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Abstract

We present the syntax and semantics of a family of modular ontology
languages, Package-based Description Logics (P-DL), to support context-
specific reuse of knowledge from multiple ontologies. In particular, we dis-
cussed a P-DL SHOIQP that allows the “importing” of concept, role and
nominal names between multiple ontology modules (each of which can be
viewed as a SHOIQ ontology). SHOIQP supports contextualized inter-
pretation, i.e., interpretation from the point of view of a specific package.
We establish the necessary and sufficient constraints on domain relations
(i.e., the relations between individuals in different local domains) to pre-
serve the satisfiability of concept formulae, monotonicity of inference, and
transitive reuse of knowledge. We further discuss the support for restricted
inter-module role mappings and negated roles in P-DL and show that the
P-DL ALCH+IO(¬)P is decidable.

Introduction

The success of the world wide web can be partially attributed to the network ef-
fect : The absence of central control on the content and the organization of the web allows
thousands of independent actors to contribute resources (web pages) that are interlinked
to form the web. Ongoing efforts to extend the current web into a semantic web are aimed
at enriching the web with machine interpretable content and interoperable resources and
services (Berners-Lee et al., 2001). Realizing the full potential of the semantic web requires
the large-scale adoption and use of ontology-based approaches to sharing of information and
resources. Constructing large ontologies typically requires collaboration among multiple in-
dividuals or groups with expertise in specific areas, with each participant contributing only a

Some parts of this paper without proofs were previously published in (Bao et al., 2007, 2008a,b).
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part of the ontology. Therefore, instead of a single, centralized ontology, in most application
domains it is natural to have multiple distributed ontologies covering parts of the domain.
Such ontologies represent the local knowledge of the ontology designers, i.e., knowledge that
is applicable in a context. Because no single ontology can meet the needs of all users under
every conceivable scenario, there is an urgent need for theoretically sound, yet practical,
approaches that allow knowledge from multiple autonomously developed ontologies to be
adapted and reused in user, context, or application-specific scenarios.

Ontologies on the semantic web need to satisfy two apparently conflicting objectives
(Bouquet et al., 2003):

• Sharing and reuse of knowledge across autonomously developed ontologies. An
ontology may reuse another ontology by direct importing of selected terms in the other
ontology (e.g., by referring to their URLs), or by using mappings between ontologies.

• The contextuality of knowledge or accommodation of the local points of view. For
example, an assertion of the form “everything has the property that...” is usually made
within an implicit local context which is often omitted from the statement. In fact, such
a statement should be understood as “everything in this domain has the property that...”.
However, when reusing an existing ontology, the contextual nature of assertions is often
neglected, leading to unintended inferences.

OWL adopts an importing mechanism to support integration of ontology modules.
However, the importing mechanism in OWL, implemented by the owl:imports construct,
in its current form, suffers from several serious drawbacks: (a) It directly introduces both
terms and axioms of the imported ontologies into the importing ontology, and thus fails to
support contextual reuse; (b) It provides no support for partial reuse of an ontology module.

Consequently, there have been several efforts aimed at developing formalisms that
allow reuse of knowledge from multiple ontologies via contextualized interpretations in
multiple local domains instead of a single shared global interpretation domain. Contex-
tualized reuse of knowledge requires the interactions between local interpretations to be
controlled. Examples of such modular ontology languages include: Distributed Description
Logics (DDL) (Borgida & Serafini, 2003), E-Connections (Grau et al., 2004) and Semantic
Importing (Pan et al., 2006).

An alternative approach to knowledge reuse is based on the notion of conservative
extension (Ghilardi et al., 2006; Grau et al., 2007, 2006; Grau & Kutz, 2007), which al-
lows ontology modules to be interpreted using standard semantics by requiring that they
share the same global interpretation domain. To avoid undesired effects from combining
ontology modules, this approach requires that such a combination be a conservative exten-
sion of component modules. More precisely, if O is the union of a set of ontology modules
{O1, ..., On}, then we say O is a conservative extension of Oi if O |= α ⇔ Oi |= α, for any
α in the language of Oi. This guarantees that combining knowledge from several ontology
modules does not alter the consequences of knowledge contained in any component module.
Thus, a combination of ontology modules cannot induce a new concept inclusion relation
between concepts expressible in any of the component modules.

Current approaches to knowledge reuse have several limitations. To preserve contex-
tuality, existing modular ontology languages offer only limited ways to connect ontology
modules and, hence, limited ability to reuse knowledge across modules. For instance, DDL
does not allow concept construction using foreign roles or concepts. E-Connections, on the
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other hand, does not allow concept subsumptions across ontology modules or the use of
foreign roles. Finally, Semantic Importing, in its current form, only allows each component
module to be in ALC. None of the existing approaches supports knowledge reuse in a set-
ting where each ontology module uses a representation language that is as expressive as
OWL-DL, i.e., SHOIN (D).

Furthermore, some of the existing modular ontology languages suffer from reasoning
difficulties that can be traced back to the absence of natural ways to restrict the relations
between individuals in different local domains. For example, DDL does not support the tran-
sitivity of inter-module concept subsumptions (known as bridge rules) in general. Moreover,
in DDL a concept that is declared as being more specific than two disjoint concepts in an-
other module may still be satisfiable (the inter-module satisfiability problem) (Bao et al.,
2006c; Grau et al., 2004). Undisciplined use of generalized links in E-Connections has also
been shown to lead to reasoning difficulties (Bao et al., 2006b).

Conservative extensions (Grau et al., 2007, 2006; Grau & Kutz, 2007), in their current
form, require a single global interpretation domain and, consequently, prevent different
modules from interpreting axioms within their own local contexts. Hence, the designers
of different ontology modules have to anticipate all possible contexts in which knowledge
from a specific module might be reused. As a result, several modeling scenarios that would,
otherwise, be quite useful in practice, such as the refinement of relations between existing
concepts in an ontology module and the general reuse of nominals (Lutz et al., 2007), are
precluded.

Against this background, this chapter, building on previous work of a majority of
the authors (Bao et al., 2006c), develops a formalism that can support contextual reuse
of knowledge from multiple ontology modules. The resulting modular ontology language,
Package-based Description Logic (P-DL) SHOIQP:

• Allows each ontology module to use a subset of SHOIQ (Horrocks & Sattler, 2005),
i.e., ALC augmented with transitive roles, role inclusion, role inversion, qualified number
restriction and nominal concepts and, hence, covers a significant fragment of OWL-DL.

• Supports more flexible modeling scenarios than those supported by existing ap-
proaches through a mechanism of semantic importing of names (including concept, role and
nominal names) across ontology modules1.

• Contextualizes the interpretation of reused knowledge. Locality of axioms in ontol-
ogy modules is obtained “for free” by its contextualized semantics, thereby freeing ontology
engineers from the burden of ensuring the reusability of an ontology module in contexts that
are hard to foresee when constructing the module. A natural consequence of contextualized
interpretation is that inferences are always drawn from the point of view of a witness mod-
ule. Thus, different modules might infer different consequences, based on the knowledge
that they import from other modules.

• Ensures that the results of reasoning are always the same as those obtained by
a standard reasoner over an integrated ontology resulting from combining the relevant
knowledge in a context-specific manner. Thus, unlike in the case of DDL and Semantic

1Note that importing in OWL, implemented by the owl:imports is essentially syntactic in nature. The
difference between syntactic importing and semantic importing is best illustrated by an analogy with the
writing of scientific articles: Knowledge reuse via owl:imports is analogous to cut and paste from a source
article. In contrast, semantic importing is akin to knowledge reuse by means of citation of a source article.
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Importing of Pan et al., P-DL ensures the monotonicity of inference in the distributed
setting.

• Avoids several of the known reasoning difficulties of the existing approaches, e.g.,
lack of support for transitive reusability and nonpreservation of concept unsatisfiability.

Semantic Importing

This section introduces the syntax and semantics of the proposed language SHOIQP.
We will use a simple example shown in Figure 1 to illustrate some of the basic features of
the P-DL syntax.

¬11 : Child ⊑ 1 : Adult

P1 (People)

2 : Employee ⊑ 1 : Adult

2 : Employer ⊑ ∃2 : hires.⊤1

P2 (Work)

Figure 1. Semantic Importing
Syntax

Packages.

Informally, a package in SHOIQP can be viewed as a SHOIQ TBox and RBox. For
example, in Figure 1 there are two packages, package P1 describes the domain of People
and P2 describes the domain of Work.

We define the signature Sig(Pi) of a package Pi as the set of names used in Pi.
Sig(Pi) is the disjoint union of the set of concept names NCi, the set of role names NRi

and the set of nominal names NIi used in package Pi. The set of roles in Pi is defined as
NRi = NRi ∪ {R−|R ∈ NRi} where R− is the inverse of the role name R.

The signature Sig(Pi) of package Pi is divided into two disjoint parts: its local sig-
nature Loc(Pi) and its external signature Ext(Pi). Thus, in the example shown in Figure
1, Sig(P2) = {Employee,Adult,Employer, hires}; Loc(P2) = {Employee,Employer, hires}; and
Ext(P2) = {Adult}.

For all t ∈ Loc(Pi), Pi (and only Pi) is the home package of t, denoted by Pi =
Home(t), and t is called an i-name (more specifically, an i-concept name, an i-role name, or
an i-nominal name). We will use “i : X” to denote an i-name X and may drop the prefix
when it is clear from the context. We use i-role to refer to an i-role name or its inverse.
In the example shown in Figure 1, the home package of the terms Child and Adult is P1

(People); and that of Employee,Employer and hires is P2 (Work).

A role name R ∈ NRi may be declared to be transitive in Pi using an axiom Transi(R).
If R is declared transitive, R− is also said to be transitive. We use Tri(R) to denote a role
R being transitive in Pi.

A role inclusion axiom in Pi is an expression of the form R ⊑ S, where R and S are
i-roles. The role hierarchy for Pi is the set of all role inclusion axioms in Pi. The RBox Ri

consists of the role hierarchy Ri for Pi and the set of role transitivity declarations Transi(R).
For a role hierarchy Ri, if R ⊑ S ∈ Ri, then R is called a sub-role of S and S is called a
super-role of R w.r.t. Ri. An i-role is called locally simple if it neither is transitive nor has
any transitive sub-role in Pi.
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The set of SHOIQP concepts in Pi is defined inductively by the following grammar:

C := A|o|¬kC|C ⊓ C|C ⊔ C|∀R.C|∃R.C|(≤ nS.C)|(≥ nS.C)

where A ∈ NCi, o ∈ NIi, n is a non-negative integer, R ∈ NRi, and S ∈ NRi is a locally
simple role; ¬kC denotes the contextualized negation of concept C w.r.t. Pk. For any k
and k-concept name C, ⊤k = ¬kC ⊔ C, and ⊥ = ¬kC ⊓ C. Thus, there is no universal top
(⊤) concept or global negation (¬). Instead, we have for each package Pk, a contextualized
top ⊤k and a contextualized negation ¬k. This allows a logical formula in P-DL (including
SHOIQP) to be interpreted within the context of a specific package. Thus, in the example
shown in Figure 1, ¬11 : Child in P1 describes only the individuals in the domain of People
that are not children (that is, not 1 : Child).

A general concept inclusion (GCI) axiom in Pi is an expression of the form C ⊑ D,
where C,D are concepts in Pi. The TBox Ti of Pi is the set of GCIs in Pi. Thus, formally,
a package Pi is a pair Pi := 〈Ti,Ri〉. A SHOIQP ontology Σ is a set of packages {Pi}. We
assume that every name used in a SHOIQP ontology Σ has a home package in Σ.

Semantic Importing between Packages.
If a concept, role or nominal name t ∈ Loc(Pj) ∩ Ext(Pi), i 6= j, we say that Pi

imports t and denote it as Pj
t
−→ Pi. We require that transitivity of roles be preserved under

importing. Thus, if Pj
R
−→ Pi where R is a j-role name, then Transi(R) iff Transj(R). If any

local name of Pj is imported into Pi, we say that Pi imports Pj and denote it by Pj 7→ Pi.
In the example shown in Figure 1, P2 imports P1.

The importing transitive closure of a package Pi, denoted by P+
i , is the set of all

packages that are directly or indirectly imported by Pi. That is, P+
i is the smallest subset

of {Pi}, such that
• ∀j 6= i, Pj 7→ Pi ⇒ Pj ∈ P+

i

• ∀k 6= j 6= i, (Pk 7→ Pj) ∧ (Pj ∈ P+
i ) ⇒ Pk ∈ P+

i

Let P ∗
i = {Pi} ∪ P+

i . A SHOIQP ontology Σ = {Pi} has an acyclic importing
relation if, for all i, Pi 6∈ P+

i ; otherwise, it has a cyclic importing relation. The importing
relation in the example in Figure 1 is acyclic.

We denote a Package-based Description Logic (P-DL) by adding the letter P to the
notation for the corresponding DL. For example, ALCP is the package extension of the DL
ALC. We denote by PC a restricted type of P-DL that only allows importing of concept
names. P− denotes a P-DL with acyclic importing. In particular, ALCP−

C
was studied in

(Bao et al., 2006a), ALCPC was studied in (Bao et al., 2006d) and SHOIQP was studied
in (Bao et al., 2007). The example in Figure 1 is in ALCP−

C
.

Syntax Restrictions on Semantic Importing.

Restrictions on Negations. We require that ¬kC (hence also ⊤k) can appear in
Pi, i 6= k, only if Pk 7→ Pi. Intuitively, this means that k-negation can appear only in Pk

or any package that directly imports Pk.

Restrictions on Imported Role Names. We require that an imported role should
not be used in role inclusion axioms. This restriction is imposed because of two reasons.
First, decidability requires that a role that is used in number restrictions be “globally”
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simple, i.e., that it has no transitive sub-role across any importing chain2 (Horrocks et al.,
1999). In practice, it is useful to restrict the use of imported roles in such a way that a
role is globally simple iff it is locally simple. Second, a reduction of SHOIQP without
such a restriction to an integrated ontology may require some features that are beyond
the expressivity of SHOIQ, such as role intersection. The decidability of SHOIQP with
unrestricted use of imported role names still remains an open problem.3

SHOIQP Examples.
The semantic importing approach described here can model a broad range of scenarios

that can also be modeled using existing approaches.

Example 1 Inter-module concept and role inclusions. Suppose we have a People ontology
P1:

¬11 : Man ⊑ 1 : Woman

1 : Man ⊑ 1 : People

1 : Woman ⊑ 1 : People

1 : Boy ⊔ 1 : Girl ⊑ 1 : Child

1 : Husband ⊑ 1 : Man ⊓ ∃1 : marriedTo.1 : Woman

Suppose the Work ontology P2 imports some of the knowledge from the People ontol-
ogy:

2 : Employee ⊑ 1 : People (1)

2 : Employer ≡ ∃2 : hires.1 : People (2)

1 : Child ⊑ ¬22 : Employee (3)

2 : EqualOpportunityEmployer ⊑ ∃2 : hires.1 : Man ⊓ ∃2 : hires.1 : Woman (4)

Axiom (1) models inter-module concept inclusion. This example also illustrates that
the semantic importing approach can realize concept specialization (Axiom (1)) and gener-
alization (Axiom (3)).

Example 2 Use of foreign roles or foreign concepts to construct local concepts. Suppose a
Marriage ontology P3 reuses the People ontology:

(= 1 (1 : marriedTo).(1 : Woman)) ⊑ 3 : Monogamist (5)

3 : MarriedPerson ⊑ ∀(1 : marriedTo).(3 : MarriedPerson) (6)

3 : NuclearFamily ⊑ ∃(3 : hasMember).(1 : Child) (7)

A complex concept in P3 may be constructed using an imported role (6), an imported
concept (7), or both an imported role and an imported concept (5).

2This follows from the reduction from SHOIQP to SHOIQ given in the section titled “Reduction to
Ordinary DL”.

3For some subsets of SHOIQP, this restriction may be relaxed. For example, ALCHIOP with unre-
stricted use of imported roles can be reduced to the DL ALBO (Schmidt & Tishkovsky, 2007) (extending
ALCO with boolean role operators, role inclusion, inverse of roles and domain and range restriction opera-
tors), which is known to be decidable (Bao et al., 2008a).
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Example 3 The use of nominals. Suppose the Work ontology P2, defined above, is aug-
mented with additional knowledge from a Calendar ontology P4, to obtain an augmented
Work ontology. Suppose P4 contains the following axiom:

4:WeekDay = {4:Mon, 4:Tue, 4:Wed, 4:Thu, 4:Fri},

where the nominals are shown in italic font. Suppose the new version of P2 contains the
following additional axioms:

4 : Fri ⊑ ∃(2 : hasDressingCode).(2 : CasualDress)

⊤2 ⊑ ∃(2 : hasDressingCode−).(4 : WeekDay)

Semantics

A SHOIQP ontology has localized semantics in the sense that each package has its
own local interpretation domain. Formally, for a SHOIQP ontology Σ = {Pi}, a distributed
interpretation is a tuple I = 〈{Ii}, {rij}Pi∈P+

j
〉, where Ii is a local interpretation of package

Pi, with (a not necessarily non-empty) domain ∆Ii , rij ⊆ ∆Ii ×∆Ij is the (image) domain
relation for the interpretation of the direct or indirect importing relation from Pi to Pj .
For convenience, we use rii = id∆Ii := {(x, x)|x ∈ ∆Ii} to denote the identity mapping in
the local domain ∆Ii . Taking this convention into account, the distributed interpretation
I = 〈{Ii}, {rij}Pi∈P+

j
〉 may also be denoted by I = 〈{Ii}, {rij}Pi∈P ∗

j
〉.

To facilitate our further discussion of interpretations, the following notational con-
ventions will be used throughout. Given i, j, such that Pi ∈ P ∗

j , for every x ∈ ∆Ii , A ⊆ ∆Ii

and S ⊆ ∆Ii × ∆Ii , define4 (please see Figure 2 and 3 for illustration):

rij(A) = {y ∈ ∆Ij |∃x ∈ A, (x, y) ∈ rij}, (concept image)

rij(S) = rij ◦ S ◦ r−ij (role image)

= {(z,w) ∈ ∆Ij × ∆Ij |∃(x, y) ∈ S, (x, z) ∈ rij ∧ (y,w) ∈ rij},

S(x) = {y ∈ ∆Ii |(x, y) ∈ S} (successor set)

∆Ii

A
x1

x2

∆Ij

rij(A)
y1

y2

y3

rij

Figure 2. Concept Image

4In this chapter, f1 ◦ ... ◦ fn denotes the composition of n relations f1, ..., fn, i.e., (f1 ◦ ... ◦ fn)(x) =
f1(...fn(x)).
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∆i

S

x

S(x)

∆j

rij(S)

rij

Figure 3. Successor Set and Role Image

Moreover, let ρ be the equivalence relation on
⋃

i ∆
Ii generated by the collection of

ordered pairs
⋃

Pi∈P ∗

j
rij . This is the symmetric and transitive closure of the set

⋃
Pi∈P ∗

j
rij .

Define, for every i, j, ρij = ρ ∩ (∆Ii × ∆Ij ).

Each of the local interpretations Ii = 〈∆Ii , ·Ii〉 consists of a domain ∆Ii and an
interpretation function ·Ii , which maps every concept name to a subset of ∆Ii , every role
name to a subset of ∆Ii × ∆Ii and every nominal name to an element in ∆Ii . We require
that the interpretation function ·I satisfies the following equations, where R is a j-role, S

is a locally simple j-role, C,D are concepts:

RIi = (RIi)+, if Transi(R) ∈ Ri

(R−)Ii = {(x, y)|(y, x) ∈ RIi}

(C ⊓ D)Ii = CIi ∩ DIi

(C ⊔ D)Ii = CIi ∪ DIi

(¬jC)Ii = rji(∆
Ij )\CIi

(∃R.C)Ii = {x ∈ rji(∆
Ij)|∃y ∈ ∆Ii , (x, y) ∈ RIi ∧ y ∈ CIi}

(∀R.C)Ii = {x ∈ rji(∆
Ij)|∀y ∈ ∆Ii , (x, y) ∈ RIi → y ∈ CIi}

(> nS.C)Ii = {x ∈ rji(∆
Ij)| |{y ∈ ∆Ii |(x, y) ∈ SIi ∧ y ∈ CIi}| > n}

(6 nS.C)Ii = {x ∈ rji(∆
Ij)| |{y ∈ ∆Ii |(x, y) ∈ SIi ∧ y ∈ CIi}| 6 n}

Note that, when i = j, since rii = id∆Ii , (¬jC)Ii reduces to the usual negation
(¬iC)Ii = ∆Ii\CIi . Similarly, the other semantic definitions also reduce to the usual DL
semantic definitions.

For an example of contextualized negation, suppose A = CIi in Figure 2. Then
(¬iC)Ij contains only y2 but not y3. On the other hand, (¬jC)Ij contains both y2 and y3.

A local interpretation Ii satisfies a role inclusion axiom R1 ⊑ R2 iff RIi

1 ⊆ RIi

2 and a
GCI C ⊑ D iff CIi ⊆ DIi . Ii is a model of Pi, denoted by Ii � Pi, if it satisfies all axioms
in Pi.

The proposed semantics of SHOIQP is motivated by the need to overcome some of
the limitations of existing approaches that can be traced back to the arbitrary construction
of domain relations and the lack of support for contextualized interpretation. Specifically,
we seek a semantics that satisfies the following desiderata:
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∆Ii

CIi

∆Ij

rij(C
Ii) = CIj

rij

An image domain relation in P-DL is one-to-one, i.e., it is a partial injective
function. It is not necessarily total, i.e., some individuals of CIi may not be
mapped to ∆Ij .

Figure 4. One-to-One Domain Relation

• Preservation of concept unsatisfiability. The intuition is that an unsatisfiable
concept expression should never be reused so as to be interpreted as a satisfiable concept.
Formally, we say that a domain relation rij preserves the unsatisfiability of a concept C,
that appears in both Pi and Pj , if whenever CIi = ∅, it is necessarily the case that CIj = ∅.

• Transitive reusability of knowledge. The intention is that the consequences
of some of the axioms in one module can be propagated in a transitive fashion to other
ontology modules. For example, if a package Pi asserts that C ⊑ D, and Pj directly or
indirectly imports that axiom from Pi, then it should be the case that C ⊑ D is also valid
from the point of view of Pj .

• Contextualized interpretation of knowledge. The idea is that the interpreta-
tion of assertions in each ontology module is constrained by their context. When knowledge,
e.g., axioms, in that module is reused by other modules, the interpretation of the reused
knowledge should be constrained by the context in which the knowledge is being reused.

• Improved expressivity. Ideally, the language should support
1. both inter-module concept inclusion and concept construction using foreign concepts,
roles and nominals;
2. more general reuse of roles and of nominals than allowed by existing approaches.

A major goal of this chapter is to explore the constraints that need to be imposed on
local interpretations so that the resulting semantics for SHOIQP satisfies the desiderata
enumerated above. These constraints are presented in the following:

Definition 1 An interpretation I = 〈{Ii}, {rij}Pi∈P ∗

j
〉 is a model of a SHOIQP KB

Σ = {Pi}, denoted as I � Σ, if
⋃

i ∆Ii 6= ∅, i.e., at least one of the local interpretation
domains is non-empty5, and the following conditions are satisfied:

1. For all i, j, rij is one-to-one, i.e., it is an injective partial function.

5This agrees with conventional model-theoretic semantics, where an ordinary model (of a single package)
is assumed to have a non-empty domain.
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2. Compositional Consistency: For all i, j, k s.t. Pi ∈ P ∗
k and Pk ∈ P ∗

j , we have
ρij = rij = rkj ◦ rik.

3. For every i-concept name C that appears in Pj , we have rij(C
Ii) = CIj .

4. For every i-role R that appears in Pj , we have RIj = rij(R
Ii).

5. Cardinality Preservation for Roles: For every i-role R that appears in Pj and every
(x, x′) ∈ rij , y ∈ RIi(x) iff rij(y) ∈ RIj(x′).

6. For every i-nominal o that appears in Pj , (oIi , oIj ) ∈ rij .
7. Ii � Pi, for every i.

The proposed semantics for SHOIQP is an extension of the semantics for ALCPC

(Bao et al., 2006d), which uses Conditions 1,2,3 and 7 above, and borrows Condition 5 from
the semantics of Semantic Importing (Pan et al., 2006).

Intuitively, one-to-oneness (Condition 1, see Figure 4) and compositional consistency
(Condition 2, Figure 5) ensure that the parts of local domains connected by domain relations
match perfectly. Conditions 3 and 4 ensure consistency between the interpretations of
concepts and of roles in their home package and the interpretations in the packages that
import them. Condition 5 (Figure 6) ensures that rij is a total bijection from RIi(x) to
RIj(rij(x)). In particular, the sizes |RIi(x)| and |RIj (rij(x))| are always equal in different
local domains. Condition 6 ensures the uniqueness of nominals. In Section 4, we will
show that Conditions 1-7 are minimally sufficient to guarantee that the desiderata for the
semantics of SHOIQP as outlined above are indeed satisfied.

Note that Condition 2 implies that if Pi and Pj mutually (possibly indirectly) import
one another, then rij = ρij = ρ−ji = r−ji and rij is a total function from ∆Ii to ∆Ij . However,
if Pj 6∈ P ∗

i , then rji does not exist (even if rij exists). In that case, rij is not necessarily a
total function.

Definition 2 An ontology Σ is consistent as witnessed by a package Pw of Σ if P ∗
w has a

model I = 〈{Ii}, {rij}Pi∈P+

j
〉, such that ∆Iw 6= ∅. A concept C is satisfiable as witnessed

by Pw if there is a model I of P ∗
w, such that CIw 6= ∅. A concept subsumption C ⊑ D is

valid as witnessed by Pw, denoted by C ⊑w D, if, for every model I of P ∗
w, CIw ⊆ DIw .

Hence, in SHOIQP, the questions of consistency, satisfiability and subsumption are
always answered from the local point of view of a witness package and it is possible that
different packages draw different conclusions from their own points of view.

The following examples show some inference problems that a P-DL ontology can
tackle. Precise proofs for general cases will be given in the section titled “Properties of
Semantic Importing”.

Example 4 Transitive subsumption propagation. Given three packages: P1 : {1 : A ⊑ 1 :
B}, P2 : {1 : B ⊑ 2 : C}, P3 : {2 : C ⊑ 3 : D}, the subsumption query 1 : A ⊑ 3 : D is
answered in the affirmative as witnessed by P3.

Example 5 Detection of inter-module unsatisfiability. Given two packages P1 : {1 : B ⊑
1 : F}, P2 : {2 : P ⊑ 1 : B, 2 : P ⊑ ¬1 : F}, 2 : P is unsatisfiable as witnessed by P2.
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∆Ii

CIi

∆Ij

CIj

∆Ik

CIk

rij

rjkrik

rjk ◦ rij = rik

Figure 5. Compositionally Consistent Domain Relation

Example 6 Reasoning from a local point of view. Given two packages P1 : {1 : A ⊑ 1 : C},
P2 : {1 : A ⊑ ∃ 2 : R.(2 : B), 2 : B ⊑ 1 : A⊓ (¬ 1 : C)}, consider the satisfiability of 1 : A as
witnessed by P1 and P2, respectively. It is easy to see A is satisfiable when witnessed by P1,
but unsatisfiable when witnessed by P2. Thus, inferences in P-DL are always drawn from
the point of view of a witness package. Different witnesses can draw different conclusions,
since they operate on different domains and have access to different pieces of knowledge.

Discussion: Relation Between the Semantics of P-DL and Partially-Overlapping Local
Domain Semantics. In (Catarci & Lenzerini, 1993) a semantics based on partially overlap-
ping domains was proposed for terminology mappings between ontology modules. In that
framework, a global interpretation I = 〈∆I , ·I〉 is given together with local domains ∆Ii ,
that are subsets of ∆I . Any two local domains may be partially overlapping. Moreover,
inclusions between concepts are of the following two forms:

• i : C ⊑ext j : D (extensional inclusion), with semantics CI ⊆ DI , and
• i : C ⊑int j : D (intentional inclusion), with semantics CI ∩∆Ii ∩∆Ij ⊆ DI ∩∆Ii ∩

∆Ij .
Since P-DL semantics does not envision a global point of view, extensional inclu-

sion has no corresponding notion in P-DL semantics. In addition, P-DL semantics differs
significantly from this approach in that, while both intentional and extensional inclusions
are not directional, the semantic importing in P-DL is. To make this distinction clearer,
consider two packages Pi and Pj , such that Pi 7→ Pj . Let C,D be two i-concept names that
are imported by Pj and consider the interpretation where ∆Ii = {x, y, z},∆Ij = {y, z},
CIi = {x, y},DIi = {y, z} and rij = {〈y, y〉, 〈z, z〉}. Then, in P-DL, from the point of
view of package Pi, we have CIi = {x, y} 6⊆ {y, z} = DIi . Therefore, I 6|=i C ⊑ D. Simi-
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∆Ii

x

q p p

∆Ij

x′

p p

rij

If an i-role p is imported by Pj, then every pair of p instances must have a
“preimage” pair in ∆i. The cardinality preservation condition for roles, illus-
trated in this figure, requires that, if an individual x in ∆Ii has an image indi-
vidual x′ in ∆Ij , then each of its p-neighbors must have an image in ∆Ij which
is a p-neighbor of x′.

Figure 6. Cardinality Preservation for Roles

larly, from the point of view of package Pj , we have CIj = rij(C
Ii) = rij({x, y}) = {y} ⊆

{y, z} = rij({y, z}) = rij(D
Ii) = DIj . Therefore, I |=j C ⊑ D. However, in the partially

overlapping domain semantics of (Catarci & Lenzerini, 1993), C =int D holds from both
Pi’s and Pj ’s point of view.

Thus, in spite of the fact that the intersection of two sets is “seen equally” from
both sets’ points of view, the example that was presented above illustrates that the way
concept names are interpreted in these models still preserves some form of directionality in
the subsumption reasoning.

Despite this subtle semantic difference between the partially overlapping domain se-
mantics of (Catarci & Lenzerini, 1993) and the semantics of P-DL presented here, it is
still possible to provide P-DL with a different kind of overlapping-domain-style semantics.
More precisely, in the proof of Lemma 4, it is shown how one may combine the various
local domains of a P-DL interpretation into one global domain. The P-DL model satisfies
a given subsumption C ⊑ D from a witness Pi’s point of view if and only if the global
model satisfies an appropriately constructed subjective translation #i(C) ⊑ #i(D) of the
given subsumption (see Section 3). Moreover, in the proof of Lemma 3, it is shown how,
conversely, starting from a global domain, one may construct a P-DL model with various
local domains; if the aforementioned subjective translation of a subsumption is satisfied in
the global domain, then the original subsumption is satisfied from Pi’s point of view. If
the two constructions are composed, starting from the original P-DL model one obtains
another equivalent model that is based on a partially-overlapping-style domain semantics.
However, due to the interpretations of the translations of the concept names in this model,
directionality is still preserved, unlike the situation in the ordinary partially overlapping
domain semantics of (Catarci & Lenzerini, 1993).

Since any ordinary P-DL model gives rise to an equivalent model with partially-
overlapping-style semantics, it is natural to ask as to why we do not choose the latter as
the basis for the semantics of P-DL. The main reason has to do with the fact that, in many
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applications, local models are populated independently of one another before semantic re-
lations between their individuals are physically established. Moreover, the main motivation
for introducing modular description logics is to allow autonomous groups to independently
develop knowledge bases (ontologies). Additionally, the semantics of P-DL is derived from
the Local Model Semantics (Ghidini & Giunchiglia, 2001). A main feature of the proposed
P-DL semantics is the directionality (and subjectivity) of domain relations, which is not
preserved by the partially-overlapping-domain semantics. The preservation of the direc-
tionality of domain relations, keeps open the possibility of extensions of P-DL to settings
where the use of partially-overlapping-domain semantics is infeasible, e.g., when transitive
knowledge propagation needs to be limited to only trusted entities.

2 (End of Discussion)

As immediate consequences of the proposed semantics for the P-DL SHOIQP, ex-
tensions of various versions of the De Morgan’s Law may be proven. Those deal with
both the ordinary propositional logical connectives, including local negations, and with the
quantifiers, as shown in the following lemma.

Lemma 1 Let Pi 7→ Pj , C,D be concepts, R a k-role, such that Sig(C) ∪ Sig(D) ∪ {R} ⊆
Sig(Pi) ∩ Sig(Pj). Then, the following equalities hold from the point of view of Pj :

1. ¬iC = ⊤i ⊓ ¬jC;
2. ¬i(C ⊓ D) = ¬iC ⊔ ¬iD;
3. ¬i(C ⊔ D) = ¬iC ⊓ ¬iD;
4. ¬i(∃R.C) = ¬i⊤k ⊔ ∀R.¬jC;
5. ¬i(∀R.C) = ¬i⊤k ⊔ ∃R.¬jC;
6. ¬i(≤ nR.C) = ¬i⊤k ⊔ ≥(n + 1)R.C;
7. ¬i(≥ (n + 1)R.C) = ¬i⊤k ⊔ ≤nR.C.

Proof:

• For Equation 1, we have

(⊤i ⊓ ¬jC)Ij = ⊤
Ij

i ∩ (¬jC)Ij (by the definition of ·Ij)
= rij(∆

Ii) ∩ (∆Ij\CIj ) (by the definition of ·Ij)
= rij(∆

Ii)\CIj (since rij(∆
Ii) ⊆ ∆Ij)

= (¬iC)Ij . (by the definition of (¬iC)Ij)
• For Equation 2,

(¬i(C ⊓ D))Ij

= rij(∆
Ii)\(C ⊓ D)Ij (by the definition of ·Ij)

= rij(∆
Ii)\(CIj ∩ DIj ) (by the definition of ·Ij)

= (rij(∆
Ii)\CIj ) ∪ (rij(∆

Ii)\DIj ) (set-theoretically)
= (¬iC)Ij ∪ (¬iD)Ij (by the definition of ·Ij)
= (¬iC ⊔ ¬iD)Ij . (by the definition of ·Ij)

• The proof of Equation 3 is dual to that of Equation 2.

• For Equation 4, we first note that Pk
R
−→ Pi and

∀R.¬jC ⊑j ⊤k (since (∀R.¬jC)Ij ⊆ (⊤k)
Ij by the definitions)

⊑j ⊤i, (since (⊤k)
Ij = rkj(∆

Ik) = rij ◦ rki(∆
Ik) ⊆ rij(∆

Ii))
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(¬i(∃R.C))Ij = rij(∆
Ii)\(∃R.C)Ij (by the definition of ·Ij)

= rij(∆
Ii)\{x ∈ rkj(∆

Ik)|∃y ∈ ∆Ij , (x, y) ∈ RIj ∧ y ∈ CIj}
(by the definition of (∃R.C)Ij )

= (rij(∆
Ii)\rkj(∆

Ik)) ∪ (rij(∆
Ii) ∩ {x ∈ rkj(∆

Ik)|
∀y ∈ ∆Ij , (x, y) ∈ RIj → y 6∈ CIj})

(set-theoretically)

= (¬i⊤k)
Ij ∪ (⊤

Ij

i ∩ (∀R.¬jC)Ij )
(by the definition of ·Ij)

= (¬i⊤k ⊔ (⊤i ⊓ ∀R.¬jC))Ij (by the definition of ·Ij )
= (¬i⊤k ⊔ (∀R.¬jC))Ij . (since ∀R.¬jC ⊑j ⊤i)

• The proof of Equation 5 is dual to that of Equation 4.
• For Equation 6, as for Equation 4, we have ≥(n + 1)R.C ⊑j ⊤i.

(¬i(≤nR.C))Ij = rij(∆
Ii)\(≤nR.C)Ij (by the definition of ·Ij )

= rij(∆
Ii)\{x ∈ rkj(∆

Ik)| |{y ∈ ∆Ij |(x, y) ∈ RIj

∧ y ∈ CIj}| ≤ n}
(by the definition of (≤nR.C)Ij)

= rij(∆
Ii)\rkj(∆

Ik) ∪ (rij(∆
Ii) ∩ {x ∈ rkj(∆

Ik)|
|{y ∈ ∆Ij |(x, y) ∈ RIj ∧ y ∈ CIj}| ≥ n + 1})

(set-theoretically)

= (¬i⊤k)
Ij ∪ (⊤

Ij

i ∩ (≥(n + 1)R.C)Ij )
(by the definition of ·Ij)

= (¬i⊤k ⊔ (⊤i ⊓ ≥(n + 1)R.C))Ij

(by the definition of ·Ij)
= (¬i⊤k ⊔≥(n + 1)R.C)Ij .

(since ≥(n + 1)R.C ⊑j ⊤i)

• The proof of Equation 7 follows the dual steps to those in the proof of Equation 6.
Q.E.D.

Note that when i = j = k, the equations in Lemma 1 reduce to the ordinary versions
of De Morgan’s Law in DL. These equations are helpful in simplifying proofs of other
properties of SHOIQP. Also note that, under the same hypotheses as those in Lemma 1,

(∃R.C)Ij = {x ∈ rkj(∆
Ik)|∃y ∈ ∆Ij , (x, y) ∈ RIj ∧ y ∈ CIj}

= {x ∈ rkj(∆
Ik)| |{y ∈ ∆Ij |(x, y) ∈ RIj ∧ y ∈ CIj}| ≥ 1}

= (≥1R.C)Ij

(∀R.C)Ij = {x ∈ rkj(∆
Ik)|∀y ∈ ∆Ij , (x, y) ∈ RIj → y ∈ CIj}

= {x ∈ rkj(∆
Ik)| |{y ∈ ∆Ij |(x, y) ∈ RIj ∧ y 6∈ CIj}| ≤ 0}

= (≤0R.¬jC)Ij

Hence, proofs involving existential restriction and value restriction may be reduced
to those involving the corresponding number restrictions6. In what follows, we will only

6Note that R may not be a locally simple role in which case it cannot be used in number restrictions.
However, the formulas above still allow us in practice to rephrase arguments involving existential restriction
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consider negation, conjunction and at-most number restriction as concept constructors
since, as we have just pointed out, arguments for other constructors can be reduced to them.

In the next lemma, it is asserted that Condition 3 of Definition 1 holds not only
for concept names, but, in fact, for arbitrary concepts. Beyond its own intrinsic interest,
it becomes handy in Section 4 in showing that the package description logic SHOIQP
supports monotonicity of reasoning and transitive reusability of modules.

Lemma 2 Let Σ be a SHOIQP ontology, Pi, Pj two packages in Σ such that Pi ∈ P+
j ,

C a concept such that Sig(C) ⊆ Sig(Pi) ∩ Sig(Pj), and R a role name such that R ∈
Sig(Pi) ∩ Sig(Pj). If I = 〈{Iu}, {ruv}Pu∈P+

v
〉 is a model of Σ, then rij(C

Ii) = CIj and

rij(R
Ii) = RIj .

Proof: For a k-role name R, such that R ∈ Sig(Pi) ∩ Sig(Pj), we have rij(R
Ii) =

rij ◦ rki(R
Ik) = rkj(R

Ik) = RIj .
To prove the claim for concepts, structural induction on the concept formula C will

be used.
If C is a k-concept name or a k-nominal name, we have

rij(C
Ii) = rij(rki(C

Ik)) (by the definition of CIi)
= rkj(C

Ik) (by compositional consistency)
= CIj . (by the definition of CIj)

For C = ¬kD and rij(D
Ii) = DIj , we have

rij(C
Ii) = rij((¬kD)Ii) (since C = ¬kD)

= rij(rki(∆
Ik)\DIi) (by the definition of (¬kD)Ii)

= rij(rki(∆
Ik))\rij(D

Ii) (since rij is one-to-one)
= rkj(∆

Ik)\DIj (by compositional consistency and
the induction hypothesis)

= (¬kD)Ij (by the definition of (¬kD)Ij )
= CIj . (since C = ¬kD)

For C = D ⊓ E, assuming inductively that rij(D
Ii) = DIj and rij(E

Ii) = EIj , we
have

rij(C
Ii) = rij((D ⊓ E)Ii) (since C = D ⊓ E)

= rij(D
Ii ∩ EIi) (by the definition of ·Ii)

= rij(D
Ii) ∩ rij(E

Ii) (since rij is one-to-one)
= DIj ∩ EIj (by the induction hypothesis)
= (D ⊓ E)Ij (by the definition of ·Ij)
= CIj . (since C = D ⊓ E)

Let C = ≤nR.D, with R a k-role, and assume inductively that rij(D
Ii) = DIj . We

first prove two auxiliary claims.

or universal restriction into corresponding arguments on number restrictions (for n = 1 or n = 0) regardless
of the simplicity of R.
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Claim 1: Let x′ = rij(x). Then rij : RIi(x) → RIj(x′) is a total bijection.
Proof: rij is a one-to-one function by definition. It is onto because

RIj(x′) = rij(R
Ii)(x′)

= (rij ◦ RIi ◦ r−ij)(rij(x))

= (rij ◦ RIi)(x)

= rij(R
Ii(x))

By cardinality preservation (item 5 in Definition 1), rij is a total function from
RIi(x) to RIj(x′), whence rij is a total bijection from RIi(x) to RIj(x′). Q.E.D.

Claim 2: Let x′ = rij(x). Then rij : RIi(x) ∩ DIi → RIj(x′) ∩ DIj is also a total
bijection.

Proof: rij is one-to-one and total on RIi(x) by Claim 1. Hence,

rij(R
Ii(x) ∩ DIi) = rij(R

Ii(x)) ∩ rij(D
Ii) = RIj(x′) ∩ DIj .

Thus, rij is onto RIj (x′) ∩ DIj , whence the claim holds. Q.E.D.

Using the two claims, we now obtain

x′ ∈ rij((≤ nR.D)Ii) ⇔ ∃x ∈ (≤ nR.D)Ii such that x′ = rij(x)

(by the definition of rij)

⇔ ∃x ∈ rki(∆
Ik), |RIi(x) ∩ DIi | ≤ n ∧ x′ = rij(x)

(by the definition of (≤ nR.D)Ii)

⇔ x′ ∈ rkj(∆
Ik), |RIj (x′) ∩ DIj | ≤ n

(⇒: by compositional consistency and Claim 2)

(⇐: by compositional consistency and Claim 2)

⇔ x′ ∈ (≤ nR.D)Ij (by the definition of (≤ nR.D)Ij)

Q.E.D.

Reduction to Ordinary DL

In this section, we present a translation from concept formulas that appear in a given
package of a SHOIQP KB Σ to concept formulas of a SHOIQ KB Σ⋆. The SHOIQ KB
Σ⋆ is constructed in such a way that the top concept ⊤w, associated with a specific package
Pw of Σ, is satisfiable by Σ⋆ in the ordinary DL sense if and only if Σ itself is consistent
from the point of view of Pw (see Theorem 1). (Note that the SHOIQ KB Σ⋆ is dependent
on the importing relations present in the SHOIQP KB Σ). This shows that the consis-
tency problem in SHOIQP is reducible to the satisfiability problem in SHOIQ, which is
known to be NExpTime-complete (Tobies, 2000, 2001). This has the consequence that the
problems of concept satisfiability, concept subsumption and consistency in SHOIQP are
also NExpTime-complete (see Theorem 2). Moreover, as will be seen in Section 4, this
result plays a central role in showing that some of the desiderata presented in Section 2.2
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are satisfied by SHOIQP. For instance, Reasoning Exactness, Monotonicity of Reasoning,
Transitive Reusability of Knowledge and Preservation of Unsatisfiability are all features
of SHOIQP, which are shown to hold by employing the translation from SHOIQP to
SHOIQ.

The reduction ℜ from a SHOIQP KB Σ = {Pi} to a SHOIQ KB Σ⋆ can be obtained
as follows: the signature of Σ⋆ is the union of the local signatures of the component packages
together with a global top ⊤, a global bottom ⊥ and local top concepts ⊤i, for all i, i.e.,
Sig(Σ⋆) =

⋃
i(Loc(Pi) ∪ {⊤i}) ∪ {⊤,⊥}, and

a) For all i, j, k such that Pi ∈ P ∗
k , Pk ∈ P ∗

j , ⊤i ⊓ ⊤j ⊑ ⊤k is added to Σ⋆.
b) For each GCI X ⊑ Y in Pj , #j(X) ⊑ #j(Y ) is added to Σ. The mapping #j() is

defined below.
c) For each role inclusion X ⊑ Y in Pj , X ⊑ Y is added to Σ⋆.
d) For each i-concept name or i-nominal name C in Pi, i : C ⊑ ⊤i is added to Σ⋆.
e) For each i-role name R in Pi, ⊤i is stipulated to be its domain and range, i.e.,

⊤ ⊑ ∀R−.⊤i and ⊤ ⊑ ∀R.⊤i are added to Σ⋆.
f) For each i-role name R in Pj , the following axioms are added to Σ⋆:

− ∃R.⊤j ⊑ ⊤j (local domain);
− ∃R−.⊤j ⊑ ⊤j (local range).

g) For each i-role name, add Trans(R) to Σ⋆ if Transi(R).
The mapping #j() is adapted from a similar one for DDL (Borgida & Serafini, 2003)

with modifications to facilitate context preservation whenever name importing occurs. For
a formula X used in Pj , #j(X) is:

• X, for a j-concept name or a j-nominal name.
• X ⊓⊤j , for an i-concept name or an i-nominal name X.
• ¬#j(Y ) ⊓⊤i ⊓⊤j , for X = ¬iY , where Y is a concept.
• (#j(X1) ⊕ #j(X2)) ⊓ ⊤j, for a concept X = X1 ⊕ X2, where ⊕ = ⊓ or ⊕ = ⊔.
• (⊗R.#j(X

′)) ⊓ ⊤i ⊓ ⊤j, for a concept X = (⊗R.X ′), where ⊗ ∈ {∃,∀,≤ n,≥ n}
and R is an i-role.

For example, if C,D are concept names and R a role name,

#j(¬i i : C) = ¬(C ⊓ ⊤j) ⊓ ⊤i ⊓ ⊤j

#j(j : D ⊔ i : C) = (D ⊔ (C ⊓ ⊤j)) ⊓ ⊤j

#j(∀(j : R).(i : C)) = ∀R.(C ⊓ ⊤j) ⊓ ⊤j

#j(∃(i : R).(i : C)) = ∃R.(C ⊓ ⊤j) ⊓ ⊤i ⊓ ⊤j

It should be noted that #j() is contextualized so as to allow a given formula to have
different interpretations when it appears in different packages. See also the Discussion
subsection in Section 2.2.

Properties of Semantic Importing

In this section, we further justify the proposed semantics for SHOIQP. More specif-
ically, we present the main results showing that SHOIQP satisfies the desiderata listed in
Section 2.

The first main theorem shows that the consistency problem of a SHOIQP ontology
w.r.t. a witness package Pw can be reduced to a satisfiability problem of a SHOIQ concept
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w.r.t. an integrated ontology from the point of view of that witness package, namely, ℜ(P ∗
w).

Note that there is no single universal integrated ontology for all packages. Each package,
sees an integrated ontology (depending on the witness package and all the packages that
are directly or indirectly imported by the witness package), and hence different packages
can witness different consequences.

Theorem 1 A SHOIQP KB Σ is consistent as witnessed by a package Pw if and only if
⊤w is satisfiable with respect to ℜ(P ∗

w).

Proof: Sufficiency is proven in Lemma 3 and necessity in Lemma 4.

Lemma 3 Let Σ be a SHOIQP KB and Pw a package of Σ. If ⊤w is satisfiable with
respect to ℜ(P ∗

w), then Σ is consistent as witnessed by Pw.

Proof: If ⊤w is satisfiable with respect to ℜ(P ∗
w), then ℜ(P ∗

w) has at least one model
I = 〈∆I , ·I〉, such that ⊤I

w 6= ∅. Our goal is to construct a model of P ∗
w from I, such that

∆Iw 6= ∅. For each package Pi, a local interpretation Ii is constructed as a projection of I
in the following way:

• ∆Ii = ⊤I
i .

• For every concept name C that appears in Pi, CIi = CI ∩ ⊤I
i .

• For every role name R that appears in Pi, RIi = RI ∩ (⊤I
i ×⊤I

i ).
• For every nominal name o that appears in Pi, oIi = oI .

For every pair i, j, such that Pi ∈ P ∗
j , we define

rij = {(x, x)|x ∈ ∆Ii ∩ ∆Ij}.

Clearly, we have ∆Iw = ⊤I
w 6= ∅, by the hypothesis. So it suffices, now, to show that

〈{Ii}, {rij}Pi∈P ∗

j
〉 is a model of the modular ontology P ∗

w, i.e., that it satisfies the seven
conditions postulated in Definition 1.

First, it is clear from the definition that each rij is in fact a one-to-one relation.
Second, we must show that Compositional Consistency holds.
• Suppose that Pi ∈ P ∗

j , x ∈ ∆Ii , y ∈ ∆Ij , and (x, y) ∈ ρij. Therefore, x and
y must be connected by some chain of domain relations and/or inverse domain relations
according to the definition of ρij . Because all domain relations are identities, this implies
that x = y ∈ ∆Ii ∩ ∆Ij , whence, once more by the definition of rij , we obtain that
(x, y) ∈ rij . This proves that ρij ⊆ rij.

• Assume that i, j, k such that Pi ∈ P ∗
k , Pk ∈ P ∗

j and (x, y) ∈ rij . Then x =

y ∈ ∆Ii ∩ ∆Ij . Since, in that case, ⊤i ⊓ ⊤j ⊑ ⊤k, this implies that x ∈ ∆Ik , whence
x ∈ ∆Ii ∩ ∆Ij ∩ ∆Ik , showing that (x, x) ∈ rik and (x, x) ∈ rkj . Therefore rij ⊆ rkj ◦ rik.

• From the definition of ρij, we have rkj ◦ rik ⊆ ρij .
Hence, ρij = rij = rkj ◦ rik, for Pi ∈ P ∗

k and Pk ∈ P ∗
j .

Next, it is shown that Conditions 3,4 and 6 of Definition 1 hold for the distributed
interpretation. Let X be an i-concept name or an i-nominal name. Then, we have that

rij(X
Ii) = XIi ∩ ∆Ij (by the definition of rij)

= XI ∩ ∆Ii ∩ ∆Ij (by the definition of XIi)
= XI ∩ ∆Ij (since i : X ⊑ ⊤i)
= XIj . (by the definition of XIj )
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For X an i-role name, the same equalities hold with all local interpretation domains
replaced by their cartesian squares.

To show Cardinality Preservation for Roles, suppose that R is an i-role in Pj and
that (x, x′) ∈ rij , i.e., x = x′ ∈ ∆Ii ∩ ∆Ij . Then, we have

y ∈ RIi(x) iff (x, y) ∈ RIi (by the definition of RIi(x))
iff (x, y) ∈ RI (since RI ⊆ ∆Ii × ∆Ii)
iff (x′, y) ∈ RI ∩ (∆Ij × ∆Ij ) (by the local domain and local

range axioms, and x = x′ ∈ ∆Ij)
iff (x′, y) ∈ RIj (by the definition of RIj)
iff y = rij(y) ∈ RIj (x′). (by the definition of RIj(x′))

Thus, cardinality preservation for roles holds.
Finally, it remains to show that Condition 7 of Definition 1 holds, i.e., that Ij is a

model of Pj , for every j.
For every role inclusion of the form R ⊑ S in Pj , R and S must be j-roles (by our

restriction on the use of imported roles), whence we have that

RIj = RI ∩ (∆Ij × ∆Ij) (by the definition of RIj)
⊆ SI ∩ (∆Ij × ∆Ij ) (since R ⊑ S holds in the integrated ontology)
= SIj . (by the definition of SIj)

For a role R that appears in Pj , we have that Transj(R) if and only if Trans(R),
whence

(RIj )
+

= (RI ∩ (∆Ij × ∆Ij ))+ (by the definition of RIj)
= (RI)+ ∩ (∆Ij × ∆Ij) (set-theoretically)
= RI ∩ (∆Ij × ∆Ij) (since Trans(R) holds)
= RIj . (by the definition of RIj)

Finally, suppose that C ⊑ D is a concept inclusion in Pj . Then we must have
#j(C)I ⊆ #j(D)I , whence, to prove that CIj ⊆ DIj , it suffices to show that, for every
concept formula X that appears in Pj , we have #j(X)I = XIj . We do this by struc-
tural induction on X. We will consider in detail only concepts constructed using negation,
conjunction and number restriction. All other constructors may be handled similarly.

For the basis of the induction, if X is a j-concept name or a j-nominal name, then we
have #j(X) = X, whence #j(X)I = XI = XI ∩ ∆Ij = XIj , whereas, if X is an i-concept
name or an i-nominal name, with i 6= j, we have #j(X)I = (X ⊓⊤j)

I = XI ∩∆Ij = XIj .
Suppose, next, as the induction hypothesis, that for concepts C and D appearing in

Pj , #j(C)I = CIj and #j(D)I = DIj , and also note that #j(R) = R for every i-role R

appearing in Pj . Thus, we have

#j(¬iC)I = (¬#j(C) ⊓ ⊤i ⊓ ⊤j)
I (by the definition of #j(¬iC))

= (¬#j(C))I ∩ ⊤I
i ∩ ⊤I

j (by the definition of ·I)

= (∆I\#j(C)I) ∩ ∆Ii ∩ ∆Ij (by the definition of ·I)
= (∆Ii ∩ ∆Ij)\#j(C)I (since ∆Ii ∩ ∆Ij ⊆ ∆I)
= rij(∆

Ii)\CIj (by the definition of rij and
the induction hypothesis)

= (¬iC)Ij . (by the definition of (¬iC)Ij)
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#j(C ⊓ D)I = (#j(C) ⊓ #j(D) ⊓ ⊤j)
I (by the definition of #j(C ⊓ D))

= #j(C)I ∩ #j(D)I ∩ ∆Ij (by the definition of ·I)
= CIj ∩ DIj ∩ ∆Ij (by the induction hypothesis)
= CIj ∩ DIj (since CIj ,DIj ⊆ ∆Ij)
= (C ⊓ D)Ij . (by the definition of ·Ij)

#j(≤ nR.C)I = ((≤ nR.#j(C)) ⊓ ⊤i ⊓ ⊤j)
I

= (≤ nR.#j(C))I ∩ ∆Ii ∩ ∆Ij

= {x ∈ ∆I | |RI(x) ∩ (#j(C))I | ≤ n} ∩ ∆Ii ∩ ∆Ij

= {x ∈ ∆Ii ∩ ∆Ij | |RI(x) ∩ CIj | ≤ n}
= {x ∈ ∆Ii ∩ ∆Ij | |RIj (x) ∩ CIj | ≤ n} (*)
= {x ∈ rij(∆

Ii)| |RIj (x) ∩ CIj | ≤ n}
= (≤ nR.C)Ij

(*) holds because RIj ⊆ RI and for any y ∈ RI(x)∩CIj , y ∈ ∆Ij , hence y ∈ RIj(x)∩CIj .

Q.E.D.

Next, we proceed to show the reverse implication.

Lemma 4 Let Σ be a SHOIQP KB. If Σ is consistent as witnessed by a package Pw, then
⊤w is satisfiable with respect to ℜ(P ∗

w).

Proof: Suppose that Σ is consistent as witnessed by Pw. Thus, it has a distributed
model 〈{Ii}, {rij}Pi∈P ∗

j
〉, such that ∆Iw 6= ∅. We proceed to construct a model I of

ℜ(P ∗
w) by merging individuals that are related via chains of image domain relations or

their inverses. More precisely, for every element x in the distributed model, we define its
equivalence class x = {y|(x, y) ∈ ρ} where ρ is the symmetric and transitive closure of the
set

⋃
Pi∈P ∗

j
rij . Moreover, for a set S, we define S = {x̄|x ∈ S} and for a binary relation R,

we define R = {(x, y)|(x, y) ∈ R}.

Claim 3: (a) For all i and for all x, |x ∩ ∆Ii | ≤ 1.

(b) For all i and any set S ⊆ ∆Ii , |S| = |S|.

(c) For all i and all sets A1, A2 ⊆ ∆Ii , A1\A2 = A1\A2.

(d) For all i and for all S ⊆ ∆Ii × ∆Ii , (S)+ = (S+).

Proof: (a) Suppose u, v ∈ x ∩ ∆Ii , u 6= v. Then, since rii = id∆Ii and ρ is the
equivalence relation generated by the union of the rij’s, there must exist a y ∈ (x\∆Ii)∩∆Ij

for some j, which implies that {(v, y), (u, y)} ⊆ ρij = rij or {(y, u), (y, v)} ⊆ ρji = rji,
contradicting the assumption that domain relations are one-to-one. Hence |x ∩ ∆Ii | ≤ 1.

In what follows, we denote by x|i the element (if it exists) in ∆Ii that belongs to x,
i.e., x|i ∈ ∆Ii ∩ x.

(b) We prove this statement by showing that f : x → x is a total bijection from
S to S. f is a total and onto function by the definition of S. f is injective because for
x ∈ S, if there are two distinct x1, x2 in S, such that x1 = x2 = x, then {x1, x2} ⊆ x∩∆Ii ,
contradicting (a).
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(c) This statement holds because

x ∈ A1\A2 ↔ (x ∈ A1 and x 6∈ A2)

↔ ∃x′, {x′} = x ∩ ∆Ii , x′ ∈ A1\A2 (by Part (a))

↔ x ∈ A1\A2

d) First we prove (S)+ ⊆ S+. This holds because S ⊆ S+, hence (S)+ ⊆ (S+)+;
on the other hand, if (x, y) ∈ (S+)+, there exist x1, ..., xn such that (x, x1), (xn, y) and
(xk−1, xk) (for k = 2, ..., n) ∈ S+, hence (x|i, x1|i), (xn|i, y|i) and (xk−1|i, xk|i) ∈ S+ (for
k = 2, ..., n), hence (x|i, y|i) ∈ S+, thus (x, y) ∈ S+.

In the other direction, if (x, y) ∈ S+, then (x|i, y|i) ∈ S+, hence there exist x1, ..., xn

such that (x|i, x1), (xn, y|i) and (xk−1, xk) ∈ S (for k = 2, ..., n), therefore (x, x1), (xn, y)
and (xk−1, xk) ∈ S (for k = 2, ..., n), thus (x, y) ∈ (S)+. Claim 3 Q.E.D.

We now proceed to define a model of Σ. Let I = 〈∆I , ·I〉 be defined as follows:

• ⊤I = ∆I =
⋃

i ∆
Ii , and ⊥I = ∅.

• For every i-name X, XI := XIi .
• For every i, ⊤I

i = ∆Ii .

We must show that I is a model of ℜ(P ∗
w), such that ⊤I

w 6= ∅.

We have ⊤I
w = ∆Iw 6= ∅, by the hypothesis.

a) Suppose, next that i, j, k are such that Pi ∈ P ∗
k and Pk ∈ P ∗

j . To see that

⊤i ⊓ ⊤j ⊑ ⊤k holds in I, suppose that x ∈ (⊤i ⊓ ⊤j)
I = ⊤I

i ∩ ⊤I
j = ∆Ii ∩ ∆Ij . Then

x ∈ ∆Ii and x ∈ ∆Ij , therefore (x|i, x|j) ∈ ρij = rkj ◦ rik. Hence, there exists x′ ∈ ∆Ik ,

such that (x|i, x′) ∈ rik ⊆ ρ and (x′, x|j) ∈ rkj ⊆ ρ, implying x = x′ ∈ ∆Ik = ⊤I
k .

b) is discussed at the end of the proof.

c) For every role inclusion R ⊑ S in Pj , since both R and S must be j-roles, we obtain

RI = RIj (by the definition of RI)

⊆ SIj (since R ⊑ S is in Pj)
= SI (by the definition of SI)

d) If C is an i-concept name or an i-nominal name, then we do have C ⊑ ⊤i, since
CI = CIi ⊆ ∆Ii = ⊤I

i .

e) If R is an i-role, then RI = RIi ⊆ ∆Ii × ∆Ii = ⊤I
i ×⊤I

i , whence the domain and
range of RI are both restricted to ⊤I

i .

f) Next, let R be an i-role name in Pj . It must be shown that ∃R.⊤j ⊑ ⊤j and
∃R−.⊤j ⊑ ⊤j are both valid in I. Only the first subsumption will be shown. The second
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follows using a similar argument. For any x,

x ∈ (∃R.⊤j)
I ⇒ ∃y, (x, y) ∈ RI and y ∈ ⊤I

j

⇒ ∃y, (x, y) ∈ RIi and y ∈ ∆Ij

⇒ ∃x′ = x|i, y
′ = y|i, (x

′, y′) ∈ RIi and y′′ = y|j , (y
′, y′′) ∈ ρij = rij

⇒ ∃x′′ ∈ ∆Ij and (x′, x′′) ∈ rij = ρij

(because rij is a total bijection from (R−)Ii(y′) to

(R−)Ij (y′′) by Claim 1 in the proof of Lemma 2.)

⇒ x = x′ = x′′ ∈ ∆Ij = ⊤I
j

g) For a transitive i-role R, we have RI+
= (RIi)+ = RIi

+
= RIi = RI (the second

equality is by Claim 3 part (d) ).

b): For concept inclusions, we first prove, by induction on the structure of concepts,
that for any concept E appearing in Pj ,

#j(E)I = EIj . (8)

For the basis of the induction, let E be a concept such that Sig(E) ⊆ Sig(Pi)∩Sig(Pj):

Claim 4: EIi ∩ ∆Ij = rij(EIi) = EIj

Proof:

EIi ∩ ∆Ij = {x|x ∈ EIi} ∩ {x′|x′ ∈ ∆Ij} (by definition)

= {x′|∃x ∈ EIi ∧ x′ ∈ ∆Ij ∧ x = x′}

= {x′|∃x ∈ EIi ∧ x′ ∈ ∆Ij ∧ (x, x′) ∈ ρij = rij}

(by compositional consistency)

= {x′|x′ ∈ rij(E
Ii)} (by the definition of rij(·))

= rij(EIi) (by definition)

= EIj (since rij(E
Ii) = EIj ) Q.E.D.

The proof of the basis case of the induction is concluded as follows: if E is an i-concept
name or an i-nominal name, then

#j(E)I = (E ⊓⊤j)
I

= EI ∩ ⊤I
j

= EIi ∩ ∆Ij

= EIj . (by Claim 4)

For the induction step, assume that for concepts C and D appearing in Pj , we have

that #j(C)I = CIj and #j(D)I = DIj .

If E = ¬iC, then
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#j(E)I = #j(¬iC)I (since E = ¬iC)
= (¬#j(C) ⊓⊤i ⊓⊤j)

I (by the definition of #j(¬iC))
= (∆I\#j(C)I) ∩ ⊤I

i ∩ ⊤I
j (by the definition of ·I)

= (∆I\(CIj )) ∩ ∆Ii ∩ ∆Ij (by the induction hypothesis)

= (∆Ii ∩ ∆Ij)\(CIj ) (since ∆Ii ∩ ∆Ij ⊆ ∆I)

= (rij(∆Ii))\(CIj ) (by Claim 4)

= (rij(∆Ii)\CIj ) (by Claim 3c)

= (¬iC)Ij (by the definition of (¬iC)Ij)

= EIj .

If E = C ⊓ D, then

#j(E)I = #j(C ⊓ D)I (since E = C ⊓ D)
= (#j(C) ⊓ #j(D) ⊓ ⊤j)

I (by the definition of #j(C ⊓ D))
= #j(C)I ∩ #j(D)I ∩ ⊤I

j (by the definition of ·I)

= CIj ∩ DIj ∩ ∆Ij (by the induction hypothesis)

= CIj ∩ DIj (since CIj ∩ DIj ⊆ ∆Ij)

= {x|x ∈ CIj} ∩ {x|x ∈ DIj} (by the definition of (·))
= {x|x ∈ CIj ∩ DIj} (follows from Claim 3a)

= (C ⊓ D)Ij (by the definition of ·Ij )

= EIj .

For E = ≤nR.C, where R is an i-role, we first need to show:

Claim 5: If x ∈ ∆Ii ∩ ∆Ij , then (x, y) ∈ RIi iff (x|j , y|j) ∈ RIj , for any y.

Proof:

x ∈ ∆Ii ∩ ∆Ij and (x, y) ∈ RIi

⇒ (x|i, y|i) ∈ RIi and (x|i, x|j) ∈ ρij = rij

⇒ ∃y′ ∈ ∆Ij , (x|j , y′) ∈ RIj , and (y|i, y′) ∈ rij = ρij

(because rij is a total bijection from RIi(x|i) to
RIj (x|j) by Claim 1 in the proof of Lemma 2.)

⇒ (x|j, y|j) = (x|j , y′) ∈ RIj

and conversely

x ∈ ∆Ii ∩ ∆Ij and (x|j , y|j) ∈ RIj

⇒ (x|j, y|j) ∈ rij(R
Ii) (since rij(R

Ii) = RIj)
⇒ ∃x′, y′ ∈ ∆Ii , (x′, x|j) ∈ rij , (y

′, y|j) ∈ rij , (x
′, y′) ∈ RIi

⇒ (x, y) ∈ RIi . Q.E.D.
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Based on Claims 3,4 and 5, we have:

#j(E)I = #j(≤nR.C)I (since E = ≤nR.C)
= (≤nR.#j(C) ⊓⊤i ⊓⊤j)

I (by the definition of #j(≤nR.C))
= {x| |{y|(x, y) ∈ RI ∧ y ∈ #j(C)I}| ≤ n} ∩ ⊤I

i ∩ ⊤I
j

(by the definition of ·I)

= {x| |{y|(x, y) ∈ RIi ∧ y ∈ CIj}| ≤ n} ∩ ∆Ii ∩ ∆Ij

(by the definitions of RI ,⊤I
i ,⊤I

j and the induction hypothesis)

= {x ∈ ∆Ii ∩ ∆Ij | |{y|j ∈ ∆Ij |(x, y) ∈ RIi ∧ y ∈ CIj}| ≤ n}
(by Claim 3b)

= {x ∈ ∆Ii ∩ ∆Ij | |{y|j ∈ ∆Ij |(x|j , y|j) ∈ RIj ∧ y|j ∈ CIj}| ≤ n}
(by Claim 5)

= {x ∈ rij(∆Ii)| |{y|j ∈ ∆Ij |(x|j , y|j) ∈ RIj ∧ y|j ∈ CIj}| ≤ n}
(by Claim 4)

= {x|x ∈ rij(∆
Ii), |{z ∈ ∆Ij |(x, z) ∈ RIj ∧ z ∈ CIj}| ≤ n}

(by Claim 3a)

= (≤nR.C)Ij (by the definition of (≤nR.C)Ij)

= EIj .

Finally, using Equation (8), we have that

#j(C)I = CIj (by Equation (8))

⊆ DIj (since C ⊑ D is in Pj)
= #j(D)I . (by Equation (8))

Lemma 4 Q.E.D.

Using Theorem 1 and the fact that concept satisfiability in SHOIQ is NExpTime-
complete (Tobies, 2000, 2001), we obtain

Theorem 2 The concept satisfiability, concept subsumption and consistency problems in
SHOIQP are NExpTime-complete.

The next theorem shows that concept subsumption problems in SHOIQP can be
reduced to concept subsumption problems in SHOIQ.

Theorem 3 (Reasoning Exactness) For a SHOIQP KB Σ = {Pi}, C ⊑j D iff
ℜ(P ∗

j ) |= #j(C) ⊑ #j(D).

Proof: As usual, we reduce subsumption to (un)satisfiability. It follows directly
from Theorem 1 that P ∗

j and C ⊓ ¬jD have a common model if and only if ℜ(P ∗
j ) and

#j(C) ⊓ ¬#j(D) ⊓ ⊤j have a common model. Since #j(C) ⊑ ⊤j, this holds if and only if
ℜ(P ∗

j ) and #j(C) ⊓ ¬#j(D) have a common model. Thus, ℜ(P ∗
j ) |= #j(C) ⊑ #j(D).

Q.E.D.
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Discussion of Desiderata. To show that the package description logic SHOIQP sup-
ports transitive reusability and preservation of unsatisfiability, we prove the monotonicity
of reasoning in SHOIQP.

Theorem 4 (Monotonicity and Transitive Reusability) Suppose Σ = {Pi} is a
SHOIQP KB, Pi ∈ P+

j and C,D are concepts, such that Sig(C) ∪ Sig(D) ⊆ Sig(Pi) ∩
Sig(Pj). If C ⊑i D, then C ⊑j D.

Proof: Suppose that C ⊑i D. Thus, for every model I of P ∗
i , CIi ⊆ DIi .

Now consider a model J of P ∗
j . Since Pi ∈ P ∗

j , J is also an interpretation of P ∗
i . If

⋃
Pk∈P ∗

i
∆Jk = ∅, then the conclusion holds trivially. Otherwise, J is a model of P ∗

i and,

therefore, CJi ⊆ DJi . Hence, rij(C
Ji) ⊆ rij(D

Ji), whence, by Lemma 2, CJj ⊆ DJj . This
proves that C ⊑j D. Q.E.D.

Theorem 4 ensures that when some part of an ontology module is reused, the restric-
tions asserted by it, e.g., domain restrictions on roles, will not be relaxed in a way that
prohibits the reuse of imported knowledge. Theorem 4 also ensures that consequences of
imported knowledge can be transitively propagated across importing chains.

In the special case where D = ⊥, we obtain the following corollary:

Corollary 1 (Preservation of Unsatisfiability) For a SHOIQP knowledge base Σ =
{Pi} and Pi ∈ P+

j , if C ⊑i ⊥ then C ⊑j ⊥.

Finally, the semantics of SHOIQP ensures that the interpretation of an axiom in an
ontology module is constrained by its context, as seen from the reduction to a corresponding
integrated ontology: C ⊑ D in Pj is mapped to #j(C) ⊑ #j(D), where #j(C) and #j(D)
are now relativized to the corresponding local domain of Pj .

When a package Pi is directly or indirectly reused by another package Pj , some axioms
in Pi may be effectively “propagated” to module Pj (i.e., may influence inference from the
point of view of Pj). P-DL semantics ensures that such axiom propagation will affect only
the “overlapping” domain rij(∆

Ii) ∩ ∆Ij and not the entire domain ∆Ij .

Example 7 For instance, in Figure 1, package P1 contains an axiom ¬1Child ⊑ Adult and
package P2 imports P1. The assertion ¬1Child ⊑ Adult is made within the implicit context
of people, i.e. every individual that is not a child is an adult. Thus, every individual within
the domain of people is either a Child or an Adult (⊤1 ⊑ Child ⊔ Adult). However, it is
not necessarily the case in P2 that ⊤2 ⊑ Child ⊔ Adult. For example, an Employer in the
domain of Work may be an organization which is not a member of the domain of People.
In fact, since r12(∆

I1) ⊆ ∆I2, ∆I1\ChildI1 ⊆ AdultI1 , i.e., ∆I1 = ChildI1 ∪ AdultI1, does
not necessarily imply ∆I2 = ChildI2 ∪ AdultI2.

Hence, the effect of an axiom is always limited to its originally designated context.
Consequently, it is not necessary to explicitly restrict the use of the ontology language to
ensure locality of axioms, as is required, for instance, by conservative extensions (Grau et
al., 2007). Instead, the locality of axioms follows directly from the semantics of SHOIQP.
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P-DL with Unrestricted Role Inclusion

The P-DL Family ALCHIO(¬)P

We now proceed to show that the two P-DLs ALCHIO(¬)CRP and ALCHIO(¬)RP ,
that together constitute the family ALCHIO(¬)P, obtained by extending the P-DL ALCP
to allow role importing, general role inclusions (and hence role mappings between ontolo-
gies), inverse roles, nominals, nominal importing, and negation on roles, are decidable. The
syntax of both P-DLs in ALCHIO(¬)P can be obtained from ALCHIOP with (contextu-
alized) negations on roles. Thus, roles of a package Pj in both P-DLs in ALCHIO(¬)P are
defined inductively by the following grammar:

R := P |R−|¬kR

where P is a local or imported role name, and Pj imports Pk. A role of the form ¬kR is
called a k-negated role. The semantics of role negation is given by (¬kR)Ij = (rkj(∆

Ik) ×
rkj(∆

Ik))\RIj .

Depending on whether negated roles can be used or not in concept inclusions, the two
members of the family ALCHIO(¬)P are given by:

• ALCHIO(¬)CRP: negated roles can be used in both concept and role inclusions.
If an i-role name P is imported by Pj , we require that the cardinality preservation condition
holds for both P and ¬iP .

• ALCHIO(¬)RP : negated roles can only be used in role inclusions. In this variant,
we only require cardinality preservation for imported role names but not their negations.

Consideration of these two P-DLs and the respective conditions imposed in each case
are motivated by the desire to achieve transitive reusability of knowledge using a minimal
set of restrictions on domain relations between local models.

The decidability proofs of the P-DLs in ALCHIO(¬)P use a reduction to the decid-
able DL ALBO (Schmidt & Tishkovsky, 2007). The logic ALBO extends ALC with boolean
role operators, role inclusions, inverses of roles, domain and range restriction operators and
nominals.

In ALBO, roles are defined inductively by the following grammar:

R := P |R ⊓ R|¬R|R−|(R ⇂ C)|(R ↿ C)

where P is a role name and C is a concept. The semantics of ALBO is defined as an
extension of that of ALCHIO with the following additional constraints on interpretations
(where ∆I is the interpretation domain):

(¬R)I = (∆I × ∆I)\RI

(R ⊓ S)I = RI ∩ SI

(R ⇂ C)I = RI ∩ (∆I × CI)

(R ↿ C)I = RI ∩ (CI × ∆I)

We use the abbreviation R l C = (R ⇂ C) ↿ C.
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Decidability of P-DL ALCHIO(¬)CRP

A reduction ℜ from an ALCHIO(¬)CRP KB Σd = {Pi} to an ALBO KB Σ can
be established based on the reduction of P-DL SHOIQP to SHOIQ, as presented in the
section titled “Reduction to Ordinary DL”, with a couple of modifications to handle role
inclusions: #j() is also applied to roles and that a negated local domain and a negated local
range axiom for roles are added to the ALBO KB Σ, as detailed below.

• The signature of Σ is the union of the local signatures of the component packages
together with a global top ⊤, a global bottom ⊥ and local top concepts ⊤i, for all i, i.e.,
Sig(Σ) =

⋃
i Loc(Pi) ∪ {⊤i} ∪ {⊤,⊥}.

• For all i, j, k such that Pi ∈ P ∗
k , Pk ∈ P ∗

j , ⊤i ⊓ ⊤j ⊑ ⊤k is added to Σ.
• For each GCI or role inclusion X ⊑ Y in Pj , #j(X) ⊑ #j(Y ) is added to Σ. The

mapping #j() is defined below.
• For each i-concept name or i-nominal name C in Pi, i : C ⊑ ⊤i is added to Σ.
• For each i-role name R in Pi, its domain and range is ⊤i, i.e., ⊤ ⊑ ∀R−.⊤i and

⊤ ⊑ ∀R.⊤i are added to Σ.
• For each i-role name R in Pj , the following axioms are added to Σ:

− ∃R.⊤j ⊑ ⊤j; (local domain)
− ∃R−.⊤j ⊑ ⊤j; (local range)
− ∃((¬R) l ⊤i).⊤j ⊑ ⊤j; (negated local domain)
− ∃((¬R) l ⊤i)

−.⊤j ⊑ ⊤j; (negated local range)
For a formula X used in Pj , #j(X) is:
• X, for a j-(concept, role or nominal) name.
• X ⊓⊤j , for an i-concept name or an i-nominal name X.
• X l ⊤j , for an i-role name.
• #j(Y )−, for a role X = Y −.
• ¬#j(X) ⊓ ⊤i ⊓ ⊤j, for ¬iX, where X is a concept.
• ¬#j(Y ) l (⊤i ⊓ ⊤j), for a role X = ¬iY .
• (#j(X1) ⊕ #j(X2)) ⊓ ⊤j, for a concept X = X1 ⊕ X2, where ⊕ = ⊓ or ⊕ = ⊔.
• (⊕#j(R).#j(X

′)) ⊓⊤i ⊓⊤j, for a concept X = (⊕R.X ′), where ⊕ ∈ {∃,∀} and R

is an i-role or an i-negated role.
The following lemma shows that the consistency problem in ALCHIO(¬)P can be

reduced to the concept satisfiability problem in ALBO:

Lemma 5 An ALCHIO(¬)CRP KB Σd is consistent as witnessed by a package Pw if and
only if ⊤w is satisfiable with respect to ℜ(P ∗

w).

Proof sketch: The proof is similar to the proof of Theorem 1. The main modification
concerns the reduction of role inclusion axioms. The basic idea is that, given a distributed
model of Σd, we can construct an ordinary model of ℜ(P ∗

w) by “merging” individuals con-
nected by domain relations. Given a model of ℜ(P ∗

w), we can construct a distributed model
of Σd by “copying shared individuals” into local interpretation domains.

For the “if” direction, if ⊤w is satisfiable with respect to ℜ(P ∗
w), then ℜ(P ∗

w) has at
least one model I = 〈∆I , ·I〉, such that ⊤I

w 6= ∅. Our goal is to construct a model of P ∗
w

from I, such that ∆Iw 6= ∅. For each package Pi, a local interpretation Ii is constructed in
the following way:
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• ∆Ii = ⊤I
i .

• For every concept name C in Pi, CIi = CI ∩ ⊤I
i .

• For every role name R in Pi, RIi = RI ∩ (⊤I
i ×⊤I

i ).
• For every nominal name o that appears in Pi, oIi = oI .

For every pair i, j, such that Pi ∈ P ∗
j , we define

rij = {(x, x)|x ∈ ∆Ii ∩ ∆Ij}.

Clearly, we have ∆Iw = ⊤I
w 6= ∅. So it suffices to show that 〈{Ii}, {rij}Pi∈P ∗

j
〉 is

a model of P ∗
w. The proof is similar to that of Lemma 3. We will only show that if

#j(X) ⊑ #j(Y ) is satisfied by I, then X ⊑ Y is satisfied by Ij. To accomplish this, it
suffices to show that for any role X in the signature of Pj , #j(X)I = XIj :

• If X is a j-role name, #j(X)I = XIj by definition.
• If X is a i-role name, i 6= j, #j(X)I = (X l ⊤j)

I = XI ∩ (∆Ij × ∆Ij) = XIj .
• If X = Y − and #j(Y )I = Y Ij , then #j(X)I = (#j(Y )−)I = (#j(Y )I)− =

(Y Ij )− = (Y −)Ij = XIj .
• If X = ¬iY and #j(Y )I = Y Ij , then #j(X)I = (¬#j(Y ) l (⊤i ⊓ ⊤j))

I = ((∆Ii ∩
∆Ij) × (∆Ii ∩ ∆Ij ))\Y Ij = (¬iY )Ij = XIj .

For the “only if” direction, suppose that Σd is consistent as witnessed by Pw. Thus,
Σd has a distributed model 〈{Ii}, {rij}Pi∈P ∗

j
〉, such that ∆Iw 6= ∅. We construct a model

I of ℜ(P ∗
w) by merging individuals that are related via chains of image domain relations

or their inverses. More precisely, for every element x in the distributed model, we define,
as before, its equivalence class x = {y|(x, y) ∈ ρ}, where ρ is the symmetric and transitive
closure of the set

⋃
Pi∈P ∗

j
rij. For a set S, we define S = {x̄|x ∈ S} and, for a binary relation

R, we define R = {(x, y)|(x, y) ∈ R}.
Now, let I = 〈∆I , ·I〉 be defined as follows:

• ∆I =
⋃

i ∆Ii .

• For every i-name X, XI := XIi .
• For every i, ⊤I

i = ∆Ii .

We denote by x|i the element (if it exists) in ∆Ii that belongs to x, i.e., x|i ∈ ∆Ii ∩x.

The proof that I is a model of ℜ(P ∗
w), with ⊤I

w 6= ∅, is similar to that of Lemma 4. We
only show that for every role inclusion X ⊑ Y ∈ Pj , we have that I satisfies #j(X) ⊑ #j(Y ).

We prove this by showing that, for any role R the appears in Pj , RIj = #j(R)I , again
using induction on the structure of R. We only show the case for negated roles. The
other cases (local roles, imported roles and inverse roles) can be handled similarly. When

R = ¬iS and SIj = #j(S)I , we have that RIj = (¬iS)Ij = (rij(∆Ii) × rij(∆Ii))\SIj =

((⊤i ⊓ ⊤j)
I × (⊤i ⊓ ⊤j)

I)\SIj = (¬#j(S) l (⊤i ⊓ ⊤j))
I = #j(R)I . Q.E.D.

Decidability of P-DL ALCHIO(¬)RP

The decidability proof of ALCHIO(¬)RP also uses a reduction to ALBO and is
very similar to that of ALCHIO(¬)CRP . Since negated roles appear only in role inclusions
and cardinality preservation is not required for negated roles, in the reduction from an
ALCHIO(¬)RP ontology to an ALBO ontology, the negated local domain and the negated
local range axioms are not needed. Note that, in ALCHIO(¬)CRP , if Pj imports a role
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from Pi, then, due to cardinality preservation on both role names and negated roles, rij

has to be either empty or a total function. In ALCHIO(¬)RP , on the other hand, there is
no such requirement. This allows some increased flexibility in role mappings while, at the
same time, maintaining the autonomy of ontology modules.

From the above reductions from ALCHIO(¬)CRP and ALCHIO(¬)RP to ALBO
and the fact that the complexity of ALBO is NExpTime-complete (Schmidt & Tishkovsky,
2007) we obtain the following complexity result.

Theorem 5 The consistency problem and concept satisfiability problem in
ALCHIO(¬)CRP and ALCHIO(¬)RP are in NExpTime.

Discussion of the P-DL Semantics

Necessity of P-DL Constraints on Domain Relations

The constraints on domain relations in the semantics of SHOIQP, as given in Defi-
nition 1, are minimal in the sense that if we drop any of them, we can no longer satisfy the
desiderata summarized in the section titled “Semantics”.

Dropping Condition 1 of Definition 1 (one-to-one domain relations) leads to difficulties
in preservation of concept unsatisfiability. For example, if the domain relations are not
injective, then C1 ⊑i ¬iC2, i.e., C1 ⊓ C2 ⊑i ⊥, does not ensure C1 ⊓ C2 ⊑j ⊥ when Pj

imports Pi. If the domain relations are not partial functions, multiple individuals in ∆Ij

may be images of the same individual in ∆Ii via rij, whence unsatisfiability of a complex
concept can no longer be preserved when both number restriction and role importing are
allowed. Thus, if R is an i-role name and C is an i-concept name, ≥ 2R.C ⊑i ⊥ does not
imply ≥ 2R.C ⊑j ⊥.

Dropping Condition 2 of Definition 1 (compositional consistency of domain relations)
would result in violation of the transitive reusability requirement, in particular, and of
the monotonicity of inference based on imported knowledge, in general. In the absence of
compositional consistency of domain relations, the importing relations would be like bridge
rules in DDL, in that they are localized w.r.t. the connected pairs of modules without
supporting compositionality (Zimmermann & Euzenat, 2006).

In the absence of Conditions 3 and 4 of Definition 1, the reuse of concept and role
names would be purely syntactical, i.e., the local interpretations of imported concepts and
role names would be unconstrained by their interpretations in their home package.

Condition 5 (cardinality preservation of role instances) is needed to ensure the con-
sistency of local interpretations of complex concepts that use number restrictions.

Condition 6 is needed to ensure that concepts that are nominals can only have one in-
stance. Multiple “copies” of such an instance are effectively identified with a single instance
via domain relations.

Finally, Condition 7, i.e., that Ii � Pi, for every i, is self-explanatory.

Contextualized Negation

Contextualized negation has been studied in logic programming (Polleres, 2006;
Polleres et al., 2006). Existing modular ontology languages DDL and E-Connections do
not explicitly support contextualized negation in their respective syntax. However, in those
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formalisms, a negation is always interpreted with respect to the local domain of the module
in which the negation occurs, not the union of all local domains. Thus, in fact, both DDL
and E-Connections implicitly support contextualized negation.

The P-DL syntax and semantics, proposed in this work, support a more general use of
contextualized negation so that a package can use, besides its own negation, the negations
of its imported packages.

Directionality of Importing

There appears to be some apparent confusion in the literature regarding whether the
constraints imposed by P-DL allow the importing relations in P-DL to be indeed directional
(Grau & Kutz, 2007). As noted in (Grau & Kutz, 2007), if it is indeed the case that a P-DL
model I satisfies rij(s

Ii) = sIj if only if it satisfies rji(s
Ij ) = sIi , for any symbol s such

that Pi
s
−→ Pj (Definition 18 and Proposition 19 in (Grau & Kutz, 2007)) it must follow that

a P-DL ontology can be reduced to an equivalent imports-free ontology. Then, a shared
symbol s of Pi and Pj must have the same interpretation from the point of view of both Pi

and Pj , i.e., sIi = sIj . However, according to our definition of model (Definition 1), it is not
the case that a P-DL model I satisfies rij(s

Ii) = sIj if and only if it satisfies rji(s
Ij) = sIi ,

for any symbol s such that Pi
s
−→ Pj . As noted by Bao et al. (Bao et al., 2006b,c):

• P-DL semantics does not require the existence of both rij and rji. Their joint
existence is only required when Pi and Pj mutually import one another. Hence, even if
rij(s

Ii) = sIj , it is possible that the corresponding rji may not exist in which case rji(s
Ij )

is undefined.
• Domain relations are not necessarily total functions. Hence, it need not be the

case that every individual of ∆Ii is mapped (by the one-to-one domain relation rij) to an
individual of ∆Ij .

• Satisfiability and consistency have only contextualized meaning in P-DL. If Pj is
not in P ∗

i , then models of P ∗
i need not be models of P ∗

j . This is made clear in Definition
2, where satisfiability and consistency are always considered from the point of view of a
witness package.

In the following subsection, we will present an additional example (Example 8) that
illustrates the directionality of importing in P-DL.

P-DL Consistency and TBox Consistency

In the section titled “Reduction to Ordinary DL”, we have shown how to reduce a
SHOIQP P-DL ontology to a corresponding DL (SHOIQ) ontology. We have further
shown (Theorem 1) that determining the consistency of a SHOIQP ontology from the
point of view of a package Pw can be reduced to the satisfiability of a SHOIQ concept
with respect to a SHOIQ ontology obtained by integrating the packages imported by
Pw. However, it is important to note that this reduction of SHOIQP is different from a
reduction based on S-compatibility as defined in (Grau & Kutz, 2007).

Definition 3 (Expansion) Let A-interpretation denote an interpretation over a signa-
ture A. An S-interpretation J = (∆J , ·J ) is an expansion of an S′-interpretation
J ′ = (∆J ′

, ·J
′

) if
(1) S′ ⊆ S,
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(2) ∆J ′

⊆ ∆J , and
(3) sJ = sJ

′

, for every s ∈ S′.

Definition 4 (S-compatibility) Let T1 and T2 be TBoxes expressed in a description logic
L, and let S be the shared part of their signatures. We say that T1 and T2 are S-compatible
if there exists an S-interpretation J , that can be expanded to a model J1 of T1 and to a
model J2 of T2.

As the following example illustrates, a P-DL ontology is not always reducible to the
imports-free ontology that is obtained by simply taking the union of the modules (packages).

Example 8 Let T1 = {D ⊔ ¬D ⊑ C}, T2 = {C ⊑ ⊥}. The shared signature S = {C}
and T1 and T2 are not S-compatible. However, suppose we have a P-DL ontology such that

T1
C
−→ T2 and negation in T1 becomes contextualized negation ¬1. Then we have a model:

∆1 = CI1 = DI1 = {x}

∆2 = {y}, CI2 = ∅

r12 = r21 = ∅

On the other hand, all models of a P-DL ontology where T2
C
−→ T1 have empty ∆1.

Thus, the whole ontology is consistent as witnessed by T2 but inconsistent as witnessed by
T1. This example demonstrates that P-DL importing is directional.

The next example shows that, in the presence of nominals, the P-DL consistency
problem is not reducible to the consistency of an imports-free ontology obtained by simply
combining the P-DL modules.

Example 9 (Use of Nominals) Consider the following TBoxes:

T1 = {⊤ ⊑ i ⊔ j, i ⊓ j ⊑ ⊥}

T2 = {⊤ ⊑ i},

with the shared signature S = {i}, where i, j are nominals. T1 and T2 are S-compatible but

T1 ∪ T2 is not consistent. Suppose we have a P-DL ontology with T1
i
−→ T2. Since “⊤” only

has contextualized meaning in P-DL, these TBoxes in fact should be represented as

T1 = {⊤1 ⊑ i ⊔ j, i ⊓ j ⊑ ⊥}

T2 = {⊤2 ⊑ i}

Now, there exists a model for this P-DL ontology:

∆1 = {x, y}, iI1 = {x}, jI1 = {y}

∆2 = {x′}, iI2 = {x′}

r12 = {(x, x′)}
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In general, the reduction from P-DL modules to imports-free TBoxes with shared
signatures based on S-compatibility, as suggested by (Grau & Kutz, 2007), does not preserve
the semantics of P-DL. Thus, there is a fundamental difference between the two settings:
P-DL has no universal top concept and, as a result, P-DL axioms have only localized effect.
In the case of imports-free TBoxes, in the absence of contextualized semantics, it is not
possible to ensure that the effects of axioms are localized. Consequently, it is not possible
to reduce reasoning with a P-DL ontology with modules {Ti} to standard DL reasoning
over the union of all ontology modules T = T1 ∪ ... ∪ Tn.

In contrast, in the previous section we have shown that such a reduction from rea-
soning in P-DL from the point of view of a witness package to reasoning with a suitably
constructed DL (as shown in the section “Reduction to Ordinary DL”) is possible. Never-
theless, relying on such a reduction is not attractive in practice, because it requires the inte-
gration of the ontology modules, which may be prohibitively expensive. More importantly,
in many scenarios encountered in practice, e.g., in peer-to-peer applications, centralized
reasoning with an integrated ontology is simply infeasible. Hence, work in progress is aimed
at developing federated reasoners for P-DL that do not require the integration of different
ontology modules (see, e.g., (Bao et al., 2006d)).

Summary

In this paper, we have introduced a modular ontology language, package-based de-
scription logic SHOIQP, that allows reuse of knowledge from multiple ontologies. A
SHOIQP ontology consists of multiple ontology modules each of which can be viewed
as a SHOIQ ontology. Concept, role and nominal names can be shared by “importing”
relations among modules.

The proposed language supports contextualized interpretation, i.e., interpretation
from the point of view of a specific package. We have established a minimal set of con-
straints on domain relations, i.e., the relations between individuals in different local domains,
that allow the preservation of the satisfiability of concept expressions, the monotonicity of
inference, and the transitive reuse of knowledge.

Ongoing work is aimed at developing a distributed reasoning algorithm for SHOIQP
by extending the results of (Bao et al., 2006d) and (Pan et al., 2006), as well as an OWL
extension capturing the syntax of SHOIQP. We are also exploring several variants of
P-DL, based on a more in-depth analysis of the properties of the domain relations and the
preservation of satisfiability of concept subsumptions across modules.
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