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Abstract

Privacy, copyright, security and other concerns
make it essential for many distributed web applications
to support selective sharing of information while, at
the same time, protecting sensitive knowledge.Secrecy-
preserving reasoningrefers to the answering of queries
against a knowledge base involving inference that uses
sensitive knowledge without revealing it. We present
a general framework for secrecy-preserving reasoning
over arbitrary entailment systems. This framework
enables reasoning with hierarchical ontologies, propo-
sitional logic knowledge bases (over arbitrary logics)
and RDFS knowledge bases containing sensitive in-
formation that needs to be protected. We provide an
algorithm that, given a knowledge base over an ef-
fectively enumerable entailment system, and a secrecy
set over it, defines a maximally informative secrecy-
preserving reasoner.Secrecy-preserving mappingsbe-
tween knowledge bases that allow reusing reasoners
across knowledge bases are introduced.

1. Introduction

Problems of trust, privacy and security in informa-
tion systems in general, and networked information
systems (e.g., the web), in particular, are topics of
significant current interest. In many applications in
the semantic web, sharing of information is of utmost
importance. This need has to be balanced against the
competing requirement to protect sensitive or confi-
dential information from unintended disclosure.

Example 1: Suppose that John buys Drug A for cancer.
Drug A is a generic drug and generic drugs are covered
by John’s insurance policy. Suppose that the exact drug
that John takes is to be kept secret from his insurance
company lest his condition becomes known and, as
a result, his insurance premiums are unreasonably
increased. If the knowledge

Drug A is a generic drug
Generic drugs are covered by insurance policy

is combined with the secret knowledge

John buys Drug A

the information

John is covered by insurance policy,

needed for reimbursement, can be inferred without
disclosing the secret knowledge. �

One can easily imagine similar needs for selective
sharing of results of inference based on protected
knowledge in many other scenarios including, for
example, interactions among business partners, dif-
ferent governmental agencies (e.g., intelligence, law
enforcement, public policy), or independent nations
acting on matters of global concern (e.g., counter-
terrorism). The focus of this paper is on applications
where there is a need to reason and deduce new
information from existing knowledge bases, in which
part of the knowledge needs to be protected.

Early work on securing information focused on
access control mechanisms (see [2] for a survey). For,
instance, work onpolicy languagesfor the web [3],
[12] involves specifying syntax-based restrictions on
access to specific resources or operations on the web.
Giereth [8] has studied the hiding of a fragment of an
RDF document by encrypting it while the rest of the
document remains publicly readable. Farkas et al. [5],
[11] have proposed aprivacy information flow modelto
prevent unwanted inferences in data repositories. Jain
and Farkas [11] have proposed an RDF authorization
model that can selectively control access to stored RDF
triples using a pre-specified set ofsyntacticrules. In a
recent paper [4] Grau and Horrocks have introduced
a framework that combines logic and probabilistic
approaches to guarantee privacy preservation.

Most of the existing approaches to the protection
of secret information rely on forbidding access to the
sensitive parts of a knowledge base. Such approaches
can be overly restrictive in scenarios where it is pos-
sible, and may be desirable, for a knowledge base to



use both secret and publicly available knowledge to
answer queries without risking disclosure of the secret
knowledge [1]. Such reasoning was termedprivacy-
preserving reasoning. A precise formulation of the
problem of privacy-preserving reasoning was provided
in [1] and a framework was developed to tackle the
problem based on the Open World Assumption (OWA).

In this paper, we introducesecrecy-preserving rea-
soningover arbitrary entailment systems that extends
the notion of privacy-preserving reasoning to handle a
broader gamut of applications. Our goal is to devise
a very general framework that is flexible enough to
cover a wide variety of real-world knowledge bases
and is easily adaptable to various concrete applica-
tion scenarios. Once the framework is presented, to
illustrate its usefulness, we apply it to hierarchical
knowledge bases, to knowledge bases over arbitrary
propositional languages, to hypergraphical knowledge
bases and, finally, to RDFS knowledge bases. The
latter encompass many of the knowledge bases that
are currently available in the semantic web.

The main contributions of the present paper are
presented next.

• We introduce a very general framework for
secrecy-preserving reasoning with arbitrary entail-
ment systems.

• We present an algorithm that, given a knowledge
base with sensitive information and a linear or-
dering of the set of possible queries, devises a
secrecy-preserving reasoner for answering queries
against the knowledge base. The resulting rea-
soner is maximal in the sense that it reveals
as much information as possible without risking
disclosure of the secret information.

• We introduce the concept of secrecy-preserving
mapping between ontologies containing sensitive
information. Secrecy-preserving mappings help in
reducing reasoning in one ontology to reasoning
in another, while maintaining secrecy features,
leading to more effective reuse of ontologies.

• We apply this framework to secrecy-preserving
reasoning with RDFS knowledge bases.

The rest of the paper is organized as follows:
Section 2 reviews the general framework for secrecy-
preserving reasoning. Section 3 describes secrecy-
preserving reasoning over arbitrary entailment systems
and provides several examples. Section 4 presents
the general algorithm, which, given a knowledge
base with sensitive information, outputs a secrecy-
preserving reasoner for answering queries against the
knowledge base. It also states various properties of
this algorithm. Subsection 4.2 looks more closely at

hierarchical ontologies and shows how the general
algorithm is applied to this special case. Section 5
introduces and studies secrecy-preserving mappings
between entailment systems that enable structural com-
parisons between ontologies with hidden components
and facilitate the reuse of secrecy-preserving reasoners.
Section 6 shows, as an application, how we can use the
general framework to perform secrecy-preserving rea-
soning with RDFS knowledge bases. Finally, Section
7 concludes with a summary.

2. Secrecy-preserving Reasoning:
General Framework

Let L be a signature or language type, i.e., a set
of connectives with predetermined arities. Associated
with L is a set of formulasFmL, which are built using
the connectives inL starting from a denumerable set
of atomic propositions (in the case of a propositional
logic) or names (in the case of a description logic) in
the ordinary recursive way.

An inference system S = 〈L,⊢S〉 consists of a
language typeL together with a finitary consequence
relation⊢S ⊆ P(FmL)×FmL on the set of formulas
overL, whereP(X) denotes the powerset of a setX .
Given Φ ⊆ FmL, we use the notationΦ+ = {φ ∈
FmL : Φ ⊢S φ} to denote the set ofS-consequences
of Φ. SinceS will be fixed, this will not cause any
confusion. Theinterderivability relation associated
with S is the relation

Λ(S) = {〈φ, ψ〉 ∈ Fm2
L : {φ}+ = {ψ}+},

i.e., it is the relation that contains all pairs ofS-
interderivable formulas1.

A knowledge base K over S is a quadrupleK =
〈K,B,Q,A〉, where

• K is a finite consistent set of formulas;
• B ⊆ K is the browsable part of K, i.e., the

part that can be accessed by any querying agent
without any restrictions. IfB = ∅, then access to
the knowledge base is possible only via queries.

• Q ⊆ FmL is the query space and it satisfies
K+ ⊆ Q. It represents the set of all queries that
can be posed againstK. We stipulate that

1) If 〈φ, ψ〉 ∈ Λ(S) andφ ∈ Q, thenψ ∈ Q,
i.e., that the interderivability relation ofS
is compatible withQ in the sense of [6].
Note that this means thatQ is a union of
equivalence classes ofΛ(S);

2) If the language includes negation,Q is
closed under negation.

1. This is called theFrege relation of S in [6].

2



• A is theanswer space, i.e., the set of all possible
answers that the knowledge base may return to
a query. In most examples, we will haveA =
{Y,N,U} or A = {Y, U}, whereY,N,U stand,
respectively, for YES, NO and UNKNOWN.

Intuitively, if φ ∈ Q, then posing the queryφ is
tantamount to asking whetherφ ∈ K+.

From now on, unless stated otherwise, we will fix
the answer set to be the setA = {Y,N,U}. Consider
the knowledge baseK = 〈K,B,Q,A〉. For any
functionR : Q→ A, define

QY = R−1(Y ) QN = R−1(N) QU = R−1(U).

The setsQY , QN , QU obviously form a partition of
the query setQ.

A reasoner for K or aK-reasoner is a computable
functionR : Q→ A, satisfying the following axioms:

• Invariance: If 〈φ, ψ〉 ∈ Λ(S), then R(φ) =
R(ψ), for all φ, ψ ∈ Q;

• Yes-Axiom: B+ ⊆ QY ⊆ K+;
• No-Axiom: If the language has negation,QN =

¬QY .

Note that, if K is a knowledge base andR a K-
reasoner, then

QN ∩K+ = ∅ and QU = ¬QU ,

the latter holding wheneverL has negation.
Next, we explore a canonical method that may be

used to weaken the informativeness of a given reasoner
without affecting any of its key properties. Expressed
differently, given a reasoner for a knowledge baseK,
we provide a method for creating a variety of less
informative reasoners.

Proposition 1: Let K = 〈K,B,Q,A〉 be a knowl-
edge base over an inference systemS with negation
andR : Q → A a K-reasoner. SupposeW ⊆ QY ,
such that

1) W ∩B+ = ∅;
2) Λ(S) is compatible with each ofW,¬W ,

QY \W andQN\¬W .

Then, the functionR′ : Q→ A, defined, for allφ ∈ Q,
by

R′(φ) =







Y, if φ ∈ QY \W
N, if φ ∈ QN\¬W
U, if φ ∈ QU ∪ (W ∪ ¬W )

is also aK-reasoner.
Proof: One has to check that all three properties in

the definition of a reasoner are satisfied by the new
functionR′ : Q→ A.

• For Invariance, suppose thatφ, ψ ∈ FmL, such
that 〈φ, ψ〉 ∈ Λ(S). If R′(φ) = Y , then φ ∈
QY \W . Thus, sinceΛ(S) is compatible with
QY \W , we get thatψ ∈ QY \W , which implies
that R′(ψ) = Y . The caseR′(φ) = N is
handled similarly. Finally, ifR′(φ) = U , then
φ ∈ QU ∪W ∪ ¬W . If φ ∈ QU , thenψ ∈ QU .
If φ ∈ W or φ ∈ ¬W , then the compatibility of
Λ(S) with W and with¬W implies thatψ ∈W

or ψ ∈ ¬W , respectively. ThereforeR′(ψ) = U ,
as well. This shows thatR′ is invariant.

• For the Yes-Axiom, we have

B+ ⊆ QY \W = Q′
Y ⊆ QY ⊆ K+.

• That the No-Axiom holds follows directly from
the definition ofR′.

�

Suppose now that the knowledge baseK is queried
by a querying agent that has at its disposal an inference
engine for the inference systemS. Suppose, also, that
the knowledge base is required to keep secret a set
S ⊆ K+\B+. The setS will be termed thesecret set
or secrecy set. Note that information in the browsable
partB is readily available and, therefore, all its conse-
quences can be inferred by the querying agent. Thus,
no information inB+ can be kept confidential. To
protect the information contained inS, a K-reasoner
must answerU to any query inS, i.e., we must have
S ⊆ QU . This, however, may not be enough because it
may be the case that knowledge outsideS can be used
to deduce information inS. This knowledge would
also have to be concealed byK. Thus, a secrecy-
preserving K-reasoner for S must specify a setES ,
called asecrecy envelope or security envelope of S,
such that

• Enveloping Axiom: S ⊆ ES ⊆ K+\B+;
• Secrecy Axiom: (K+\ES)+ ∩ S = ∅.

Once such a set is fixed the secrecy-preservingK-
reasoner forS (associated withES) is the function
R : Q→ A defined, for allφ ∈ Q, by

R(φ) =







Y, if φ ∈ K+\ES

N, if ¬φ ∈ K+\ES

U, otherwise
(1)

A few remarks concerning a secrecy envelope of
a secrecy setS are in order. This set isnot unique,
given the secrecy setS. However, the goal is to keep
it as small as possible. The reason is that, as seen by
Equation (1), the smaller the secrecy envelope ofS

is, the larger the setQY ∪ QN that results (i.e., the
smaller the setQU ) and, hence, themore informative
the K-reasoner obtained via Equation (1).
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Our basic approach to designing secrecy-preserving
reasoners for KBs that contain sensitive knowledge is
to ensure that the answers to queries do not reveal
information in the secrecy set. The underlying idea
is to design a reasoner that exploits theOpen World
Assumption(OWA) of ontology languages to make
it impossible for the querying agent to distinguish
between information that is unknown to the reasoner
(because of the incompleteness of the KB) and the
knowledge that is being protected by the reasoner. A
query that cannot be safely answered without running
the risk of disclosing secret knowledge will be an-
sweredas if the reasonerlacks the complete knowledge
to answer the query.

In the next section, we generalize this framework to
secrecy-preserving reasoning over arbitrary entailment
systems. This general setting is adopted with an eye
towards a unified treatment of a wide range of ap-
plications calling for secrecy-preserving reasoning. Its
noteworthy feature is that it scales down in an elegant
way to diverse secrecy-preserving reasoning needs that
arise in practice. Thus, it makes it unnecessary for
a user to devise a new framework each time a new
application arises.

3. Secrecy-preserving Reasoning
Over Entailment Systems

Let X be an arbitrary set. Arule of inference over
X is a pair 〈Y, y〉, whereY is a finite subset ofX
and y ∈ X . Sometimes, the notationY

y
will be used

in place of〈Y, y〉.
An entailment system is a pairE = 〈X,R〉 consist-

ing of a setX and a collectionR of rules of inference
overX . Given a setZ ∪ {x} ⊆ X , x is said tofollow
from Z by an application of a rule of inference
R = 〈Y, y〉 ∈ R, if Y ⊆ Z andx = y. An E-proof
of x from Z is a sequencex0, x1, . . . , xn−1 ∈ X ,
such thatxn−1 = x and, for all i < n, xi ∈ Z or
xi follows from {x0, . . . , xi−1} by an application of
a rule of inference inR. If there exists anE-proof of
x from Z, we writeZ ⊢E x and say thatZ E-entails
x or that x is E-provable from Z. The entailment
associated with the entailment systemE is the relation
⊢E ⊆ P(X) ×X , defined by

Z ⊢E x iff there exists anE-proof of x from Z.

Finally, we writeZ+ = CE (Z) := {x ∈ X : Z ⊢E x}.

This definition of an entailment system encompasses
four broad categories of important examples:

1) Hierarchical Ontologies or Graphs: A hierar-
chical ontology is a directed graphG = 〈V,E〉,

whereV is the set of nodes andE the set of
directed edges, i.e.,E ⊆ V × V . When dealing
with hierarchies, we are interested in discovering
reachability relations between nodes based on
the information stored in the directed edges of
G. Therefore, the relevant entailment system in
this case isE = 〈X,R〉, whereX = V ×V and
R consists of the rule of inference (schema)

(x, y), (y, z)

(x, z)
.

Clearly, the E-closure of E is the transitive
closure of the setE of directed edges ofG.
Hierarchical ontologies cover a broad range of
ontologies that are used in practice [17].

2) Deductive Systems: A deductive system S =
〈L,⊢S〉 consists of a logical language typeL,
i.e., a set of logical connectivesL and a fini-
tary and structural2 consequence relation⊢S ⊆
P(FmL(V )) × FmL(V ), where FmL(V ) de-
notes the collection of all formulas formed using
propositional variables in a fixed denumerable
set V and the logical connectives in the lan-
guageL. It is well-known that the entailment
relation ⊢S is induced by a collectionRS of
rules of inference overFmL(V ). Therefore,S
may be represented by the entailment system
E(S) = 〈FmL(V ),RS〉.
Deductive systems include propositional knowl-
edge bases, which have many applications in AI
and information systems [7].

3) Hypergraphical Knowledge Bases: This is a
very general framework developed in [16] to deal
with secrecy-preserving reasoning for ontologies
expressed as hypergraphs. The key idea is to
fix a set V of vertices and setX = P(V ).
Entailment is specified by a collectionR of rules
of inference overX . The resulting entailment
system isE = 〈X,R〉. As a specific example
of a rule of inference, consider the1-exclusive
closure, which is the propertyP =“for all
E,F,D ⊆ V , such thatD ⊆ E ∩ F and
|D| = 1, (E ∪ F )\D follows from E,F ”.
This property may be expressed by the rule of
inference (schema)

{x1, . . . , xn, z}, {z, y1, . . . , ym}

{x1, . . . , xn, y1, . . . , ym}
.

Hypergraphical knowledge bases can be used to
model connectivity among resources on the web
[9].

2. The consequence relation⊢S is structural if Γ ⊢S φ implies
h(Γ) ⊢S h(φ) for every substitutionh.
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4) RDFS Knowledge Bases: This very important
entailment system will be discussed in detail
in Section 6. It allows exploiting a sound and
complete inference system for RDFS entail-
ment to perform secrecy-preserving reasoning
with arbitrary RDFS knowledge bases containing
sensitive information. This framework makes it
possible to handle a large number of “real-world”
knowledge bases that are currently available in
the semantic web.

Recall that in Section 2, we have defined the notions
of a knowledge base, reasoner, secrecy set, secrecy
envelopes and secrecy-preserving reasoners over an
inference systemS. By replacingS by an arbitrary
entailment systemE , we obtain, analogously, the same
notions overE .

We present an example of secrecy-
preserving reasoning for a knowledge base
K = 〈K,B,FmL(V ), {Y, U}〉 based on a deductive
system S = 〈L,⊢S〉. This is followed by an
example of a secrecy-preserving reasoning with
a hypergraphical knowledge base. An example of
secrecy-preserving reasoning with the RDFS system,
which forms one of the key applications of our
framework because of its wide applicability in the
existing semantic web, will be presented in Section 6.

Example 2: Suppose thatS1 = 〈L,⊢S1
〉,S2 =

〈L,⊢S2
〉 are two deductive systems over the same

language typeL, such that⊢S1
⊆ ⊢S2

, i.e., for all
Γ ∪ {φ} ⊆ FmL(V ), Γ ⊢S1

φ implies Γ ⊢S2
φ.

In this case, there exist collectionsR1,R2 of rules
of inference, withR1 ⊆ R2, such thatE(S1) =
〈FmL(V ),R1〉 and E(S2) = 〈FmL(V ),R2〉. Let us
further assume that there existsφ ∈ FmL(V ), such
that⊢S2

φ but 6⊢S1
φ. Define

ThmS1
= {φ ∈ FmL(V ) : ⊢S1

φ}

and, similarly,

ThmS2
= {φ ∈ FmL(V ) : ⊢S2

φ}.

Consider the knowledge base

K = 〈ThmS2
,ThmS1

,FmL(V ), {Y, U}〉,

with secrecy setS = ThmS2
\Thm+

S1
, the closure

taken with respect toS2. According to the general
framework developed here (and assuming, for sim-
plicity, that L does not contain negation), a reasoner
R := RE(S2)(K) for K over E(S2) is a mapping
R : FmL(V ) → {Y, U}, that satisfies (all closures
referring toS2)

• Invariance: If 〈φ, ψ〉 ∈ Λ(E(S2)), thenR(φ) =
R(ψ), for all φ, ψ ∈ FmL(V );

• Yes-Axiom: Thm+
S1

⊆ FmL(V )Y ⊆ ThmS2
.

In this case there is a unique secrecy envelopeES

for S, namely, the setES = S = ThmS2
\Thm+

S1
,

which can easily be seen to satisfy both the Enveloping
and the Secrecy Axioms. Thus, the only secrecy-
preserving reasoner forK and S is the function
R : FmL(V ) → {Y, U} defined by

R(φ) =

{

Y, if φ ∈ Thm+
S1

U, if φ ∈ FmL(V )\Thm+
S1

.

�

We turn, now, to an example of secrecy-preserving
reasoning for a hypergraphical ontology:

Example 3: Consider the hypergraph described pic-
torially in Figure 1. We describe it formally. Its set
of vertices isV = {1, 2, 3, 4, 5, 6}. Let X = P(V )
be the powerset ofV . Consider the entailment system
E = 〈X,R〉, whereR consists of the inference rule
schemas

{x1, . . . , xn, y}, {y, z1, . . . , zm}

{x1, . . . , xn, z1, . . . , zm}
,

for 1 ≤ n,m ≤ 5. As was mentioned
in Section 3, these rules are collectively re-
ferred to as 1-exclusive closure. Define K =
{{1, 2, 3}, {3, 4, 5}, {5, 6}, {1, 6}}, B = ∅, Q = X

and A = {Y, U}. Let K = 〈K,B,Q,A〉 be a
knowledge base overE . Assume thatS = {{1, 6}},
which is depicted in Figure 1 by the dotted edge.
It is easily seen that 1-exclusive closure allows the

Figure 1. Illustration of a Hypergraph.

following two derivations:

{1, 2, 3}, {3, 4, 5}

{1, 2, 4, 5}
,

{3, 4, 5}, {5, 6}

{3, 4, 6}
.

Suppose that we want to perform secrecy-preserving
reachability reasoning, i.e., infer conclusions about
whether a given vertex is reachable from another
vertex by following a sequence of partially overlapping
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edges, without revealing the secret edge. Then, it is
clear that a secrecy-preserving reasoner forK andS
cannot answer “Y ” to all three queries concerning the
non-secret edges ofK, since, in that case, it would
compromise the secret information that{1, 6} is an
edge in the hypergraph. �

The problem of computing the secrecy envelopes is
addressed in the next section.

4. Order-Induced Secrecy-preserving
Reasoners

4.1. The General Case

In this section, based on the general framework
of secrecy-preserving reasoning with entailment sys-
tems, we develop an algorithm that produces secrecy-
preserving reasoners in a wide variety of contexts.
The algorithm has the advantage that it produces a
minimal secrecy envelope for a given secrecy set, or,
equivalently, it is maximally informative, in the sense
that it responds with a minimal set ofU -answers
without risking disclosure of sensitive information.

Let E = 〈X,R〉 be an entailment system and
K = 〈K,B,Q,A〉 a knowledge base overE , such
that Q = X and A = {Y, U}. Assume, moreover,
that S is a secrecy set forK. A secrecy-preserving
reasonerR : Q → A for K and S is said to be
trivial if QY = B+, i.e., if it answersY only to the
queries that are in or follow from the browsable part of
K. Clearly, such a reasoner is the “least informative”
in the sense that it does not provide the querying
agent any information in addition to the one that he
can either browse or infer directly from browsable
information. Note that a reasoner is trivial if and only
if the corresponding secrecy envelopeES = K+\B+,
i.e., iff ES is maximum (since, by definition,S ⊆
ES ⊆ K+\B+). It is the goal of this section to
show that, under mild assumptions onK andS, there
always exist non-trivial secrecy-preserving reasoners
for K andS and, moreover, to provide an algorithm
that produces such a reasoner, if those conditions are
satisfied.

The first assumption is that the setX of the entail-
ment systemE = 〈X,R〉 under consideration (which
coincides with the set of queriesQ of K) is effectively
enumerable, in which case the entailment systemE is
termedeffectively enumerable. Let σ = 〈x0, x1, . . .〉
be such an effective enumeration.

The main idea behind the algorithm is to exploit the
fixed orderingσ of X to compute, for everyi > 0,
a finite setQi−1

Y , such that, in casexi ∈ K+, the

browsable partB of the knowledge base together with
Qi−1

Y will determine whether the answer toxi should
beY orU . Intuitively,Qi−1

Y will be the collection of all
xj ’s, with j < i, to which the reasoner is supposed to
answerY . If xi ∈ K+ and(B∪Qi−1

Y ∪{xi})+∩S = ∅,
then the answer toxi is Y and it is U , otherwise.
This method protectsS because it avoids returning
Y answers to queries, which, taken together with
previously revealed information, risk the disclosure of
secret knowledge.

The detailed algorithm is as follows:

INPUT: xk;
Q−1

Y = ∅;
For i = 0 to k do

If (xi ∈ K+ and (B ∪Qi−1
Y ∪ {xi})+ ∩ S = ∅)

thenQi
Y = Qi−1

Y ∪ {xi};
If (xk ∈ Qk

Y ) thenR(xk) = Y elseR(xk) = U ;
ReturnR(xk);

Note that, according to the algorithm, theY -answer
set is QY =

⋃

i≥0Q
i
Y . In addition, the secrecy

envelope associated with the reasoner induced by the
algorithm isES = K+\QY .

In the following theorem, we show that, if there
existsx ∈ K+\B+, such that(B ∪ {x})+ ∩ S = ∅,
then the functionRσ = R : X → A, defined by the
algorithm, is a non-trivial secrecy-preserving reasoner
for K andS.

Theorem 2:Let K = 〈K,B,X,A〉 be a knowledge
base over an effectively enumerable entailment system
E = 〈X,R〉 andS a given secrecy set forK.

(i) Then Rσ : X → A is a secrecy-preserving
reasoner forK andS.

(ii) If, in addition, there existsx ∈ K+\B+, such
that (B ∪{x})+ ∩S = ∅, thenRσ is non-trivial.

Proof:
(i) The first condition in the “If” statement of the

algorithm ensures thatQY ⊆ K+, i.e., that the
Yes-Axiom for a reasoner is satisfied.
Suppose, for the sake of obtaining a contradic-
tion, thatR is not privacy-preserving forK and
S. Since the Enveloping Axiom is obviously
satisfied, this implies thatQ+

Y ∩ S 6= ∅. Thus,
there existsxn ∈ S, such thatxn ∈ Q+

Y .
Hence, for somexi0 , . . . , xim

∈ QY , xn ∈
{xi0 , . . . , xim

}+. Assume, without loss of gener-
ality, that i0 < i1 < · · · < im. Then,xn ∈ (B ∪
{xi0 , . . . , xim

})+ ∩ S ⊆ (B ∪Qim

Y )+ ∩ S. Thus
(B ∪Qim

Y )+ ∩S 6= ∅, whence, by the algorithm,
R(xim

) = U , which is a contradiction.
(ii) Let k = min{i ∈ N : xi ∈ K+\B+ and (B ∪

{xi})+ ∩ S = ∅}. Then,xk 6∈ B+ and, by the
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algorithm, we haveR(xk) = Y . Thus,R is non-
trivial.

�

Theorem 2 shows that, for each effective enumer-
ation of the setX of elements ofE , one obtains a
secrecy-preserving reasoner forK andS. A reasoner
in this family of reasoners will be referred to as an
order-induced reasoner.

Order-induced secrecy-preserving reasoners have the
important property that they capture exactly “maximal
informativeness”. More precisely, as the following
results show, every order-induced secrecy-preserving
reasoner is maximal in the sense that it answersY to
a largest possible subset ofX without revealing secret
information. Furthermore, every maximal reasoner in
this sense is order-induced.

Definition 3: Let K = 〈K,B,X,A〉 be a knowl-
edge base over an entailment systemE = 〈X,R〉 and
S a secrecy set forK. A secrecy-preserving reasoner
R : X → A for K andS is calledmaximal if QY is
maximal among the family of all subsetsZ ⊆ X , that
satisfy:

• B+ ⊆ Z ⊆ K+ and
• Z+ ∩ S = ∅.

The following two theorems clarify the connection
between order-induced secrecy-preserving reasoners
and maximal secrecy-preserving reasoners.

Theorem 4:Let K = 〈K,B,X,A〉 be a knowledge
base over an effectively enumerable entailment system
E = 〈X,R〉 and S a secrecy set forK. If R :
X → {Y, U} is an order-induced secrecy-preserving
reasoner forK andS, thenR is maximal.

Proof: Suppose thatR is an order-induced privacy-
preserving reasoner forK over E and letx0, x1, . . .

be the ordering ofX inducing the reasonerR. For
the sake of obtaining a contradiction, suppose thatR

is not maximal. Thus, there existsxi ∈ X\QY , such
that xi ∈ K+ and (QY ∪ {xi})+ ∩ S = ∅. Let n be
minimum among all suchi. Then, in the notation of the
algorithm, we havexn ∈ K+ and (Qn−1

Y ∪ {xn})+ ∩
S = ∅. This implies thatR(xn) = Y , contradicting
the fact thatxn ∈ X\QY . �

A somewhat more surprising fact is that every maxi-
mal secrecy-preserving reasoner forK andS is order-
induced. The proof of Theorem 5 is more involved and
will be omitted.

Theorem 5:Let K = 〈K,B,X,A〉 be a knowledge
base over an effectively enumerable entailment system
E = 〈X,R〉 andS a secrecy set forK. Every maximal

secrecy-preserving reasonerR : X → {Y, U} for K

andS is order-induced.

Next, we seek to formalize a measure for compar-
ing various order-induced secrecy-preserving reasoners
with respect to their “informativeness”.

Definition 6: Let K = 〈K,B,X,A〉 be a knowl-
edge base over an effectively enumerable entailment
systemE = 〈X,R〉 andS a secrecy set forK. Let σ
and τ be two orderings ofX . We say thatσ is less
informative than τ or that τ is more informative
than σ, written σ 4 τ , if

Rσ(x) = Y implies Rτ (x) = Y, for all x ∈ X.

Theorem 4 has the following corollary:

Corollary 7: Let K = 〈K,B,X,A〉 be a knowl-
edge base over an effectively enumerable entailment
systemE = 〈X,R〉 and S a secrecy set forK. For
all orderingsσ, τ of X , we have eitherRσ = Rτ or σ
andτ are incomparable in the4-ordering.

The following examples show that both cases listed
in Corollary 7, concerning order-induced secrecy-
preserving reasoners for variousK andS, may actually
occur.

Example 4: Let E = 〈X,R〉 be the entailment system
defined as follows:

X := {x0, x1, y0, y1, z0, z1, w0, w1}.

Consider the following linear ordering< of the el-
ements ofX : y0, z0, y1, z1, x0, w0, x1, w1. R is any
set of inference rules onX that induces the closure
operator defined, for allY ⊆ X , by

Y + = {u ∈ X : (∃v ∈ Y )(v ≤ u)}.

For instance, we may takeR to consist of all rules of
the form Y

y
, with y ∈ Y +. Furthermore, consider the

knowledge baseK = 〈K,B,X,A〉 overE defined by
K = X andB = {x0, x1}. Let S = {y0, y1} be a
secrecy set forK. Since

B+ ∩ S = {x0, x1}+ ∩ {y0, y1}
= {x0, x1, w0, w1} ∩ {y0, y1}
= ∅,

there exists a secrecy-preserving reasoner forK and
S. We show that every ordering of the elements of
X yields the same order-induced secrecy-preserving
reasoner.

First, note that the reasoner induced by the stan-
dard ordering<, defined above, would giveQU =
{y0, y1, z0} andQY = {z1, x0, w0, x1, w1}. Note also
that any other secrecy-preserving reasoner must answer
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U to all three ofy0, y1 andz0: to the first two because
they are inS and to the third because it reveals the
secret elementy1. Thus, the claim follows by Theorem
4, since any difference in the remaining answers of an
order-induced secrecy-preserving reasoner would mean
that the reasoner is non-maximal.

Finally, note that Theorem 5 implies that the rea-
sonerR is the only maximal secrecy-preserving rea-
soner forK andS over E . �

The next example describes a knowledge base
which possesses more than one order-induced secrecy-
preserving reasoner.

Example 5: Consider the entailment systemE =
〈X,R〉, defined byX = {p, q, r} andR a set of rules
of inference inducing the closure operator given by

∅+ = ∅, {p}+ = {p}, {q}+ = {q}, {r}+ = {r},

Y + = {p, q, r}, all otherY ⊆ X.

Let K = 〈X, ∅, X,A〉 and consider the secrecy set
S = {r} in K. We haveB+ ∩ S = ∅ and, therefore,
there exist secrecy-preserving reasoners forK andS.
Consider now the two orderings

p < q < r q ⋖ p⋖ r.

Then, the<-order-induced secrecy-preserving reasoner
for K andS hasQ<

Y = {p} andQ<
U = {q, r}, whereas

the⋖-order-induced secrecy-preserving reasoner forK

andS yieldsQ⋖

Y = {q} andQ⋖

U = {p, r}.
Note that, if the knowledge base is changed so

that B = {p}, then the fact thatB+ ⊆ QY would
force both order-induced secrecy-preserving reasoners
to answerY the queryp andU the queryq. Thus, in
that case, the two reasoners would be identical.�

4.2. Hierarchical Knowledge Bases

Suppose thatE = 〈X,R〉 is an effectively enu-
merable entailment system. LetK = 〈K,B,X,A〉
be a knowledge base overE andS a secrecy set for
K. By the results of the previous section, we know
that, in general, an order-induced secrecy-preserving
reasoner forK andS is maximal and that two different
total orderings ofX give rise to potentially different
maximal secrecy-preserving reasoners forK overS. In
this section we show that this remains the case even
when one restricts attention to hierarchical knowledge
bases. These are knowledge bases that consist of a
directed graphG = 〈V,E〉, some of whose edges are
considered browsable and some secret. We define an
entailment system whose rules induce the reachability

relation overV . Specifically, letE = 〈V ×V,R〉, where
R consists of all rules of inference of the form

(x, x)
and

(x, y), (y, z)

(x, z)
. (2)

Thus, given a collectionX ⊆ V × V and a
pair (y, z) ∈ V × V , (y, z) ∈ X+ if and only
if y = z or there exists a sequence of pairs
(w0, w1), (w1, w2), . . . , (wn−1, wn) ∈ X , such that
w0 = y andwn = z.

A hierarchical knowledge base or hierarchical
ontology over E is a knowledge base

K = 〈E,B, V × V, {Y, U}〉,

whereE is the set of edges ofG andB ⊆ E. Let
S ⊆ E+ be a secrecy set forK.

By Theorem 4, we know that at least one maximal
secrecy-preserving reasoner forK and S exists and
may be obtained by considering the order-induced
secrecy-preserving reasoner associated with an order-
ing of V ×V . In view of Examples 4 and 5, we want to
address the question of uniqueness in the special case
of hierarchical ontologies.

We show in the next example that there exists a
hierarchical knowledge baseK overE , a secrecy setS
for K and two linear orderings< and⋖ onV×V , such
that the two maximal order-induced secrecy-preserving
reasoners forK over E are incomparable. Hence,
even in the relatively simple framework of hierarchical
ontologies, both outcomes expected by the conclusion
of Corollary 7 actually occur.

Example 6: Consider the vertex setV =
{x, y, z, w, u} and the entailment systemE = 〈V ×
V,R〉 defined by Rules (2). LetK = 〈E,B, V ×
V,A〉 be the knowledge base overE defined by
B = {(x, y), (z, w)} and consider the secrecy set
S = {(y, z), (w, u), (x, u)} for K. This knowledge
base is illustrated in Figure 2, where the edges inB

are solid and the edges inS are dashed. Consider the

Figure 2. The hierarchical knowledge base E of
Example 6.

linear ordering of the verticesx, y, z, w, u and let<
denote the lexicographic ordering onV × V and ⋖
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the reverse lexicographic ordering onV × V . Then
it is not difficult to see by application of the order-
induced secrecy-preserving reasoning algorithm that
the<-order-induced and the⋖-order-induced secrecy-
preserving reasonersR< and R⋖ for K and S are
given, respectively, by

R< x y z w u

x Y Y Y Y U

y U Y U Y U

z U U Y Y U

w U U U Y U

u U U U U Y

R⋖ x y z w u

x Y Y U Y U

y U Y U Y U

z U U Y Y Y

w U U U Y U

u U U U U Y

TheY answers for each of the two reasoners reveal
the information about the edges inE (not showing
loops) that is illustrated in Figure 3. �

Figure 3. The information revealed by the secrecy-
preserving reasoners R< and R⋖, respectively.

5. Secrecy-preserving Mappings

Let E1 = 〈X1,R1〉 and E2 = 〈X2,R2〉 be two
entailment systems,K1 = 〈K1, B1, X1, A〉 andK2 =
〈K2, B2, X2, A〉 knowledge bases overE1 andE2, re-
spectively, andS1, S2 secrecy sets forK1,K2, respec-
tively. Henceforth, the notation(K, S) will be adopted
for the pair consisting of a knowledge baseK and a
secrecy setS for K. Informally speaking, a secrecy-
preserving map from(K1, S1) to (K2, S2) should be a
function that would help construct a secrecy-preserving
reasoner forK2 andS2 whenever a secrecy-preserving
reasoner forK1 andS1 is available. These functions
are very useful because they provide a way to “reuse”
reasoners. Suppose, for instance, that one has available
some “off-the-shelf” reasoner for a knowledge base
K with secrecy setS. A user who wants to perform
secrecy-preserving reasoning in a different application
context, say over a knowledge baseK

′ with secrecy set
S′, would only have to construct a secrecy-preserving
mapping from(K, S) to (K′, S′). In this section, we
introduce such secrecy-preserving mappings and prove
some interesting results-mainly sufficient conditions-
about them.

Suppose thatE1 = 〈X1,R1〉, E2 = 〈X2,R2〉
are two entailment systems andK1 =
〈K1, B1, Q1, A〉,K2 = 〈K2, B2, Q2, A〉 are two
knowledge bases overE1, E2, respectively, where, for
simplicity, we assume thatQ1 = X1, Q2 = X2 and
A = {Y, U}. Let, also,S1 ⊆ K+

1 andS2 ⊆ K+
2 be

two secrecy sets forK1 andK2, respectively.

Definition 8: A secrecy-preserving mapping h :
(K1, S1) → (K2, S2) is a function h : X2 →
X1, such that, for every secrecy-preserving reasoner
RE1

(K1) : X1 → A for K1 and S1, the induced
function RE2

(K2) := RE1
(K1) ◦ h : X2 → A is a

secrecy-preserving reasoner forK2 andS2.

Pictorially, Definition 8 requires commutativity of
the following diagram, such that, wheneverRE1

(K1)
is secrecy-preserving,RE2

(K2) is also secrecy-
preserving.

X1 X2
� h

A

RE1
(K1)

@
@

@
@R

RE2
(K2)

�
�

�
�	

In the remainder of the section, we letE1 =
〈X1,R1〉 and E2 = 〈X2,R2〉 be two entailment sys-
tems,K1 = 〈K1, B1, X1, A〉, K2 = 〈K2, B2, X2, A〉
two knowledge bases overE1, E2, respectively, and
h : X2 → X1 a mapping.

The following lemma provides a relationship be-
tween theY -answer setsQ1

Y andQ2
Y of a secrecy-

preserving reasonerRE1
(K1) for K1 andS1 and the

induced reasonerRE2
(K2) := RE1

(K1) ◦ h for K2

andS2.

Lemma 9: If RE1
(K1) : X1 → A is a reasoner for

K1 andRE2
(K2) = RE1

(K1) ◦ h, with respectiveY -
query setsQ1

Y , Q
2
Y , thenQ2

Y = h−1(Q1
Y ).

Proof: Indeed we have, for allx ∈ X2,

x ∈ Q2
Y iff RE2

(K2)(x) = Y

iff RE1
(K1)(h(x)) = Y

iff h(x) ∈ Q1
Y

iff x ∈ h−1(Q1
Y ).

�

The following proposition lists sufficient conditions
for RE1

(K1) ◦ h to be a reasoner forK2, given a
reasonerRE1

(K1) for K1.

Proposition 10: Let RE1
(K1) : X1 → A a reasoner

for K1. ThenRE2
(K2) := RE1

(K1) ◦ h : X2 → A is
a reasoner forK2 if

9



1) For everyY ∪{y} ⊆ X2, y ∈ Y + impliesh(y) ∈
h(Y )+;3

2) B+
2 ⊆ h−1(Q1

Y ) ⊆ K+
2 .

Proof: Suppose that〈y1, y2〉 ∈ Λ(E2). Then,
{y1}

+ = {y2}
+ and, hence, by the hypoth-

esis, {h(y1)}+ = {h(y2)}+. This shows that
〈h(y1), h(y2)〉 ∈ Λ(E1). Since RE1

(K) is a rea-
soner, we obtainRE1

(K1)(h(y1)) = RE1
(K1)(h(y2)),

showing thatRE2
(K2)(y1) = RE2

(K2)(y2). Hence
RE2

(K2) is invariant. The second condition, together
with Lemma 9, implies thatB+

2 ⊆ Q2
Y ⊆ K+

2 . Thus,
RE2

(K2) is a valid reasoner forK2. �

Finally, in the next proposition we obtain sufficient
conditions for a mappingh : X2 → X1 to be a secrecy-
preserving mapping.

Proposition 11: The mapping h is a secrecy-
preserving mappingh : (K1, S1) → (K2, S2) if, for
everyY ∪ {y} ⊆ X2, y ∈ Y + impliesh(y) ∈ h(Y )+,
and, for every secrecy-preserving reasonerRE1

(K1)
for K1 andS1,

1) B+
2 ⊆ h−1(Q1

Y ) ⊆ K+
2 ;

2) S2 ⊆ h−1(Q1
U ) ⊆ K+

2 \B+
2 ;

3) (K+
2 \h−1(Q1

U ))+ ∩ S2 = ∅.

Proof: Assume thatRE1
(K1) : X1 → A is a

secrecy-preserving reasoner forK1 andS1. Then, the
first two assumptions combined with Proposition 10
show thatRE2

(K2) := RE1
(K1) ◦ h : X2 → A

is a reasoner forK2. The last two hypotheses show
that it is a secrecy-preserving reasoner forK2 and
S2. Since this holds for every secrecy-preserving rea-
soner RE1

(K1) for K1 and S1, we conclude that
h : (K1, S1) → (K2, S2) is a secrecy-preserving
mapping. �

6. RDFS System

The basic syntactic components of RDF are the three
disjoint infinite setsU,B and L of URI references,
blank nodes andliterals, respectively. We follow [14]
in this section in denoting unions of these sets by
concatenating their names. AnRDF triple is a triple
(s, p, o) ∈ UBL×U×UBL, wheres is thesubject,
p thepredicate ando theobject of the RDF triple. An
RDF graph is a set of RDF triples. Theuniverse of an
RDF graphG is the set of elements inUBL that occur
in the triples ofG and it is denoted byuniv(G). The
vocabulary of G is the setvoc(G) = univ(G) ∩UL.
An RDF graph isground if univ(G) = voc(G), i.e.,
if it has no blank nodes.

3. The consequence operator+ is context sensitive, always
referring to the entailment system of which its argument is asubset.

Example 7: In Figure 4 we show part of an RDF
ontology that describes the relations between authors,
articles they authored and journals in which the articles
were published. Friendships between authors are also

Figure 4. RDF Knowledge Base of Example 7.

documented as well as refereeing of given articles by
specific authors. Such a knowledge base may be used,
for instance, to decide on possible conflicts of interest
when assigning referees to articles or, alternatively,
may be part of a scientific-social network. The dashed
lines represent information that the knowledge base
administrator may want to keep secret, since refereeing
is supposed to be a confidential process. The reader,
we hope, would be able to imagine many other similar
applications, where either because of confidentiality or
due to privacy, security or copyright issues, various
pieces of information in a given knowledge base may
need to be kept secret. �

An interpretation over a vocabularyV is a septuple

I = 〈Res,Prop,Class,Ext,CExt,Lit, Int〉,

such that
1) Res is a nonempty set ofresources called the

domain oruniverse of I;
2) Prop is a set of property names;
3) Class ⊆ Res is a distinguished subset ofRes

identifying those resources that are classes of
resources.

4) Ext : Prop → 2Res×Res is a mapping that
assigns an extension to each property name;

5) CExt : Class → 2Res is a mapping that assigns
a set of resources to each resource denoting a
class;

6) Lit ⊆ Res is the set of literal values, that
contains all plain literals inL ∩ V ;

7) Int : UL∩V → Res∪Prop is theinterpretation
mapping, that assigns a resource or property
name to each element ofUL ∩ V with the
restriction thatInt is the identity on plain literals
and assigns an element inRes to elements inL.

According to [13], [10] (see also [14]), a ground
triple (s, p, o) in G is true under I if p is interpreted
as a property name,s ando are interpreted as resources
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and the interpretation of(s, o) belongs to the extension
of p. When dealing with arbitrary (non-ground) RDF
triples, e.g.,(X, p, o), with X ∈ B, is true under I
if there exists a resources, such that(s, p, o) is true
underI. For the RDF graph, each blank node must be
interpreted as the same resource wherever it appears
throughoutG. Now RDF entailment is defined as usual
based on the satisfaction of an RDF graph under cer-
tain interpretations. Namely, those interpretations that
model appropriately the RDF designated vocabulary
and satisfy the set of RDF axiomatic triples.

A simple fragment of RDFS, calledρdf fragment,
was introduced and studied in some detail in [14].
We use it, for simplicity to illustrate how out secrecy-
preserving framework of Section 3 can be used to rea-
son with an RDFS knowledge base containing secret
information. However, the reader should notice that
our technique could be applied seamlessly to reasoning
with the entire RDFS system [13], not merely with this
small fragment of its vocabulary.

The ρdf vocabulary is defined by

ρdf = {sp, sc, type, dom, range}.

An RDF graphG over ρdf will be termed aρdf
graph or, simply a graph. An interpretationI is
a model of G, denoted byI |=ρdf G if it is an
interpretation overρdf ∪univ(G) that satisfies various
conditions (see [14]). For example, the conditions
pertaining to the keywordsp (subproperty) say that
Ext(Int(sp)) is transitive and reflexive overProp and
that, if (x, y) ∈ Ext(Int(sp)), thenx, y ∈ Prop and
Ext(x) ⊆ Ext(y).

In [14] (see also [15], [13]) a sound and complete
deductive system for theρdf fragment of RDFS was
presented. Again, for the sake of providing an insight
into the flavor of this system, let us mention that the
two inference rules that specifically handlesp are

(A, sp,B) (B, sp, C)

(A, sp, C)

(A, sp,B) (X ,A,Y)

(X ,B,Y)
.

Note, also, that there exists a similar sound and com-
plete entailment system for the entire RDFS vocabu-
lary. This was presented in [10] and later completed in
[13]. We denote theρdf entailment system of [14] by
Eρdf and the corresponding RDFS entailment system
of [10] by ERDFS.

Let G be a ρdf graph andB ⊆ G. Let, also,
Q = Tρdf , the collection of allρdf terms andA =
{Y, U}. Then, the quadrupleG = 〈G,B, Tρdf , A〉 will
be referred to as aρdf-knowledge base. In addition,
considerS ⊆ G+, a subset of the inferential closure
of the ρdf graphG underEρdf . According to Section

3, a reasonerRρdf(G) for G over Eρdf is a mapping
Rρdf(G) : Tρdf → A, that satisfies

• Invariance: If〈s, t〉 ∈ Λ(Eρdf), thenR(s) = R(t),
for all triples s, t ∈ Tρdf ;

• Yes-Axiom:B+ ⊆ QY ⊆ G+;

A secrecy envelope for the secrecy set of triplesS ⊆
G+ is a set of triplesES , satisfying

• Enveloping Axiom:S ⊆ ES ⊆ G+\B+;
• Secrecy Axiom:(G+\ES)+ ∩ S = ∅.

Then, the secrecy-preserving reasoner based onES is
the functionR := RES

: Tρdf → A defined, for all
t ∈ Tρdf , by

R(t) =

{

Y, if t ∈ G+\ES

U, otherwise
. (3)

The fact that theρdf entailment system is sound
and complete with respect to theρdf semantics ensures
that, by using the entailment systemEρdf , we capture
exactly the semantic entailment of theρdf fragment of
RDF, as was intended in the original RDF specifica-
tion.

The generalization of this process to RDFS entail-
ment using the entailment systemERDFS is powerful
enough for many of the knowledge bases that exist in
the current semantic web.

7. Summary

In this paper, we introduced avery general frame-
work for performing secrecy-preserving reasoningwith
knowledge bases containing secret information. To
formally express arbitrary knowledge bases, we intro-
duced the notion of anentailment system. Its generality
allows us to capture many of the important examples of
existing knowledge bases in the semantic web. These
include hierarchical knowledge bases, where informa-
tion may be represented in the form of a directed
acyclic graph, knowledge bases expressible in some
propositional language, e.g., classical propositional
logic, hypergraphical knowledge bases, where infor-
mation is representable in the form of a hypergraph, as
well as knowledge bases expressed in some description
logic or using the RDF paradigm. We showed that
the advantage of our framework lies in being general
enough to capture virtually all special cases of current
interest, while, at the same time, scaling down to
each of them in a simple and understandable way.
We also presented analgorithm for devising secrecy-
preserving reasoners, given a knowledge base and
a secrecy set for it. The reasoners produced by the
algorithm have the property that they hide the minimal
possible amount of information without jeopardizing
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the sensitive knowledge. To provide a means to reuse
secrecy-preserving reasoners across different knowl-
edge bases, we introduce the notion of asecrecy-
preserving mappingand formulate sufficient conditions
ensuring its correct functionality. Finally, we place
some emphasis in the way our framework can be used
to perform secrecy-preserving reasoning with RDFS
knowledge bases, since these comprise many of the
existing knowledge bases on the semantic web. We are
currently in the process of implementing and testing
the efficiency of hierarchical and propositional secrecy-
preserving reasoners. In the future, we are planning to
use a DL reasoner to test secrecy-preserving reasoning
in applications involving more powerful languages.
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cations de la logique à la sémantique du web).
http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf, 2006.
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