similarly, the closed sets
of the closure operator C are the ones of the form GEq(K) for a class K of
F-algebraic systems and those of the closure operator GSem are those of the
form Mod(X) for a family X of F-guasiequations.
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In the following section, we set out to provide intrinsic characterizations
of those closed sets.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system andX a collection of
F-quasiequations or, more generally, a collection of F-guasiequations. We let
Θ(X) = {ΘΣ(X)}Σ∈∣Sign♭∣ be the smallest congruence system on F satisfying,

for all Σ ∈ ∣Sign♭∣ and all φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈XΣ,

φ⃗ ≈ ψ⃗ ⊆ ΘΣ(X) imply φ ≈ ψ ∈ ΘΣ(X).

We use the informal expression “Θ(X) satisfies φ⃗ ≈ ψ⃗ → φ ≈ ψ” to refer to
the displayed condition above.

This congruence system is well-defined, since ∇F has this property and
the collection of all congruence systems having this property is closed under
(signature-wise) intersections.

A key property of the congruence system Θ(X) is that the quotient
F/Θ(X) satisfies the F-quasiequations (or F-guasiequations) in X .

Lemma 1 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and F =
⟨F, ⟨I, ι⟩⟩, with ⟨I, ι⟩ ∶ F → F the identity morphism.

(a) If X ≤ QEq(F), then X ≤ QEq(F/Θ(X));

(b) If X ≤ GEq(F), then X ≤ GEq(F/Θ(X)).

Proof: We only prove Part (a). Part (b) is proven similarly. Suppose
Σ ∈ ∣Sign♭∣ and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(F), such that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ

and F/Θ(X) ⊧∗
Σ
φ⃗ ≈ ψ⃗. Then φ⃗ ≈ ψ⃗ ⊆ ΘΣ(X), whence, by the definition of

Θ(X) and the fact that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ, we get that φ ≈ ψ ∈ ΘΣ(X).
Hence F/Θ(X) ⊧∗

Σ
φ ≈ ψ. Therefore, F/Θ(X) ⊧∗

Σ
φ⃗ ≈ ψ⃗ → φ ≈ ψ, i.e.,

φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(F/Θ(X)). We conclude that X ≤ QEq(F/Θ(X)). ∎

Next we define the key concept of quasicongruence (or guasicongruence
in case we are dealing with guasiequations), which parallels in the context of
quasiequational theories (guasiequational theories, respectively) the notion
of congruence system in the context of equational theories.

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and X a collection
of F-quasiequations (F-guasiequations, respectively). First, define

Ẋ ∶=X ∩Eq(F),
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i.e., Ẋ is the family of F-equations contained in X . We say that X is a
quasicongruence system (guasicongruence system, respectively) or,
more simply, a quasicongruence (guasicongruence, respectively) on F if
Ẋ is a congruence system on F that, in addition, satisfies, for all Σ ∈ ∣Sign♭∣
and all φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ),

φ⃗ ≈ ψ⃗ ⊆XΣ and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ imply φ ≈ ψ ∈XΣ.

Equivalently, X is a quasicongruence (guasicongruence, respectively) on F if
the following conditions are satisfied, for all σ in N ♭, all Σ,Σ′ ∈ ∣Sign♭∣, all
f ∈ Sign♭(Σ,Σ′) and all φ⃗, ψ⃗, φ,ψ,χ ∈ SEN♭(Σ):

Reflexivity φ ≈ φ ∈XΣ;

Symmetry φ ≈ ψ ∈XΣ implies ψ ≈ φ ∈XΣ;

Transitivity φ ≈ ψ,ψ ≈ χ ∈XΣ imply φ ≈ χ ∈XΣ;

Congruence φ⃗ ≈ ψ⃗ ⊆XΣ implies σΣ(φ⃗) ≈ σΣ(ψ⃗) ∈XΣ;

Invariance φ ≈ ψ ∈XΣ implies SEN♭(f)(φ ≈ ψ) ∈ XΣ′ ;

Modus Ponens φ⃗ ≈ ψ⃗ ⊆XΣ and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ imply φ ≈ ψ ∈XΣ.

A few remarks on quasicongruences (and guasicongruences) follow. First,
note that every congruence system on F is a quasicongruence (and a gua-
sicongruence) system, since it contains no proper F-guasiequations. Let us
denote by

•

∗

∇F the family QEq(F) of all F-quasiequations;

• ∇F the family GEq(F) of all F-guasiequations; and

• ∇̇F the family Eq(F) of all F-equations, which, as is appropriate re-
specting previously introduced notation, satisfies

∇̇F = ∇F ∩Eq(F) =
∗

∇F ∩Eq(F).

We usually write
∗

∇, ∇ and ∇̇, respectively, omitting the superscript F, to
simplify notation.

12



Note that
∗

∇ constitutes a quasicongruence system on F. Moreover, the
signature-wise intersection of any family of quasicongruence systems is also a
quasicongruence system, whence the family of all quasicongruence systems on
F forms a complete lattice under signature-wise inclusion ≤, which is denoted
by QonSys(F) = ⟨QonSys(F),≤⟩. Analogously, ∇ constitutes a guasicongru-
ence system on F and the family of all guasicongruence systems is clsed under
arbitrary intersections, whence it forms a complete lattice under signature-
wise inclusion ≤, which is denoted by GonSys(F) = ⟨GonSys(F),≤⟩.

We say that a quasicongruence (guasicongruence, respectively) X is com-

plete if, in addition, it satisfies, for all Σ ∈ ∣Sign♭∣, and all φ⃗, ψ⃗, φ,ψ ∈
SEN♭(Σ)

Completeness φ⃗ ≈ ψ⃗ /⊆XΣ or φ ≈ ψ ∈XΣ imply φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈XΣ.

Again, note:

• First,
∗

∇ is a complete quasicongruence and ∇ is a complete guasicon-
gruence;

• Second, if a quasicongruence (guasicongruence, respectively) X is com-
plete, then it is completely determined by the congruence system Ẋ

in the sense that, if X,Y ∈ QonSys(F) (or X,Y ∈ GonSys(F), respec-
tively) are complete, such that Ẋ = Ẏ , then X = Y .

Let QonSys≈(F) (GonSys≈(F), respectively) denote the collection of all com-
plete quasicongruence (guasicongruence, respectively) systems on F. Apart
from the two basic properties pointed out above, quasicongruences and gua-
sicongruences also satisfy a certain maximality property as detailed in

Lemma 2 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and X,Y be
complete F-quasicongruence (or F-guasicongruence, respectively) systems.
Then, for all Σ ∈ ∣Sign♭∣,

YΣ =XΣ or YΣ =
∗

∇Σ (∇Σ, respectively).

Proof: We prove the statement for quasicongruence systems. A similar proof
applies to guasicongruence systems. Suppose X,Y ∈ QonSys≈(F), such that

X ≤ Y , and let Σ ∈ ∣Sign♭∣, such that XΣ ⫋ YΣ ≠
∗

∇Σ. Since X , Y and
∗

∇ are

13



complete, they are determined by the corresponding families of equations.
Thus, there exist

φ ≈ ψ ∈ YΣ/XΣ and φ′ ≈ ψ′ ∈
∗

∇Σ/YΣ.

But, by completeness and modus ponens, these imply that

φ ≈ ψ → φ′ ≈ ψ′ ∈ XΣ/YΣ.

The latter, however, contradicts the hypothesis that X ≤ Y . ∎

Finally, we say that a quasicongruence (guasicongruence, respectively)
system X on F is (completely) coverable if, for every Σ ∈ ∣Sign♭∣ and all g ∉
XΣ, there exists a complete Y ∈ QonSys≈(F) (Y ∈ GonSys≈(F), respectively),
such that

X ≤ Y and g ∉ YΣ.

The following observation follows immediately:

Lemma 3 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and X a qua-
sicongruence or guasicongruence system on F. X is coverable if and only
if

X = ⋂{Y ∈ QonSys≈(F) ∶ X ≤ Y },

or X = ⋂{Y ∈ GonSys≈(F) ∶ X ≤ Y }, respectively.

Proof: Again, we prove the equivalence for quasicongruence systems only,
but a very similar proof applies in the case of guasicongruences.

Suppose, first, that X ∈ QonSys(F) is coverable. Clearly, X ≤ ⋂{Y ∈
QonSys≈(F) ∶X ≤ Y }. On the other hand, for all Σ ∈ ∣Sign♭∣, if q ∉XΣ, there
exists Y ∈ QonSys≈(F), such that X ≤ Y and q ∉ YΣ. Hence, q ∉ ⋂{YΣ ∶ X ≤
Y ∈ QonSys≈(F)}. This shows that ⋂{Y ∈ QonSys≈(F) ∶ X ≤ Y } ≤ X .

Suppose, conversely, that X = ⋂{Y ∈ QonSys≈(F) ∶ X ≤ Y } and let
Σ ∈ ∣Sign♭∣, q ∉ XΣ. Then, by hypothesis, q ∉ ⋂{YΣ ∶ X ≤ Y ∈ QonSys≈(F)},
whence, there exists Y ∈ QonSys≈(F), such that X ≤ Y and q ∉ YΣ, showing
that X is a coverable quasicongruence system on F. ∎

Using Lemma 3, one may show that the class of all coverable quasicon-
gruence systems on F forms a complete lattice. A similar assertion holds for
the class of all coverable guasicongruence systems on F.
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Proposition 4 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and {X i ∶
i ∈ I} a collection of coverable quasicongruence (guasicongruence, respec-
tively) systems on F. Then ⋂i∈IX i is also a coverable quasicongruence (gua-
sicongruence, respectively) system on F.

Proof: We focus on quasicongruence systems. The case of guasicongruence
systems is handled similarly.

By hypothesis, we have, for all i ∈ I,

X i = ⋂{Y ∈ QonSys≈(F) ∶ X i ≤ Y }.

Our aim is to show that ⋂i∈IX i = ⋂{Y ∈ QonSys≈(F) ∶ ⋂i∈IX i ≤ Y }.
First, note that, for all i ∈ I,

{Y ∈ QonSys≈(F) ∶ X i ≤ Y } ⊆ {Y ∈ QonSys≈(F) ∶ ⋂
i∈I

X i ≤ Y }.

This gives

⋂{Y ∈ QonSys≈(F) ∶ ⋂
i∈I

X i ≤ Y } ≤ ⋂{Y ∈ QonSys≈(F) ∶ X i ≤ Y }.

So we obtain

⋂{Y ∈ QonSys≈(F) ∶ ⋂i∈IX i ≤ Y }
≤ ⋂i∈I ⋂{Y ∈ QonSys≈(F) ∶ X i ≤ Y }
= ⋂i∈IX i

≤ ⋂{Y ∈ QonSys≈(F) ∶ ⋂i∈IX i ≤ Y }.

Thus, ⋂i∈IX i = ⋂{Y ∈ QonSys≈(F) ∶ ⋂i∈IX i ≤ Y }. ∎

We denote by QonSys∧(F) = ⟨QonSys∧(F),≤⟩ the complete lattice of
coverable quasicongruence systems onF and byGonSys∧(F) = ⟨GonSys∧(F),
≤⟩ the complete lattice of coverable guasicongruence systems on F. Note the
following obvious inclusions

QonSys≈(F) ⊆ QonSys∧(F) ⊆ QonSys(F);
GonSys≈(F) ⊆ GonSys∧(F) ⊆ GonSys(F).

Recall that, by the definition of a quasicongruence and of a guasicongru-
ence, if X is a quasicongruence (guasicongruence, respectively) on F, then
Ẋ is a congruence system that satisfies all quasiequations (guasiequations,
respectively) in X . Based on this, it is not difficult to show that, in case X is
a quasicongruence (guasicongruence, respectively) on F, the relation Θ(X)
actually coincides with Ẋ.
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Lemma 5 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and X be a
quasicongruence or guasicongruence system on F. Then Θ(X) = Ẋ.

Proof: The inclusion from right to left follows from the fact that Ẋ ≤X and
Θ(X) satisfies all guasiequations in X , which, in particular, implies that it
contains all equations in Ẋ . On the other hand, by the definition of guasi-
congruence system, Ẋ is a congruence system on F that, because of Modus
Ponens, satisfies all guasiequations in X . Therefore, by the minimality of
Θ(X), we get Θ(X) ≤ Ẋ . ∎

We now formulate two lemmas that will play a crucial role in the subse-
quent characterization of the closure operators C∗ and C.

Lemma 6 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and F =
⟨F, ⟨I, ι⟩⟩, with ⟨I, ι⟩ ∶ F → F the identity morphism.

(a) If X ∈ QonSys≈(F), then X = QEq(F/Ẋ);

(b) If X ∈ GonSys≈(F), then X = GEq(F/Ẋ).

Proof: Let us focus again on Part (a), Part (b) being treated similarly. The
inclusion from left to right follows from Lemmas 1 and 5. For the reverse
inclusion, let Σ ∈ ∣Sign♭∣ and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(F/Ẋ). By definition,
this means that F/Ẋ /⊧∗Σ φ⃗ ≈ ψ⃗ or F/Ẋ ⊧∗

Σ
φ ≈ ψ. Equivalently, φ⃗ ≈ ψ⃗ /⊆ ẊΣ or

φ ≈ ψ ∈ ẊΣ. Since, by hypothesis, X ∈ QonSys≈(F), we get, by Completeness,
that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈XΣ. ∎

Lemma 7 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and A ∈
AlgSys(F). Then

QEq(A) ∈ QonSys≈(F) and GEq(A) ∈ GonSys≈(F).

Proof: Let A = ⟨A, ⟨F,α⟩⟩ be an F-algebraic system, where ⟨F,α⟩ ∶ F → A.
We verify that QEq(A) satisfies the three conditions required of a collection
of F-quasiequations to qualify as a complete quasicongruence on F. To this
end, assume σ in N ♭, Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and φ⃗, ψ⃗, φ,ψ,χ ∈
SEN♭(Σ).

• First, we have Eq(A) ∈ ConSys(F) and, since Eq(A) = QEq(A) ∩
Eq(F), the first condition is satisfied;
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• Modus Ponens clearly holds: If Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ ⊆ EqΣ(A) and
φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(A), then,

A ⊧∗Σ φ⃗ ≈ ψ⃗ and A ⊧∗Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ,

whence, by the interpretation of the implication connective, we get
A ⊧∗Σ φ ≈ ψ and, therefore, φ ≈ ψ ∈ EqΣ(A);

• Finally, for Completeness, the trick is again played by the interpretation
of implication. If Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ /⊆ EqΣ(A) or φ ≈ ψ ∈ EqΣ(A), then

A /⊧∗Σ φ⃗ ≈ ψ⃗ or A ⊧∗Σ φ ≈ ψ,

whence, A ⊧∗
Σ
φ⃗ ≈ ψ⃗ → φ ≈ ψ, i.e., φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(A).

All necessary properties being satisfied, we conclude that QEq(A) is a com-
plete quasicongruence system on F.

More generally, an identical reasoning involving guasiequations shows
that GEq(A) is a complete guasicongruence system on F. ∎

Now, we are now ready to characterize the closed sets of C∗ in P(QEq(F))
and of C in P(GEq(F)). Those turn out to be exactly the coverable quasi-
congruences and coverable guasicongruences, respectively, on F.

Proposition 8 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system. Suppose
X ≤ QEq(F) and Y ≤ GEq(F).

(a) C∗(X) =X if and only if X ∈ QonSys∧(F);

(b) C(Y ) = Y if and only if Y ∈ GonSys∧(F).

Proof: We prove Part (a). Part (b) is proven similarly.
Let X ≤ QEq(F), such that C∗(X) = X . Then, by the theory of Galois

connections, there exists K ⊆ AlgSys(F), such that X = QEq(K). Now we
get

X = QEq(K)
= ⋂A∈KQEq(A) (definition of QEq)
∈ QonSys∧(F). (Lemma 7 and Definition of QonSys∧(F))
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Suppose, conversely, that X ∈ QonSys∧(F). Then, there exists, by Lemma
3, a collection {X i ∶ i ∈ I} ⊆ QonSys≈(F), such that X = ⋂I∈IX i. But, by
Lemma 6, for all i ∈ I, we have X i = QEq(F/Ẋ i). Hence,

X = ⋂
i∈I

X i = ⋂
i∈I

QEq(F/Ẋ i) = QEq({F/Ẋ i ∶ i ∈ I}).

Since X is in the image of QEq, by the theory of Galois connections, we get
C∗(X) =X . ∎

Next, we characterize the closed sets in P(AlgSys(F)) both under QSem

and GSem, i.e., the semantic quasivarieties and guasivarieties of F-algebraic
systems, respectively. Semantic quasivarieties are those classes that are
closed under directed certifications, subdirect intersections. Semantic gua-
sivarieties, on the other hand, turn out to be those classes closed under
certifications and subdirect intersections. We note that, as will become clear
shortly, certifications are special cases of directed certifications. Before we
provide the relevant characterizations, we define those operations and provide
some lemmas concerning their functionality and properties.

First, as far as subdirect intersections are concerned, given an F-algebraic
system A = ⟨A, ⟨F,α⟩⟩, F-algebraic systems Ai = ⟨Ai, ⟨F i, αi⟩⟩ and mor-
phisms ⟨H i, γi⟩ ∶ A→ Ai, i ∈ I, we say that the collection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

is a subdirect intersection if

⋂
i∈I

Ker(⟨H i, γi⟩) =∆A.

Given a class K of F-algebraic systems, we denote by
⊲

IΠ(K) the class of
all F-algebraic systems A, such that there exists a subdirect intersection
{⟨H i, γi⟩ ∶ A → Ai ∶ i ∈ I}, with Ai ∈ K, for all i ∈ I. Moreover, we say that

the class K is closed under subdirect intersections if
⊲

IΠ(K) ⊆ K.
A useful lemma characterizes subdirect intersections in terms of relations

between the kernels of the algebraic systems involved.

Lemma 9 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, A = ⟨A,
⟨F,α⟩⟩, Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, F-algebraic systems and {⟨H i, γi⟩ ∶ A→ Ai ∶
i ∈ I} algebraic morphisms. The collection {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect
intersection if and only if Ker(⟨F,α⟩) = ⋂i∈I Ker(⟨F i, αi⟩).
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Proof: Suppose, first, that {⟨H i, γi⟩ ∶ i ∈ I} is a subdirect intersection and
let Σ ∈ ∣Sign♭∣, φ,ψ ∈ SEN♭(Σ). Then

⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩) iff αΣ(φ) = αΣ(ψ)
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈∆AF (Σ)
iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerΣ(⟨H i, γi⟩)
iff γi

F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)), i ∈ I

iff αiΣ(φ) = α
i
Σ(ψ), i ∈ I

iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F i, αi⟩).

The reverse relies on the surjectivity of ⟨F,α⟩. Suppose Σ ∈ ∣Sign♭∣ and
φ,ψ ∈ SEN♭(Σ). Then we get

⟨αΣ(φ), αΣ(ψ)⟩ ∈∆AF (Σ) iff ⟨φ,ψ⟩ ∈ KerΣ(⟨F,α⟩)
iff ⟨φ,ψ⟩ ∈ ⋂i∈I KerΣ(⟨F i, αi⟩)
iff αiΣ(φ) = α

i
Σ(ψ), i ∈ I

iff γi
F (Σ)
(αΣ(φ)) = γiF (Σ)(αΣ(ψ)), i ∈ I

iff ⟨αΣ(φ), αΣ(ψ)⟩ ∈ ⋂i∈I KerF (Σ)(⟨H i, γi⟩).

Thus, by the surjectivity of ⟨F,α⟩ we get that ∆A = ⋂i∈I Ker(⟨H i, γi⟩). ∎

The following is a key lemma concerning a property of subdirect inter-
sections.

Lemma 10 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and consider
a class K ⊆ AlgSys(F). The class of morphisms

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩) → B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,

where, for all Σ ∈ ∣Sign♭∣ and all φ ∈ SEN♭(Σ),

βK
Σ(φ/ ⋂

B∈K

KerΣ(⟨G,β⟩)) = βΣ(φ),

forms a subdirect intersection.

Proof: It is not difficult to see that βK is well defined and forms a natural
transformation. Moreover, ⟨G,βK⟩ is an F-morphism. Letting Ker(K) =
⋂B∈KKer(⟨G,β⟩), we have, by definition, the following commutative triangle.

F

❂✚
✚
✚
✚⟨I, πKer(K)⟩ ❩

❩
❩
❩

⟨G,β⟩
⑦

F/Ker(K)
⟨G,βK⟩

✲ B
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To show that the displayed family forms a subdirect intersection, let Σ ∈
∣Sign♭∣ and φ,ψ ∈ SEN♭(Σ). Then, we get

⟨φ/KerΣ(K), ψ/KerΣ(K)⟩ ∈ ⋂B∈KKerΣ(⟨G,βK⟩)
iff βK

Σ(φ/KerΣ(K)) = βK
Σ(ψ/KerΣ(K)), B ∈ K,

iff βΣ(φ) = βΣ(ψ), B ∈ K,
iff φ/KerΣ(K) = ψ/KerΣ(K).

Thus, ⋂B∈KKer(⟨G,βK⟩) = ∆F/Ker(K), showing that

⟨G,βK⟩ ∶ F/ ⋂
B∈K

Ker(⟨G,β⟩) → B, B = ⟨B, ⟨G,β⟩⟩ ∈ K,

constitutes indeed a subdirect intersection. ∎

As far as certifications are concerned, given a class K of F-algebraic sys-
tems, we say that an F-algebraic system A = ⟨A, ⟨F,α⟩⟩ is K-certified if, for
all Σ ∈ ∣Sign♭∣, there exists an F-algebraic system AΣ ∈ K, such that

KerΣ(A) = KerΣ(AΣ).

We denote by C(K) the class of all F-algebraic systems that are K-certified.
Moreover, we say that the class K is closed under certifications if C(K) ⊆
K.

More generally, given a class K of F-algebraic systems, we say that an F-
algebraic system A = ⟨A, ⟨F,α⟩⟩ is directed K-certified if, for all Σ ∈ ∣Sign♭∣,
there exists a collection of F-algebraic systems {AΣ,i ∶ i ∈ IΣ} ⊆ K, such that

• ⋃i∈IΣ Eq
ω
Σ(AΣ,i) is directed, where, for all i ∈ IΣ, EqωΣ(AΣ,i) denotes the

collection of all finite subsets of KerΣ(AΣ,i), and

• KerΣ(A) = ⋃i∈IΣ KerΣ(AΣ,i).

We denote by C∗(K) the class of all F-algebraic systems that are directed
K-certified. Moreover, we say that the class K is closed under directed

certifications if C∗(K) ⊆ K.
We show next, that both closure under subdirect intersections and clo-

sure under certifications are necessary conditions for a class of F-algebraic
systems to form a semantic quasivariety and the same applies to semantic
guasivarieties. On the other hand, closure under directed certifications is a
necessary requirement for semantic quasivarieties, but not so, in general, for
semantic guasivarieties.

First we show that if a class K of F-algebraic systems is in the image of
Mod∗ or of Mod, then it is closed under subdirect intersections.
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Proposition 11 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆

AlgSys(F). If K = GSem(K), then
⊲

IΠ(K) ⊆ K.

Proof: Assume that K = GSem(K). Let X = GEq(K). Assume that A ∈
⊲

IΠ(K) and Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ, such that A ⊧Σ φ⃗ ≈ ψ⃗, i.e.,

φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Since A ∈
⊲

IΠ(K), there exists a subdirect intersection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

such that Ai ∈ K, for all i ∈ I. Hence, we get φ⃗ ≈ ψ⃗ ⊆ EqΣ(Ai), i ∈ I.
Now, since Ai ∈ K and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ = GEqΣ(K), we conclude that
φ ≈ ψ ∈ EqΣ(Ai), for all i ∈ I. Therefore, φ ≈ ψ ∈ ⋂i∈I EqΣ(Ai) = EqΣ(A), the
latter by the definition of subdirect intersection and Lemma 7. Therefore,
A ⊧Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ. This shows that A ∈ Mod(X) = Mod(GEq(K)) =

GSem(K) = K. We conclude that
⊲

IΠ(K) ⊆ K, i.e., K is closed under subdirect
intersections. ∎

For the operator C, we prove two properties. The first asserts that,
if a class K of F-algebraic systems is a guasiequational class, i.e., in the
image of Mod (or, a fortiori, in the image of Mod∗), then it is closed under
certifications.

Proposition 12 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F). If K = GSem(K), then C(K) ⊆ K.

Proof: Let X = GEq(K). Assume that A ∈ C(K) and Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ →
φ ≈ ψ ∈ XΣ, such that A ⊧Σ φ⃗ ≈ ψ⃗, i.e., φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Since A ∈ C(K),
there exists AΣ ∈ K, such that EqΣ(A) = EqΣ(AΣ). Hence, φ⃗ ≈ ψ⃗ ⊆ EqΣ(AΣ).
Now, since AΣ ∈ K and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ = GEqΣ(K), we conclude that
φ ≈ ψ ∈ EqΣ(AΣ) = EqΣ(A). Therefore, A ⊧Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ. This shows that
A ∈ Mod(X) = Mod(GEq(K)) = GSem(K) = K. We conclude that C(K) ⊆ K,
i.e., K is closed under certifications. ∎

The second lemma regarding C shows that it is dominated by the operator

H
⊲

IΠ. Recall that, given a class K of F-algebraic systems and an F-algebraic
system A, A ∈ H(K) if there exists a morphism ⟨H,γ⟩ ∶ B → A, with B ∈ K.

Lemma 13 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K a class

of F-algebraic systems. Then C(K) ⊆ H(
⊲

IΠ(K)).
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Proof: Suppose A ∈ C(K). Then, by definition, for all Σ ∈ ∣Sign♭∣, there
exists AΣ ∈ K, such that EqΣ(A) = EqΣ(AΣ). Consider the family of mor-
phisms

⟨HΣ, γΣ⟩ ∶ F/ ⋂
Σ∈∣Sign♭∣

Ker(AΣ) → AΣ, Σ ∈ ∣Sign♭∣.

By Lemma 10, it constitutes a subdirect intersection, whence, since AΣ ∈ K,

for all Σ, we infer that F/⋂Σ∈∣Sign♭∣Ker(AΣ) ∈
⊲

IΠ(K). Now it is not difficult
to see that there exists a morphism ⟨F,α∗⟩ ∶ F/⋂Σ∈∣Sign♭∣Ker(AΣ) → A, such
that the following diagram commutes

F

❂✚
✚
✚
✚
✚
✚

⟨I, π⟩
❩
❩
❩
❩
❩
❩

⟨F,α⟩

⑦

F/ ⋂
Σ∈∣Sign♭∣

Ker(AΣ)
⟨F,α∗⟩

✲ A

The natural transformation α∗ is defined, for all Σ′ ∈ ∣Sign♭∣ and all φ ∈
SEN♭(Σ′), by

α∗Σ′(φ/ ⋂
Σ∈∣Sign♭∣

KerΣ′(AΣ)) = αΣ′(φ),

and it is well-defined, since, for all Σ′ ∈ ∣Sign♭∣ and all φ,ψ ∈ SEN♭(Σ′), we
have

⟨φ,ψ⟩ ∈ ⋂Σ∈∣Sign♭∣KerΣ′(AΣ) implies ⟨φ,ψ⟩ ∈ KerΣ′(AΣ′)
implies ⟨φ,ψ⟩ ∈ KerΣ′(A).

We conclude that A ∈ H(
⊲

IΠ(K)). Therefore, C(K) ⊆H(
⊲

IΠ(K)). ∎

The last closure proposition is the one asserting that a semantic quasiva-
riety of F-algebraic systems is closed under directed certifications.

Proposition 14 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F). If K = QSem(K), then C∗(K) ⊆ K.

Proof: Assume that K = QSem(K). Let X = QEq(K). Assume that A ∈
C∗(K) and Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ, such that A ⊧∗Σ φ⃗ ≈ ψ⃗, i.e.,
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φ⃗ ≈ ψ⃗ ⊆ EqΣ(A). Since A ∈ C∗(K), there exists a collection {AΣ,i ∶ i ∈ IΣ} ⊆ K,
such that ⋃{EqωΣ(AΣ,i) ∶ i ∈ IΣ} is directed and

EqΣ(A) = ⋃
i∈IΣ

EqΣ(A
Σ,i).

Since φ⃗ ≈ ψ⃗ ⊆ EqΣ(A), for all i < n (recall φ⃗ ≈ ψ⃗ is finite), there exists, AΣ,i,
such that φi ≈ ψi ∈ EqωΣ(AΣ,i). Since ⋃{EqωΣ(AΣ,i) ∶ i ∈ IΣ} is directed, we get
that there exists k ∈ IΣ, such that φ⃗ ≈ ψ⃗ ∈ EqωΣ(AΣ,k). But AΣ,k ∈ K and φ⃗ ≈
ψ⃗ → φ ≈ ψ ∈ XΣ = QEqΣ(K). Hence, φ ≈ ψ ∈ EqΣ(AΣ,k) ⊆ ⋃i∈IΣ EqΣ(AΣ,i) =
EqΣ(A). This shows that A ∈ Mod∗(X) = Mod∗(QEq(K)) = QSem(K) = K.
We conclude C∗(K) ⊆ K, i.e., K is closed under directed certifications. ∎

We characterize semantic guasivarieties as those classes of algebraic sys-
tems that are closed under subdirect intersections and certifications.

Proposition 15 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆

AlgSys(F). Then GSem(K) = K if and only if K is closed under C and
⊲

IΠ.

Proof: Let K ⊆ AlgSys(F). Suppose, first, that GSem(K) = K. Then, by

Proposition 11, K is closed under
⊲

IΠ and, by Proposition 12, it is closed
under C.

Conversely, suppose that K ⊆ AlgSys(F), such that
⊲

IΠ(K) ⊆ K and C(K) ⊆
K. It suffices to show that K =Mod(GEq(K)). The left to right inclusion is
obvious. For the converse, consider A = ⟨A, ⟨F,α⟩⟩ ∈Mod(GEq(K)). For all
Σ ∈ ∣Sign♭∣ and all φ ≈ ψ ∉ EqΣ(A), we consider the F-guasiequation

gΣ,φ≈ψ ∶= EqΣ(A) → φ ≈ ψ.

(Strictly speaking, in place of EqΣ(A), we are supposed to have a possibly
infinite vector; so we assume given a default ordering of all Σ-sentences,
which induces a default ordering of all Σ-equations.) Since A ⊧Σ EqΣ(A) and
A /⊧Σ φ ≈ ψ, we get that gΣ,φ,≈ψ ∉ GEqΣ(A). Thus, since A ∈Mod(GEq(K)),
we infer that gΣ,ψ≈ψ ∉ GEqΣ(K). Therefore, there exists AΣ,φ≈ψ ∈ K, such that
AΣ,φ≈ψ /⊧Σ gΣ,φ≈ψ, i.e.,

AΣ,φ≈ψ ⊧Σ EqΣ(A) and AΣ,φ≈ψ /⊧Σ φ ≈ ψ.

Let
A
Σ = {AΣ,φ≈ψ ∶ φ ≈ ψ ∉ EqΣ(A)}.
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By Proposition 10,

F/Ker(AΣ) = F/ ⋂
φ≈ψ∉EqΣ(A)

Ker(AΣ,φ≈ψ) ∈
⊲

IΠ(K) = K.

But note that, by construction, for all Σ ∈ ∣Sign♭∣,

EqΣ(A) = EqΣ(F/Ker(AΣ)).

Indeed, for all φ ≈ ψ ∈ EqΣ(F),

• if φ ≈ ψ ∈ EqΣ(A), then, for all B ∈ AΣ, B ⊧Σ φ ≈ ψ, i.e., φ ≈
ψ ∈ KerΣ(B). Therefore, φ ≈ ψ ∈ KerΣ(AΣ), showing that φ ≈ ψ ∈
EqΣ(F/Ker(AΣ));

• if φ ≈ ψ ∉ EqΣ(A), then AΣ,φ≈ψ /⊧Σ φ ≈ ψ, whence φ ≈ ψ ∉ KerΣ(AΣ),
showing that φ ≈ ψ ∉ EqΣ(F/Ker(AΣ)).

Thus, since, for all Σ ∈ ∣Sign♭∣, F/Ker(AΣ) ∈ K, we get, by the definition
of C and the equality just proven, that A ∈ C(K) = K. We conclude that
GSem(K) = K. ∎

Similarly, we characterize semantic quasivarieties as those classes of al-
gebraic systems that are closed under subdirect intersections and directed
certifications.

Proposition 16 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆

AlgSys(F). Then QSem(K) = K if and only if K is closed under C∗ and
⊲

IΠ.

Proof: Let K ⊆ AlgSys(F). Suppose, first, that QSem(K) = K. Then, since K

is a semantic guasivariety, we get, by Proposition 11, that K is closed under
⊲

IΠ and, by Proposition 14, K is also closed under C∗.

Conversely, suppose that K ⊆ AlgSys(F), such that
⊲

IΠ(K) ⊆ K and C∗(K) ⊆
K. It suffices to show that K = Mod∗(QEq(K)). The left to right inclusion
is obvious. For the converse, consider A = ⟨A, ⟨F,α⟩⟩ ∈Mod∗(QEq(K)). For
all Σ ∈ ∣Sign♭∣, all X ∈ EqωΣ(A) and all φ ≈ ψ ∉ EqΣ(A), we consider the
F-quasiequation

qΣ,X,φ≈ψ ∶= X⃗ → φ ≈ ψ,

where, again, the hypotheses X⃗ may be taken as an arbitrary ordering of the
finite set X . Since A ⊧∗Σ EqΣ(A) and A /⊧

∗

Σ φ ≈ ψ, we get that qΣ,X,φ,≈ψ ∉
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QEqΣ(A). Thus, sinceA ∈Mod∗(QEq(K)), we infer that qΣ,X,ψ≈ψ ∉ QEqΣ(K).
Therefore, there exists AΣ,X,φ≈ψ ∈ K, such that AΣ,X,φ≈ψ /⊧∗Σ qΣ,X,φ≈ψ, i.e.,

AΣ,X,φ≈ψ ⊧∗Σ X and AΣ,X,φ≈ψ /⊧∗Σ φ ≈ ψ.

Let, for all X ∈ EqωΣ(A),

A
Σ,X = {AΣ,X,φ≈ψ ∶ φ ≈ ψ ∉ EqΣ(A)}.

Define, for all X ∈ EqωΣ(A),

AΣ,X ∶= F/Ker(AΣ,X) = F/ ⋂
φ≈ψ∉EqΣ(A)

Ker(AΣ,X,φ≈ψ).

By Proposition 10, for all X ∈ EqωΣ(A), AΣ,X ∈
⊲

IΠ(K) = K. It suffices now to
show the following:

• ⋃X∈Eqω
Σ
(A)Eq

ω
Σ(AΣ,X) is directed;

• KerΣ(A) = ⋃X∈Eqω
Σ
(A)KerΣ(AΣ,X).

Suppose, first, that E ∈ EqωΣ(AΣ,X) and E′ ∈ EqωΣ(AΣ,X′), for some X,X ′ ∈
EqωΣ(A). Then, by construction of AΣ,X and AΣ,X′ , we get that E,E′ ∈
EqωΣ(A). Therefore, E∪E′ ∈ Eq

ω
Σ(AΣ,E∪E′) and, hence, ⋃X∈Eqω

Σ
(A)Eq

ω
Σ(AΣ,X)

is indeed directed.
Finally, note that, by construction, for all Σ ∈ ∣Sign♭∣,

EqΣ(A) = ⋃
X∈Eqω

Σ
(A)

EqΣ(A
Σ,X).

Indeed, for all φ ≈ ψ ∈ EqΣ(F),

• if φ ≈ ψ ∈ EqΣ(A), then, φ ≈ ψ ∈ EqΣ(AΣ,{φ≈ψ}), whence φ ≈ ψ ∈
⋃X∈Eqω

Σ
(A)EqΣ(AΣ,X).

• if φ ≈ ψ ∉ EqΣ(A), then, by construction, for all X ∈ EqωΣ(A), φ ≈ ψ ∉
EqΣ(AΣ,X). Therefore, φ ≈ ψ ∉ ⋃X∈Eqω

Σ
(A)EqΣ(AΣ,X).

Since, for all Σ ∈ ∣Sign♭∣ and all X ∈ EqωΣ(A), AΣ,X ∈ K, we get, by the
definition of C∗ and the two properties just proven, that A ∈ C∗(K) = K. We
conclude that QSem(K) = K. ∎
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3 Natural Quasi- and Guasi-Equations and

Syntactic Quasi- and Guasi-Varieties

Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Define a binary rela-
tion

⊧∗ ⊆ AlgSys(F) ×NQEq(F)

by setting, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,
SEN,N⟩, and every σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NQEq(F) (i.e., such that σ⃗ ≈ τ⃗ is a finite
vector of natural F-equations),

A ⊧∗ σ⃗ ≈ τ⃗ → σ ≈ τ iff for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
σ⃗AΣ(φ⃗) = τ⃗

A
Σ (φ⃗) implies σAΣ (φ⃗) = τ

A
Σ (φ⃗).

Note that, because of the surjectivity of ⟨F,α⟩ ∶ F →A, the condition above
may be equivalently expressed by saying that, for all Σ ∈ ∣Sign♭∣ and all
φ⃗ ∈ SEN♭(Σ),

σ⃗AF (Σ)(αΣ(φ⃗)) = τ⃗AF (Σ)(αΣ(φ⃗)) implies σAF (Σ)(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).

More generally, we define a binary relation

⊧ ⊆ AlgSys(F) ×NGEq(F)

by setting, for every F-algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,
SEN,N⟩, and every σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(F) (here σ⃗ ≈ τ⃗ may be of
arbitrary length),

A ⊧ σ⃗ ≈ τ⃗ → σ ≈ τ iff for all Σ ∈ ∣Sign∣ and all φ⃗ ∈ SEN(Σ),
σ⃗AΣ (φ⃗) = τ⃗

A
Σ (φ⃗) implies σAΣ(φ⃗) = τ

A
Σ (φ⃗).

Again relying on the surjectivity of ⟨F,α⟩, the condition can be equivalently
expressed by saying that, for all Σ ∈ ∣Sign♭∣ and all φ⃗ ∈ SEN♭(Σ),

σ⃗AF (Σ)(αΣ(φ⃗)) = τ⃗AF (Σ)(αΣ(φ⃗)) implies σAF (Σ)(αΣ(φ⃗)) = τAF (Σ)(αΣ(φ⃗)).

We extend the notation to apply it to collections of F-algebraic systems
and families of natural F-quasiequations by setting, for all K ⊆ AlgSys(F)
and all Q ⊆ NQEq(F),

K ⊧∗ Q iff for all A ∈ K and all q ∈ Q,
A ⊧ q.
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Analogously, for collections of F-algebraic systems and families of natural
F-guasiequations, we set, for all K ⊆ AlgSys(F) and all G ⊆ NGEq(F),

K ⊧ G iff for all A ∈ K and all g ∈ G,
A ⊧ g.

It is clear that ⊧∗ determines a Galois connection between P(AlgSys(F)) and
P(NQEq(F)) and ⊧ determines a Galois connection between P(AlgSys(F))
and P(NGEq(F)). Related to these Galois connections, we use the following
notational conventions.

First, given a class K of F-algebraic systems, we define the collection

NQEq(K) = {q ∈ NQEq(F) ∶ K ⊧∗ q}.

Similarly, we define the collection

NGEq(K) = {g ∈ NGEq(F) ∶ K ⊧ g}.

Next, given a collection Q of natural F-quasiequations, we define

NMod∗(Q) = {A ∈ AlgSys(F) ∶ A ⊧∗ Q}

and, given a collection G of natural F-guasiequations, we define

NMod(G) = {A ∈ AlgSys(F) ∶ A ⊧ G}.

Finally, for the closure operators associated with the Galois connection ⊧∗,
we set, for all Q ⊆ NQEq(F) and all K ⊆ AlgSys(F),

N∗(Q) = NQEq(NMod∗(Q));
QSyn(K) = NMod∗(NQEq(K)).

Analogously, for the closure operators associated with the Galois connection
⊧, we set, for all G ⊆ NGEq(F) and all K ⊆ AlgSys(F),

N(G) = NGEq(NMod(G));
GSyn(K) = NMod(NGEq(K)).

By the general theory of Galois connections, we know that the closed sets of
the closure operator N∗ are the ones of the form NQEq(K) for a class K of
F-algebraic systems and those of the closure operator QSyn are those of the
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form NMod∗(Q) for a collection Q of natural F-quasiequations. Moreover,
the closed sets of the closure operator N are the ones of the form NGEq(K)
for a class K of F-algebraic systems and those of the closure operator GSyn are
those of the form NMod(G) for a collection G of natural F-guasiequations.

We set out to provide intrinsic characterizations of these closed sets.
Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and let R ⊆ NGeq(F)

be a set of F-guasiequations. First, define

Ṙ ∶= R ∩NEq(F),

i.e., Ṙ is the set of natural equations included in R, which, of course, consti-
tute special cases of F-guasiequations. Moreover, recall that a binary relation
Q ⊆ NEq(F) is called ametacongruence on F if it is an equivalence relation
on N ♭ and, in addition, satisfies the property of substitution, i.e.,

For all o, ρ ∶ (SEN♭)ω → SEN♭ in N ♭ and all σi, τ i ∶ (SEN♭)ω → SEN♭ in
N ♭, i < ω,

⟨o, ρ⟩ ∈ Q and ⟨σi, τ i⟩ ∈ Q, i < ω, imply ⟨o ○ σ⃗, ρ ○ τ⃗ ⟩ ∈ Q.

We say that R ⊆ NGEq(F) is a metaguasicongruence on F, or mgcon-

gruence for short, if

• Ṙ is a metacongruence on F;

• R satisfies the modus ponens, i.e., for all σ⃗, τ⃗ , σ, τ in N ♭,

σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R and σ⃗ ≈ τ⃗ ⊆ Ṙ imply σ ≈ τ ∈ R.

The special case in which R consists entirely of natural F-quasiequations is
termed a metaquasicongruence on F, or mqcongruence for short.

Let MetGon(F) and MetQon(F), respectively, stand for the collection of
all mgcongruences and the collection of all mqcongruences on F. It is clear
that both form complete lattices under ordinary inclusion, which are denoted
by MetGon(F) = ⟨MetGon(F),⊆⟩ and MetQon(F) = ⟨MetQon(F),⊆⟩, re-
spectively.

As was, perhaps, to be expected, mgcongruences (and mqcongruences on
F, in particular), on the one hand, and metacongruence systems on F, on
the other, are very closely related.
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Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system andR ∈MetGon(F).
Define the family XR = {XR

Σ
}Σ∈∣Sign♭∣ on F by letting, for all Σ ∈ ∣Sign♭∣ and

all φ⃗, ψ⃗, φ,ψ ∈ SEN♭(Σ),

φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XR
Σ iff there exist σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R,

and χ⃗ ∈ SEN♭(Σ), with
σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗)

= φ⃗ ≈ ψ⃗ → φ ≈ ψ.

I.e., we have, for all Σ ∈ ∣Sign♭∣,

XR
Σ = {σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗), τΣ(χ⃗) ∶

σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R, χ⃗ ∈ SEN♭(Σ)}.

Among other properties of this construction, we shall have the chance to
exploit the following:

Lemma 17 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.

(a) If R ⊆ NQEq(F), then Mod∗(XR) = NMod∗(R).

(a) If R ⊆ NGEq(F), then Mod(XR) = NMod(R).

Proof: We only prove Part (b), since Part (a) is a special case. We have,
for all A ∈ AlgSys(F), A ∈ Mod(XR) iff, by the definition of Mod and XR,
for all σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R, all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

A ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗),

iff, by the definition of ⊧, for all σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R,

A ⊧ σ⃗ ≈ τ⃗ → σ ≈ τ,

iff, by the definition of NMod, A ∈ NMod(R). ∎

On the other hand, let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system
and X ∈ GonSys(F). Define RX ⊆ NGEq(F) by setting, for all σ⃗, τ⃗ , σ, τ in
N ♭,

σ⃗ ≈ τ⃗ → σ ≈ τ ∈ RX iff for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),
σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈XΣ.
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In other words,

RX = {σ⃗ ≈ τ⃗ → σ ≈ τ ∶ (∀Σ)(∀χ⃗)(σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ XΣ)}.

We characterize the closed sets in P(NGEq(F)) under N . They turn out
to be those mgcongruences on F satisfying an additional property. We also
obtain a similar characterization of the closed sets in P(NQEq(F)) under
N∗.

Lemma 18 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R a col-
lection of natural F-guasiequations. If N(R) = R, then R ∈MetGon(F).

Proof: Let R ⊆ NGEq(F) and K ⊆ AlgSys(F), such that R = NGEq(K).
First, note that Ṙ = NEq(K) ∈ MetCon(F). So it suffices to show that R
satisfies modus ponens. To this end, let σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R and σ⃗ ≈ τ⃗ ⊆ Ṙ.
Then, by hypothesis, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

K ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) and K ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗).

Thus, taking into account the meaning of implication, for all χ⃗ ∈ SEN♭(Σ),
K ⊧Σ σΣ(χ⃗) ≈ τΣ(χ⃗). This shows that K ⊧ σ ≈ τ and, therefore, σ ≈ τ ∈ Ṙ.
Thus, R satisfies modus ponens and, hence, R ∈MetGon(F). ∎

Following along the lines of the proof of Lemma 18, we obtain

Lemma 19 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and R a col-
lection of natural F-quasiequations. If N∗(R) = R, then R ∈MetQon(F).

There is one additional property, however, that, by necessity, all mg-
congruences on F of the form NGEq(K), for some class K of F-algebraic
systems, must satisfy. And the same applies to all mqcongruences on F of
the form NQEq(K). Recall that, given X ∈ GonSys(F) (and, in particular,
X ∈ QonSys(F)), we defined

RX = {σ⃗ ≈ τ⃗ → σ ≈ τ ∶ (∀Σ ∈ ∣Sign♭∣)(∀χ⃗ ∈ SEN♭(Σ))
(σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ XΣ)}.

Definition 20 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.

• An mgcongruence R ∈ MetGon(F) is called feasible if there exists a
coverable guasicongruence system X ∈ GonSys∧(F), such that R = RX .
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• An mqcongruence R ∈ MetQon(F) is called feasible if there exists a
coverable quasicongruence system X ∈ QonSys∧(F), such that R = RX .

Lemma 21 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and R ⊆
NGEq(F). If N(R) = R, then R is a feasible mgcongruence on F.

Proof: Let R ⊆ NGEq(F), such that R = N(R). By Lemma 18, R ∈
MetGon(F). To see that R is feasible, let K ⊆ AlgSys(F), such that R =
NGEq(K) and set X = GEq(K). We know that X ∈ GonSys∧(F). So, it
suffices to show that R = RX .

Suppose, first, that σ⃗ ≈ τ⃗ → σ ≈ τ ∈ R = NGEq(K). Then, for all Σ ∈
∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

K ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗).

Equivalently, we get σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ GEqΣ(K) = XΣ.
Hence, σ⃗ ≈ τ⃗ → σ ≈ τ ∈ RX , showing that R ⊆ RX .

Suppose, conversely, that σ⃗ ≈ τ⃗ → σ ≈ τ ∈ RX . Thus, for all Σ ∈ ∣Sign♭∣
and all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ XΣ = GEqΣ(K).

Thus, σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(K) = R, showing that RX ⊆ R. ∎

Similarly, we may demonstrate the following necessary condition for a
subset of NQEq(F) to be closed under N∗.

Lemma 22 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and R ⊆
NQEq(F). If N∗(R) = R, then R is a feasible mqcongruence on F.

We are now ready for the promised characterization of the closed sets of
natural quasiequations under N∗ and of natural guasiequations under N .

Proposition 23 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.

(a) If R ⊆ NQEq(F), then N∗(R) = R if and only if R is a feasible mqcon-
gruence on F;

(b) If R ⊆ NGEq(F), then N(R) = R if and only if R is a feasible mgcon-
gruence on F.
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Proof: We only prove Part (b). Part (a) may be handled similarly.
If R = N(R), then, by Lemma 21, R is a feasible mgcongruence on F.

Suppose, conversely, that R is a feasible mgcongruence on F. Then, by
definition, there exists X ∈ GonSys∧(F), such that R = RX . By the definition
of coverable guasicongruence systems, there exists a collection {X i ∶ i ∈ I} ⊆
GonSys≈(F), such that X = ⋂i∈IX i. By the theory of Galois connections, to
show that R is closed under N , it suffices to show that it is in the image of
NGEq, i.e., that R = NGEq(K), for some class K ⊆ AlgSys(F). We aim to
show that R = NGEq({F/Ẋ i ∶ i ∈ I}) or, equivalently,

RX = NGEq({F/Ẋ i ∶ i ∈ I}).

Suppose, first, that σ⃗ ≈ τ⃗ → σ ≈ τ ∈ RX . Thus, for all Σ ∈ ∣Sign♭∣ and all
χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈XΣ = ⋂
i∈I

X i
Σ.

Thus, for all i ∈ I, all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈X i
Σ.

Since X i satisfies modus ponens, we get that, for all i ∈ I, all Σ ∈ ∣Sign♭∣ and
all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) ⊈ Ẋ i
Σ or σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ Ẋ i

Σ.

This shows that for all i ∈ I, all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

F/Ẋ i ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗).

Therefore, for all i ∈ I, σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(F/Ẋ i). So, we finally get that
σ⃗ ≈ τ⃗ → σ ≈ τ ∈ ⋂i∈I NGEq(F/Ẋ i) = NGEq({F/Ẋ i ∶ i ∈ I}).

Suppose, conversely, that σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq({F/Ẋ i ∶ i ∈ I}). Thus,
for all i ∈ I, all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

F/Ẋ i ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗).

Thus, by the definition of ⊧, for all i ∈ I, all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) ⊈ Ẋ i
Σ or σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ Ẋ i

Σ.
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Since, X i ∈ GonSys≈(F), we get by completeness, for all i ∈ I, all Σ ∈ ∣Sign♭∣
and all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈X i
Σ.

Hence, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ ⋂
i∈I

X i
Σ =XΣ.

This shows that σ⃗ ≈ τ⃗ → σ ≈ τ ∈ RX and, therefore, NGEq({F/Ẋ i ∶ i ∈ I}) ⊆
RX .

Since R = NGEq({F/Ẋ i ∶ i ∈ I}), we conclude that R = N(R). ∎

Finally, we characterize the closed sets in P(AlgSys(F)) under QSyn and
those closed under GSyn, i.e., those that constitute syntactic quasivarieties
and syntactic guasivarieties, respectively, of F-algebraic systems. Similarly
to the case of semantic quasivarieties and semantic guasivarieties, syntac-
tic quasivarieties turn out to be those classes of F-algebraic systems that
are closed under subdirect intersections and directed certifications and, in
addition, are related in a specific way to semantics. Analogously, syntactic
guasivarieties are those classes that are closed under subdirect intersections
and certifications and are related in a similar way to semantics.

Proposition 24 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. For
all K ⊆ AlgSys(F),

(a) QSem(K) ⊆ QSyn(K);

(b) GSem(K) ⊆ GSyn(K).

Proof: We only prove Part (b), since Part (a) is very similar.
Let K be a class of F-algebraic systems and A an F-algebraic system.

Suppose A ∈ GSem(K) and let σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(K). This means that,
for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ),

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ GEqΣ(K).

Since A ∈ GSem(K) = Mod(GEq(K)), we get that, for all Σ ∈ ∣Sign♭∣ and all
χ⃗ ∈ SEN♭(Σ), A ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗). Since this holds for all
Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ), we get that A ⊧ σ⃗ ≈ τ⃗ → σ ≈ τ . But σ⃗ ≈ τ⃗ →
σ ≈ τ ∈ NGEq(K) was arbitrary, whence A ∈ NMod(NGEq(K)) = GSyn(K).
We conclude that GSem(K) ⊆ GSyn(K). ∎
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Corollary 25 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and K ⊆
AlgSys(F).

(a) If QSyn(K) = K, then QSem(K) = K;

(b) If GSyn(K) = K, then GSem(K) = K.

Proof: We again focus on the case of guasivarieties. If K ⊆ AlgSys(F), such
that GSyn(K) = K, then

GSem(K) ⊆ GSyn(K) (by Proposition 24)
= K. (by hypothesis)

Since the reverse inclusion always holds, we get the conclusion. ∎

But, if K is a syntactic quasi- or guasivariety, it has to satisfy an additional
condition. Recalling the definition of XR, for R ∈MetQon(F), given a class
K ⊆ AlgSys(F), we have, for all Σ ∈ ∣Sign♭∣,

X
NQEq(K)
Σ = {σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∶

σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NQEq(K), χ⃗ ∈ SEN♭(Σ)},

and, similarly,

X
NGEq(K)
Σ

= {σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∶
σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(K), χ⃗ ∈ SEN♭(Σ)},

Definition 26 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K ⊆ AlgSys(F) a class of F-algebraic systems. The class K is called

(a) quasi-natural if QEq(K) and XNQEq(K) have identical models, i.e., if

Mod∗(QEq(K)) =Mod∗(XNQEq(K));

(b) guasi-natural if GEq(K) and XNGEq(K) have identical models, i.e., if

Mod(GEq(K)) =Mod(XNGEq(K)).

Note that an alternative way to express the two conditions defining quasi-
naturality and guasi-naturality, respectively, is obtained by recalling that the
left had sides constitute the classes QSem(K) and GSem(K), respectively, by
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the definition of the operators QSem and GSem. Thus, we may rewrite the
corresponding equations as

QSem(K) =Mod∗(XNQEq(K)) and GSem(K) =Mod(XNGEq(K)).

Note, also, that, as follows from the upcoming lemma, the left to right
inclusions in the conditions of Definition 26 always hold. Therefore, the
definition essentially relies on the two opposite inclusions.

Lemma 27 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, and K ⊆
AlgSys(F) a class of F-algebraic systems. Then

XNQEq(K) ≤ QEq(K) and XNGEq(K) ≤ GEq(K).

Proof: We show the second inclusion. The first follows along similar lines.
Suppose Σ ∈ ∣Sign♭∣, φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XNGEq(K)

Σ
and let A ∈ K, such that A ⊧Σ

φ⃗ ≈ ψ⃗. Then, by definition of XNGEq(K), there exist σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(K)
and χ⃗ ∈ SEN♭(Σ), such that

σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) = φ⃗ ≈ ψ⃗ and σΣ(χ⃗) ≈ τΣ(χ⃗) = φ ≈ ψ.

Since σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NGEq(K) and A ∈ K, we get A ⊧Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) →
σΣ(χ⃗) ≈ τΣ(χ⃗), i.e., A ⊧Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ. Since, by assumption, A ⊧Σ φ⃗ ≈ ψ⃗,
we conclude that A ⊧Σ φ ≈ ψ. This shows that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ GEqΣ(K).
We conclude that XNGEq(K) ≤ GEq(K). ∎

Corollary 28 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, and K ⊆
AlgSys(F) a class of F-algebraic systems. Then

Mod∗(QEq(K)) ⊆Mod∗(XNQEq(K)) and Mod(GEq(K)) ⊆Mod(XNGEq(K)).

Proof: By Lemma 27. ∎

Equivalently, we always have

QSem(K) ⊆Mod∗(XNQEq(K)) and GSem(K) ⊆Mod(XNGEq(K)).

We show next that, for a class of F-algebraic systems, quasi-naturality
is a necessary condition for constituting a syntactic quasivariety and guasi-
naturality a necessary condition for being a syntactic guasivariety.
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Proposition 29 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K ⊆ AlgSys(F).

(a) If QSyn(K) = K, then K is a quasi-natural class;

(b) If GSyn(K) = K, then K is a guasi-natural class.

Proof: We again prove only Part (b). Let K ⊆ AlgSys(F), such that
GSyn(K) = K. We must show that Mod(GEq(K)) = Mod(XNGEq(K)). We
have:

Mod(GEq(K)) = GSem(K) (definition of GSem)
= K (Corollary 25)
= GSyn(K) (hypothesis)
= NMod(NGEq(K)) (definition of GSyn)
= Mod(XNGEq(K)). (Lemma 17)

Therefore, K is a natural class. ∎

Now, we are ready to provide a characterization of syntactic quasivarieties
and syntactic guasivarieties. The first are exactly those semantic quasivari-
eties that are quasi-natural and the second those semantic guasivarieties that
are guasi-natural.

Proposition 30 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.

(a) A class K of F-algebraic systems is a syntactic quasivariety if and only
if it is a quasi-natural semantic quasivariety.

(b) A class K of F-algebraic systems is a syntactic guasivariety if and only
if it is a guasi-natural semantic guasivariety.

Proof: We prove Part (b). Part (a) may be handled similarly.
If K is a syntactic guasivariety, then, by Corollary 25, it is a semantic

guasivariety and, moreover, by Proposition 29, it is a guasi-natural class.
Suppose, conversely, that K is a guasi-natural semantic guasivariety. We

have
K = GSem(K) (hypothesis)
= Mod(GEq(K)) (definition of GSem)
= Mod(XNGEq(K)) (guasi-naturality)
= NMod(NGEq(K)) (Lemma 17)
= GSyn(K). (definition of GSyn)

Hence, K is a syntactic guasivariety. ∎
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Corollary 31 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.

(a) A class K of F-algebraic systems is a syntactic quasivariety if and only

if K is quasi-natural and closed under C∗ and
⊲

IΠ;

(b) A class K of F-algebraic systems is a syntactic guasivariety if and only

if K is guasi-natural and closed under C and
⊲

IΠ.

Proof: We have K is a syntactic quasivariety (guasivariety, respectively) if
and only if, by Proposition 30, it is a quasi- (guasi-, respectively) natural se-
mantic quasivariety (guasivariety, respectively) if and only if, by Proposition
16 (Proposition 15, respectively), it is a natural class closed under C∗ (C,

respectively) and
⊲

IΠ. ∎

4 The Closures C∗ and N∗

In this section, we characterize

C∗ ∶ PQEq(F) → PQEq(F)
N∗ ∶ PNQEq(F) → PNQEq(F)

as closure operators by showing how to obtain the closure of a given X ≤
QEq(F) or a given R ⊆ NQEq(F), respectively, in a step-wise fashion. Sim-
ilar results may be established for C and N , but, since these two operators
are not finitary, one has to use transfinite, in place of finite, induction. So
we focus upon the finitary cases.

For the semantic case of C∗, the key observation is that membership
of φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ C∗Σ(X) is equivalent to membership of φ ≈ ψ in the

congruence system Θ(X ∪ {φ⃗ ≈ ψ⃗}).

Lemma 32 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, X ≤ QEq(F),
Σ ∈ ∣Sign♭∣ and φ⃗ ≈ ψ⃗ ∈ QEqΣ(F). Then

φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ C∗Σ(X) iff φ ≈ ψ ∈ ΘΣ(X ∪ {φ⃗ ≈ ψ⃗}).

Proof: Suppose, first, that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(Mod∗(X)). Let θ be
a congruence system on F satisfying X ∪ {φ⃗ ≈ ψ⃗}. Consider F/θ. Since
θ satisfies X , we certainly have F/θ ⊧∗ X . Thus F/θ ∈ Mod∗(X). So,
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by hypothesis, F/θ ⊧∗ φ⃗ ≈ ψ⃗ → φ ≈ ψ. But φ⃗ ≈ ψ⃗ ⊆ θΣ, since θ satisfies
X∪{φ⃗ ≈ ψ⃗}. Thus, by the definition of ⊧∗, φ ≈ ψ ∈ θΣ. Since every congruence
system on F satisfying X ∪ {φ⃗ ≈ ψ⃗} contains φ ≈ ψ, so does Θ(X ∪ {φ⃗ ≈ ψ⃗}).

Suppose, conversely, that φ ≈ ψ ∈ ΘΣ(X ∪ {φ⃗ ≈ ψ⃗}). Let A ∈ AlgSys(F),
such that A ⊧∗

Σ
φ⃗ ≈ ψ⃗. Then Ker(A) is a congruence system on F that

satisfies X ∪ {φ⃗ ≈ ψ⃗}. By hypothesis, φ ≈ ψ ∈ KerΣ(A). But this gives
A ⊧∗Σ φ ≈ ψ. Hence, A ⊧

∗
Σ φ⃗ ≈ ψ⃗ → φ ≈ ψ. Since A ∈Mod∗(X) was arbitrary,

we conclude that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(Mod∗(X)) = C∗
Σ
(X). ∎

By Lemma 32, testing whether φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ C∗Σ(X) amounts to testing

whether φ ≈ ψ ∈ ΘΣ(X ∪ {φ⃗ ≈ ψ⃗}). Motivated by this result, we turn to a
characterization of Θ(X) for a given X ≤ QEq(F).

Let X ≤ QEq(F). We define, for all k < ω, by induction on k, the family
Θk(X) = {Θk

Σ(X)}Σ∈∣Sign♭∣ ≤ Eq(F) by letting, for all Σ ∈ ∣Sign♭∣, Xk
Σ be given

by

Θ0
Σ(X) = ẊΣ ∪ {φ ≈ φ ∶ φ ∈ SEN♭(Σ)};

Θk+1
Σ
(X) = Θk

Σ
(X) ∪ {ψ ≈ φ ∶ φ ≈ ψ ∈ Θk

Σ
(X)}

∪ {φ ≈ χ ∶ φ ≈ ψ,ψ ≈ χ ∈ Θk
Σ(X)}

∪ {σΣ(φ⃗) ≈ σΣ(ψ⃗) ∶ φ⃗ ≈ ψ⃗ ⊆ Θk
Σ(X) and σ ∈ N ♭}

∪ {SEN♭(f)(φ ≈ ψ) ∶ φ ≈ ψ ∈ Θk
Σ′(X)

and f ∈ Sign♭(Σ′,Σ)}
∪ {φ ≈ ψ ∶ φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈XΣ and φ⃗ ≈ ψ⃗ ⊆ Θk

Σ
(X)}.

Finally, set
Θ(X) = ⋃

k<ω

Θk(X).

Our goal is to show that Θ(X) coincides with the least congruence system
on F that satisfies X (for which, we recall, the notation Θ(X) was originally
introduced). This result will alleviate any concerns about overloading or
introducing ambiguity in the meaning of Θ(X).

Proposition 33 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system and X ≤
QEq(F). Θ(X), as constructed above, coincides with the least congruence
system on F that satisfies X.

Proof: We must show that Θ(X) ∈ ConSys(F), Θ(X) satisfies X and,
finally, that, if θ ∈ ConSys(F) satisfies X , then Θ(X) ≤ θ.
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First, note that, by definition, Θ(X) is reflexive, symmetric and transi-
tive, that it satisfies the congruence property and is, also, invariant under
Sign

♭-morphisms. These properties together guarantee that Θ(X) is a con-
gruence system on F.

Suppose, next, that Σ ∈ ∣Sign♭∣ and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ, such that
φ⃗ ≈ ψ⃗ ⊆ ΘΣ(X). Since φ⃗ ≈ ψ⃗ consists of a finite collection of F-equations,
there exists k < ω, such that φ⃗ ≈ ψ⃗ ⊆ Θk

Σ(X). But, then, by definition,
φ ≈ ψ ∈ Θk+1

Σ
(X) ⊆ ΘΣ(X). Thus, Θ(X) does satisfy all F-quasiequations in

X .
Finally, using the hypotheses θ ∈ ConSys(F) and θ satisfies X , it is not

difficult to show, using induction on k < ω, that Θk(X) ≤ θ.

• For k = 0, since θ satisfies X , Ẋ ≤ θ and, since θ is reflexive, {φ ≈ φ ∶
φ ∈ SEN♭(Σ)} ⊆ θΣ, for all Σ ∈ ∣Sign♭∣. Thus, we get Θ0(X) ≤ θ.

• Suppose, next, that Θk(X) ≤ θ, for some k < ω. Then, since θ is
a congruence system (symmetric, transitive, satisfies the congruence
property and is Sign♭-invariant), we get, using the induction hypothe-
sis, that for all Σ ∈ ∣Sign♭∣,

{ψ ≈ φ ∶ φ ≈ ψ ∈ Θk
Σ(X)}

∪ {φ ≈ χ ∶ φ ≈ ψ,ψ ≈ χ ∈ Θk
Σ
(X)}

∪ {σΣ(φ⃗) ≈ σΣ(ψ⃗) ∶ φ⃗ ≈ ψ⃗ ⊆ Θk
Σ(X)}

∪ {SEN♭(f)(φ ≈ ψ) ∶ f ∈ Sign♭(Σ′,Σ), φ ≈ ψ ∈ Θk
Σ′(X)} ⊆ θΣ.

Further, since θ satisfies X , we get, again using the induction hypoth-
esis, that, for all Σ ∈ ∣Sign♭∣,

{φ ≈ ψ ∶ φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈XΣ and φ⃗ ≈ ψ⃗ ⊆ Θk
Σ(X)} ⊆ θΣ.

Thus, we have Θk+1(X) ≤ θ.

Now we obtain Θk(X) ≤ θ, for all k < ω. Hence, Θ(X) = ⋃k<ωΘk(X) ≤ θ. ∎

Recall that, given a sentence family X of F, we say that it is locally finite
if, for all Σ ∈ ∣Sign♭∣, XΣ is finite. Based on the inductive definition of Θ(X),
we can now show that Θ(X) is a finitary closure operator in the following
sense.

Lemma 34 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, X ≤
QEq(F), Σ ∈ ∣Sign♭∣ and φ ≈ ψ ∈ EqΣ(F). If φ ≈ ψ ∈ Θk

Σ(X), then, there
exists a locally finite Y ≤ X, such that φ ≈ ψ ∈ Θk

Σ(Y ).
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Proof: We prove the statement by induction on k < ω.
If k = 0, φ ≈ ψ ∈ ẊΣ or φ = ψ. In the first case, φ ≈ ψ ∈ Θ0

Σ
({φ ≈ ψ}) and,

in the second, φ ≈ ψ ∈ Θ0
Σ(∅).

Suppose that the statement holds for some k < ω. Consider φ ≈ ψ ∈
Θk+1

Σ
(X). We look at the various possibilities that may occur.

• If φ ≈ ψ ∈ Θk
Σ(X), then the conclusion follows directly by the induction

hypothesis.

• If ψ ≈ φ ∈ Θk
Σ(X), then, by the induction hypothesis, there exists a

locally finite Y ≤ X , such that ψ ≈ φ ∈ Θk
Σ(Y ), whence, by definition,

φ ≈ ψ ∈ Θk+1
Σ
(Y ).

• If φ ≈ χ,χ ≈ ψ ∈ Θk
Σ(X), then, by te induction hypothesis, there exist

locally finite Y,Z ≤ X , such that φ ≈ χ ∈ Θk
Σ(Y ) and χ ≈ ψ ∈ Θk

Σ(Z).
Therefore, φ ≈ ψ ∈ Θk+1

Σ
(Y ∪Z).

• If φ⃗ ≈ ψ⃗ ⊆ Θk
Σ
(X) (where φ ≈ ψ ≡ σΣ(φ⃗) ≈ σΣ(ψ⃗), for some σ in

N ♭), then, by the induction hypothesis, φi ≈ ψi ∈ Θk
Σ(Y

i), for some

locally finite Y i ≤ X , i < n. Now we have φ ≈ ψ ≡ σΣ(φ⃗) ≈ σΣ(ψ⃗) ∈
Θk+1

Σ (⋃i<n Y i), with ⋃i<n Y i being a locally finite subfamily of X .

• If φ ≈ ψ ≡ SEN♭(f)(φ′ ≈ ψ′), for some f ∈ Sign♭(Σ′,Σ) and some
φ′ ≈ ψ′ ∈ Θk

Σ′(X), then, by the induction hypothesis, there exists locally
finite Y ≤ X , such that φ′ ≈ ψ′ ∈ Θk

Σ′(Y ). But this yields that φ ≈ ψ ∈
Θk+1

Σ
(Y ).

• Finally, assume that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ XΣ and φ⃗ ≈ ψ⃗ ⊆ Θk
Σ
(X). Again,

using the induction hypothesis, we get a locally finite Y i ≤ X , i < n,
such that φi ≈ ψi ∈ Θk

Σ(Y
i). Therefore, φ ≈ ψ ∈ Θk+1

Σ (⋃i<n Y i), where
⋃i<n Y i ≤ X is also locally finite.

Thus, since all possible cases have been treated successfully, the proof is
complete. ∎

Proposition 35 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, X ≤
DEq(F), Σ ∈ ∣Sign♭∣ and φ ≈ ψ ∈ EqΣ(F). If φ ≈ ψ ∈ ΘΣ(X), then, there
exists a locally finite Y ≤ X, such that φ ≈ ψ ∈ ΘΣ(Y ).
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Proof: If φ ≈ ψ ∈ ΘΣ(X), then, by Proposition 33, there exists k < ω,
such that φ ≈ ψ ∈ Θk

Σ
(X), whence, by Lemma 34, there exists a locally

finite Y ≤ X , such that φ ≈ ψ ∈ Θk
Σ(Y ). Thus, again by Proposition 33,

φ ≈ ψ ∈ ΘΣ(Y ). ∎

Corollary 36 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. The
closure operator C∗ ∶ PQEq(F) → PQEq(F) is finitary.

Proof: Let X ≤ QEq(F), Σ ∈ ∣Sign♭∣ and φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ QEqΣ(F), such
that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ C∗

Σ
(X). By Lemma 32, this holds if and only if

φ ≈ ψ ∈ ΘΣ(X ∪ {φ⃗ ≈ ψ⃗}). By Proposition 35, this holds if and only if there
exists Y ≤ X locally finite, such that φ ≈ ψ ∈ ΘΣ(Y ∪ {φ⃗ ≈ ψ⃗}). Therefore,
by one more application of Lemma 32, we get that φ⃗ ≈ ψ⃗ → φ ≈ ψ ∈ C∗Σ(Y ).
This shows that C∗ is a finitary closure operator. ∎

Next, we provide, based on C∗, a necessary and sufficient condition for
a natural quasiequation to be in the closure N∗ of a given collection R of
natural quasiequations.

Lemma 37 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be an algebraic system, R ⊆ NQEq(F)
and σ⃗ ≈ τ⃗ → σ ≈ τ ∈ NQEq(F). Then

σ⃗ ≈ τ⃗ → σ ≈ τ ∈ N∗(R) iff for all Σ ∈ ∣Sign♭∣, χ⃗ ∈ SEN♭(Σ),
σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ C∗Σ(XR).

Proof: Suppose that σ⃗ ≈ τ⃗ → σ ≈ τ ∈ N∗(R) and let A ∈ AlgSys(F), such
that A ⊧∗ XR and A ⊧∗

Σ
σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗). The hypothesis A ⊧∗ XR implies

that A ⊧∗ R. Hence, the hypothesis σ⃗ ≈ τ⃗ → σ ≈ τ ∈ N∗(R) implies that
A ⊧∗ σ⃗ ≈ τ⃗ → σ ≈ τ . Thus, since A ⊧∗

Σ
σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗), we get that A ⊧∗

Σ

σΣ(χ⃗) ≈ τΣ(χ⃗). We now conclude that A ⊧∗Σ σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗).
This proves that σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ C∗Σ(XR).

Assume, conversely, that, for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈ SEN♭(Σ), σ⃗Σ(χ⃗) ≈
τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ C∗Σ(XR). Let A ∈ AlgSys(F), such that A ⊧∗

R. This implies that A ⊧∗ XR, whence, by the hypothesis, A ⊧∗Σ σ⃗Σ(χ⃗) ≈
τ⃗Σ(χ⃗) → σΣ(χ⃗) ≈ τΣ(χ⃗). Since this holds for all Σ ∈ ∣Sign♭∣ and all χ⃗ ∈
SEN♭(Σ), we get, by definition, A ⊧∗ σ⃗ ≈ τ⃗ → σ ≈ τ . Thus, by the definition
of N∗, σ⃗ ≈ τ⃗ → σ ≈ τ ∈ N∗(R). ∎
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Lemma 37, combined with Lemma 32, provides a way to check whether
σ⃗ ≈ τ⃗ → σ ≈ τ ∈ N∗(R). One has to check whether, for all Σ ∈ ∣Sign♭∣ and all
χ⃗ ∈ SEN♭(Σ),

σΣ(χ⃗) ≈ τΣ(χ⃗) ∈ ΘΣ(XR ∪ {σ⃗Σ(χ⃗) ≈ τ⃗Σ(χ⃗)}).

This is, admittedly, a rather inefficient and complicated procedure and seems
more likely to be useful for falsification, rather than for verification, purposes.

5 The Closures QSem and GSem

In this section we show how to obtain the semantic and the syntactic quasiva-
rieties and guasivarieties generated by a given class K of F-algebraic systems
by applying on K a series of class operators.

First, it is fairly easy to verify that all three operators C, C∗ and
⊲

IΠ,
introduced previously, are closure operators on classes of F-algebraic systems.

Lemma 38 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Then the
operators

C,C∗,
⊲

IΠ ∶ P(AlgSys(F)) → P(AlgSys(F))

are closure operators.

Proof: Inflationarity is easy to verify for all three operators. Suppose K ⊆
AlgSys(F) and A ∈ K. Then, for all Σ ∈ ∣Sign♭∣, AΣ ∶= A ∈ K K-certifies
A, whence K ⊆ C(K) ⊆ C∗(K). Moreover, {⟨I, ι⟩ ∶ A → A} is a subdirect

intersection, with A ∈ K, whence K ⊆
⊲

IΠ(K).
Monotonicity is equally straightforward. If K ⊆ L ⊆ AlgSys(F), then any

collection of K-certificates constitutes a collection of L-certificates and any
subdirect intersection with targets in K is one with targets in L.

Slightly more involved is the task of showing the idempotency of all three
operators. Let K ⊆ AlgSys(F).

First, suppose that A ∈ C(C(K)). Thus, for all Σ ∈ ∣Sign♭∣, there exists
AΣ ∈ C(K), such that EqΣ(A) = EqΣ(AΣ). Hence, for all Σ,Σ′ ∈ ∣Sign∣, there
exists AΣ,Σ′ ∈ K, such that EqΣ′(AΣ) = EqΣ′(AΣ,Σ′). Thus, for all Σ ∈ ∣Sign♭∣,
there exists AΣ,Σ ∈ K, such that EqΣ(A) = EqΣ(AΣ) = EqΣ(AΣ,Σ), which
shows that A ∈ C(K). Thus, C is idempotent.
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Suppose, next, that A ∈
⊲

IΠ(
⊲

IΠ(K)). Then, there exists a subdirect inter-

section {⟨F i, αi⟩ ∶ A → Ai ∶ i ∈ I}, with Ai ∈
⊲

IΠ(K), for all i ∈ I. Therefore, for
all i ∈ I, there exists a subdirect intersection {⟨F ij, αij⟩ ∶ Ai → Aij ∶ j ∈ Ji},
with Aij ∈ K, for all j ∈ Ji. Considering the collection

{⟨F ij, αij⟩ ○ ⟨F i, αi⟩ ∶ A → Aij ∶ i ∈ I, j ∈ Ji},

we have that Aij ∈ K, for all i ∈ I and all j ∈ Ji and, also Ker(A) =
⋂i∈I Ker(Ai) = ⋂i∈I ⋂j∈Ji Ker(Aij), i.e., that it constitutes a subdirect in-

tersection. This shows that A ∈
⊲

IΠ(K) and, hence,
⊲

IΠ is idempotent.
Perhaps the most involved case is the idempotency of C∗. So suppose

that A ∈ C∗(C∗(K)). Then, for all Σ ∈ ∣Sign♭∣, there exists {AΣ,i ∶ i ∈
IΣ} ⊆ C∗(K), such that ⋃i∈IΣ Eq

ω
Σ(AΣ,i) is directed and, moreover, KerΣ(A) =

⋃i∈IΣ EqΣ(AΣ,i). Thus, for all Σ,Σ′ ∈ ∣Sign♭∣ and all i ∈ IΣ, there exists

{AΣ,i,Σ′,j ∶ j ∈ JΣ,i

Σ′ } ⊆ K, such that ⋃j∈JΣ,i

Σ′

EqωΣ′(AΣ,i,Σ,j) is directed and,

moreover, KerΣ′(AΣ,i) = ⋃j∈JΣ,i

Σ′

EqΣ′(AΣ,i,Σ,j). Now notice that, for all Σ ∈

∣Sign♭∣, {AΣ,i,Σ,j ∶ i ∈ IΣ, j ∈ J
Σ,i

Σ
} ⊆ K, such that

EqΣ(A) = ⋃
i∈IΣ

EqΣ(A
Σ,i) = ⋃

i∈IΣ

⋃
j∈J

I,Σ

Σ

EqΣ(A
Σ,i,Σ,j).

Thus, it suffices to show that the collection

⋃
i∈IΣ

⋃
j∈J

Σ,i

Σ

EqωΣ(A
Σ,i,Σ,j)

is directed. Consider X ∈ EqωΣ(AΣ,i,Σ,j) and X ′ ∈ EqωΣ(AΣ,i′,Σ,j′). Then, as
EqΣ(AΣ,i) = ⋃j∈JΣ,i

Σ

EqΣ(AΣ,i,Σ,j) and EqΣ(AΣ,i′) = ⋃
j∈J

Σ,i′

Σ

EqΣ(AΣ,i′,Σ,j), we

get that X ∈ EqωΣ(AΣ,i) and X ′ ∈ EqωΣ(AΣ,i′). As ⋃i∈IΣ Eq
ω
Σ(AΣ,i) is directed,

there exists k ∈ IΣ and Y ∈ EqωΣ(AΣ,k), such that X,X ′ ⊆ Y . But then it
follows from the fact that EqΣ(AΣ,k) = ⋃j∈JΣ,k

Σ

EqωΣ(AΣ,k,Σ,j), the finiteness

of Y and the fact that the union is directed, that there exists ℓ ∈ JΣ,k

Σ , such
that Y ∈ EqωΣ(AΣ,k,Σ,ℓ). This establishes the directedness of the collection

⋃i∈IΣ⋃j∈JΣ,i

Σ

EqωΣ(AΣ,i,Σ,j).

We have now shown that the three class operators C, C∗ and
⊲

IΠ are infla-
tionary, monotone and idempotent, whence they constitute closure operators
on AlgSys(F). ∎
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It is not difficult to see that, for every class K of F-algebraic systems, we
have, besides the obvious inclusion C(K) ⊆ C∗(K), two additional inclusions

governing the mode of interaction of C and C∗ with
⊲

IΠ.

Lemma 39 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Then, for
all K ⊆ AlgSys(F), we have

⊲

IΠ(C(K)) ⊆ C(
⊲

IΠ(K)) and
⊲

IΠ(C∗(K)) ⊆ C∗(
⊲

IΠ(K)).

Proof: Let K be a class of F-algebraic systems and A ∈
⊲

IΠC(K). Then, there
exists a subdirect intersection

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

where, for all i ∈ I, Ai ∈ C(K). Thus, for all i ∈ I and for all Σ ∈ ∣Sign♭∣, there
exists Ai,Σ ∈ K, such that

EqΣ(A
i) = EqΣ(A

i,Σ). (1)

Fix Σ ∈ ∣Sign♭∣. Define AΣ ∶= F/⋂
i∈I

Eq(Ai,Σ). Then, since Ai,Σ ∈ K, for all

i ∈ I, we get, by Lemma 10, AΣ ∈
⊲

IΠ(K). So to conclude the proof, it suffices
to show that, for all Σ ∈ ∣Sign♭∣, EqΣ(A) = EqΣ(AΣ). Indeed, we have,

EqΣ(A) = ⋂i∈I EqΣ(Ai) ({⟨H i, γi⟩} subdirect intersetion)
= ⋂i∈I EqΣ(Ai,Σ) (by Equation (1))
= EqΣ(AΣ). (definition of AΣ)

We now conclude that A ∈ C
⊲

IΠ(K).

Suppose, next, that A ∈
⊲

IΠC∗(K). Then, there exists a subdirect inter-
section

⟨H i, γi⟩ ∶ A → Ai, i ∈ I,

where, for all i ∈ I, Ai ∈ C∗(K). Thus, for all i ∈ I and all Σ ∈ ∣Sign♭∣, there
exists {Ai,Σ,j ∶ j ∈ J i,Σ} ⊆ K, such that ⋃j∈Ji,Σ EqωΣ(Ai,Σ,j) is directed and,
moreover,

EqΣ(A
i) = ⋃

j∈Ji,Σ

EqΣ(A
i,Σ,j). (2)
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Now we consider, for all Σ ∈ ∣Sign♭∣, the following collection of F-algebraic
systems:

{F/⋂
i∈I

Eq(Ai,Σ,ji) ∶ ⟨ji ∶ i ∈ I⟩ ∈ ∏
i∈I

J i,Σ}.

Then, since Ai,Σ,ji ∈ K, for all i ∈ I and all j ∈ J i,Σ, we get, by Lemma 10,

F/⋂i∈I Eq(Ai,Σ,ji) ∈
⊲

IΠ(K), for all ⟨ji ∶ i ∈ I⟩ ∈∏i∈I J
i,Σ. Moreover, we have

⋃⟨ji⟩∈∏Ji,Σ EqΣ(F/⋂i∈I Eq(Ai,Σ,ji))
= ⋃⟨ji⟩∈∏Ji,Σ ⋂i∈I EqΣ(Ai,Σ,ji)
= ⋂i∈I ⋃ji∈Ji,Σ EqΣ(Ai,Σ,ji)
= ⋂i∈I EqΣ(Ai)
= EqΣ(A).

So to conclude the proof, it suffices to show that, for all Σ ∈ ∣Sign♭∣,

⋃{⋂
i∈I

EqωΣ(A
i,Σ,ji) ∶ ⟨ji ∶ i ∈ I⟩ ∈∏

i∈I

J i,Σ}

is directed. This is not difficult to see, since, if X ∈ ⋂i∈I Eq
ω
Σ(Ai,Σ,ji) and

X ′ ∈ ⋂i∈I Eq
ω
Σ(Ai,Σ,j

′

i), then, by the hypothesis that ⋃j∈Ji,Σ EqωΣ(Ai,Σ,j) is
directed for all i ∈ I, we get that, there exists ki ∈ J i,Σ, such that X,X ′ ⊆
Y ∈ EqωΣ(Ai,Σ,ki). Therefore, X,X ′ ⊆ Y ∈ ⋂i∈I Eq

ω
Σ(Ai,Σ,ki), where ⟨ki ∶ i ∈ I⟩ ∈

∏i∈I J
i,Σ. ∎

We now prove the main result of this section which expresses the closure

operators QSem and GSem in terms of the operators C, C∗ and
⊲

IΠ.

Proposition 40 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and
K a class of F-algebraic systems.

(a) QSem(K) = C∗
⊲

IΠ(K);

(b) GSem(K) = C
⊲

IΠ(K).

Proof: We start with Part (a). Since K ⊆ QSem(K) and, by Proposition 16,

GSem(K) is closed under C∗ and
⊲

IΠ, we get that C∗
⊲

IΠ(K) ⊆ QSem(K).
For the converse, we can either appeal directly to the construction pre-

sented in the proof of Proposition 16 (which shows thatQSem(K) ⊆ C∗(
⊲

IΠ(K)))

or, alternatively, notice that, by Lemma 38, K ⊆ C∗
⊲

IΠ(K), and observe that
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C∗
⊲

IΠ(K) is obviously closed under C∗ and, by Lemma 39, is also closed un-

der
⊲

IΠ. Hence, it forms, by Proposition 16, a semantic quasivariety, and,
therefore, by the minimality property underlying the definition of QSem,

QSem(K) ⊆ C∗
⊲

IΠ(K).
For Part (b), on the one hand, since K ⊆ GSem(K) and, by Proposition 15,

GSem(K) is closed under C and
⊲

IΠ, we get that C
⊲

IΠ(K) ⊆ GSem(K).
For the converse, we can either appeal directly to the construction pre-

sented in the proof of Proposition 15 (which shows that GSem(K) ⊆ C(
⊲

IΠ(K)))

or, alternatively, notice that, by Lemma 38, K ⊆ C
⊲

IΠ(K), and observe that

C
⊲

IΠ(K) is obviously closed under C and, by Lemma 39, is also closed un-

der
⊲

IΠ. Hence, it forms, by Proposition 15, a semantic guasivariety, and,

therefore, by the minimality of GSem, GSem(K) ⊆ C
⊲

IΠ(K). ∎

Proposition 30 allows obtaining similar characterization of the syntactic
quasi- and guasi-variety operators.

Proposition 41 Let F = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.

(a) A class K of F-algebraic systems is a syntactic quasivariety if and only

if it is quasi-natural and QSem(K) = C∗
⊲

IΠ(K);

(b) A class K of F-algebraic systems is a syntactic guasivariety if and only

if it is guasi-natural and GSem(K) = C
⊲

IΠ(K).

Proof: Directly by combining Propositions 30 and 40. ∎
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