
Categorical Abstract Algebraic Logic:

Multi-Valued Referential Matrix System Semantics

George Voutsadakis∗

July 30, 2017

Abstract

Following work of Malinowski, the notion of a multi-valued referen-
tial gmatrix system is introduced to provide a semantics for logics for-
malized as π-institutions. A π-institution is said to be m-referential if
it possesses an m-valued referential semantics. We show that it suffices
to consider only semantics consisting of a single m-valued referential
gmatrix system. Moreover, we identify conditions that characterize
m-referential π-institutions.

1 Introduction

Consider a language type L = ⟨Λ, ρ⟩, where Λ is a set of logical con-
nectives/operation symbols and ρ ∶ Λ → ω is a function assigning to each
operation symbol its arity. Let V be a countable set of variables. De-
note by FmL(V ) = ⟨FmL(V ),L⟩ the free L-algebra generated by V . A
logic S = ⟨L,⊢S⟩ consists of a language type together with a structural
consequence relation on FmL(V ). As is well-known, structural consequence
relations are in one-to-one correspondence with structural closure operators
(see, e.g., page 33 of [2]). Thus, a logic may be equivalently represented as
a pair S = ⟨L,C⟩, where C is a structural closure operator on FmL(V ).
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A generalized matrix, or gmatrix, for L is a pair A = ⟨A,D⟩, where
A = ⟨A,LA⟩ is an L-algebra and D is a family of subsets of A.

A gmatrix A = ⟨A,D⟩ determines a logic SA = ⟨L,CA⟩, defined, for all
Φ ∪ {ϕ} ⊆ FmL(V ), by

ϕ ∈ CA(Φ) iff for all h ∈ Hom(FmL(V ),A) and all D ∈ D,
h(Φ) ⊆D implies h(ϕ) ∈ D.

Given a class K of gmatrices for L, the logic determined by K is defined
by SK = ⟨L,CK⟩, where CK = ⋂A∈KC

A.
A class of gmatrices for L is said to form a gmatrix semantics for a

logic S = ⟨L,C⟩ if CK = C.
A referential algebra for L is an L-algebra R = ⟨R,LR⟩ such that R

consists of a collection of subsets of a set U of base or reference points.
For all a ∈ U , set Da = {X ∈ R ∶ a ∈ X} and D = {Da ∶ a ∈ U}. Then the
gmatrix R = ⟨R,D⟩ for L is called a referential gmatrix for L over U .

A logic S = ⟨L,C⟩ is self-extensional if for all α,β ∈ FmL(V ),
C(α) = C(β) implies C(ϕ(α, z)) = C(ϕ(β, z)),

for all ϕ(x, z) ∈ FmL(V ).
The relation Λ(S) on FmL(V ) defined, for all α,β ∈ FmL(V ) by

⟨α,β⟩ ∈ Λ(S) iff C(α) = C(β)
is called the interderivability or Frege relation of S. The relation Ω̃(S)
on FmL(V ) defined, for all α,β ∈ FmL(V ), by

⟨α,β⟩ ∈ Ω̃(S) iff C(ϕ(α, z)) = C(ϕ(β, z)),
for all ϕ(x, z) ∈ FmL(V )

is called the Tarski relation of S. Thus, a logic S is self-extensional if and
only if Λ(S) ⊆ Ω̃(S). Since the reverse inclusion always holds, a logic is self-
extensional if and only if its Frege and its Tarski relations coincide. These
relations have been studied extensively in the context of abstract algebraic
logic (see, e.g., [3] and [2]).

A fundamental result due to Wójcicki [8] (see, also, [9]) asserts that a
logic S = ⟨L,C⟩ is self-extensional if and only if it has a referential semantics,
i.e., if and only if C = CK, for a class K of referential gmatrices. In fact,
Wójcicki shows that this holds if and only if C = CR, for a single referential
gmatrix R (Proposition (A) on page 379 in [9]).
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In [7], Malinowski, based on the aforementioned work of Wójcicki, as
well as his own previous work on referential semantics (e.g., [5, 6]), defined
the notion of multi-valued referential semantics for sentential logics. As
is evident by the examples provided on pages 144-5 of [7], the motivation
came from a desire to provide a referential-like semantics for sentential logics,
like  Lukasiewicz’s multi-valued logics, which are built with the purpose of
modeling multi-valued systems.

Let L = ⟨Λ, ρ⟩ be a language type, m an integer, m ≥ 2, E1, . . . ,Em−2

unary function symbols (fundamental or derived) in Λ and T a collection of
base or reference points. A gmatrix A = ⟨A,D⟩ is called an m-(valued)
referential gmatrix (based on) T [7] if the following conditions are sat-
isfied:

• The universe A of the algebra A is a subset of {e0, e1, . . . , em−1}T ,
i.e., consists of functions of the form r ∶ T → {e0, e1, . . . , em−1}. The
elements e0 and em−1 are denoted, respectively, by 0 and 1.

• D = {Dt ∶ t ∈ T}, where Dt = {r ∈ A ∶ r(t) = 1}, for all t ∈ T .

• The function symbols E1, . . . ,Em−2 are interpreted in A as follows:

EA
i (r)(t) = { 1, if r(t) = ei,

0, otherwise,
i ∈ {1, . . . ,m − 2}.

In Corollary 1 of [7] Malinowski asserts that this is a genuine generalization
of the notion of a referential gmatrix, since it reduces to that concept for
m = 2 (for which the last condition becomes vacuous).

A logic S = ⟨L,C⟩ is said to be m-referential if it possesses a seman-
tics consisting of m-referential gmatrices. However, in Proposition 2 of [7],
Malinowksi asserts that, as is the case with referential semantics, one only
needs to consider semantics consisting of a single m-referential gmatrix in
this context. This assertion is based on the construction given by Wójcicki
on page 379 of [9] to prove the result for the case of self-extensional logics.

Malinowski then focuses on finding an intrinsic characterization of m-
referential sentential logics, i.e., one that does not refer to the external m-
referential gmatrix semantics of the logical system.

Let, again L be a language type, m ≥ 2 an integer and E1, . . . ,Em−2 unary
operations (fundamental or derived) of L. A sentential logic S = ⟨L,C⟩ is
called m-normal [7] if the following axioms hold, for all i, j ∈ {1, . . . ,m−2},
v ∈ V and α ∈ FmL(V ),
(N0) C(Ei(v)) ≠ FmL(V );
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(N1) C(α,Ei(α)) = FmL(V );
(N2) C(Ei(Ej(α))) = FmL(V );
(N3) C(Ei(α),Ej(α)) = FmL(V ), for i ≠ i.
Further, for all i ∈ {1, . . . ,m − 2}, we define a relation ∼i on FmL(V ), by
setting, for all α,β ∈ FmL(V ),

α ∼i β iff C(Ei(α)) = C(Ei(β)).
In the main theorem of [7], Malinowski proves that a sentential logic S is
m-referential if and only if it is m-normal and

Ω̃(S) = Λ(S) ∩ ∼1 ∩⋯∩ ∼m−2.
A corollary of this result (for m = 2) is that a logic is referential if and only
if it is self-extensional, i.e., the result of Wójcicki [8].

In this work we introduce multi-valued gmatrix systems as a means of
providing a referential-like semantics for π-institutions and provide analogs
of the main results of Malinowski for logics formalized as π-institutions.
Namely, after introducing the necessary notions and machinery, we prove
that a π-institution that has a multi-valued referential semantics has nec-
essarily one consisting of a single multi-valued gmatrix system and give a
characterization of those π-institutions that possess a multi-valued gmatrix
system semantics in terms of an analog of the notion of m-normality, appro-
priately abstracted to the categorical context.

2 Preliminaries

Let Sign be a category and SEN ∶ Sign → Set a Set-valued functor. The
clone of all natural transformations on SEN is the category U with
collection of objects SENα, α an ordinal, and collection of morphisms τ ∶
SENα → SENβ β-sequences of natural transformations τi ∶ SENα → SEN.
Composition of ⟨τi ∶ i < β⟩ ∶ SENα → SENβ with ⟨σj ∶ j < γ⟩ ∶ SENβ → SENγ

SENα ⟨τi ∶ i < β⟩
✲ SENβ

⟨σj ∶ j < γ⟩
✲ SENγ

is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τi ∶ i < β⟩ = ⟨σj(⟨τi ∶ i < β⟩) ∶ j < γ⟩.
A subcategory of this category with objets all objects of the form SENk,
k < ω, and such that:
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• it contains all projection morphisms pk,i ∶ SENk → SEN, i < k, k < ω,
with p

k,i
Σ
∶ SEN(Σ)k → SEN given by

p
k,i
Σ
(φ) = φi, for all φ ∈ SEN(Σ)k,

• for every family {τi ∶ SENk → SEN ∶ i < ℓ} of natural transformations
in N , ⟨τi ∶ i < ℓ⟩ ∶ SENk → SENℓ is also in N ,

is referred to as a category of natural transformations on SEN (see,
e.g., Section 2 of [12]).

An algebraic system is a triple A = ⟨Sign,SEN,N⟩ consisting of:

• A category Sign of signatures;

• A functor SEN ∶ Sign → Set giving, for each signature Σ ∈ ∣Sign∣, the
set SEN(Σ) of Σ-sentences;

• A category of natural transformations N on SEN.

Usually, in a specific context, a fixed underlying algebraic system is assumed,
called the base algebraic system and denoted by A♭ = ⟨Sign♭,SEN♭,N ♭⟩.
Then, an N ♭-algebraic system A = ⟨Sign,SEN,N⟩ is one such that there
exists a surjective functor N ♭ → N that preserves all projection natural
transformations (and, consequently, all arities of natural transformations
involved). In this situation, a typographical correspondence is used to de-
note the natural transformation in N that is the image of a specific natural
transformation in N ♭, such as, e.g., σ for the image of σ♭.

An interpreted N ♭-algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, such
that A is an N ♭-algebraic system and ⟨F,α⟩ ∶A♭ →A is an algebraic system
morphism. In other words:

• F ∶ Sign♭ → Sign is a functor;

• α ∶ SEN♭ → SEN ○ F is a natural transformation, such that, for all
σ♭ ∶ (SEN♭)k → SEN♭, all Σ ∈ ∣Sign∣ and all ϕ0, . . . , ϕk−1 ∈ SEN♭(Σ),

SEN♭(Σ)k αk
Σ ✲ SEN(F (Σ))k

SEN♭(Σ)
σ♭
Σ

❄

αΣ

✲ SEN(F (Σ))
σF (Σ)

❄
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αΣ(σ♭Σ(ϕ0, . . . , ϕk−1)) = σF (Σ)(αΣ(ϕ0), . . . , αΣ(ϕk−1)),
where, using the aforementioned convention, σ ∶ SENk → SEN denotes
the image natural transformation in N of σ♭ in N ♭.

A gmatrix system (for A♭) is a pair A = ⟨A,D⟩, where A is an interpreted
N ♭-algebraic system and D = {Di ∶ i ∈ I} is a collection of filter families on
A, i.e., Di = {Di

Σ
}Σ∈∣Sign∣, such that Di

Σ
⊆ SEN(Σ), for all Σ ∈ ∣Sign∣ and all

i ∈ I.
Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. A π-institution

based on A♭ (see [1] and, also, [4] for the closely related notion of an
institution) is a pair I = ⟨A♭,C⟩, where C = {CΣ}Σ∈∣Sign∣ is a closure

system on A♭, i.e., a collection of closure operators CΣ ∶ P(SEN♭(Σ)) →P(SEN♭(Σ)), Σ ∈ ∣Sign♭∣, which satisfies the structurality condition, i.e.,
for all Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and Φ ⊆ SEN♭(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).
Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and let A = ⟨A,D⟩

be a gmatrix system for A♭, with A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,SEN,N⟩.
The gmatrix system A generates a closure system CA on A♭ by the follow-
ing rule: For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆ SEN♭(Σ),

ϕ ∈ CA

Σ
(Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(Φ)) ⊆Di
F (Σ′)

implies αΣ′(SEN♭(f)(ϕ)) ∈ Di
F (Σ′).

If K is a class of gmatrix systems for A♭, then we set

CK = ⋂
A∈K

CA,

where the intersection is applied signature-wise. The corresponding π-
institutions are denoted by IA = ⟨A♭,CA⟩ and IK = ⟨A♭,CK⟩. Note that
both are based on the base algebraic system A♭.

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and I = ⟨A♭,C⟩
be a π-institution based on A♭. We say that a class of gmatrix systems K

for A♭ is a gmatrix system semantics for I in case CK = C.

3 Multi-Valued Referential Semantics

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
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Let Sign be a category and PTS ∶ ∣Sign∣ → Set a functor, giving, for all
Σ ∈ ∣Sign∣, the set PTS(Σ) of all Σ-base or Σ-reference points.

Let m ≥ 2 be an integer and SEN ∶ Sign → Set be a functor, such that,
for all Σ ∈ ∣Sign∣,

SEN(Σ) ⊆ {e0, . . . , em−1}PTS(Σ),

i.e., such that SEN(Σ) consists of functions r ∶ PTS(Σ) → {e0, . . . , em−1}.
We set 0 ∶= e0 and 1 ∶= em−1.

Let N be a category of natural transformations on SEN rendering A =⟨Sign,SEN,N⟩ an N ♭-algebraic system. We call an N ♭-algebraic system of
this form an m-referential N ♭-algebraic system.

If ⟨F,α⟩ ∶ A♭ → A is an algebraic system morphism, then the pairA = ⟨A, ⟨F,α⟩⟩ is called an (interpreted) m-referential N ♭-algebraic
system. When the qualifier “interpreted” is omitted, we rely on context to
clarify whether the system under consideration is interpreted (i.e., is accom-
panied by the morphism ⟨F,α⟩) or not.

Let A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign,SEN,N⟩, be an m-referential N ♭-
algebraic system. Let Σ ∈ ∣Sign∣ and p ∈ PTS(Σ). Define the filter family
DΣ,p = {DΣ,p

Σ′
}Σ′∈∣Sign∣ by setting, for all Σ′ ∈ ∣Sign∣,
D

Σ,p
Σ′
= { {r ∈ SEN(Σ) ∶ r(p) = 1}, if Σ′ = Σ,∅, if Σ′ ≠ Σ.

.

Finally, let D = {DΣ,p ∶ Σ ∈ ∣Sign∣, p ∈ PTS(Σ)}
and define A = ⟨A,D⟩.

A gmatrix system for A♭ of this form is called an m-referential N ♭-
gmatrix system.

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, m ≥ 2 and

E = {E1 ♭, . . . ,E(m−2) ♭}
be a set of m − 2 unary natural transformations in N ♭. An m-referential
N ♭-gmatrix system A = ⟨A,D⟩ based on PTS is said to be normal (with
respect to E) if, for all i = 1, . . . ,m − 2, and all r ∈ SEN(Σ),

Ei
Σ(r) ∶ PTS(Σ) → {0, e1, . . . , em−2,1}

is given, for all p ∈ PTS(Σ), by

Ei
Σ(r)(p) = { 1, if r(p) = ei,

0, otherwise.
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Note that, for all i, since Ei ∶ SEN→ SEN is a natural transformation in N ,
we have that, for all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′) and all r ∈ SEN(Σ),

SEN(Σ) Ei
Σ ✲ SEN(Σ)

SEN(Σ′)
SEN(f)

❄

Ei
Σ′

✲ SEN(Σ′)
SEN(f)
❄

SEN(f)(Ei
Σ(r)) = Ei

Σ′(SEN(f)(r)),
i.e., for all p′ ∈ PTS(Σ′),
SEN(f)(Ei

Σ(r))(p′) = Ei
Σ′(SEN(f)(r))(p′) = { 1, if SEN(f)(r)(p′) = ei,

0, otherwise.

For m = 2 (in which case E = ∅), we identify the notion of a normal
2-referential N ♭-algebraic system with that of a 2-referential N ♭-algebraic
system (normality being vacuously satisfied).

Moreover, under the obvious identification of functions r ∶ PTS(Σ) →{0,1} with subsets X ⊆ PTS(Σ), we have the following:

Proposition 1 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. A
gmatrix system A = ⟨A,D⟩ is a 2-referential gmatrix system if and only if it
is a referential gmatrix system in the sense of [13].

Now we prove a proposition characterizing the closure system CA on
a base algebraic system A♭ generated by a given m-referential N ♭-gmatrix
system A.

Proposition 2 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Let
A = ⟨A,D⟩, with A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,SEN,N⟩ be an m-referential
gmatrix system for A♭ based on PTS. Then, for all Σ ∈ ∣Sign♭∣ and all
Φ ∪ {ϕ} ⊆ SEN♭(Σ),

ϕ ∈ CA

Σ
(Φ) iff for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′)

and all p ∈ PTS(F (Σ′)),
αΣ′(SEN♭(f)(φ))(p) = 1, for all φ ∈ Φ

implies αΣ′(SEN♭(f)(ϕ))(p) = 1.
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Proof: It suffices to show that, for all Σ ∈ ∣Sign♭∣ and ϕ ∈ SEN♭(Σ), we have,
for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all Σ∗ ∈ ∣Sign∣, p∗ ∈ PTS(Σ∗),

αΣ′(SEN♭(f)(ϕ)) ∈ DΣ
∗,p∗

F (Σ′)

iff Σ∗ = F (Σ′) and αΣ′(SEN♭(f)(ϕ))(p∗) = 1.

If αΣ′(SEN♭(f)(ϕ)) ∈ DΣ
∗,p∗

F (Σ′)
, then DΣ

∗,p∗

F (Σ′)
≠ ∅. By the definition of DΣ

∗,p∗ ,

this is possible only if F (Σ′) = Σ∗. Moreover, since DΣ
∗,p∗

Σ∗
= {r ∈ SEN(Σ∗) ∶

r(p∗) = 1}, we obtain that αΣ′(SEN♭(f)(ϕ))(p∗) = 1.
Suppose, conversely, that Σ∗ = F (Σ′) and αΣ′(SEN♭(f)(ϕ))(p∗) = 1.

Then
αΣ′(SEN♭(f)(ϕ)) ∈ {r ∈ SEN(Σ∗) ∶ r(p∗) = 1} =DΣ

∗,p∗

Σ∗
.

This concludes the proof of the equivalence above. ∎
A π-institution of the form IK = ⟨A♭,CK⟩, where K is a class of nor-

mal m-referential N♭-gmatrix systems (with respect to E) will be called
m-referential (with respect to E).

In the following theorem, paralleling Proposition 2 of [7], it is shown
that an m-referential π-institution may be seen as generated by a single
normal m-referential N ♭-gmatrix system, with respect to E. This result
has a precursor in the categorical case in Corollary 5 of [12] which, in turn,
originates from a corresponding result pertaining to the referential semantics
of sentential logics, Proposition (A) on page 379 in [9].

Proposition 3 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, m ≥
2 an integer and E = {E1 ♭, . . . ,E(m−2) ♭} a set of m− 2 unary natural trans-
formations in N ♭. A π-institution I = ⟨A♭,C⟩ is m-referential with respect
to E if and only if there exists a normal m-referential N♭-gmatrix system
A = ⟨A,D⟩ with respect to E, such that C = CA.

Proof: The sufficiency of the condition is obvious. For the necessity, sup-
pose that I = ⟨A♭,C⟩ is m-referential. Then C = CK, where

K = {Ai = ⟨Ai,Di⟩ ∶ i ∈ I}
is a collection of normal m-referential A♭-gmatrix systems with respect to E.
Assume that A

i = ⟨Ai,Di⟩, with Ai = ⟨Ai, ⟨F i, αi⟩⟩ and Ai = ⟨Signi,SENi,

N i⟩, is based on PTSi ∶ ∣Signi∣ → Set, for all i ∈ I.
Let Sign =∏i∈I Sign

i. Define PTS ∶ ∣Sign∣ → Set by setting

PTS(⟨Σi ∶ i ∈ I⟩) =⊎
i∈I

PTSi(Σi), Σi ∈ ∣Signi∣, i ∈ I,
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where ⊎ denotes disjoint union. For simplicity, we assume in the sequel that
all sets of points are already disjoint and so ⊎ may be taken to be ordinary
set-theoretic union.

Next define A = ⟨Sign,SEN,N⟩ based on PTS as follows:

• For all i ∈ I and Σi ∈ ∣Signi∣,
SEN(⟨Σi ∶ i ∈ I⟩) = {r ∈ {0,1, . . . ,m − 1}PTS(⟨Σi ∶i∈I⟩) ∶

r∣
PTS

i(Σi)
∈ SENi(Σi) for all i ∈ I}.

Further, given Σi,Σ
′
i ∈ ∣Signi∣ and fi ∈ Signi(Σi,Σ

′
i), for all i ∈ I,

define

SEN(⟨fi ∶ i ∈ I⟩) ∶ SEN(⟨Σi ∶ i ∈ I⟩) → SEN(⟨Σ′i ∶ i ∈ I⟩)
by setting, for all r ∈ SEN(⟨Σi ∶ i ∈ I⟩), all i and all p′ ∈ PTSi(Σ′i),

SEN(⟨fi ∶ i ∈ I⟩)(r)(p′) = SENi(fi)(r∣PTS
i(Σi)
)(p′).

With these definitions SEN ∶ Sign → Set becomes a functor. In-
deed, for all i ∈ I, Σi,Σ

′
i,Σ
′′
i ∈ ∣Signi∣ all fi ∈ Signi(Σi,Σ

′
i), gi ∈

Signi(Σ′i,Σ′′i ) and all r ∈ SEN(⟨Σi ∶ i ∈ I⟩),
⟨Σi ∶ i ∈ I⟩ ⟨fi ∶ i ∈ I⟩✲ ⟨Σ′i ∶ i ∈ I⟩ ⟨gi ∶ i ∈ I⟩✲ ⟨Σ′′i ∶ i ∈ I⟩

SEN(⟨gi ∶ i ∈ I⟩)(SEN(⟨fi ∶ i ∈ I⟩)(r))∣PTS
i(Σi)= SENi(gi)(SEN(⟨fi ∶ i ∈ I⟩)(r)∣PTS

i(Σi)
)

= SENi(gi)(SENi(fi)(r∣PTS
i(Σi)
))

= SENi(gi ○ fi)(r∣PTS
i(Σi)
)

= SEN(⟨gi ○ fi ∶ i ∈ I⟩)(r)= SEN(⟨gi ∶ i ∈ I⟩ ○ ⟨fi ∶ i ∈ I⟩)(r).
• Next, suppose that σ♭ ∶ (SEN♭)k → SEN♭ is a natural transformation

in N ♭, with image transformation σi ∶ (SENi)k → SENi in N i, for all
i ∈ I. Define σ ∶ SENk → SEN by letting, for all Σi ∈ ∣Signi∣, i ∈ I,

σ⟨Σi∶i∈I⟩ ∶ SEN(⟨Σi ∶ i ∈ I⟩)k → SEN(⟨Σi ∶ i ∈ I⟩)
be given, for all r0, . . . , rk−1 ∈ SEN(⟨Σi ∶ i ∈ I⟩) and all i ∈ I, p ∈
PTSi(Σi),

σ⟨Σi ∶i∈I⟩(r0, . . . , rk−1)(p) = σiΣi
(r0∣PTS

i(Σi)
, . . . , rk−1∣PTS

i(Σi)
)(p).
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Thus defined, σ ∶ SENk → SEN is a natural transformation. Indeed,
for all i ∈ I, Σi,Σ

′
i ∈ ∣Signi∣, all fi ∈ Signi(Σi,Σ

′
i) and all r0, . . . , rk−1 ∈

SEN(⟨Σi ∶ i ∈ I⟩),
SEN(⟨Σi ∶ i ∈ I⟩)k σ⟨Σi∶i∈I⟩

✲ SEN(⟨Σi ∶ i ∈ I⟩)

SEN(⟨Σ′i ∶ i ∈ I⟩)k
SEN(⟨fi ∶ i ∈ I⟩)k

❄

σ⟨Σ′
i
∶i∈I⟩

✲ SEN(⟨Σ′i ∶ i ∈ I⟩)
SEN(⟨fi ∶ i ∈ I⟩)
❄

SEN(⟨fi ∶ i ∈ I⟩)(σ⟨Σi ∶i∈I⟩(r0, . . . , rk−1))∣PTS
i(Σ′

i
)= SENi(fi)(σ⟨Σi ∶i∈I⟩(r0, . . . , rk−1)∣PTS

i(Σi)
)

= SENi(fi)(σiΣi
(r0∣PTS

i(Σi)
, . . . , rk−1∣PTS

i(Σi)
))

= σi
Σ′

i

(SENi(fi)(r0∣PTS
i(Σi)
), . . . ,SENi(fi)(rk−1∣PTS

i(Σi)
))

= σi
Σ′

i

(SEN(⟨fi ∶ i ∈ I⟩)(r0)∣PTS
i(Σ′

i
), . . . ,

SEN(⟨fi ∶ i ∈ I⟩)(rk−1)∣PTS
i(Σ′

i
))= σ⟨Σ′

i
∶i∈I⟩(SEN(⟨fi ∶ i ∈ I⟩)(r0), . . . ,SEN(⟨fi ∶ i ∈ I⟩)(rk−1))∣PTS

i(Σ′
i
).

Moreover, the collection N of all such σ, for σ♭ in N ♭, forms a category
of natural transformations on SEN.

We conclude that the triple A = ⟨Sign,SEN,N⟩ is an m-referential A♭-
algebraic system.

Now define an algebraic system morphism ⟨F,α⟩ ∶A♭ →A as follows:

• F ∶ Sign♭ → Sign is defined on objects, for all Σ ∈ ∣Sign♭∣, by

F (Σ) = ⟨F i(Σ) ∶ i ∈ I⟩,
and on morphisms, for all Σ,Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′), by

F (f) = ⟨F i(f) ∶ i ∈ I⟩.
• α ∶ SEN♭ → SEN ○ F is defined by letting, for all Σ ∈ ∣Sign♭∣, αΣ ∶

SEN♭(Σ) → SEN(F (Σ)) be given, for all ϕ ∈ SEN♭(Σ), by

αΣ(ϕ) = r ∈ {0,1, . . . ,m − 1}PTS(⟨F i(Σ)∶i∈I⟩)

specified by
r∣
PTS

i(F i(Σ)) = αi
Σ(ϕ), for all i ∈ I.
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Thus defined, α ∶ SEN♭ → SEN○F is a natural transformation. Indeed,
for all Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign(Σ,Σ′) and all ϕ ∈ SEN♭(Σ),

SEN♭(Σ) αΣ
✲ SEN(F (Σ))

SEN♭(Σ′)
SEN♭(f)

❄

αΣ′

✲ SEN(F (Σ′)
SEN(F (f))
❄

αΣ′(SEN♭(f)(ϕ))∣
PTS

i(F i(Σ)) = αi
Σ′
(SEN♭(f)(ϕ))

= SENi(F i(f))(αi
Σ
(ϕ))= SENi(F i(f))(αΣ(ϕ)∣PTS

i(F i(Σ)))= SEN(F (f))(αΣ(ϕ))∣PTS
i(F i(Σ)).

Moreover, the pair ⟨F,α⟩ ∶ A♭ → A is an algebraic system morphism,
since, for all σ♭ ∶ (SEN♭)k → SEN♭, all Σ ∈ ∣Sign♭∣ and all ϕ0, . . . , ϕk−1 ∈
SEN♭(Σ),

SEN♭(Σ)k σ♭
Σ ✲ SEN♭(Σ)

SEN(F (Σ))k
αk
Σ

❄

σF (Σ)

✲ SEN(F (Σ))
αΣ

❄

αΣ(σ♭Σ(ϕ0, . . . , ϕk−1))∣PTS
i(F i(Σ))= αi

Σ
(σ♭

Σ
(ϕ0, . . . , ϕk−1))= σi

F i(Σ)(αi
Σ
(ϕ0), . . . , αi

Σ
(ϕk−1))= σi

F i(Σ)(αΣ(ϕ0)∣PTS
i(F i(Σ)), . . . , αΣ(ϕk−1)∣PTS

i(F i(Σ)))= σ⟨F i(Σ)∶i∈I⟩(αΣ(ϕ0), . . . , αΣ(ϕk−1))∣PTS
i(F i(Σ))= σF (Σ)(αΣ(ϕ0), . . . , αΣ(ϕk−1))∣PTS

i(F i(Σ))

We conclude that the pair ⟨F,α⟩ ∶A♭ →A is a well-defined algebraic system
morphism and, therefore, that the pair A = ⟨A, ⟨F,α⟩⟩ is an interpreted
m-referential N ♭-algebraic system.

Finally, we declare that D = {DΣ,p ∶ Σ ∈ ∣Sign∣, p ∈ PTS(Σ)}, where, for
all Σ ∈ ∣Sign∣, p ∈ PTS(Σ), DΣ,p = {DΣ,p

Σ′
}Σ′∈∣Sign∣ is given by setting, for all
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Σ′ ∈ ∣Sign∣,
D

Σ,p
Σ′
= { {r ∈ SEN(Σ) ∶ r(p) = 1}, if Σ′ = Σ,∅, if Σ′ ≠ Σ.

Then A = ⟨A,D⟩ is an m-referential gmatrix system and it only remains to

show that it is normal with respect to E and that CA = ⋂i∈I C
A
i(=∶ CK).

To show that A is normal, let k ∈ {1, . . . ,m−2}. Since each A
i is normal

with respect to E = {E1, . . . ,Em−2}, we have that, for all i ∈ I, all Σi ∈∣Signi∣, all r ∈ SEN(⟨Σi ∶ i ∈ I⟩) and all pi ∈ PTSi(Σi),
Eki

Σi
(r∣

PTS
i(Σi)
)(pi) = { 1, if r∣

PTS
i(Σi)
(pi) = ek,

0, otherwise.

But this is equivalent to, for all Σ = ⟨Σi ∶ i ∈ I⟩ ∈ ∣Sign∣, all r ∈ SEN(Σ) and
all p ∈ PTS(Σ),

Ek
Σ(r)(p) = { 1, if r(p) = ek,

0, otherwise.

So A is indeed normal.
Finally, let Σ ∈ ∣Sign♭∣, Φ ∪ {ϕ} ⊆ SEN♭(Σ). We have ϕ ∈ CK

Σ
(Φ) iff, for

all i ∈ I, ϕ = CA
i

Σ
(Φ) iff, by Proposition 2, for all i ∈ I, all Σ′ ∈ ∣Sign♭∣, all

f ∈ Sign♭(Σ,Σ′) and all pi ∈ PTSi(F i(Σ′)),
αi
Σ′
(SEN♭(f)(φ))(pi) = 1, for all φ ∈ Φ,

implies αi
Σ′
(SEN♭(f)(ϕ))(pi) = 1,

iff, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all p ∈ PTS(F (Σ′)),
αΣ′(SEN♭(f)(φ))(p) = 1, for all φ ∈ Φ,

implies αΣ′(SEN♭(f)(ϕ))(p) = 1,

iff, again by Proposition 2, ϕ ∈ CA

Σ
(Φ). ∎

4 m-Normal π-Institutions

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, m ≥ 2 an integer,
and assume that N ♭ contains a set of m − 2 unary natural transformations
E = {E1 ♭, . . . ,E(m−2) ♭}, m ≥ 3. We say that a π-institution I = ⟨A♭,C⟩
based on A♭ is m-normal (with respect to E) if the following conditions
hold, for all i, j ∈ {1, . . . ,m − 2}, all Σ ∈ ∣Sign♭∣ and all ϕ ∈ SEN♭(Σ):
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(N1) CΣ(ϕ,Ei ♭
Σ
(ϕ)) = SEN♭(Σ);

(N2) CΣ(Ei ♭
Σ
(Ej ♭

Σ
(ϕ))) = SEN♭(Σ);

(N3) CΣ(Ei ♭
Σ
(ϕ),Ej ♭

Σ
(ϕ)) = SEN♭(Σ), for i ≠ j.

We now recall the notions of the interderivability equivalence system and
of the Tarski congruence system of a π-institution I.

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and let I =⟨A♭,C⟩ be a π-institution based on A♭. Define the interderivability, or
Frege, relation family Λ(I) = {ΛΣ(I)}Σ∈∣Sign♭∣ by letting, for all Σ ∈
∣Sign♭∣, ΛΣ(I) ⊆ SEN♭(Σ)2 be given, for all ϕ,ψ ∈ SEN♭(Σ), by

⟨ϕ,ψ⟩ ∈ ΛΣ(I) iff CΣ(ϕ) = CΣ(ψ).
Define, also, the Tarski relation family Ω̃(I) = {Ω̃Σ(I)}Σ∈∣Sign♭∣ by let-

ting, for all Σ ∈ ∣Sign♭∣, Ω̃Σ(I) ⊆ SEN♭(Σ)2 be given, for all ϕ,ψ ∈ SEN♭(Σ),
by ⟨ϕ,ψ⟩ ∈ Ω̃Σ(I) iff

for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭,all Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and all χ ∈ SEN♭(Σ′)k−1,
CΣ′(σ♭Σ′(SEN♭(f)(ϕ), χ)) = CΣ′(σ♭Σ′(SEN♭(f)(ψ), χ)).

Here, to simplify notation, we adopt the convention that the last condition
means that SEN♭(f)(ϕ) and SEN♭(f)(ψ) may occupy any position - and
not only the first - in σ♭

Σ′
, as long as they occupy the same position in the

two sides of the equation.
Finally, in case I = ⟨A♭,C⟩ is a normal π-institution with respect to E,

we also define, for all i ∈ {1, . . . ,m − 2}, ∼i = {∼i
Σ
}
Σ∈∣Sign♭∣ by letting, for all

Σ ∈ ∣Sign♭∣, ∼i
Σ
⊆ SEN♭(Σ)2 be given, for all ϕ,ψ ∈ SEN♭(Σ), by

ϕ ∼iΣ ψ iff CΣ(Ei ♭
Σ
(ϕ)) = CΣ(Ei ♭

Σ
(ψ)).

We have the following proposition concerning the status of these relation
systems:

Proposition 4 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system andI = ⟨A♭,C⟩ be a π-institution based on A♭. Then Λ(I) is an equivalence
system on A♭ and Ω̃(I) is a congruence system on A♭. Moreover, if I is
m-normal with respect to E, then ∼i is also an equivalence system on A♭,
for all i ∈ {1, . . . ,m − 2}.
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Proof: The results about Λ(I) and Ω̃(I) are well-known in categorical
abstract algebraic logic (see Theorem 4 of [11] and Proposition 3.2 of [10]).
Suppose that I is m-normal with respect to E = {E1 ♭, . . . ,E(m−2) ♭} and let
i ∈ {1, . . . ,m−2}. Then it is clear from the definition that ∼i is an equivalence
family on A♭, i.e., that, for all Σ ∈ ∣Sign♭∣, ∼i

Σ
is an equivalence relation on

SEN♭(Σ). To show that it also satisfies the system property, suppose that
Σ,Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and ϕ,ψ ∈ SEN♭(Σ), such that ϕ ∼i

Σ
ψ.

This means that CΣ(Ei ♭
Σ
(ϕ)) = CΣ(Ei ♭

Σ
(ψ)). By structurality, then, we get

that
SEN♭(f)(Ei ♭

Σ
(ϕ)) ∈ CΣ′(SEN♭(f)(Ei ♭

Σ
(ψ))).

Since Ei ♭ ∶ SEN♭ → SEN♭ is a natural transformation, we get that

Ei ♭
Σ′
(SEN♭(f)(ϕ)) ∈ CΣ′(Ei ♭

Σ′
(SEN♭(f)(ψ))).

Hence, by symmetry,

CΣ′(Ei ♭
Σ′
(SEN♭(f)(ϕ))) = CΣ′(Ei ♭

Σ′
(SEN♭(f)(ψ))).

This shows that SEN♭(f)(ϕ) ∼i
Σ′

SEN♭(f)(ψ), which verifies that ∼i is in-
deed an equivalence system on A♭. ∎

We are now ready to formulate the main theorem of the paper, an analog
of the main theorem of [7]. It characterizes m-referential π-institutions in
terms of normality and a certain relationship between the relation systems
associated with a π-institution introduced above.

Theorem 5 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system, m ≥
2 an integer and suppose that N ♭ contains a set of m − 2 unary natural
transformations E = {E1 ♭, . . . ,E(m−2) ♭}. Then a π-institution I = ⟨A♭,C⟩
is m-referential with respect to E if and only if the following conditions hold:

(i) I is m-normal with respect to E♭;

(ii) Ω̃(I) = Λ(I) ∩ ∼1 ∩⋯∩ ∼m−2.
Proof: Suppose, first, that I is m-referential. Thus, there exists, by
Proposition 3, a normal m-referential N ♭-gmatrix system A = ⟨A,D⟩, withA = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,SEN,N⟩, such that C = CA. We must show
that I satisfies Conditions (i) and (ii) of the statement.

To show that I is m-normal with respect to E, we verify conditions
(N1)-(N3).
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For (N1), let Σ ∈ ∣Sign♭∣ and ϕ ∈ SEN♭(Σ). We show that, for all
Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all p ∈ PTS(F (Σ′)),

αΣ′(SEN♭(f)(ϕ))(p) = 1 and αΣ′(SEN♭(f)(Ei ♭
Σ
(ϕ)))(p) = 1

is impossible. This will imply, using Proposition 2, that CA

Σ
(ϕ,Ei ♭

Σ
(ϕ)) =

SEN♭(Σ) and, thus, that CΣ(ϕ,Ei ♭
Σ
(ϕ)) = SEN♭(Σ). In fact, if

αΣ′(SEN♭(f)(ϕ))(p) = 1,

then we have

αΣ′(SEN♭(f)(Ei ♭
Σ
(ϕ)))(p)= αΣ′(Ei ♭

Σ′
(SEN♭(f)(ϕ)))(p)

= Ei
F (Σ′)(αΣ′(SEN♭(f)(ϕ)))(p)

= 0 (since αΣ′(SEN♭(f)(ϕ))(p) ≠ ei).
For (N2), suppose Σ ∈ ∣Sign♭∣ and ϕ ∈ SEN♭(Σ). We show that, for all
Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all p ∈ PTS(F (Σ′)),

αΣ′(SEN♭(f)(Ei ♭
Σ
(Ej ♭

Σ
(ϕ))))(p) ≠ 1

and use again Proposition 2. We have, indeed,

αΣ′(SEN♭(f)(Ei ♭
Σ
(Ej ♭

Σ
(ϕ))))(p)

= αΣ′(Ei ♭
Σ′
(Ej ♭

Σ′
(SEN♭(f)(ϕ))))

= Ei
F (Σ′)(Ej

F (Σ′)
(αΣ′(SEN♭(f)(ϕ))))(p)

= { 1, if Ej

F (Σ′)
(αΣ′(SEN♭(f)(ϕ)))(p) = ei

0, otherwise

= 0 (since Ej

F (Σ′)
(αΣ′(SEN♭(f)(ϕ)))(p) ∈ {0,1}).

For (N3), let Σ ∈ ∣Sign♭∣ and ϕ ∈ SEN♭(Σ). Then, for all Σ′ ∈ ∣Sign♭∣,
f ∈ Sign♭(Σ,Σ′) and p ∈ PTS(F (Σ′)), we have

αΣ′(SEN♭(f)(Ei ♭
Σ
(ϕ)))(p)= αΣ′(Ei ♭

Σ′
(SEN♭(f)(ϕ)))(p)

= Ei
F (Σ′)(αΣ′(SEN♭(f)(ϕ)))(p)

= { 1, if αΣ′(SEN♭(f)(ϕ))(p) = ei
0, otherwise.

A similar computation yields

αΣ′(SEN♭(f)(Ej ♭
Σ
(ϕ)))(p) = { 1, if αΣ′(SEN♭(f)(ϕ))(p) = ej ,

0, otherwise.
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Thus, it is not possible to have

αΣ′(SEN♭(f)(Ei ♭
Σ
(ϕ)))(p) = 1 = αΣ′(SEN♭(f)(Ej ♭

Σ
(ϕ)))(p).

This and Proposition 2 show (N3).
We thus, conclude that I is an m-normal π-institution with respect to

E. We now turn to proving Condition (ii).
First, it is obvious that Ω̃(I) ≤ Λ(I) (≤ denotes signature-wise inclusion).

Moreover, since Ω̃(I) is a congruence system on A♭ and E is a subset of
N ♭, we get that Ω̃(I) ≤ ∼i, for all i = 1, . . . ,m − 2. Thus, we have that
Ω̃(I) ≤ Λ(I) ∩ ∼1 ∩⋯∩ ∼m−2. It suffices, now, to show the reverse inclusion.

Let Σ ∈ ∣Sign♭∣, ϕ,ψ ∈ SEN♭(Σ), such that ⟨ϕ,ψ⟩ ∈ ΛΣ(I) and ϕ ∼i
Σ
ψ,

for all i = 1, . . . ,m − 2. Then we have CΣ(ϕ) = CΣ(ψ) and CΣ(Ei ♭
Σ
(ϕ)) =

CΣ(Ei ♭
Σ
(ψ)), for all i = 1, . . . ,m − 2. Since, by hypothesis, C = CA, we

get, by Proposition 2, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all p ∈
PTS(F (Σ′)),

αΣ′(SEN♭(f)(ϕ))(p) = 1 iff αΣ′(SEN♭(f)(ψ))(p) = 1,

αΣ′(SEN♭(f)(Ei ♭
Σ
(ϕ)))(p) = 1 iff αΣ′(SEN♭(f)(Ei ♭

Σ
(ψ)))(p) = 1,
m = 1, . . . ,m − 2.

The latter family implies that, for all i = 1, . . . ,m − 2,

αΣ′(SEN♭(f)(ϕ)) = ei iff αΣ′(SEN♭(f)(ψ)) = ei.
Altogether, we conclude that, for all p ∈ PTS(F (Σ′)),

αΣ′(SEN♭(f)(ϕ))(p) = αΣ′(SEN♭(f)(ψ))(p),
i.e., that αΣ′(SEN♭(f)(ϕ)) = αΣ′(SEN♭(f)(ψ)). But now we get, for all
σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all χ ∈
SEN♭(Σ′)k−1,

αΣ′(σ♭Σ′(SEN♭(f)(ϕ), χ))
= σF (Σ′)(αΣ′(SEN♭(f)(ϕ)), αk−1

Σ′
(χ))

= σF (Σ′)(αΣ′(SEN♭(f)(ψ)), αk−1
Σ′
(χ))

= αΣ′(σ♭Σ′(SEN♭(f)(ψ), χ)).
This shows that CA

Σ′
(σ♭

Σ′
(SEN♭(f)(ϕ), χ)) = CA

Σ′
(σ♭

Σ′
(SEN♭(f)(ψ), χ)). By

hypothesis, this is equivalent to

CΣ′(σ♭Σ′(SEN♭(f)(ϕ), χ)) = CΣ′(σ♭Σ′(SEN♭(f)(ψ), χ)).
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Hence, by definition, ⟨ϕ,ψ⟩ ∈ Ω̃Σ(I). Thus, Λ(I)∩∼1 ∩⋯∩∼m−2 ≤ Ω̃(I) and
this completes the “only if” direction of the proof.

Suppose, conversely, that I = ⟨A♭,C⟩, with A♭ = ⟨Sign♭,SEN♭,N ♭⟩ is
m-normal with respect to E and that Ω̃(I) = Λ(I)∩∼1 ∩⋯∩∼m−2. We then
show that I is m-referential with respect to E. To this end we construct
step-by-step a normal m-referential N ♭-gmatrix system A, such that C = CA.

Let Sign = Sign♭. Define PTS ∶ ∣Sign∣ → Set by setting, for all Σ ∈∣Sign∣,
PTS(Σ) = ThΣ(I)/{SEN♭(Σ)} =∶ Th∗Σ(I),

the collection of all Σ-theories of I other than SEN♭(Σ). This defines the
functor PTS of base points on which A will be built.

Now we specify the functor SEN ∶ Sign → Set giving the sentences of A.
Recall that sentences must be functions from the set of reference points to{e0, . . . , em−1}.

First, given Σ ∈ ∣Sign♭∣ and ϕ ∈ SEN♭(Σ), let ϕ ∶ PTS(Σ) → {0, e1, . . . ,
em−2,1} be given, for all T ∈ Th∗Σ(I) by

ϕ(T ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if ϕ ∈ T,
ei, if Ei ♭

Σ
(ϕ) ∈ T, i = 1, . . . ,m − 2,

0, otherwise.

Claim: ϕ ∶ PTS(Σ) → {0, e1, . . . , em−2,1} is well-defined.
Proof: First, by (N1), if ϕ ∈ T , then, for all i = 1, . . . ,m − 2, Ei ♭

Σ
(ϕ) ∉ T .

Second, by (N3), if Ei ♭(ϕ) ∈ T , then E
j ♭
Σ
(ϕ) ∉ T , for all j ≠ i. ∎

Based on this definition, we define SEN ∶ Sign → Set as follows:
For all Σ ∈ ∣Sign∣, we set

SEN(Σ) = {ϕ ∶ ϕ ∈ SEN♭(Σ)}.
Furthermore, for all Σ,Σ′ ∈ ∣Sign∣ and f ∈ Sign(Σ,Σ′), SEN(f) ∶ SEN(Σ) →
SEN(Σ′) is given, for all ϕ ∈ SEN(Σ), by

SEN(f)(ϕ) = SEN♭(f)(ϕ).
Claim: SEN ∶ Sign → Set is well-defined and constitutes a functor.
Proof: Let Σ ∈ ∣Sign∣ and ϕ,ψ ∈ SEN♭(Σ), such that ϕ = ψ. Then, for all
T ∈ Th∗Σ(I), we have ϕ(T ) = ψ(T ). Therefore, by definition,

ϕ ∈ T iff ψ ∈ T and

Ei ♭
Σ
(ϕ) ∈ T iff Ei ♭

Σ
(ψ) ∈ T, for all 1 ≤ i ≤m − 2.
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Thus, we get that ⟨ϕ,ψ⟩ ∈ ΛΣ(I) and ϕ ∼i
Σ
ψ, for all 1 ≤ i ≤ m − 2. But,

by Proposition 4, Λ(I) and ∼i, i ∈ {1, . . . ,m − 2}, are equivalence systems,
whence we get, for all Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

⟨SEN♭(f)(ϕ),SEN♭(f)(ψ)⟩ ∈ ΛΣ′(I) and

SEN♭(f)(ϕ) ∼i
Σ′

SEN♭(f)(ψ), 1 ≤ i ≤m − 2.

Thus, we get SEN♭(f)(ϕ) = SEN♭(f)(ψ). This shows that SEN(f)(ϕ) =
SEN(f)(ψ) and, hence, that SEN(f) is well-defined, for all Σ,Σ′ ∈ ∣Sign∣
and all f ∈ Sign(Σ,Σ′).

SEN ∶ Sign → Set, thus, defined, is a functor, since, for all Σ,Σ′,Σ′′ ∈∣Sign∣ and all f ∈ Sign(Σ,Σ′), g ∈ Sign(Σ′,Σ′′),
Σ

f
✲ Σ′

g
✲ Σ′′

SEN(g ○ f)(ϕ) = SEN♭(g ○ f)(ϕ)
= SEN♭(g)(SEN♭(f)(ϕ))
= SEN(g)(SEN♭(f)(ϕ))= SEN(g)(SEN(f)(ϕ)).

This concludes the proof of the claim. ∎
Now, for σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, let σ ∶ SENk → SEN be defined

by letting, for all Σ ∈ ∣Sign∣, σΣ ∶ SEN(Σ)k → SEN(Σ) be given, for all
ϕ0, . . . , ϕk−1 ∈ SEN♭(Σ), by

σΣ(ϕ0, . . . , ϕk−1) = σ♭Σ(ϕ0, . . . , ϕk−1).
We show that σΣ ∶ SEN(Σ)k → SEN(Σ) is well-defined. Suppose that
ϕ0, ψ0, . . . , ϕk−1, ψk−1 ∈ SEN♭(Σ), such that ϕ0 = ψ0, . . ., ϕk−1 = ψk−1. By
definition, we get that, for all T ∈ Th∗Σ(I), all j < k and all i ∈ {1, . . . ,m−2},

(ϕj ∈ T iff ψj ∈ T ) and (Ei ♭
Σ
(ϕj) ∈ T iff Ei ♭

Σ
(ψj) ∈ T ).

But these imply that, for all j < k,

⟨ϕj , ψj⟩ ∈ ΛΣ(I) and ϕj ∼iΣ ψj, i ∈ {1, . . . ,m − 2}.
Thus, we get, by hypothesis, that, for all j < k, ⟨ϕi, ψi⟩ ∈ Ω̃Σ(I). Thus, since
Ω̃(I) is a congruence system, we get ⟨σ♭

Σ
(ϕ0, . . . , ϕk−1), σ♭Σ(ψ0, . . . , ψk−1)⟩ ∈

Ω̃Σ(I). Therefore, by compatibility and the congruence property, we obtain

σ♭
Σ
(ϕ0, . . . , ϕk−1) = σ♭Σ(ψ0, . . . , ψk−1), i.e., that

σΣ(ϕ0, . . . , ϕk−1) = σΣ(ψ0, . . . , ψk−1).
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Next we show that σ ∶ SENk → SEN is a natural transformation. Let Σ,Σ′ ∈∣Sign∣, f ∈ Sign(Σ,Σ′) and ϕ0, . . . , ϕk−1 ∈ SEN♭(Σ). Then

SEN(Σ)k σΣ
✲ SEN(Σ)

SEN(Σ′)k
SEN(f)k

❄

σΣ′
✲ SEN(Σ′)

SEN(f)
❄

SEN(f)(σΣ(ϕ0, . . . , ϕk−1)) = SEN(f)(σ♭
Σ
(ϕ0, . . . , ϕk−1))

= SEN♭(f)(σ♭
Σ
(ϕ0, . . . , ϕk−1))

= σ♭
Σ′
(SEN♭(f)k(ϕ0, . . . , ϕk−1))

= σΣ′(SEN♭(f)k(ϕ0, . . . , ϕk−1))= σΣ′(SEN(f)k(ϕ0, . . . , ϕk−1)).
Let N be the collection of all natural transformations of the form σ, for σ♭

in N ♭. Then N is a category of natural transformations on SEN and, thus,
we have defined an m-referential N ♭-algebraic system A = ⟨Sign,SEN,N⟩
based on PTS.

Next specify the pair ⟨I,α⟩ ∶A♭ →A as follows:

• I ∶ Sign♭ → Sign is the identity functor (which makes sense, since
Sign = Sign♭).

• α ∶ SEN♭ → SEN is defined by letting, for all Σ ∈ ∣Sign♭∣, αΣ ∶
SEN♭(Σ) → SEN(Σ) be given, for all ϕ ∈ SEN♭(Σ), by

αΣ(ϕ) = ϕ.
This is natural transformation, since, for all Σ,Σ′ ∈ ∣Sign♭∣, all f ∈
Sign♭(Σ,Σ′) and all ϕ ∈ SEN♭(Σ),

SEN♭(Σ) αΣ
✲ SEN(Σ)

SEN♭(Σ′)
SEN♭(f)

❄

αΣ′

✲ SEN(Σ′)
SEN(f)
❄
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SEN(f)(αΣ(ϕ)) = SEN(f)(ϕ)
= SEN♭(f)(ϕ)
= αΣ′(SEN♭(f)(ϕ)).

Moreover, the pair ⟨I,α⟩ ∶ A♭ → A is an algebraic system morphism,
since, for all σ♭ ∶ (SEN♭)k → SEN♭, all Σ ∈ ∣Sign♭∣ and all ϕ0, . . . , ϕk−1 ∈
SEN♭(Σ),

SEN♭(Σ)k σ♭
Σ ✲ SEN♭(Σ)

SEN(Σ)k
αk
Σ

❄

σΣ
✲ SEN(Σ)

αΣ

❄

αΣ(σ♭Σ(ϕ0, . . . , ϕk−1)) = σ♭
Σ
(ϕ0, . . . , ϕk−1)= σΣ(ϕ0, . . . , ϕk−1)= σΣ(αΣ(ϕ0), . . . , αΣ(ϕk−1)).

We conclude that the pair A = ⟨A, ⟨I,α⟩⟩ is an interpreted m-referential
N ♭-algebraic system based on PTS.

To finish the definition of the gmatrix system A, let Σ ∈ ∣Sign∣ and
T ∈ Th∗Σ(I). Define DΣ,T = {DΣ,T

Σ′
}Σ′∈∣Sign∣ by setting, for all Σ′ ∈ ∣Sign∣,

D
Σ,T
Σ′

= { {ϕ ∈ SEN(Σ) ∶ ϕ(T ) = 1}, if Σ′ = Σ,∅, if Σ′ ≠ Σ

= { {ϕ ∈ SEN(Σ) ∶ ϕ ∈ T}, if Σ′ = Σ,∅, if Σ′ ≠ Σ.

and define D = {DΣ,T ∶ Σ ∈ ∣Sign∣, T ∈ Th∗Σ(I)}.
Clearly, the pair A = ⟨A,D⟩ is an m-referential N ♭-gmatrix system. Thus,
to conclude the proof it suffices to show that A is m-normal with respect to
E and that C = CA.
Claim: A = ⟨A,D⟩ is m-normal.
Proof: Let i ∈ {1, . . . ,m − 2}. Then, for all Σ ∈ ∣Sign∣, all ϕ ∈ SEN♭(Σ) and
all T ∈ Th∗Σ(I), we get

Ei
Σ(ϕ)(T ) = Ei ♭

Σ
(ϕ)(T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if Ei ♭

Σ
(ϕ) ∈ T,

ej , if Ej ♭
Σ
(Ei ♭

Σ
(ϕ)) ∈ T, j = 1, . . . ,m − 2,

0, otherwise.
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We distinguish the following cases:

(a) If ϕ(T ) = ei, then Ei ♭
Σ
(ϕ) ∈ T and, hence, Ei

Σ
(ϕ)(T ) = 1. Moreover,

for all j ≠ i, by (N3), Ej ♭
Σ
(ϕ) ∉ T and, by (N2) Ek ♭

Σ
(Ej ♭

Σ
(ϕ)) ∉ T .

Thus, we get Ej
Σ
(ϕ)(T ) = 0.

(b) If ϕ(T ) = 1, then ϕ ∈ T . So, by (N1), Ei ♭
Σ
(ϕ) ∉ T and, by (N2),

E
j ♭
Σ
(Ei ♭

Σ
(ϕ)) ∉ T . So Ei

Σ
(ϕ)(T ) = 0.

(c) If ϕ(T ) = 0, then ϕ ∉ T and Ei ♭
Σ
(ϕ) ∉ T . But, also, Ej ♭

Σ
(Ei ♭

Σ
(ϕ)) ∉ T ,

by (N2). Thus, we get Ei
Σ
(ϕ)(T ) = 0.

Therefore, we conclude that A is normal. ∎
Finally, we turn to the last claim that concludes the proof:

Claim: C = CA.
Proof: Suppose Σ ∈ ∣Sign♭∣, Φ ∪ {ϕ} ⊆ SEN♭(Σ), such that ϕ ∈ CΣ(Φ).
Thus, by structurality, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

SEN♭(f)(ϕ) ∈ CΣ′(SEN♭(f)(Φ)).
This implies that, for all T ′ ∈ ThΣ′(I),

SEN♭(f)(Φ) ⊆ T ′ implies SEN♭(f)(ϕ) ∈ T ′.
This is equivalent to asserting that

SEN♭(f)(Φ) ⊆DΣ
′,T ′

Σ′
implies SEN♭(f)(ϕ) ∈ DΣ

′,T ′

Σ′
.

Thus, we get that, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(Φ)) ⊆DΣ

′,T ′

Σ′
implies αΣ′(SEN♭(f)(ϕ)) ⊆DΣ

′,T ′

Σ′
.

Thus, by definition, ϕ ∈ CA

Σ
(Φ).

For the converse, we reverse all the steps followed above. ∎
This concludes the proof of the main theorem. ∎
We note, in closing, that the case of m = 2 gives a theorem that was

previously obtained by the author as Theorem 8 of [12].

Corollary 6 (Theorem 8 of [12]) A π-institution I is 2-referential (i.e.,
referential in the sense of [12]) if and only if Ω̃(I) = Λ(I) (i.e., if it is
self-extensional).
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