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Abstract

Three areas of computer science that were developed independently but have strong
interconnections were brought together in recent work of G.-Q. Zhang and his collabo-
rators: Chu spaces and concept lattices, on the one hand, and domains and information
systems on the other. In a different direction, inspired by the work of Wille on formal
concept analysis, the author developed a theory of n-adic concept analysis that led to
the definitions of n-closure systems, n-closure operators and of n-information systems.
The infinitary versions of the ordinary concepts, discussed in Zhang’s work, are special
cases of the n-dimensional ones when restricted to the 2 dimensions. In this work, some
of the interconnections revealed in Zhang’s work between the 2-dimensional concepts
are lifted to the n-dimensional framework. The hope is that the present work may
help further clarify these relationships and also provide some impetus for considering
applications of some of the recent work in this multi-dimensional framework in fields,
such as data-mining, knowledge discovery, ontology and ontological engineering.

1 Introduction

In [23], Guo-Qiang Zhang revisited three very well established areas of theoretical computer
science and of applied mathematics and explored some interconnections between them. On
the one hand were Chu spaces, introduced by Barr and Chu [2, 3] in a categorical setting,
and used as models of linear logic in [3, 15] and, later, further developed by Pratt [9, 10,
11, 12, 13] and others at Stanford for other applications. On the other hand was domain
theory [1, 5, 8, 21, 22], which was introduced by Scott for studying in a mathematically
rigorous way the semantics of programming languages. Finally, in the applied mathematics
side was the notion of a formal context, as introduced by Wille [19, 4] and later developed
further and in various directions by other members of the Darmstadt universal algebra and
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lattice theory group. Formal contexts have proven extremely useful in the order-theoretic
analysis of scientific data.

In [23] Zhang summarized a wealth of results, known from the literature, concerning
relationships between the three frameworks and, then, further built on this work in the
collaborations [24, 7, 6], providing new insights and obtaining many interesting new results
of category-theoretic character. Some of the key relationships that were described in [23]
between Chu spaces, concept lattices and domains will be briefly reviewed in this paragraph,
since they will be useful in better understanding the account presented here of similar
interconnections in the n dimensions, for a fixed, but arbitrary, finite n.

Recall from formal concept analysis that a formal context IK = 〈O, A, I〉 consists of
a collection O of objects, a collection A of attributes and a binary relation I ⊆ O ×
A. Such a formal context gives rise to a Galois connection between sets of objects and
sets of attributes, whose fixed points form closure systems on both the set of objects and
the set of attributes. The resulting complete lattices of object concepts and of attribute
concepts are order-anti-isomorphic to each other. A formal context is identical as a structure
with a Chu space but Chu spaces, developed in a categorical setting, come together with
morphisms. Zhang exploited this additional feature to endow formal contexts with these
Chu space mappings. However, as he shows by means of an example (Example 3.6 in
[23]), Chu mappings of formal contexts do not preserve formal concepts. In Propositions
3.7-3.10, Zhang provides a summary of various conditions between the components of a
Chu mapping that are sufficient for the preservation of formal concepts. In Section 4 of
his account, Zhang presents two of the fundamental results connecting the notions that
he is considering. First, the Representation Theorem of Formal Concept Analysis, which
assures that every complete lattice is isomorphic to the complete lattice of concepts of
some formal context. Thus, studying concept lattices is tantamount to studying complete
lattices. Second, after recalling the definition of an information system of Scott, he reviews
the Basic Theorem of Domain Theory, stating that the collection of information states of
an information system is a domain and that, conversely, every domain is order-isomorphic
to the partial ordering of information states of some information system. Thus, studying
domains is, in some sense, tantamount to studying information systems. Based on this
theorem, given a formal context, a construction is provided of an information system and
it is shown that, if the collection of attributes of the formal context is finite, then a subset
of the set of attributes of the formal context is an attribute concept if and only if it is an
information state of the derived information system. The possibility of a formal context
being “infinitary”, as opposed to the finitarity always present in information systems, creates
a discrepancy between the two frameworks that is depicted by Example 4.8 in [23]. In the
present setting, this problem is avoided by considering n-information systems with possibly
infinitary deduction mechanisms. Finally, in [23] some results geared towards data-mining
applications are provided along with some pointers to various possibilities that are opening
for future theoretical and applied work in this field. Zhang himself continued theoretical
work via collaborations with other scientists in [24, 7, 6].

In all three areas of Chu spaces, concept analysis and domain theory, a central role is
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played by a binary relation between two sets. Both in the context of Chu spaces and in that
of formal concept analysis these are the set of objects and the set of attributes, whereas
in the context of domain theory, more precisely, the context of information systems, which
provide a logical framework in which one studies derivations in domain theory, these are
the set of consistent finite subsets of the set of tokens and the set of tokens itself.

In [16], inspired by work of Wille [20] extending formal concept analysis to three dimen-
sions, the author created a framework for analyzing n-dimensional formal concepts. Our
goal in this note is to give an idea on how Zhang’s account in [23] may be coupled with
these higher dimensional results to provide a framework potentially helpful in dealing with
higher dimensional applications, such as, for instance, multidimensional bits of information
in the context of web data mining, an application that was in Zhang’s mind when writing
[23] (see Section 5 of [23] and also the concluding remarks and suggestions for future work
therein).

2 Preliminaries

Some of the terminology and the basic elements of the theories of n-ordered sets, n-closure
systems and n-closure operators and polyadic formal concept analysis are reviewed in this
section.

2.1 Complete n-Ordered Sets

A relational structure P = 〈P,.1, . . . ,.n〉, where .1, . . . ,.n are quasi-orders on P , is called
an ordinal structure. Denote by ∼i := .i ∩ &i, for all i = 1, . . . , n. An ordinal structure
P = 〈P, .1, . . . ,.n〉 is called an n-ordered set if, for all x, y ∈ P and all {i1, . . . , in} =
{1, . . . , n},

1. x ∼1 y, . . . , x ∼n y imply that x = y (Uniqueness Condition)

2. x .i1 y, . . . , x .in−1 y imply y .in x (Antiordinal Dependency)

Each quasiorder .i induces in the standard way an order ≤i on the set of equivalence
classes P/∼i = {[x]i : x ∈ P}, i = 1, 2, . . . , n, where [x]i = {y ∈ P : x ∼i y}.

Let P = 〈P, .1, .2, . . . , .n〉 be an n-ordered set, j1, j2, . . . , jn−1 ∈ {1, 2, . . . , n} be
distinct and X1, X2, . . . , Xn−1 ⊆ P .

An element b ∈ P is called a (jn−1, . . . , j1)-bound of (Xn−1, Xn−2, . . . , X1) if xi .ji b, for
all xi ∈ Xi and all i = 1, . . . , n − 1. The set of all (jn−1, . . . , j1)-bounds of (Xn−1, . . . , X1)
is denoted by (Xn−1, . . . , X1)(jn−1,...,j1).

A (jn−1, . . . , j1)-bound l ∈ (Xn−1, . . . , X1)(jn−1,...,j1) of (Xn−1, . . . , X1) is called a (jn−1,
. . . , j1)-limit of (Xn−1, . . . , X1) if l &jn b, for all (jn−1, . . . , j1)-bounds b ∈ (Xn−1, . . . ,
X1)(jn−1,...,j1). The set of all (jn−1, . . . , j1)-limits of (Xn−1, . . . , X1) is denoted by (Xn−1,

. . . , X1)(jn−1,...,j1).
The following proposition was proved in [16].
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Proposition 1 Let P = 〈P, .1, . . . ,.n〉 be an n-ordered set, X1, . . . , Xn−1 ⊆ P and {j1,
. . . , jn} = {1, . . . , n}. Then, there exists at most one (jn−1, . . . , j1)-limit l̄ of (Xn−1, . . . , X1)
satisfying

(C) l̄ is the largest in .j2 among the largest limits in .j3 among . . . among the largest
limits in .jn−1 among the largest limits in .jn or, equivalently,

(C’) l̄ is the smallest in .j1 among the largest limits in .j3 among . . . among the largest
limits in .jn−1 among the largest limits in .jn.

If it exists, a (jn−1, . . . , j1)-limit satisfying the statement in Proposition 1 is called the
(jn−1, . . . , j1)-join of (Xn−1, . . . , X1) and denoted by ∇jn−1,...,j1(Xn−1, . . . , X1).

An n-ordered set P = 〈P, .1, . . . ,.n〉 is said to be a complete n-lattice if all (jn−1, . . . ,
j1)-joins exist in P, for all {j1, . . . , jn} = {1, . . . , n}. It is said to be an n-lattice if all joins of
the form ∇jn−1,...,j1({xn−1,1, xn−1,2}, . . . , {x1,1, x1,2}) exist, for all {j1, . . . , jn} = {1, . . . , n}.
It was shown in the Reduction of Arity Theorem 12 of [17] that this condition is equivalent
to the existence in P of all joins of the form ∇jn−1,...,j1(Xn−1, . . . , X1), with Xi finite,
i = 1, . . . , n−1, for all {j1, . . . , jn} = {1, . . . , n}. Finally, P is called a complete n-semilattice
(see [18]) if ∇n−1,...,1(Xn−1, . . . , X1) exists in P, for all X1, . . . , Xn−1 ⊆ P .

2.2 n-Closure Systems and n-Closure Operators

Given a set K, by P(K) will be denoted the powerset of the set K. The following definitions
of an n-closure system and of an n-closure operator have been first formulated in [18].

Definition 2 Let K1, . . . , Kn be n sets. An n-closure system L on K1, . . . ,Kn is defined
to be a collection of n-tuples of subsets L ⊆ P(K1)× · · · × P(Kn), such that,

1. (A1, . . . , An) ⊆i (B1, . . . , Bn), i 6= k, imply (B1, . . . , Bn) ⊆k (A1, . . . , An), for all k =
1, . . . , n,

2. for all Xi ⊆ Ki, i = 1, . . . , n − 1, there exists unique A = (A1, . . . , An) ∈ L, such
that A has the largest second component among all n-tuples in L with the largest third
component among . . . among all n-tuples with the largest n-th component among all
n-tuples B = (B1, . . . , Bn) in L such that Xi ⊆ Bi, i = 1, . . . , n− 1.

Using a variant of the notation introduced in [20] and adopted in [16], we denote the
element A ∈ L in Condition 2 of the definition of an n-closure system by βn−1,...,1(Xn−1, . . . ,
X1).

Next, the notion of an n-closure operator is introduced. n-closure systems and n-closure
operators are in a relation similar to the one satisfied by ordinary (2-dimensional) closure
systems and closure operators.

Definition 3 Let K1,K2, . . . , Kn be arbitrary sets. An n-closure operator on K1, . . . , Kn

is a mapping from P(K1)× · · · ×P(Kn−1) to P(K1)× · · · ×P(Kn), such that the following
conditions hold:
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1. If C(X1, . . . , Xn−1) = (A1, . . . , An) and x ∈ Xi, then x ∈ Ai, for all i = 1, . . . , n− 1.

2. If C(X1, . . . , Xn−1) = (A1, . . . , An), C(Y1, . . . , Yn−1) = (B1, . . . , Bn) and

Xi ⊆ Yi, i = 1, . . . , n− 1, then Bn ⊆ An.

3. If C(X1, . . . , Xn−1) = (A1, . . . , An), C(Y1, . . . , Yn−1) = (B1, . . . , Bn) and

Xi ⊆ Yi, i ≤ k, and Ai = Bi, i > k, for some k = 1, . . . , n− 1, then Bk ⊆ Ak.

4. If C(X1, . . . , Xn−1) = (A1, . . . , An), C(Y1, . . . , Yn−1) = (B1, . . . , Bn) and

Ai ⊆ Bi, i 6= k, for some k = 1, . . . , n, then Bk ⊆ Ak.

5. If C(X1, . . . , Xn−1) = (A1, . . . , An), then C(A1, . . . , An−1) = (A1, . . . , An).

If C(X1, . . . , Xn−1) = (A1, . . . , An), then we adopt the notation

Ci(X1, . . . , Xn−1) := Ai, i = 1, . . . , n,

with the warning that this is just a notational convention and it is not meant to imply that
Ci is a closure operator in the traditional sense.

It was shown in Lemma 4 of [18] that the collection of all closed sets of an n-closure
operator form an n-closure system.

Lemma 4 (Lemma 4 of [18]) Suppose that C : P(K1)×· · ·×P(Kn−1) → P(K1)×· · ·×
P(Kn) is an n-closure operator. Then the collection

L = {(A1, . . . , An) ∈ P(K1)× · · · × P(Kn) : C(A1, . . . , An−1) = (A1, . . . , An)}

is an n-closure system.

It was furthermore shown in Proposition 11 of [18] that the collection of sets in an
n-closure system forms a complete n-semilattice under the n component-wise inclusion
relations.

Proposition 5 (Proposition 11 of [18]) If L ⊆ P(K1) × · · · × P(Kn) is an n-closure
system, then 〈L,⊆1, . . . ,⊆n〉 is a complete n-semilattice.
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2.3 n-ary Relations and n-Closure Operators

Let K1, . . . , Kn be sets and R ⊆ K1 × · · · ×Kn an n-ary relation between K1, . . . ,Kn. For
all j = 1, . . . , n, and all Xi ⊆ Ki, i 6= j, define

Rj(X1, . . . , Xj−1, Xj+1, . . . , Xn) =
{a ∈ Kj : (x1, . . . , xj−1, a, xj+1, . . . , xn) ∈ R, for all xi ∈ Xi, i 6= j}.

Now consider Xi ⊆ Ki, i = 1, . . . , n−1. Define, by downward induction on k = n, . . . , 1, the
n-tuple bn−1,...,1(Xn−1, . . . , X1) = 〈bn−1,...,1(Xn−1, . . . , X1)1, . . . , bn−1,...,1(Xn−1, . . . , X1)n〉
as follows:

bn−1,...,1(Xn−1, . . . , X1)n = Rn(X1, . . . , Xn−1),

and, given bn−1,...,1(Xn−1, . . . , X1)i, for all i = n, n− 1, . . . , k + 1,

bn−1,...,1(Xn−1, . . . , X1)k =
Rk(X1, . . . , Xk−1, bn−1,...,1(Xn−1, . . . , X1)k+1, . . . , bn−1,...,1(Xn−1, . . . , X1)n).

It is not difficult to show that (X1, . . . , Xn−1) 7→ bn−1,...,1(Xn−1, . . . , X1) forms an n-
closure operator bn−1,...,1 : P(K1) × · · · × P(Kn−1) → P(K1) × · · · × P(Kn). This result
goes back to Proposition 3 of [16].

Proposition 6 Let K1, . . . ,Kn be sets and R ⊆ K1 × · · · ×Kn an n-ary relation between
K1, . . . , Kn. Then, the mapping C : P(K1) × · · · × P(Kn−1) → P(K1) × · · · × P(Kn),
defined by C(X1, . . . , Xn−1) = bn−1,...,1(Xn−1, . . . , X1), for all Xi ⊆ Ki, i = 1, . . . , n − 1, is
an n-closure operator.

Proof:
All Properties 1-5 in the definition of an n-closure operator are routine to verify. So the

details of the proof are left to the reader. ¥

3 Polyadic Contexts and Complete n-lattices

The following definition first appeared in [16] and introduces polyadic formal contexts. The
inspiration came from Wille’s triadic formal contexts [20]. Wille generalized an earlier
framework of his, based on a binary relation between objects and attributes, to one based
on a ternary relation involving objects, attributes and situations. The author abstracted
this application-oriented ideas of Wille to an arbitrary n-dimensional setting. The idea of
introducing mappings between n-adic formal contexts of the kind defined in Definition 7
comes from Zhang’s introduction of Chu morphisms in the dyadic formal context setting
[23].

Definition 7 An n-adic formal context is an (n + 1)-tuple IK = 〈K1, . . . ,Kn, Y 〉, where
K1, . . . , Kn are sets and Y ⊆ K1 × · · · ×Kn is an n-ary relation between K1, . . . , Kn.
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Given two n-adic formal contexts IK = 〈K1, . . . , Kn, Y 〉 and IL = 〈L1, . . . , Ln, Z〉, a
mapping from IK to IL is an n-tuple of functions 〈f1, . . . , fn〉, with fn : Kn → Ln and
fi : Li → Ki, for all i = 1, . . . , n − 1, such that the following condition is satisfied, for all
yn ∈ Kn and all xi ∈ Li, i = 1, . . . , n− 1,

(f1(x1), . . . , fn−1(xn−1), yn) ∈ Y iff (x1, . . . , xn−1, fn(yn)) ∈ Z.

Given an n-adic formal context IK = 〈K1, . . . , Kn, Y 〉 and i = 1, . . . , n, recall, from the
relational framework of the previous section, that Yi : P(K1)× · · · × P(Ki−1)×P(Ki+1)×
· · · × P(Kn) → P(Ki) is defined by

Yi(X1, . . . , Xi−1, Xi+1, . . . , Xn) =
{a ∈ Ki : (x1, . . . , xi−1, a, xi+1, . . . , xn), for all xj ∈ Xj , j 6= i}.

An n-tuple 〈X1, . . . , Xn〉, with Xi ⊆ Ki, i = 1, . . . , n, is said to be closed or an (n-adic
formal) concept if

Yi(X1, . . . , Xi−1, Xi+1, . . . , Xn) = Xi, for all i = 1, . . . , n.

The collection of all n-adic concepts of the n-adic formal context IK is denoted by C(IK).
They are ordered by the the n component-wise quasi-orderings ⊆i, i = 1, . . . , n. In this way
an ordinal structure C(IK) = 〈C(IK),⊆1, . . . ,⊆n〉 is formed.

The following result was proven in [16]:

Theorem 8 (Part 1 of Theorem 6 of [16]) Let IK = (K1, . . . , Kn, Y ) be an n-adic con-
text. Then C(IK) = 〈C(IK),⊆1, . . . ,⊆n〉 is a complete n-lattice for which the (jn−1, . . . , j1)-
joins ({j1, . . . , jn} = {1, . . . , n}) are described by

∇jn−1,...,j1Xj′n = bjn−1,...,j1(〈
⋃
{Ai : (A1, . . . , An) ∈ Xi} : i 6= jn〉).

Here, if i = jn, Xj′n = 〈X1, . . . ,Xi−1, Xi+1, . . . , Xn〉, and Xji ⊆ C(IK), for all i 6= n.

As a consequence of Theorem 8, Proposition 6 and Lemma 4 we obtain the following
corollary:

Corollary 9 Let IK = (K1, . . . , Kn, Y ) be an n-adic context. Then C(IK) forms an n-
closure system

Chu mappings do not necessarily preserve n-adic concepts. This was shown in the dyadic
case, i.e., the case of Chu mappings, in Example 3.6 of G.-Q. Zhang [23]. The dyadic case
is a special case of our more general n-adic framework.

We close this section by studying a few analogs of dyadic results that clarify the inter-
action of n-adic formal context mappings with complete n-adic concept lattices.

Given a mapping f : A → B, we adopt the notation of Definition 2.5 of [23]:

f+ : P(A) → P(B) with X 7→ {f(a) : a ∈ X},
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f− : P(B) → P(A) with Y 7→ {a : f(a) ∈ Y }.
Then we obtain the following interesting analogs of Propositions 3.7-3.10 of [23] in the n
dimensions.

Proposition 10 Suppose that IK = 〈K1, . . . , Kn, R〉, IL = 〈L1, . . . , Ln, S〉 are two n-adic
formal contexts and f = 〈f1, . . . , fn〉 a morphism f : IK → IL. Then we have, for all
Xi ⊆ Li, i = 1, . . . , n− 1,

Rn(f+
1 (X1), . . . , f+

n−1(Xn−1)) = f−n (Sn(X1, . . . , Xn−1)).

K1

L1

6
f1

K2

L2

6
f2 · · ·

Kn−1

Ln−1

6
fn−1

Kn

Ln

?
fn

Furthermore, for all i = 1, . . . , n − 1, all Xj ⊆ Lj , j = 1, . . . , n − 1, j 6= i, and all
Yn ⊆ Kn,

f−i (Ri(f+
1 (X1), . . . , f+

i−1(Xi−1), f+
i+1(Xi+1), . . . , f+

n−1(Xn−1), Yn)) =
Si(X1, . . . , Xi−1, Xi+1, . . . , Xn−1, f

+
n (Yn)).

Proof:
Suppose, first, that x ∈ Kn is such that x ∈ Rn(f+

1 (X1), . . . , f+
n−1(Xn−1)). Then, for

all xi ∈ Xi, i = 1, . . . , n − 1, we have that (f1(x1), . . . , fn−1(xn−1), x) ∈ R. This holds
if and only if (x1, . . . , xn−1, fn(x)) ∈ S, whence fn(x) ∈ Sn(X1, . . . , Xn−1). Therefore
x ∈ f−n (Sn(X1, . . . , Xn−1)). Since all steps in the above implications are reversible, we
obtain the desired equality.

Suppose, next, that x ∈ Li, such that

x ∈ f−i (Ri(f+
1 (X1), . . . , f+

i−1(Xi−1), f+
i+1(Xi+1), . . . , f+

n−1(Xn−1), Yn)).

Then we have that fi(x) ∈ Ri(f+
1 (X1), . . . , f+

i−1(Xi−1), f+
i+1(Xi+1), . . . , f+

n−1(Xn−1), Yn).
Therefore, for all xj ∈ Xj , j = 1, . . . , n− 1, j 6= i, and all y ∈ Yn, we have that

(f1(x1), . . . , fi−1(xi−1), fi(x), fi+1(xi+1), . . . , fn−1(xn−1), y) ∈ R.

Therefore, we obtain that (x1, . . . , xi−1, x, xi+1, . . . , xn−1, fn(y)) ∈ S, which yields x ∈
Si(X1, . . . , Xi−1, Xi+1, . . . , Xn−1, f

+
n (Y )), as was to be shown. Once more, the above steps

are all reversible, whence the stated equality follows. ¥
We are now ready to formulate Proposition 11, which reveals some connections between

the n-adic concept operators and the morphisms of n-adic contexts. Proposition 11 is an
n-dimensional analog of Proposition 3.9 of [23].
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Proposition 11 Suppose that IK = 〈K1, . . . , Kn, R〉, IL = 〈L1, . . . , Ln, S〉 are two n-adic
formal contexts and f = 〈f1, . . . , fn〉 a morphism f : IK → IL, such that fi is surjective, for
all i = 1, . . . , n. Then

1. if (X1, . . . , Xn) ∈ C(IL), then (f+
1 (X1), . . . , f+

n−1(Xn−1), f−n (Xn)) ∈ C(IK) and

2. if (Y1, . . . , Yn) ∈ C(IK), then (f−1 (Y1), . . . , f−n−1(Yn−1), f+
n (Yn)) ∈ C(IL).

Proof:

1. Assume that (X1, . . . , Xn) ∈ C(IL). We show, first, that

f−n (Xn) = Rn(f+
1 (X1), . . . , f+

n−1(Xn−1)).

We have y ∈ f−n (Xn) if and only if fn(y) ∈ Xn if and only if, by hypothesis,
fn(y) ∈ Sn(X1, . . . , Xn−1) if and only if y ∈ f−n (Sn(X1, . . . , Xn−1)) if and only if,
by Proposition 10, y ∈ Rn(f+

1 (X1), . . . , f+
n−1(Xn−1)), as was to be shown. Next, it

must be shown that, for every i = 1, . . . , n− 1,

f+
i (Xi) = Ri(f+

1 (X1), . . . , f+
i−1(Xi−1), f+

i+1(Xi+1), . . . , f+
n−1(Xn−1), f−n (Xn)).

We only show the case i = 1. The remaining cases follow then by symmetry. We have
y ∈ f+

1 (X1) if and only if, there exists x ∈ X1, such that y = f1(x), if and only if, by
hypothesis, there exists x ∈ S1(X2, . . . , Xn−1, Xn), such that y = f1(x), iff, by sur-
jectivity, there exists x ∈ S1(X2, . . . , Xn−1, f

+
n (f−n (Xn))), such that y = f1(x), if and

only if, by Proposition 10, there exists x ∈ f−1 (R1(f+
2 (X2), . . . , f+

n−1(Xn−1), f−n (Xn))),
such that y = f1(x), if and only if y = f1(x) ∈ R1(f+

2 (X2), . . . , f+
n−1(Xn−1), f−n (Xn)),

as was to be shown.

2. Assume that (Y1, . . . , Yn) ∈ C(IK). We first show that

f+
n (Yn) = Sn(f−1 (Y1), . . . , f−n−1(Yn−1)).

We have x ∈ f+
n (Yn) if and only if, there exists y ∈ Yn, such that x = fn(y), if and only

if, by the hypothesis, there exists y ∈ Rn(Y1, . . . , Yn−1), such that x = fn(y), if and
only if, by surjectivity, there exists y ∈ Rn(f+

1 (f−1 (Y1)), . . . , f+
n−1(f

−
n−1(Yn−1))), such

that x = fn(y), if and only if, by Proposition 10, there exists y ∈ f−n (Sn(f−1 (Y1), . . . ,
f−n−1(Yn−1))), such that y = fn(x), if and only if x = fn(y) ∈ Sn(f−1 (Y1), . . . ,
f−n−1(Yn−1)). Finally, it must be shown that, for all i = 1, . . . , n− 1,

f−i (Yi) = Si(f−1 (Y1), . . . , f−i−1(Yi−1), f−i+1(Yi+1), . . . , f−n−1(Yn−1), f+
n (Yn)).

We only show the case i = 1. The remaining cases then follow by symmetry.
We have y ∈ f−1 (Y1) if and only if f1(x) ∈ Y1 if and only if, by the hypothesis,
f1(x) ∈ R1(Y2, . . . , Yn−1, Yn) if and only if x ∈ f−1 (R1(Y2, . . . , Yn−1, Yn)) if and only
if, by surjectivity, x ∈ f−1 (R1(f+

2 (f−2 (Y2)), . . . , f+
n−1(f

−
n−1(Yn−1)), Yn)) if and only if,

by Proposition 10, x ∈ S1(f−2 (Y2), . . . , f−n−1(Yn−1), f+
n (Yn)).
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¥
Finally, some conditions are given under which the converse implications of the ones

presented in Proposition 11 hold.

Proposition 12 Suppose that IK = 〈K1, . . . , Kn, R〉, IL = 〈L1, . . . , Ln, S〉 are two n-adic
formal contexts and f = 〈f1, . . . , fn〉 a morphism f : IK → IL.

1. If fn is surjective and fi is injective, for all i = 1, . . . , n− 1, then,

if (f+
1 (X1), . . . , f+

n−1(Xn−1), f−n (Xn)) ∈ C(IK), then (X1, . . . , Xn) ∈ C(IL).

2. If fi is surjective, for all i = 1, . . . , n− 1, and fn is injective, then,

if (f−1 (Y1), . . . , f−n−1(Yn−1), f+
n (Yn)) ∈ C(IL), then (Y1, . . . , Yn) ∈ C(IK).

Proof:

1. Suppose that (f+
1 (X1), . . . , f+

n−1(Xn−1), f−n (Xn)) ∈ C(IK). To show that, under the
given hypotheses, (X1, . . . , Xn) ∈ C(IL), we show, first, that

Xn = Sn(X1, . . . , Xn−1).

We have x ∈ Xn if and only if, by surjectivity, x ∈ f+
n (f−n (Xn)) if and only if,

there exists y ∈ f−n (Xn), such that x = fn(y), if and only if, by the hypothesis,
there exists y ∈ Rn(f+

1 (X1), . . . , f+
n−1(Xn−1)), such that x = fn(y), if and only if,

by Proposition 10, there exists y ∈ f−n (Sn(X1, . . . , Xn−1)), such that x = fn(y), if
and only if x = fn(y) ∈ Sn(X1, . . . , Xn−1). Next, it must be shown that, for all
i = 1, . . . , n− 1,

Xi = Si(X1, . . . , Xi−1, Xi+1, . . . , Xn−1, Xn).

We show the case i = 1. The remaining cases then follow by symmetry. We have
x ∈ X1 if and only if, by injectivity, f1(x) ∈ f+

1 (X1) if and only if, by the hypothesis,
f1(x) ∈ R1(f+

2 (X2), . . . , f+
n−1(Xn−1), f−n (Xn)) if and only if x ∈ f−1 (R1(f+

2 (X2), . . . ,
f+

n−1(Xn−1), f−n (Xn))) if and only if, once again by Proposition 10, x ∈ S1(X2, . . . ,
Xn−1, f

+
n (f−n (Xn))) if and only if, by surjectivity, x ∈ S1(X2, . . . , Xn−1, Xn).

2. Suppose that (f−1 (Y1), . . . , f−n−1(Yn−1), f+
n (Yn)) ∈ C(IL). To show that, under the

given hypothesis, (Y1, . . . , Yn) ∈ C(IK), we show, first, that

Yn = Rn(Y1, . . . , Yn−1).

We have y ∈ Yn if and only if, by injectivity, fn(y) ∈ f+
n (Yn) if and only if, by the

hypothesis, fn(y) ∈ Sn(f−1 (Y1), . . . , f−n−1(Yn−1)) if and only if y ∈ f−n (Sn(f−1 (Y1), . . . ,
f−n−1(Yn−1))) if and only if, by Proposition 10,

y ∈ Rn(f+
1 (f−1 (Y1)), . . . , f+

n−1(f
−
n−1(Yn−1)))
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if and only if, by surjectivity, y ∈ Rn(Y1, . . . , Yn−1). Next, it must be shown that, for
all i = 1, . . . , n− 1, we have that

Yi = Ri(Y1, . . . , Yi−1, Yi+1, . . . , Yn−1, Yn).

We only show the case i = 1. The remaining cases then follow by symmetry. We
have y ∈ Y1 if and only if, by surjectivity, y ∈ f+

1 (f−1 (Y1)) if and only if, there exists
x ∈ f−1 (Y1), such that y = f1(x), if and only if, by the hypothesis, there exists x ∈
S1(f−2 (Y2), . . . , f−n−1(Yn−1), f+

n (Yn)), such that y = f1(x), if and only if, by Proposition
10, there exists x ∈ f−1 (R1(f+

2 (f−2 (Y2)), . . . , f+
n−1(f

−
n−1(Yn−1)), Yn)), such that y =

f1(x), if and only if, by surjectivity, there exists x ∈ f−1 (R1(Y2, . . . , Yn−1, Yn)), such
that y = f1(x), if and only if y = f1(x) ∈ R1(Y2, . . . , Yn−1, Yn).

¥
In Theorem 8, it was shown that the collection of closed sets of an n-adic formal context

forms a complete n-lattice under the n component-wise quasi-orderings. Theorem 6 of [16] is
actually a stronger result containing a converse of this statement that will be presented now.
The origins of this result go back to Wille’s work on the triadic case and his Fundamental
Theorem of Triadic Concept analysis in [20].

Theorem 13 (Representation Theorem) For every complete n-lattice L = 〈L,.1, . . . ,
.n〉, there exists an n-adic formal context IK, such that L ∼= C(IK).

We note that, given L in the Representation Theorem 13, the n-adic formal context that
serves the purpose of verifying the conclusion is the context IK = 〈L, . . . , L, YL〉, where YL

is the n-ary relation on L, defined by

YL = {(x1, . . . , xn) ∈ Ln : (x1, . . . , xn) is joined},

where (x1, . . . , xn) ∈ Ln is joined in L if and only if, by definition, there exists y ∈ L, such
that xi .i y, for all i = 1, . . . , n.

We note that, actually, Theorem 6 of [16] is more general than Theorem 13 and refer
the reader to the proof of Theorem 6 of [16] for clues on how to prove Theorem 13 rather
than repeating the proof here.

4 Complete n-Semilattices and n-Information Systems

The final concept that is related to the ones dealt with here is that of an n-information
system, that was inspired by the concept of an information system of Scott [14]. Note,
however, that, for the purposes of the present exposition, no consideration will be given to
consistent sets of tokens. This is due to our desire to allow in the present setting possibly
infinitary deductions, so that the current notion may fit exactly the framework of n-adic
formal contexts and the induced (possibly infinitary) n-closure operators. A treatment of
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the finitary case, at both the level of n-closure operators and of n-information systems, is
postponed for future study.

Notice how the conditions given for an n-information system in Definition 14 reflect the
conditions imposed on an n-closure operator, in a way analogous to the entailment condi-
tions of an ordinary information system reflecting the conditions imposed on an ordinary
closure operator.

Definition 14 An n-information system is a 2n-tuple A = 〈A1, . . . , An,`1, . . . ,`n〉 con-
sisting of

1. a set Ai of i-tokens, i = 1, . . . , n,

2. a relation of i-entailment `i between members of P(A1), . . . ,P(An−1) and members
of Ai, i = 1, . . . , n, (formally `i⊆ P(A1)× · · · × P(An−1)×Ai) satisfying

(a) If a ∈ Yj for some j = 1, . . . , n− 1, then Y1, . . . , Yn−1 `j a.

(b) For all Yi, Zi ⊆ Ai, i = 1, . . . , n− 1, such that Yi ⊆ Zi,

Z1, . . . , Zn−1 `n a implies Y1, . . . , Yn−1 `n a.

(c) For all Xi, Yi ⊆ Ai, i = 1, . . . , n− 1, if, for some k = 1, . . . , n− 1,

• Xi ⊆ Yi, for all i ≤ k, and
• X1, . . . , Xn−1 `i a iff Y1, . . . , Yn−1 `i a, for all a ∈ Ai and all i > k,

then Y1, . . . , Yn−1 `k a implies X1, . . . , Xn−1 `k a, for all a ∈ Ak.

(d) For all Xi, Yi ⊆ Ai, i = 1, . . . , n− 1, if, for some k = 1, . . . , n− 1,

X1, . . . , Xn−1 `i a implies Y1, . . . , Yn−1 `i a, for all a ∈ Ai and all i 6= k,

then, for all a ∈ Ak, Y1, . . . , Yn−1 `k a implies X1, . . . , Xn−1 `k a.

(e) If Yi ⊆ Ai, i = 1, . . . , n−1, and Zi = {a ∈ Ai : Y1, . . . , Yn−1 `i a}, i = 1, . . . , n−1,
then, for all k = 1, . . . , n, and all a ∈ Ak,

Z1, . . . , Zn−1 `k a, implies Y1, . . . , Yn−1 `k a.

Suppose that A = 〈A1, . . . , An,`1, . . . ,`n〉 is an n-information system. Given Xi ⊆ Ai,
i = 1, . . . , n− 1, define

(X1, . . . , Xn−1)
i
:= {a ∈ Ai : X1, . . . , Xn−1 `i a}.

This is the set of tokens of the n-information system that are i-deducible from the (n− 1)-
tuple (X1, . . . , Xn−1).

An n-tuple 〈E1, . . . , En〉 of subsets Ei ⊆ Ai, i = 1, . . . , n, is said to be an element or an
(information) state of the n-information system A if
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1. E1, . . . , En−1 `i a implies a ∈ Ei, for all i = 1, . . . , n− 1, a ∈ Ai, and

2. E1, . . . , En−1 `n a iff a ∈ En, for all a ∈ An.

By |A| is denoted the collection of all information states of the n-information system
A.

In the following proposition, it is shown that

(X1, . . . , Xn−1) = 〈(X1, . . . , Xn−1)
1
, . . . , (X1, . . . , Xn−1)

n〉

is an information state whenever Xi ⊆ Ai, for all i = 1, . . . , n − 1, and, conversely, that
every information state of the n-information system A has this form.

Proposition 15 Suppose that A = 〈A1, . . . , An,`1, . . . ,`n〉 is an n-information system.
For all Xi ⊆ Ai, i = 1, . . . , n− 1, the n-tuple

(X1, . . . , Xn−1) = 〈(X1, . . . , Xn−1)
1
, . . . , (X1, . . . , Xn−1)

n〉

is an information state of A. Conversely, every information state 〈E1, . . . , En〉 of A has
the form

(X1, . . . , Xn−1) = 〈(X1, . . . , Xn−1)
1
, . . . , (X1, . . . , Xn−1)

n〉,
for some Xi ⊆ Ai, i = 1, . . . , n− 1.

Proof:
Let Xi ⊆ Ai, i = 1, . . . , n − 1, and denote by Zi = (X1, . . . , Xn−1)

i
, i = 1, . . . , n. Then,

we have that, for all i = 1, . . . , n and all zi ∈ Zi, X1, . . . , Xn−1 `i zi. Now suppose that

(X1, . . . , Xn−1)
1
, . . . , (X1, . . . , Xn−1)

n−1 `k a,

for some k = 1, . . . , n, and some a ∈ Ak. This is equivalent to Z1, . . . , Zn−1 `k a,
whence by Condition 2(e) of an n-information system, we get that X1, . . . , Xn−1 `k a,

i.e., that a ∈ (X1, . . . , Xn−1)
k
. Therefore, (X1, . . . , Xn−1) is `k-closed. This shows that

(Z1, . . . , Zn−1)
k

= (X1, . . . , Xn−1)
k
, for all k = 1, . . . , n − 1. Finally, by Condition 2(d) of

Definition 14, we get that Zn = (X1, . . . , Xn−1)
n

= (Z1, . . . , Zn−1)
n
.

Suppose, conversely, that 〈E1, . . . , En〉 is an information state of A. It will be shown
that Ei = (E1, . . . , En−1)

i
, for all i = 1, . . . , n. By Condition 2 in the definition of an

information state, it suffices to do this for k = 1, . . . , n − 1. By Condition 2(a) of the
definition of an n-information system, Ek ⊆ (E1, . . . , En−1)

k
. On the other hand, by the

hypothesis, since 〈E1, . . . , En〉 is an information state, we get that (E1, . . . , En)
k ⊆ Ek.

Therefore, for all k = 1, . . . , n− 1, (E1, . . . , En−1)
k

= Ek. ¥
Next, it is shown that the map (X1, . . . , Xn−1) 7→ (X1, . . . , Xn−1) is an n-dimensional

closure operator on A1, . . . , An.
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Proposition 16 Suppose that A = 〈A1, . . . , An,`1, . . . ,`n〉 is an n-information system.
The mapping 〈X1, . . . , Xn−1〉 7→ (X1, . . . , Xn−1) is an n-closure operator : P(A1)× · · · ×
P(An−1) → P(A1)× · · · × P(An).

Proof:
It is shown that all five conditions of Definition 3 hold for for the mapping 〈X1, . . . ,

Xn−1〉 7→ (X1, . . . , Xn−1).
Condition 1 of Definition 3 follows from Condition 2(a) of Definition 14. Condition 2 of

Definition 3 follows from Condition 2(b) of Definition 14. Condition 3 of Definition 3 follows
from Condition 2(c) of Definition 14. Condition 4 of Definition 3 follows from Condition
2(d) of Definition 14. Finally, Condition 5 of Definition 3 follows from Condition 2(e) of
Definition 14. ¥

Propositions 15 and 16 show that every n-information system gives rise to an n-closure
operator, whose associated n-closure system consists of the entire collection of all informa-
tion states of the n-information system. Therefore, we obtain

Theorem 17 The collection |A| of information states of an n-information system A is an
n-closure system.

It will now be shown that, conversely, every n-closure system gives rise to an n-infor-
mation system.

Definition 18 Suppose that L ⊆ P(K1)× · · · × P(Kn) be an n-closure system. Define the
2n-tuple IS(L) = 〈A1, . . . , An,`1, . . . ,`n〉 by setting

• Ai = Ki, for all i = 1, . . . , n,

• X1, . . . , Xn−1 `j a if and only if a ∈ βn−1,...,1(Xn−1, . . . , X1)j, for all Xi ⊆ Ai, i =
1, . . . , n− 1, all j = 1, . . . , n and all a ∈ Aj.

Proposition 19 Given an n-closure system L, IS(L) is an n-information system.

Proof:
By Lemma 5 of [18], (X1, . . . , Xn−1) 7→ βn−1,...,1(Xn−1, . . . , X1) is an n-closure operator

on A1, . . . , An. Therefore all five conditions of Definition 3 are satisfied by βn−1,...,1. Now it
is not difficult to see that IS(L), as defined by Definition 18, satisfies all five corresponding
conditions of Definition 14. Therefore IS(L) is indeed an n-information system. ¥

The passage from an n-information system A to the n-closure system |A| of its infor-
mation states, as established in Theorem 17, and the passage from an n-closure system L
to the corresponding n-information system IS(L), given in Proposition 19, are inverses of
each other in a sense made precise by the following theorem.

Theorem 20 The mappings L 7→ IS(L) and A 7→ |A| are mutually inverse and set up
a bijective correspondence between the class of all n-closure systems and the class of all
n-information systems.
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Proof:
Suppose given an n-closure system L and an n-information system A. Then, by following

the relevant definitions, we obtain

(X1, . . . , Xn) ∈ |IS(L)| iff (X1, . . . , Xn) = (X1, . . . , Xn) in IS(L)
iff βn−1,...,1(An−1, . . . , A1) = (A1, . . . , An) in L
iff (A1, . . . , An) ∈ L,

and, similarly,

(X1, . . . , Xn) `i a in IS(|A|) iff a ∈ βn−1,...,1(Xn−1, . . . , X1)i in |A|
iff a ∈ (X1, . . . , Xn−1)

i
in A

iff X1, . . . , Xn−1 `i a in A.

¥
Finally, a connection is revealed between n-adic formal contexts and n-information sys-

tems and between n-adic formal concepts and information states. Similarly with the 2-
dimensional case, in the n-dimensional framework, an n-adic formal context determines an
n-information system, whose information states coincide with the n-adic formal concepts of
the n-adic context.

Definition 21 Suppose that IK = 〈K1, . . . , Kn, R〉 is an n-adic formal context. Consider
the system IS(IK) = 〈K1, . . . , Kn,`1, . . . ,`n〉, where, for all i = 1, . . . , n,

X1, . . . , Xn−1 `i a if and only if a ∈ bn−1,...,1(Xn−1, . . . , X1)i,

for all Xj ⊆ Kj , j = 1, . . . , n− 1, all a ∈ Ki.

Given an n-adic formal context IK, the 2n-tuple IS(IK) is an n-information system.

Proposition 22 Given an n-adic formal context IK = 〈K1, . . . , Kn, R〉, the system

IS(IK) = 〈K1, . . . , Kn,`1, . . . ,`n〉

is an n-information system.

Proof:
Recall that, given an n-adic formal context IK = 〈K1, . . . , Kn, R〉, the mapping (X1,

. . . , Xn−1) 7→ bn−1,...,1(Xn−1, . . . , X1), defined, by downward induction on k = n, . . . , 1, by

bn−1,...,1(Xn−1, . . . , X1)n = Rn(X1, . . . , Xn−1),

and, given bn−1,...,1(Xn−1, . . . , X1)i, for all i = n, n− 1, . . . , k + 1,

bn−1,...,1(Xn−1, . . . , X1)k =
Rk(X1, . . . , Xk−1, bn−1,...,1(Xn−1, . . . , X1)k+1, . . . , bn−1,...,1(Xn−1, . . . , X1)n),
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was shown in Proposition 6 to be an n-closure operator. Denote it by C : P(K1) × · · · ×
P(Kn−1) → P(K1) × · · · × P(Kn). By Lemma 4, C gives rise to an n-closure system,
denoted here by L(C). This n-closure system gives, in turn, rise to IS(L(C)), which, by
Proposition 19, is an n-information system. It suffices now to put the relevant definitions
together to see that IS(IK) = IS(L(C)). Thus IS(IK) is in fact an n-information system. ¥

Moreover, it may be shown that an n-tuple of sets is a closed set of the n-adic context
IK if and only if it is an information state of the n-information system IS(IK).

Theorem 23 Given an n-adic formal context IK = 〈K1, . . . , Kn, R〉, an n-tuple 〈E1, . . . ,
En〉, with Ei ⊆ Ki, i = 1, . . . , n, is an information state of the n-information system
IS(IK) = 〈K1, . . . ,Kn,`1, . . . ,`n〉 if and only it is an n-adic concept of the n-adic formal
context IK.

Proof:
Using the same notation as in the proof of Proposition 22, we have (E1, . . . , En) is an

information state of IS(IK) if and only if, by Theorem 20, (E1, . . . , En) belongs to L(C) if and
only if C(E1, . . . , En−1) = (E1, . . . , En) if and only if bn−1,...,1(En−1, . . . , E1) = (E1, . . . , En),
i.e., if and only if (E1, . . . , En−1) is an n-adic concept of the n-adic formal context IK. ¥

Before closing, we remark that, in work currently in progress, we address some of the
relationships that can be established when the notions that are considered in this paper
are all taken to be finitary in a specific technical sense. The n-dimensional theory of
finitary closure operators, finitary concept lattices and finitary information systems will
contain as special cases the finitary notions considered by Zhang [23] in the computer
science framework.
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