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Abstract

Following work on abstracting the concept of an algebra to that of an algebraic
system and of an ordered algebra to that of an ordered algebraic system, the notion of
a first-order structure is abstracted to obtain structure systems. The algebraic part of
a structure system is an algebraic system rather than an algebra as is the case in the
ordinary first-order structures. This abstraction is accompanied by the introduction of
a suitably modified notion of a countable first-order language with the aim of developing
a first-order model theory of structure systems and, therefore, axiomatizing classes of
structure systems. After introducing some basic constructions on structure systems,
including the ultraproduct construction, an analog of ÃLoś’ Ultraproduct Theorem is
provided for structure systems.

1 Introduction

A very important part of the theory of abstract algebraic logic deals with a characterization
of certain classes of logical matrices and of reduced logical matrices that form the matrix
semantics of sentential logics. Results of this kind serve in characterizing classes of logics
based on closure properties of their matrix semantics. Theorem 3.15 of [19] summarizes the
main characterization results of this type and more details, including proofs and commentary
concerning original sources, are provided in Czelakowski’s comprehensive treatise [7].

A critical part in relating classes of logical matrices with classes of reduced logical
matrices is played by the Leibniz operator and the Leibniz congruences, first introduced by
Blok and Pigozzi [2], with the goal of providing an intrinsic characterization of algebraizable
logics. Reduction by the Leibniz congruence of a logical matrix is the operation that leads
from a class of logical matrices to the corresponding reduced class.
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Bloom’s work [3], relating sentential logic with universal Horn logic without equality,
shows that the theory of logical matrices also forms part of the theory of first-order languages
with a single unary relation, in which the unary relation is modeled via the filter of the logical
matrix. This relation was the basis that led a decade ago Raimon Elgueta [13, 14, 15, 16]
(and, in part, in joint work with Czelakowski [8] and with Jansana [17]) and Pillar Dellunde
[9, 10] (and, in part, jointly with Casanovas and Jansana [5] and with Jansana [11]) to
consider, in the context of abstract algebraic logic, first-order logic without equality and its
model theory.

In [13], Elgueta begins the study of several aspects of the model-theory of equality-free
first-order structures. In the first section, he introduces basic notation and constructions
for equality-free first order logic that carry over, almost without change, from the case of
first-order logic with equality. In Section 2, the notion of Leibniz equality is introduced for
arbitrary first-order structures without equality. It constitutes a weak form of equality that
replaces genuine equality in this equality-free context. The inspiration for its consideration
comes from its role in the theory of logical matrices, as established by Blok and Pigozzi
[2]. Based on Leibniz equality, Leibniz quotients of structures are introduced in Section
3. Finally, in Sections 4 and 5 Elgueta proves the main lemmas and the main theorems,
respectively, including characterization theorems for several classes (elementary, universal,
universal Horn, universal atomic) of structures defined in equality-free first-order logic.

In recent work by the author on the algebraization of π-institutions [25, 26, 27, 28], it
has become clear that the role played by algebras in the theory of sentential logics and of
their matrix and algebraic models is now played by algebraic systems. These are set-valued
functors, whose algebraic nature is given in the form of a category of natural transformations
on the functor. Further, if endowed with a partial ordering system, algebraic systems give
rise to ordered algebraic systems, properties of whose classes were recently explored in
[29, 30, 31, 32], inspired by analogous work of PaÃlasińska and Pigozzi [24] on the theory
of partially-ordered algebras. Partially-ordered algebras form a generalization of universal
algebras and they, in turn, are special cases of first-order structures. Thus, it is a natural
endeavor to seek to extend the theory of first-order structures to structures that would
generalize in the same direction partially ordered algebraic systems and to explore properties
of their equality-free first-order model theory, following the lead of the works of Elgueta and
of Dellunde.

In fact, inspired by the works of Elgueta and of Dellunde, the concept of a structure
system is introduced in this paper. Structure systems are generalizations of both first-
order structures and partially ordered algebraic systems. A first-order language is also
introduced, a slight variant of the ordinary notion, that allows us to syntactically study
structure systems. Several elementary results are presented on structure systems but the
most important is an analog of ÃLos’ Ultraproduct Theorem for structure systems. This
line of research is to be continued in forthcoming work by the author in which analogs of
many other properties, analogous to those studied by Elgueta and Dellunde, as pertaining
to classes of structure systems are studied.

For general concepts and notation from category theory the reader is referred to any
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of [1, 4, 23]. For an overview of the current state of affairs in abstract algebraic logic the
review article [19], the monograph [18] and the book [7] are all excellent references. To
follow recent developments on the categorical side of the subject the reader may refer to
the series of papers [25]-[28] (see also additional references therein). Finally, the original
reference for ÃLos’ Ultraproduct Theorem is the paper [21], whereas standard references on
model theory, all of which contain treatments of ÃLos’ Theorem and related results, are the
books by Chang and Keisler [6], Hodges [20], Marker [22] and Doets [12].

2 Basic Definitions

A clone category is a category F with objects all finite natural numbers that is isomorphic
to the category of natural transformations N on a given functor SEN : Sign → Set (see
[28] for the definition of a category of natural transformations on a set-valued functor) via
an isomorphism that preserves projections, and, as a consequence, also preserves objects.
Note that in previous papers on the subject, the symbol N was used to denote a category of
natural transformations on a functor. In the present work, boldfaced symbols will be used
to denote categories. So N in place of N will be preferred.

A (structure system) language is a triple L = 〈F, R, ρ〉, where F is a clone category,
R is a nonempty set of relation symbols and ρ : R → ω is an arity function.

An L-term is an arrow t ∈ F(n, 1), for some n ∈ ω. The collection of all L-terms
is denoted by TeL. An atomic L-formula is an expression of the form r(t0, . . . , tρ(r)−1),
where r ∈ R is a relation symbol of L and t0, . . . , tρ(r)−1 are L-terms. Finally, similarly with
the case of equality-free first-order logic, an L-formula is built recursively out of atomic
formulas as follows:

• An atomic L-formula is an L-formula.

• (α ∧ β), (¬α) are L-formulas, for all L-formulas α, β and

• (∀i)α is an L-formula, for every i ∈ ω and every L-formula α.

The collection of all L-formulas is denoted by FmL. Clearly, all other connectives, e.g.,
∨,→,↔, etc., may be defined in terms of these few basic connectives. We feel free to use
the most convenient collection of connectives when a structural induction on the complexity
of a formula is called for. Moreover, the usual metamathematical conventions in adding or
omitting parentheses for clarity will be followed throughout.

Before introducing the concept of an L-structure system, the definition of a relation
system on a functor will be presented.

Let SEN : Sign → Set be a functor. An n-ary relation system R on SEN is a family
R = {RΣ}Σ∈|Sign|, such that

• RΣ is an n-ary relation on SEN(Σ), for all Σ ∈ |Sign|, and

• SEN(f)n(RΣ1) ⊆ RΣ2 , for all Σ1, Σ2 ∈ |Sign| and all f ∈ Sign(Σ1, Σ2).
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Sometimes, we write SEN(f)(RΣ1) ⊆ RΣ2 instead of the more precise SEN(f)n(RΣ1) ⊆ RΣ2

to simplify notation.
An L-(structure) system A = 〈SENA, 〈NA, FA〉, RA〉 is a triple consisting of

• a functor SENA : SignA → Set,

• a category of natural transformations NA on SENA, such that F : F → NA is a
surjective functor that preserves all projections pkl : k → 1, k ∈ ω, l < k, and

• RA = {rA : r ∈ R} a family of relation systems on SENA indexed by R, such that rA

is n-ary if ρ(r) = n.

Let t be an L-term and A an L-system. Let also Σ ∈ |SignA| and ~φ ∈ SENA(Σ)ω. The
value of t at 〈Σ, ~φ〉 in the system A, denoted by tAΣ(~φ), is the value F (t)Σ(~φ ¹n), where
n is the domain of t:

tAΣ(~φ) := F (t)Σ(~φ ¹n).

Finally, the satisfaction relation of L-formulas by L-systems will be defined.
Let α be an L-formula, A an L-system, Σ ∈ |SignA| and ~φ ∈ SENA(Σ)ω. A satisfies α

at 〈Σ, ~φ〉, written A |=Σ α[~φ], is defined by recursion on the structure of the L-formula α
as follows:

• If α = r(t0, . . . , tn−1) is atomic, then

A |=Σ r(t0, . . . , tn−1)[~φ] iff 〈tA0Σ
(~φ), . . . , tAn−1Σ

(~φ)〉 ∈ rA
Σ.

• A |=Σ (α ∧ β)[~φ] iff A |=Σ α[~φ] and A |=Σ β[~φ].

• A |=Σ (¬α)[~φ] iff A 6|=Σ α[~φ] and, finally,

• A |=Σ (∀i)α[~φ] iff A |=Σ α[~ψ], for all ~ψ ∈ SENA(Σ)ω, such that φj = ψj , for all
j 6= i.

These conditions clearly define the semantics of all other connectives in the first-order model
theory of L-systems.

If A |=Σ α[~φ] holds for all Σ ∈ |SignA| and all ~φ ∈ SENA(Σ)ω, then we write A |= α.
The expressions A |= Γ and K |= α, for Γ a set of L-formulas and K a class of L-systems are
defined as usual. Finally, we denote by

Mod(Γ) = {A : A |= Γ} and Th(K) = {α : K |= α},

the collection of all L-systems that are models of Γ and the L-theory of the collection K
of L-systems, respectively.
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3 Subsystems, Filter Extensions, Homomorphisms and
Reduced Products

3.1 Subsystems and Filter extensions

Before proceeding to define subsystems of structure systems, we need to recall from Section
2 of [33] the definition of a subfunctor and that of an N -subfunctor.

Let SEN : Sign → Set be a functor. A functor SEN′ : Sign′ → Set is a subfunctor of
SEN, if

• Sign′ is a subcategory of Sign,

• SEN′(Σ′) ⊆ SEN(Σ′), for all Σ′ ∈ |Sign′|, and

• SEN′(f)(φ) = SEN(f)(φ), for all f ∈ Sign′(Σ, Σ′), φ ∈ SEN′(Σ).

If N is a category of natural transformations on SEN, such that, for all σ : SENn → SEN
in N , all Σ′ ∈ |Sign′| and all ~φ′ ∈ SEN′(Σ′)n, σΣ′(~φ′) ∈ SEN′(Σ′), then SEN′ will be said to
be an N -subfunctor of SEN. If SEN′ : Sign → Set is a subfunctor of SEN : Sign → Set,
with the same domain category, then SEN′ is said to be a simple subfunctor of SEN.

Returning to the main developments, suppose, now, that A = 〈SENA, 〈NA, FA〉, RA〉,
B = 〈SENB, 〈NB, FB〉, RB〉 are two L-systems. We say that A is a (structure) subsys-
tem of B, in symbols A ⊆ B, if

• SENA is an NB-subfunctor of SENB and

• rA
Σ = rB

Σ ∩ SENA(Σ)ρ(r), for all r ∈ R and all Σ ∈ |SignA|.
We call A a simple subsystem of B if it is a subsystem of B, such that SENA is a simple
subfunctor of SENB. In this case, we write A ⊆s B.

Similarly, B is a filter extension of A, written A v B, if

• SENA = SENB, NA = NB, FA = FB and

• rA ≤ rB, for all r ∈ R, where, as usual, ≤ denotes signature-wise inclusion.

Let, now, A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system. Suppose that X = {XΣ}Σ∈|Sign|
is an axiom system of SENA, i.e., such that

• XΣ ⊆ SENA(Σ), for all Σ ∈ |SignA|, and

• SENA(f)(XΣ1) ⊆ XΣ2 , for all Σ1, Σ2 ∈ |SignA|, f ∈ SignA(Σ1, Σ2).

Define the collection [X] = {[X]Σ}Σ∈|SignA| by letting, for all Σ ∈ |SignA|,

[X]Σ = {tAΣ(~φ) : t ∈ TeL and ~φ ∈ Xω
Σ}.

It is shown in the next proposition that, given an axiom system X, the collection [X] is also
an axiom system.
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Proposition 1 Suppose that A = 〈SENA, 〈NA, FA〉, RA〉 is an L-system. If X is an axiom
system of SENA, then [X] is also an axiom system of SENA.

Proof:
It is clear, by definition, that [X]Σ ⊆ SENA(Σ), for all Σ ∈ |SignA|. So it suffices to show

that, for all Σ1,Σ2 ∈ |SignA|, f ∈ SignA(Σ1, Σ2), we have that SENA(f)([X]Σ1) ⊆ [X]Σ2 .
In fact, if φ ∈ [X]Σ1 , then, there exist t ∈ TeL, ~φ ∈ SENA(Σ1)ω, such that φ = tAΣ1

(~φ),
whence

SENA(f)(φ) = SENA(f)(tAΣ1
(~φ))

= SENA(f)(FA(t)Σ1(~φ ¹n))
= FA(t)Σ2(SENA(f)(~φ ¹n))
= FA(t)Σ2(SENA(f)(~φ) ¹n),

whence, since SENA(f)(~φ) ∈ Xω
Σ2

, we get that SENA(f)(φ) ∈ [X]Σ2 , as was to be shown. ¥

Now, given an axiom system X = {XΣ}Σ∈|SignA| on SENA, as above, by A ¹ X is
denoted the subsystem of A generated by X. This has

• the same signature category SignA as A,

• its sentence functor maps Σ ∈ |SignA| to the set [X]Σ ⊆ SENA(Σ),

• it has the same pair 〈NA, FA〉 as A and

• rA¹X
Σ = rA

Σ ∩ [X]ρ(r)
Σ .

It is not difficult to verify that A ¹ X, as defined above, is indeed a subsystem of A and
that, as a consequence, this definition makes sense.

Given L-systems A and B, A is an elementary subsystem of B, in symbols A ⊆e B,
iff A ⊆ B and for all L-formulas α, all Σ ∈ |SignA|, and all ~φ ∈ SENA(Σ)ω,

A |=Σ α[~φ] iff B |=Σ α[~φ].

Finally, A and B are elementarily equivalent, denoted A ≡ B, iff, for all L-sentences
(L-formulas without any free variables) α,

A |= α iff B |= α.

It is clear that, if A is a simple elementary subsystem of B, written A ⊆s
e B, then A ≡ B.

3.2 Homomorphisms

Suppose that A = 〈SENA, 〈NA, FA〉, RA〉, B = 〈SENB, 〈NB, FB〉, RB〉 are two L-structure
systems. An (NA,NB)-epimorphic translation 〈F, α〉 : SENA →se SENB is said to be an
L-morphism 〈F, α〉 : A → B if



CAAL: Structure Systems and ÃLoś’ Theorem 7

• the following triangle commutes:

NA NB

F

FA

¡
¡

¡
¡ª

FB

@
@

@
@R

(1)

where the dashed line represents the two-way correspondence established by the (NA,
NB)-epimorphic property, and

• for all r ∈ R, with ρ(r) = n, all Σ ∈ |SignA| and all ~φ ∈ SENA(Σ)n,

~φ ∈ rA
Σ implies αΣ(~φ) ∈ rB

F (Σ).

If 〈F, α〉 is injective or surjective, then we write 〈F, α〉 : A ½ B and 〈F, α〉 : A ³ B,
respectively. Finally, 〈F, α〉 : A ∼= B is an isomorphism if it is bijective and its inverse
mapping is also an L-morphism.

In the following lemma, we establish a property that will prove very useful in the sequel.
It gives the analog of the usual universal algebraic homomorphism property in the context
of L-structures.

Lemma 2 Let A = 〈SENA, 〈NA, FA〉, RA〉,B = 〈SENB, 〈NB, FB〉, RB〉 be two L-systems
and 〈F, α〉 : A → B an L-morphism. Then, for every t ∈ TeL, Σ ∈ |SignA|, ~φ ∈ SENA(Σ)ω,

αΣ(tAΣ(~φ)) = tBF (Σ)(αΣ(~φ)).

Proof:
Let t ∈ TeL, Σ ∈ |SignA|, ~φ ∈ SENA(Σ)ω. Then

αΣ(tAΣ(~φ)) = αΣ(FA(t)Σ(~φ ¹n)) (by definition)
= FB(t)F (Σ)(αΣ(~φ ¹n)) (by the commutativity of Diagram (1)

and the (NA,NB)-epimorphic property)
= tBF (Σ)(αΣ(~φ)) (again by definition).

¥
An L-morphism 〈F, α〉 : A → B is said to be a strong L-morphism, denoted by

〈F, α〉 : A →s B, if, for all r ∈ R, with ρ(r) = n, all Σ ∈ |SignA| and all ~φ ∈ SENA(Σ)n,

~φ ∈ rA
Σ if and only if αΣ(~φ) ∈ rB

F (Σ).

L-morphisms correspond to semi-interpretations, whereas strong L-morphisms correspond
to interpretations in the framework of categorical abstract algebraic logic.

A surjective strong L-morphism is called a reductive L-morphism. If 〈F, α〉 : A ³s B

is a reductive L-morphism, then B is said to be a reduction of A and A an expansion of
B, written B 4 A or A < B.
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Given a singleton translation 〈F, α〉 : SEN → SEN′ and r′ an n-ary relation system on
SEN′, recall the standard convention of using the notation α−1(r′) = {α−1

Σ (r′F (Σ))}Σ∈|Sign|,
for the n-ary relation system on SEN, generated by pulling back signature-wise the relation
system r′. This notation will be used in the next lemma, which forms an analog for L-
systems of Lemma 1.1 of [13].

Lemma 3 Suppose that 〈F, α〉 : SENA →se SENB is an (NA,NB)-epimorphic translation,
such that triangle (1) commutes. Then

1. 〈F, α〉 : A → B if and only if rA ≤ α−1(rB), for all r ∈ R.

2. 〈F, α〉 : A →s B if and only if rA = α−1(rB), for all r ∈ R.

3. 〈F, α〉 : A ³s B implies rA = α−1(rB) and αΣ(rA
Σ) = rB

F (Σ), for all r ∈ R and all

Σ ∈ |SignA|.

Proof: All three statements are easy consequences of the definitions involved. ¥

Corollary 4 1. A bijective strong L-morphism 〈F, α〉 : A → B is an isomorphism.

2. If R contains the equality symbol, then reductive L-morphisms coincide with isomor-
phisms.

Proof:
The first statement is obvious. For the second, note that reductive L-morphisms are

surjective and strong and, moreover, if the language contains equality, then they are also
injective. ¥

Let A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉 be L-systems and
suppose that 〈F, α〉 : A → B is an L-morphism.

Define the triple α−1(B) = 〈SENA, 〈NA, FA〉, Rα−1(B)〉 by letting, for all r ∈ R, with
ρ(r) = n, and all Σ ∈ |SignA|, r

α−1(B)
Σ ⊆ SENA(Σ)n be given by

r
α−1(B)
Σ = α−1

Σ (rB
F (Σ)).

Then, the following lemma, forming an analog of Lemma 1.2 of [13], asserts that, the
restriction of the L-morphism 〈F, α〉 : A → B to α−1(B) is a strong L-morphism.

Lemma 5 Let A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉 be L-systems
and 〈F, α〉 : A → B an L-morphism.

1. 〈F, α〉 ¹α−1(B): α−1(B) →s B is a strong L-morphism.

2. If 〈F, α〉 is surjective, then 〈F, α〉 ¹α−1(B): α−1(B) ³s B is a reductive L-morphism.

Proof:
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1. The proof of this statement follows directly by the definition of α−1(B).

2. Just combine the statement of Part 1 with the hypothesis of Part 2.

¥
Let A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉 be L-systems and

suppose that 〈F, α〉 : A → B is an L-morphism. Assume that C = 〈SignC, 〈NC, FC〉, RC〉 is
a subsystem of A and that D = 〈SignD, 〈ND, FD〉, RD〉 is a subsystem of B.

Define, first, the triple α−1(D) = 〈SENα−1(D), 〈Nα−1(D), Fα−1(D)〉, Rα−1(D)〉 by setting:

• SENα−1(D) : F−1(SignD) → Set be given by SENα−1(D)(Σ) = α−1
Σ (SEND(F (Σ))), for

all Σ ∈ |F−1(SignD)|, and, SENα−1(D)(f) = SENA(f), for all f ∈ F−1(SignD)(Σ,Σ′),

• for all n-ary σ in F, Fα−1(D)(σ) is the restriction of FA(σ) to α−1
Σ (SEND(F (Σ)))n,

and

• for all r ∈ R, with ρ(r) = n, and all Σ ∈ |Signα−1(D)|, r
α−1(D)
Σ ⊆ SENα−1(D)(Σ)n, is

given by
r
α−1(D)
Σ = α−1

Σ (rD
F (Σ)).

Now, if F : SignA → SignB is injective and F (SignC) is a subcategory of SignB, define
the triple α(C) = 〈SENα(C), 〈Nα(C), Fα(C)〉, Rα(C)〉 by setting:

• SENα(C) : F (SignC) → Set be given by SENα(C)(F (Σ)) = αΣ(SENC(Σ)), for all
Σ ∈ |SignC|, and, given Σ1, Σ2 ∈ |SignC|, f ∈ SignC(Σ1,Σ2), SENα(C)(F (f)) =
SENB(F (f)),

• for all n-ary σ in F, Fα(C)(σ) is the restriction of FB(σ) to αΣ(SENC(Σ))n and

• for all r ∈ R, with ρ(r) = n, and all F (Σ) ∈ |Signα(C)|, r
α(C)
F (Σ) ⊆ SENα(C)(F (Σ))n, is

given by
r
α(C)
F (Σ) = αΣ(rC

Σ).

It is now shown that if 〈F, α〉 : A →s B is a strong L-morphism, then, for all D ⊆ B,
we have that α−1(D) ⊆ A and that, if C ⊆ A, then α(C) ⊆ B, when α(C) is defined.

Lemma 6 Let A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉 be L-systems
and 〈F, α〉 : A →s B a strong L-morphism.

1. If D ⊆ B, then α−1(D) ⊆ A.

2. If C ⊆ A, F : SignA → SignB is injective and F (SignC) is a subcategory of SignB,
then α(C) ⊆ B.

Proof:
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1. First, to see that SENα−1(D) is well-defined at the morphism level, suppose that
Σ1, Σ2 ∈ |F−1(SignD)|, f ∈ F−1(SignD)(Σ1, Σ2) and φ ∈ α−1

Σ1
(SEND(F (Σ1))). Then

we have

αΣ2(SENα−1(D)(f)(φ)) = αΣ2(SENA(f)(φ))
= SENB(F (f))(αΣ1(φ))
∈ SENB(F (f))(αΣ1(α

−1
Σ1

(SEND(F (Σ1)))))
⊆ SENB(F (f))(SEND(F (Σ1)))
⊆ SEND(F (Σ2)).

Thus SENα−1(D)(f)(SENα−1(D)(Σ1)) ⊆ SENα−1(D)(Σ2) and, hence, SENα−1(D) is well-
defined on morphisms.

Next, to see that NA restricts to a category of natural transformations on SENα−1(D),
suppose that t ∈ TeL, Σ ∈ |F−1(SignD)| and ~φ ∈ α−1

Σ (SEND(F (Σ)))ω. Then

αΣ(tα
−1(D)

Σ (~φ)) = αΣ(tAΣ(~φ))
= tBF (Σ)(αΣ(~φ))
∈ SEND(F (Σ)) (by the NB-subfunctor property),

whence t
α−1(D)
Σ (~φ) ∈ α−1

Σ (SEND(F (Σ))). Finally, the fact that 〈F, α〉 strong implies
that α−1(D) is an L-subsystem of A is fairly obvious.

2. We follow a similar order as in Part 1. To see that SENα(C) is well-defined at the
morphism level, suppose that Σ1,Σ2 ∈ |SignC|, f ∈ SignC(Σ1, Σ2) and φ ∈ SENC(Σ1).
Then we have

SENα(C)(F (f))(αΣ1(φ)) = SENB(F (f))(αΣ1(φ))
= αΣ2(SENA(f)(φ))
= αΣ2(SENC(f)(φ))
∈ αΣ2(SENC(Σ2))
= SENα(C)(F (Σ2)).

Thus SENα(C)(f) is well-defined on morphisms.

Next, to see that NB restricts to a category of natural transformations on SENα(C),
suppose that t ∈ TeL, Σ ∈ |SignC| and ~φ ∈ SENC(Σ)ω. Then

t
α(C)
F (Σ)(αΣ(~φ)) = tBF (Σ)(αΣ(~φ))

= αΣ(tAΣ(~φ))
= αΣ(tCΣ(~φ))
∈ αΣ(SENC(Σ))
= SENα(C)(F (Σ)),

whence tα(C) is also well-defined. The fact that 〈F, α〉 strong implies that α(C) is an
L-subsystem of B is also obvious.



CAAL: Structure Systems and ÃLoś’ Theorem 11

¥
An L-morphism 〈F, α〉 : A → B is said to be elementary if, for every L-formula γ,

every Σ ∈ |SignA| and all ~φ ∈ SENA(Σ)ω,

A |=Σ γ[~φ] iff B |=F (Σ) γ[αΣ(~φ)].

In that case, we write 〈F, α〉 : A →e B. It is clear from the definitions involved that, if
〈F, α〉 : A ³e B, then A ≡ B.

Proposition 7 Every reductive L-morphism is elementary.

Proof:
Suppose that A = 〈SENA, 〈NA, FA〉, RA〉, B = 〈SENB, 〈NB, FB〉, RB〉 are L-structures

and 〈F, α〉 : A ³s B is a reductive L-morphism. It is shown that, for every L-formula γ,
for all Σ ∈ |SignA|, ~φ ∈ SENA(Σ)ω, we have that

A |=Σ γ[~φ] iff B |=F (Σ) γ[αΣ(~φ)].

The proof goes by induction on the complexity of γ.
If γ = r(t0, . . . , tn−1) is atomic, then

A |=Σ γ[~φ] iff 〈tA0Σ
(~φ), . . . , tAn−1Σ

(~φ)〉 ∈ rA
Σ (by definition)

iff 〈αΣ(tA0Σ
(~φ)), . . . , αΣ(tAn−1Σ

(~φ))〉 ∈ rB
F (Σ) (since 〈F, α〉 : A ³s B)

iff 〈tB0F (Σ)
(αΣ(~φ)), . . . , tBn−1F (Σ)

(αΣ(~φ))〉 ∈ rB
F (Σ) (by Lemma 2)

iff B |=F (Σ) γ[αΣ(~φ)] (by definition).

If γ = (γ1 ∧ γ2), then

A |=Σ γ[~φ] iff A |=Σ γ1[~φ] and A |=Σ γ2[~φ] (by definition)
iff B |=F (Σ) γ1[αΣ(~φ)] and B |=F (Σ) γ2[αΣ(~φ)]

(by the induction hypothesis)
iff B |=F (Σ) γ[αΣ(~φ)] (by definition).

The case of negation may be handled similarly. Suppose, now, that γ = (∃i)γ′. Then

A |=Σ (∃i)γ′[~φ] iff (∃~ψ : ψj = φj , j 6= i)(A |=Σ γ′[~ψ]) (by definition)
iff (∃~ψ : ψj = φj , j 6= i)(B |=F (Σ) γ′[αΣ(~ψ)])

(by the induction hypothesis)
iff B |=F (Σ) (∃i)γ′[α(~φ)] (by definition and

the surjectivity of 〈F, α〉).

¥
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3.3 Reduced Products

Recall from Section 3 of [33] the definitions of a product functor, category of natural trans-
formations on the product functor and product translation.

Suppose that Ai = 〈SENi, 〈Ni, F i〉, Ri〉, i ∈ I, is a family of L-systems. The direct
product of the Ai is defined by

∏

i∈I

Ai = 〈
∏

i∈I

SENi, 〈
∏

i∈I

Ni,
∏

i∈I

F i〉,
∏

i∈I

Ri〉,

where
∏

i∈I Ri = {∏i∈I ri : r ∈ R} is defined, for every r ∈ R, with ρ(r) = n, by setting,
for all Σi ∈ |Signi|, φj

i ∈ SENi(Σi), i ∈ I, j = 0, . . . , n− 1,

〈~φ0, . . . , ~φn−1〉 ∈
∏

i∈I

ri∏
i∈I Σi

iff 〈φ0
i , . . . , φ

n−1
i 〉 ∈ ri

Σi
, for all i ∈ I.

In case I = ∅, then the trivial system is obtained by taking the product
∏ ∅.

Suppose now, that, in addition to the structure systems Ai, i ∈ I, we are given a filter
F on I. Define the equivalence system ≡F= {≡F∏

i∈I Σi
}∏

i∈I Σi∈|
∏

i∈I Signi| on
∏

i∈I SENi by

setting, for all Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

~φ ≡F∏
i∈I Σi

~ψ iff {i ∈ I : φi = ψi} ∈ F .

This is also a
∏

i∈I Ni-congruence system on
∏

i∈I SENi. We can thus define the reduced
product functor

∏F
i∈I SENi =

∏
i∈I SENi/≡F , with category of natural transformations∏F

i∈I Ni =
∏

i∈I Ni/≡F via
∏F

i∈I F i : F → ∏
i∈I Ni/≡F , which is defined by composing

the product functor
∏

i∈I F i : F → ∏
i∈I Ni with the quotient functor PF :

∏
i∈I Ni →∏

i∈I Ni/≡F .

F
∏

i∈I Ni-
∏

i∈I F i ∏
i∈I Ni/≡F-PF

We may also define the relation system
∏F

i∈I Ri on
∏F

i∈I SENi by setting, for all r ∈ R,
with ρ(r) = n, and all Σi ∈ |Signi|, φj

i ∈ SENi(Σi), i ∈ I, j = 0, . . . , n− 1,

〈~φ0/≡F∏
i∈I Σi

, . . . , ~φn−1/≡F∏
i∈I Σi

〉 ∈
F∏

i∈I

ri∏
i∈I Σi

iff {i ∈ I : 〈φ0
i , . . . , φ

n−1
i 〉 ∈ ri

Σi
} ∈ F .

It may be shown that this definition is independent of the choice of representatives and,
thus, well-defines a relation system

∏F
i∈I ri, for all r ∈ R, on

∏F
i∈I SENi.

In fact, note that, if ~ψ0, . . . , ~ψn−1 ∈ ∏
i∈I SENi(Σi) are such that ~φj ≡F∏

i∈I Σi

~ψj , for all

j = 0, . . . , n− 1, then we have that {i ∈ I : φj
i = ψj

i } ∈ F , for all j = 0, . . . , n− 1, whence⋂n−1
j=0 {i ∈ I : φj

i = ψj
i } ∈ F . Therefore, if {i ∈ I : 〈φ0

i , . . . , φ
n−1
i 〉 ∈ ri

Σi
} ∈ F , then

{i ∈ I : 〈ψ0
i , . . . , ψ

n−1
i 〉 ∈ ri

Σi
} ⊇ {i ∈ I : 〈φ0

i , . . . , φ
n−1
i 〉 ∈ ri

Σi
} ∩

n−1⋂

j=0

{i ∈ I : φj
i = ψj

i } ∈ F
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and, hence, {i ∈ I : 〈ψ0
i , . . . , ψ

n−1
i 〉 ∈ ri

Σi
} ∈ F . By symmetry, we get that

{i ∈ I : 〈ψ0
i , . . . , ψ

n−1
i 〉 ∈ ri

Σi
} ∈ F iff {i ∈ I : 〈φ0

i , . . . , φ
n−1
i 〉 ∈ ri

Σi
} ∈ F ,

i.e., that

〈~φ0/≡F∏
i∈I Σi

, . . . , ~φn−1/≡F∏
i∈I Σi

〉 ∈ ∏F
i∈I ri∏

i∈I Σi
iff

〈~ψ0/≡F∏
i∈I Σi

, . . . , ~ψn−1/≡F∏
i∈I Σi

〉 ∈ ∏F
i∈I ri∏

i∈I Σi
.

Now, let
F∏

i∈I

Ai = 〈
F∏

i∈I

SENi, 〈
F∏

i∈I

Ni,
F∏

i∈I

F i〉,
F∏

i∈I

Ri〉

be the reduced product of the structure systems Ai, i ∈ I, by the filter F on I. As is
customary, the reduced product by an ultrafilter is termed an ultraproduct.

4 ÃLoś’ Ultraproduct Theorem for L-Systems

Recall the definition of an arbitrary first-order Horn formula. Theorem 8 is an extension of a
classical theorem from first-order model theory to the model theory of L-systems. It states,
roughly speaking, that, for a given Horn formula, a given indexed collection of L-systems
and a given proper filter on the index set, if the set of all indices for which the formula is
satisfied at a given tuple of elements in the corresponding structure belongs to the filter,
then the formula is also satisfied by the equivalence class of the product tuple in the filtered
product of the indexed family of the L-systems by that filter.

Theorem 8 Suppose that α is an arbitrary Horn L-formula and let Ai = 〈SENi, 〈Ni, F i〉,
Ri〉, i ∈ I, be a family of L-systems, with I 6= ∅. Let F be a proper filter on I. If Σi ∈
|Signi|, φj

i ∈ SENi(Σi), i ∈ I, j ∈ ω, then

{i ∈ I : Ai |=Σi α[~φi]} ∈ F implies
F∏

i∈I

Ai |=∏
i∈I Σi

α[~φ/≡F∏
i∈I Σi

].

The above implication becomes an equivalence in case α is an atomic L-formula.

Proof:
Suppose, first, that α =

∧n−1
j=0 rj(t

j
0, . . . , t

j
kj−1) → ⊥, where rj(t

j
0, . . . , t

j
kj−1), j < n, are

atomic. Then we have

{i ∈ I : Ai |=Σi

∧n−1
j=0 rj(t

j
0, . . . , t

j
kj−1) → ⊥[~φi]} ∈ F

iff {i ∈ I : Ai |=Σi

∨n−1
j=0 ¬rj(t

j
0, . . . , t

j
kj−1)[~φi]} ∈ F

iff
⋃n−1

j=0 {i ∈ I : Ai |=Σi ¬rj(t
j
0, . . . , t

j
kj−1)[~φi]} ∈ F

iff
⋃n−1

j=0 {i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]}c ∈ F

iff (
⋂n−1

j=0 {i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]})c ∈ F

implies
⋂n−1

j=0 {i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]} 6∈ F
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iff (∃j < n)({i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]} 6∈ F)

iff (∃j < n)(
∏F

i∈I Ai 6|=∏
i∈I Σi

rj(t
j
0, . . . , t

j
kj−1)[~φ/≡F∏

i∈I Σi
])

iff (∃j < n)(
∏F

i∈I Ai |=∏
i∈I Σi

¬rj(t
j
0, . . . , t

j
kj−1)[~φ/≡F∏

i∈I Σi
])

iff
∏F

i∈I Ai |=∏
i∈I Σi

∨n−1
j=0 ¬rj(t

j
0, . . . , t

j
kj−1)[~φ/≡F∏

i∈I Σi
]

iff
∏F

i∈I Ai |=∏
i∈I Σi

∧n−1
j=0 rj(t

j
0, . . . , t

j
kj−1) → ⊥[~φ/≡F∏

i∈I Σi
].

Suppose, next that α =
∧n−1

j=0 rj(t
j
0, . . . , t

j
kj−1) → rn(tn0 , . . . , tnkn−1) and that

{i ∈ I : Ai |=Σi

n−1∧

j=0

rj(t
j
0, . . . , t

j
kj−1) → rn(tn0 , . . . , tnkn−1)[~φi]} ∈ F . (2)

Now, if
∏F

i∈I Ai |=∏
i∈I Σi

rj(t
j
0, . . . , t

j
kj−1)[~φ/≡F∏

i∈I Σi
], for all j = 0, . . . , n− 1, we get that,

for all j = 0, . . . , n− 1, {i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]} ∈ F . Therefore

n−1⋂

j=0

{i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]} ∈ F . (3)

But note that

{i ∈ I : Ai |=Σi rn(tn0 , . . . , tnkn−1)[~φi]} ⊇
⋂n−1

j=0 {i ∈ I : Ai |=Σi rj(t
j
0, . . . , t

j
kj−1)[~φi]}∩

{i ∈ I : Ai |=Σi

∧n−1
j=0 rj(t

j
0, . . . , t

j
kj−1) → rn(tn0 , . . . , tnkn−1)[~φi]},

whence, by Conditions (2) and (3), we obtain that {i ∈ I : Ai |=Σi rn(tn0 , . . . , tnkn−1)[~φi]} ∈
F , giving that

∏F
i∈I Ai |=∏

i∈I Σi

∧n−1
j=0 rj(t

j
0, . . . , t

j
kj−1) → rn(tn0 , . . . , tnkn−1)[~φ/≡F∏

i∈I Σi
].

To finish the proof, it suffices now to show that, if the conclusion holds for the formulas
α, α1 and α2, then it holds also for (α1 ∧ α2) and (∃k)α and (∀k)α.

Suppose, first, that {i ∈ I : Ai |=Σi (α1 ∧ α2)[~φi]} ∈ F . Then
⋂2

j=1{i ∈ I : Ai |=Σi

αj [~φi]} ∈ F . This immediately yields that {i ∈ I : Ai |=Σi αj [~φi]} ∈ F , for j = 1, 2, whence,
by the induction hypothesis,

∏
i∈I Ai |=∏

i∈I Σi
αj [~φ/≡F∏

i∈I Σi
], for j = 1, 2, which, finally,

gives that
∏

i∈I Ai |=∏
i∈I Σi

(α1 ∧ α2)[~φ/≡F∏
i∈I Σi

].
For the existential quantification we have

{i ∈ I : Ai |=Σi (∃k)α[~φi]} ∈ F
iff {i ∈ I : Ai |=Σi α[~ψi], for some ~ψi : ψj

i = φj
i , j 6= k} ∈ F

implies {i ∈ I : Ai |=Σi α[~ψi]} ∈ F ,

for some ~ψ ∈ (
∏

i∈I SENi(Σi))ω : ~ψj ≡F∏
i∈I Σi

~φj , j 6= k,

iff
∏F

i∈I Ai |=∏
i∈I Σi

α[~ψ/≡F∏
i∈I Σi

],

for some ~ψ ∈ (
∏

i∈I SENi(Σi))ω : ~ψj ≡F∏
i∈I Σi

~φj , j 6= k,

iff
∏F

i∈I Ai |=∏
i∈I Σi

(∃k)α[~φ/≡F∏
i∈I Σi

].



CAAL: Structure Systems and ÃLoś’ Theorem 15

A similar reasoning works also for the universal quantification. ¥
Finally, we present the main theorem of the paper, an analog of ÃLos’ Ultraproduct

Theorem for L-systems. The original reference for ÃLos’ Ultraproduct Theorem is ÃLos’ 1955
paper [21]. See also Theorem 4.1.9 of [6] and Theorem 9.5.1 of [20].

Theorem 9 (ÃLoś’ Ultraproduct Theorem) Let I 6= ∅ be a set, Ai = 〈SENi, 〈Ni, F i〉,
Ri〉, i ∈ I, a collection of L-systems, U an ultrafilter over I and α an arbitrary L-formula.
If Σi ∈ |Signi|, φj

i ∈ SENi(Σi), i ∈ I, j ∈ ω, then

{i ∈ I : Ai |=Σi α[~φi]} ∈ U iff
U∏

i∈I

Ai |=∏
i∈I Σi

α[~φ/≡U∏
i∈I Σi

].

Proof:
Suppose, first, that α = r(t0, . . . , tn−1). Then we have

∏U
i∈I Ai |=∏

i∈I Σi
r(t0, . . . , tn−1)[~φ/≡U∏

i∈I Σi
]

iff 〈t
∏U

i∈I Ai

0∏
i∈I Σi

(~φ/≡U∏
i∈I Σi

), . . . , t
∏U

i∈I Ai

n−1∏
i∈I Σi

(~φ/≡U∏
i∈I Σi

)〉 ∈ r
∏U

i∈I Ai

∏
i∈I Σi

iff {i ∈ I : 〈ti0Σi
(~φi), . . . , tin−1Σi

(~φi)〉 ∈ ri
Σi
} ∈ U

iff {i ∈ I : Ai |=Σi r(t0, . . . , tn−1)[~φi]} ∈ U .

Next, if α = (α1 ∧ α2), we have
∏U

i∈I Ai |=∏
i∈I Σi

(α1 ∧ α2)[~φ/≡U∏
i∈I Σi

]

iff
∏U

i∈I Ai |=∏
i∈I Σi

α1[~φ/≡U∏
i∈I Σi

] and
∏U

i∈I Ai |=∏
i∈I Σi

α2[~φ/≡U∏
i∈I Σi

]

iff {i ∈ I : Ai |=Σi α1[~φi]} ∈ U and {i ∈ I : Ai |=Σi α2[~φi]} ∈ U
iff {i ∈ I : Ai |=Σi α1[~φi]} ∩ {i ∈ I : Ai |=Σi α2[~φi]} ∈ U
iff {i ∈ I : Ai |=Σi (α1 ∧ α2)[~φi]} ∈ U .

Similarly, if α = ¬α′, then ,we have
∏U

i∈I Ai |=∏
i∈I Σi

¬α′[~φ/≡U∏
i∈I Σi

] iff
∏U

i∈I Ai 6|=∏
i∈I Σi

α′[~φ/≡U∏
i∈I Σi

]

iff {i ∈ I : Ai |=Σi α′[~φi]} 6∈ U
iff {i ∈ I : Ai |=Σi α′[~φi]}c ∈ U
iff {i ∈ I : Ai 6|=Σi α′[~φi]} ∈ U
iff {i ∈ I : Ai |=Σi ¬α′[~φi]} ∈ U .

Finally, if α = (∃k)α′, then ,we have
∏U

i∈I Ai |=∏
i∈I Σi

(∃k)α′[~φ/≡U∏
i∈I Σi

]

iff
∏U

i∈I Ai |=∏
i∈I Σi

α′[~ψ/≡U∏
i∈I Σi

],

for some ~ψ ∈ (
∏

i∈I SENi(Σi))ω, such that ~ψj ≡U∏
i∈I Σi

~φj , j 6= k,

iff {i ∈ I : Ai |=Σi α′[~ψi]} ∈ U
for some ~ψ ∈ (

∏
i∈I SENi(Σi))ω, such that ~ψj ≡U∏

i∈I Σi

~φj , j 6= k,
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iff {i ∈ I : Ai |=Σi α′[~ψi], some ~ψi such that ψj
i = φj

i , j 6= k} ∈ U
iff {i ∈ I : Ai |=Σi (∃k)α′[~φi]} ∈ U .

¥
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[21] ÃLoś, J., An Algebraic Treatment of the Methodology of Elementary Deductive Systems,
Studia Logica, Vol. 2 (1955), pp. 151-212

[22] Marker, D., Model Theory: An Introduction, Springer-Verlag, New York, 2002

[23] Mac Lane, S., Categories for the Working Mathematician, Springer-Verlag, 1971.

[24] Pigozzi, D., Partially Ordered Varieties and QuasiVarieties, Preprint available at
http://www.math.iastate.edu/dpigozzi/

[25] Voutsadakis, G., Categorical Abstract Algebraic Logic: Tarski Congruence Systems,
Logical Morphisms and Logical Quotients, Submitted to the Annals of Pure and Applied
Logic, Preprint available at http://pigozzi.lssu.edu/WWW/research/papers.html

[26] Voutsadakis, G., Categorical Abstract Algebraic Logic: Models of π-Institutions, To
appear in the Notre Dame Journal of Formal Logic, Preprint available at
http://pigozzi.lssu.edu/WWW/research/papers.html

[27] Voutsadakis, G., Categorical Abstract Algebraic Logic: (I, N)-Algebraic Systems, Ap-
plied Categorical Structures, Vol. 13, No. 3 (2005), pp. 265-280

[28] Voutsadakis, G., Categorical Abstract Algebraic Logic: Prealgebraicity and Protoalge-
braicity, To appear in Studia Logica, Preprint available at
http://pigozzi.lssu.edu/WWW/research/papers.html



CAAL: Structure Systems and ÃLoś’ Theorem 18
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