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Abstract

In [4] Rota introduced the incidence algebra of a locally finite partially
ordered set together with its Mdobius function as a unifying platform behind
several seemingly different counting principles in diverse areas of combinatorics.
Haigh [2] introduced the notion of a category algebra of a small category, thus
generalizing the notion of an incidence algebra. Those finite categories in whose
category algebras the M6bius function may be defined as an inverse of the zeta
function are termed Mobius categories. The purpose of this paper is twofold.
First, the notion of a M6bius category is generalized to include not only finite
but also locally finite posets. Second, some of the combinatorial results of [4],
including the Mdbius inversion formula, are explored in the case of Mébius
categories.

Introduction

Let R be a commutative ring with identity and P = (P, <) be a locally finite poset.
The incidence algebra I(P,R) of P over R [4] has as its carrier I(P,R) the set of
all R-valued functions of two variables f(z,y), defined for all z,y € P, and such that

f(z,y) =0ifz Ly, ie,

I(P,R)={f: PXxP— R:xz «£yimplies f(z,y) =0, for all z,y € P}.
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Addition and scalar multiplication are defined pointwise and the product fg of two
functions f,g € I(P,R) is defined by

folz,y)= Y f(z,2)9(2).

z<z<y

The multiplicative identity of the algebra I(P,R) is given by the Kronecker delta

function
|1, fz=y
Oz, y) = { 0, otherwise

The zeta function ((z,y) € I(P,R) is defined by

|1, ifz<y
C(z,y) = { 0, otherwise

It is proved in [4] that ¢ is invertible in I(P,R) and its inverse y is called the M6bius
function of P over R. For some of the history of the incidence algebra and the Mobius
function the reader is referred to [4]. Many more results and references can be found
in [5]. In [4], the Md&bius inversion formula is then proved along with a result relating
the Md6bius function of the product of two posets with the Mdbius functions of the
factors. This allows the formulation of the Inclusion-Exclusion Principle as an easy
application of these results on the Boolean algebra of all subsets of a finite set. Several
more propositions and theorems are then obtained that relate the Mobius functions
of two posets that are connected via a monotonic function or a Galois connection.
Finally, applications are presented of these results in a wide variety of contexts such as
finite lattices, geometric lattices, lattice representations, graph colorings and network
flows.

In [2], the incidence algebra I(P,R) of a poset P over the ring R is generalized
to the category algebra of a small category over a ring.

Let C be a small category and R be a commutative ring with identity as before.
For basic notation pertaining to category-theoretic notions the reader is referred to
[3] or [1]. The category algebra RC of C over R [2] is the R-algebra whose carrier
RC consists of all functions f : Mor(C) — R, such that f has finite support, i.e.,
supp(f) = {a € Mor(C) : f(a) # 0} is finite. Addition and scalar multiplication are
defined pointwise and the product of two functions f,g € RC' is given by

fgla) = > F(B)9(7).

{B:veMor(C):a=78}

The restriction that the functions in RC have finite support ensures that the sum
defining the product of two functions at a morphism has finitely many non-zero
summands and, hence, is well defined in R.
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With this definition of RC the multiplicative identity element, i.e., the Kronecker
delta function, ¢ : Mor(C) — R exists if and only if |C|, the collection of objects
of C, is finite. This, however, makes this notion deficient, since algebras of infinite
locally finite posets (viewed as categories) do not possess multiplicative identities.
In this sense, therefore, Haigh’s category algebras do not generalize Rota’s incidence
algebras in an entirely satisfactory way. This is one of the motivations for slightly
modifying the definition of a category algebra.

Definitions and Results

Let C be a small category. Given two objects C; and Cy in C, denote by [C}, Cy]
the full subcategory of C generated by the collection of all objects C' of C, such that

there exist morphisms C} ENVSREN C, in C. By analogy with posets, [C}, Cs] will be
said to be the segment in C with endpoints C; and Cs.

Definition 1 A small category C is said to be segment finite if, for every C\,Cs €
|C|, the segment [C1, Cy] is finite.

Segment finiteness is a stronger notion from the categorical notion of local finite-
ness since it requires not only that the number of arrows between any two objects
C1, (5 be finite but, in addition, that there exist finitely many objects and arrows in
the full subcategory [Cy, Cs]. The two notions do coincide, however, when restricted
to poset categories. Note for future reference that, trivially, every finite category is
segment finite and that, according to the previous remark, every locally finite poset
is segment finite when viewed as a category in the usual way.

Given two categories C, D, the product category C x D is defined as usual. If
both C and D are segment finite, then C X D is also a segment finite category. By
C* is denoted the dual category of C, which is also segment finite in case C is a
segment finite category.

Let C be a segment finite category and R be a commutative ring with identity.
Define the category algebra of C over R as the R-algebra RC having as universe
RC the collection of all functions f : Mor(C) — R. Addition and scalar multiplication
are performed point-wise and the product of two functions f,g € RC is given by

fgla) = > F(B)9(7). (1)

{B:veMor(C):a=78}

Multiplication is well-defined since the segment finiteness of C ensures that the sum
appearing on the right-hand side of (1) is finite and thus well-defined in R. Also, it
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Figure 1: Two finite categories. The first is not Mobius. The second is Mdbius over
Q but is not Mdbius over Z.

is now obvious that the function ¢ : Mor(C) — R, with

5(a) = 1, if @ =i¢, for some C € |C]|
@ = 0, otherwise

is a multiplicative identity in RC. ¢ is called the Kronecker delta function.

This notion of a category algebra generalizes properly both the notion of a category
algebra of [2] and of an incidence algebra of [4].

The zeta function ¢ : Mor(C) — R is now the constant function

((a) =1, for all & € Mor(C).

If a unique 2-sided inverse of ( exists in RC, it is called the Mobius function of C
over R and denoted by u. If 4 exists in RC then C is called a Mobius category
over R.

The two examples of Figure 1 illustrate the two possibilities that may arise in
terms of the existence of u. The finite category on the left is not a Mobius category,
since, by considering first the identity arrow 1y and then the arrow f, it is easily seen
that the conditions u(1o) + p(f) =1 and u(1lp) + p(f) = 0 must hold simultaneously.
The category pictured on the right is borrowed from [2]. Its composition (apart from
the action of the identities) is given by the table

a1 (2 /31 /32

(631 /32 (631
(6%) /31 (6%)
/61 (65) /31

Ba | B2
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and, as Haigh points out, it is Mdbius over Q with

p(1) = w0 =1, o) = (o) = p(B) = p(B2) =~

but it is not Md&bius over Z.

If C is a locally finite poset (viewed as a category), then p is its M6bius function in
the sense of [4] and, if C is a finite M&bius category, then p is the M6bius function of C
over R introduced in [2]. To see that the definition here is strictly more encompassing
than the ones presented by Rota and Haigh, consider the category C with collection
of objects IN = {0,1,2,...} and whose arrows are freely generated by the collection
of arrows

fiti—i+l, i=0,1,...,5=0,1...,2"%
This means that C(n,m) = @ if n > m, and that the arrows in C(n, m) with n < m are
in 1-1 correspondence with paths of the form fu;, fni1inpy -+ fr—tyi_1, 0 <25 < 2
for all n < j < m. This is neither a finite category nor a locally finite poset but it is
a segment finite category, which is Mobius, with Mobius function given by

1, ifa=1,, forsomen €N
pla)=< -1, fa:n—->n+1, forsomen €N .
0, otherwise

With this definition the following proposition holds. It generalizes Proposition 3.2
of [2] to the case of segment finite categories and it can be proved in exactly the same
way.

Proposition 2 A segment finite category C is a Mobius category over R if and only
iof the following set of equations has a unique solution in R.

1. For all C € |C|,

> pp) =1, > p(y) =1.

{B:veMor(C):vB=1¢} {8:veMor(C):yB=1¢}

2. For each non-identity o € Mor(C),

> w(B) =0, > pu(y) =0.

{B8,y€Mor(C):yf=a} {B,yeMor(C):yf=a}

The following proposition is the analog of Proposition 3.4 from [2]. Its proof from
[2], however, is not valid in the case of a segment finite category, since conditions 1
and 2 in this case do not imply that the length of a maximal chain of composable
non-identity morphisms in C is finite. Therefore a different approach will be adopted
for its proof. The proof presented here does not only generalize the proposition itself
but also provides a proof for Proposition 1 in [4].
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Proposition 3 Let C be a segment finite category such that

1. the composite of every pair of composable non-identity morphisms in C is a
non-identity morphism and

2. every endomorphism in C is an identity.

Then C s a Mdébius category over Z, the ring of integers.

Proof:

i Mor(C) — R has to be defined, such that u¢ = (u = ¢. First, consider
the case of an identity morphism 1¢, for some C € |C|. By conditions 1 and 2,
> (8rvs=10} M(B) = u(lc), whence, by Proposition 2,1., u(1¢) = 1. Now, consider an
arbitrary o € C(C, D). By Proposition 2, 2., 3 5 sy #(8) = 0, whence u(1lc) +
(@) + D5 vrampmay H(B) =0, Le, pla) = =1 =3 5 05-0) #(B)- Note that each
of the sums required to compute the Mobius functions on the right are strictly smaller
than the sum for u(«) because of conditions 1 and 2. u(a) may thus be computed by
iterating the last formula until the problem is reduced down to the case of identity
morphisms. |

Proposition 4 (Generalized Mébius Inversion Formula) Let C be a Mdbius
category, Cy € |C| and f : |C| = R, such that, if C(Co,C) = 0, then f(C) = 0.

Suppose that
g(C) =Y f(D).

D&¢C
Then
F©) =" g(D)u(e)
D&¢C
Proof:

First, notice that because of the condition that if C(Cy,C) = 0 then f(C) =0
and segment finiteness, the sum defining ¢ is finite and, therefore, g is well-defined.

C

D

s
N

E
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We have
S pacdDH@) = YpaoX o,/ (E) (@)
ZD%CZE%D (
SefE)Y s D%u(a)cw)

2.5 [(B) X p100(7)
= f(0).

|
Similarly, it can be shown following the dual reasoning that the following holds

Proposition 5 (Dual of the Generalized M&bius Inversion Formula) Let C
be a Mdbius category, Cy € |C| and f : |C| — R, such that, if C(C,Cy) = 0,
then f(C) = 0. Suppose that

=>_ /(D)

c3D
Then

c3D

Proposition 6 (Duality) Let C be a Mdbius category and p its Mébius function.
Then, the dual C* is also a Mdbius category and its Mobius function p* is given by
p () = u(w), for all o € Mor(C).

Proof:

As noted before, C* is also segment finite. To show that it is Mdbius it suffices
to show that p* : Mor(C*) — R, defined by u*(a*) = u(a), for all o* € Mor(C*), is
a two sided inverse of (*. We have

) = Xeyroeprmary K (B)C(Y)
= Z{ﬂ,'y:ﬂ'y:a} /“L(/B)C(’Y)

Cu(@)
d(w)

= (),

and, similarly, for ¢*u*. |

Proposition 7 Let C be a Mdbius category, p its Mébius function and S = [Cy, C1]
a segment in C. Then S is a Mdbius category and its Mobius function us is the
restriction of u on Mor(S).
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Proof:

Since every segment of S = [Cy, C1] is a segment of C, S is also segment finite
if C is. To show that it is Md&bius, it suffices to show that, for all @ € Mor(S),
(u(a) = 6(cr). For this, observe that the sum 325 c\ior(s)yp=ay C(B)1(7) is exactly
the same with the sum - 5 \ior(cyiyp=ay C(B)B(Y)- [

Proposition 8 (Product Category) Let C and D be two Mdébius categories with
Mobius functions puc and up, respectively. Then C X D s also a Mdbius category
with Mébius function pcxp = Ue X UpD-

Proof:

Once the observation that, C x D is segment finite if both C and D are, is made,
the proof follows mutatis mutandis from the corresponding proof for locally finite
posets. |

Now, the main results of [4], tying the Mébius functions of two finite posets that
are related via a Galois connection or a monotone mapping, are explored in the case
of Mobius categories that are related via an adjunction or a functor, respectively.

First, Theorem 1 of [4] is generalized to

Theorem 9 Let C,D be two Mdbius categories, with Mdébius functions uc and pp,
respectively, and (F,G,n,e) : C — D an adjunction. Suppose that Dy, Dy €
|D|, Dy # Ds, such that G(Ds) = G(D) implies Dy = D, for all D € |D|. Then

> upla) = > pc(B)-
D13D; (G(D) B c:F(C)=D1}

Proof:
Note, first that, for Cy € |C|, Dy € |D],

Z Z oc(B8) = Z (7)- (2)
Co=C G(Do) o ¢ DoF(Co)
In fact, we have
> 2 = ) 1= 3 1= > b))
Co™C G(Do) o ¢ CoBG(Do) DoF(Co) DoF(Co)

since (F,G,n,¢) : C — D is an adjunction.
Now, set, for all C € |C]|,

0= 3 6B, 9C)= )Y .

G(Do)5C Do»F(C)
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Then, by (2), we get >, a, f(C) = g(Cq), whence, by Proposition 5, we obtain
f(Co) =3 ¢ 50 9(C)pc(@). This means that

S @ =Y Y e 3)
G(DO)E)CO Co3C Do HF(C)
Now, since Cy is arbitrary, we may set Cy = G(Ds), whence
Z dc(B) = Z Z (o(7)pc(a).
G(Do)5G(D2) G(D2)%C Do HF(C)

Note that, by the hypothesis, the only possible choice for Dy that makes the left-hand
side non-zero is Dy = D,, and in this case the sum is equal to 1. Thus, the sum may
be replaced by ZD 55 dp(B). Then, we obtain

2 0

Y@= Y Y M)

Do D, G(D2)3C Do HF(C)

Therefore, we have

ZD12>D2 pp(e) = ZDIE,D2 ppop ()

ZD13>D2 Z{ﬂ,vwﬂ:a} po(B)dp(7)

2 18y 2D 50, #D(B)0D(7)

Zplﬁmo po(B) ZG(D2)3>C ZD()l)F(C) pe(a)Co ()
= Yoo L, 4 e Hel@)n(8)

= ZG(D2)E>C;F(C):D1 pe ().

|
Based on Theorem 2 of [4] the following conjecture may be formulated:

Let C,D be two finite Mdbius categories, Cy € |C|,Dy € |D|, and F : D - C a
functor. Suppose that the inverse image of every segment [Cy, Cy] in C is a segment

[Do, D1] in D and that the inverse image of Cy contains at least two objects in D.
Then, for all C € |C|, with C(Cy, C) # 0,

Z pp(a) =0.

Do%D:F(D)=C

This conjecture, however, turns out not to hold in general in the case of finite
Moébius categories. A counterexample is provided by the finite M&bius category over
Q of Haigh, mapped to the trivial category by means of the constant functor.



CATEGORICAL MOBI1US CALCULUS 10

References

[1]

2]

Barr, M., and Wells, C., Category Theory for Computing Science, Third Edition,
Les Publications CRM, Montréal, 1999

Haigh, J., On the Mdbius Algebra and the Grothendieck Ring of a Finite Cat-
egory, Journal of the London Mathematical Society, Vol. 21 (1980), No. 2, pp.
81-92

Mac Lane, S., Category Theory for the Working Mathematician, Springer-Verlag,
New York 1971

Rota, G.-C., On the Foundations of Combinatorial Theory I. Theory of Mobius
Functions, Z. Wahrscheinlichkeitstheorie, Vol. 2 (1964), pp. 340-368

Stanley, R., Enumerative Combinatorics, Vol. 1, Cambridge Studies in Advanced
Mathematics 49, Cambridge University Press, Cambridge, 1997



