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Abstract. Many semantic web applications require selective sharing of
ontologies between autonomous entities due to copyright, privacy or secu-
rity concerns. In our previous work it was shown that, on such occasions,
an agent who wishes to hide part of its ontology while sharing the rest
may still be able to answer safely queries against its knowledge base using
inferences based on both hidden and visible knowledge without reveal-
ing the hidden knowledge. Moreover, it was shown how this framework
may be applied to the case of hierarchical ontologies. We extend the
theory to cover privacy-preserving reasoning with information modeled
using hypergraphs. We apply this extension to obtain privacy-preserving
reachability reasoning for RDF Graphs.

1 Introduction

The widespread adoption and use of networked information systems in virtually
every area of human endeavor call for sharing of information among autonomous
individuals and across organizations to faciliate productive interaction and col-
laboration. However, the need to share information among business partners,
different governmental agencies (e.g., intelligence, law enforcement, public pol-
icy), or independent nations acting on matters of global concern (e.g., counter-
terrorism) often has to be balanced against the need to protect sensitive or
confidential information from unintended disclosure, e.g., due to copyright, pri-
vacy, security, or commercial considerations. In such settings, there is often a
compelling need for selective sharing of the results of inference using both public
and private knowledge, without compromising private knowledge.

The majority of current proposals for policy languages [14] forbid access to
the private/hidden parts of an ontology when answering queries against the on-
tology. However, in [1], the authors have argued that such approaches are overly
restrictive because there are scenarios where it is possible and may be desir-
able for a knowledge base to use both hidden and visible knowledge to answer
queries without risking disclosure of the hidden knowledge. Such reasoning was
termed privacy-preserving reasoning. In [1] a precise formulation of the problem
of privacy-preserving reasoning was provided and a framework was developed



to tackle the problem based on the Open World Assumption (OWA). The no-
tions of a reasoner, of a privacy-preserving reasoner and of a reasoning strat-
egy were formalized and conservative extensions were used to provide a set of
privacy-preserving reasoning strategies for description logics. Privacy-preserving
reasoning strategies for the special case of hierarchical ontologies, i.e., ontologies
that can be represented as directed acyclic graphs, were analyzed based on a
reduction of reasoning to graph reachability.

However, many practical applications require more expressive knowledge
bases. For example, modeling some aspects of RDF knowledge bases, which are
widely used in semantic web applications, requires the use of hypergraphs [8]. It
is therefore of interest to study a framework for performing privacy-preserving
reasoning using “hypergraphical” knowledge bases. Reasoning on a hypergraph
may take various forms. In this paper we formalize this by expressing deductions
using rules of inference in much the same way as is done in ordinary logical sys-
tems. In this way, we are providing the user with a wide choice of reasoners to
pick from depending on the application at hand. As an illustration, we deal in
some detail with the case of reachability in hypergraphs. Briefly, a hypergraph
representing the information contained in a knowledge base is given. Some of
its hyperedges are visible and some are hidden. Using both visible and hidden
hyperedges, the reasoner answers queries concerning the reachability of a given
vertex from another given vertex without compromising the hidden knowledge.
This framework includes the one for hierarchical ontologies as a special case.

As an application of this “hypergraphical” reasoning we look at the problem
of resource connectivity in RDF Graphs [8]. This is specifically the problem of
determining whether two given resources, as described by an RDF knowledge
base, are reachable one from the other in the hypergraphical representation of
the RDF Graph. Hayes and Gutierrez [8] considered this problem without the
privacy-preservation aspect. We revisit the problem but assume that some of the
triples in the RDF Graph are hidden. We use both visible and hidden triples to
reveal connectivity of resources when it is possible to do so without compromising
the hidden information. It is emphasized that we do not deal in this work with
the RDF semantics of the triples, nor do we use RDF syntax in our queries.
We rather represent the RDF triples as hyperedges of a given hypergraph and
use our hypergraphical privacy-preserving reasoning framework to study only
the problem of connectivity of RDF resources. We plan to extend this work to
the more general problem of privacy-preserving reasoning for RDF Graphs (that
takes into account the RDF semantics of the triples) by examining the special
case of ρDF entailment, first studied by Muñoz, Pérez and Gutierrez in [13].

2 Preliminaries: Privacy-Preserving Reasoning

A knowledge base (KB) K over a language L consists of a set of axioms K =
{α1, ..., αn}. We assume that K is consistent and does not contain tautologies.
We use SIG(αi) to denote the set of names occurring in an axiom αi and SIG(K)
to denote the signature of a KB K, i.e., SIG(K) = ∪n

i=1SIG(αi). The set of



axioms that make up a KB K is divided into two mutually exclusive parts: a
visible part Kv and a hidden part Kh, with the corresponding signatures SIG(Kv)
and SIG(Kh). We call SIG(Kv) the visible signature, SIG(Kh) − SIG(Kv) the
hidden signature and we write K = (Kv, Kh).

Example 1: Consider a company, say U-Travel that provides travel infor-
mation to online customers. Suppose U-Travel offers a query service that pro-
vides limited information to the public but more detailed information to pay-
ing subscribers. The U-Travel ’s ontology contains the following knowledge: (a)
Sun Lodge is a 2-star hotel (b) a 2-star hotel is an inn (c) Sun Lodge is
AAA-discountable and (d) an inn is a hotel.

Suppose U-Travel is willing to reveal that “Sun Lodge is a hotel” to the
public, yet it wants to hide the fact that “Sun Lodge is a 2-star hotel” from
all but its paying subscribers. If the U-Travel query service could not use hidden
information, i.e., that Sun Lodge is a 2-star hotel, it would not be able to
inform a non-paying subscriber that Sun Lodge is a hotel, although it is possible
to do so, without compromising hidden knowledge. This is formalized by defining
an ontology K = (Kv, Kh) of the U-Travel company. We use the partial-order
relation ≤ to indicate concept inclusion. The hidden part Kh contains

SunLodge ≤ 2StarHotel 2StarHotel ≤ Inn

and the visible part Kv contains

SunLodge ≤ AAADiscountable Inn ≤ Hotel

Thus, the visible signature is SIG(Kv) = {SunLodge, Inn, AAADiscountable,
Hotel}, SIG(Kh) = {SunLodge, 2StarHotel, Inn}. Hence, the hidden signature
is SIG(Kh) − SIG(Kv) = {2StarHotel}. �

Let K be a KB over a language L, Q the query space over L, i.e., the set of
possible assertions to be tested against K, and A an answer space. A reasoner R

for K is an algorithm that defines a function R : Q → A. Some natural require-
ments that need to be met by a reasoner operating in this privacy-preserving
setting are:

1. Honesty. The reasoner should not “lie”. That is, answers produced by the
reasoner should always be consistent with its KB.

2. History Independence. The reasoner should always respond to a given
query q against a fixed KB K with the same answer regardless of the history
of queries that have been posed against K.

3. Safety. The reasoner must ensure that the answers it produces are safe, in
the sense that it is not possible for a querying agent to infer any piece of
hidden knowledge based on the answers to past queries and the visible part
of the KB.

An immediate consequence of this definition is that a reasoner R is “history
independent” in the sense suggested by Requirement 2 above.



Our basic approach to designing privacy-preserving reasoners for KBs that
contain hidden knowledge is to ensure that the answers to queries do not reveal
hidden knowledge. The central idea is to design a reasoner that exploits the
Open World Assumption (OWA) of ontology languages to make it impossible
for the querying agent to distinguish between information that is unknown to
the reasoner (because of the incompleteness of the KB) and the knowledge that
is being protected by the reasoner. A query that cannot be safely answered
without running the risk of disclosing hidden knowledge will be answered as if
the reasoner lacks the complete knowledge to answer the query.

We use K ⊢ γ to mean that γ is classically provable from K. Thus ⊢ α

means that α is a tautology. If every axiom in a KB K2 is classically provable
from another KB K1, we say that K1 entails K2 and denote it as K1 ⊢ K2. A
reasoner R might employ an inference engine which can be viewed as a classical
reasoner C with answer space A = {Y, N}, such that ∀q ∈ Q, C(q) = Y iff K ⊢ q.
While an inference engine always responds in a truthful manner, the reasoner,
in order to protect some parts of K, may use an answering strategy which does
not respond with the “whole truth”. For example, a reasoner may answer “U”
(Unknown) even if the correct answer (from the inference engine) is “Y ” or “N”.
The answer to a query q may be “U” either because the reasoner has incomplete
knowledge (i.e., K 6⊢ q and K 6⊢ ¬q) under the Open World Assumption (OWA),
or because the “truthful” answer to q might risk disclosure of hidden knowledge.

Definition 1 (Privacy-Preserving Reasoner). Let K = (Kv, Kh) be a KB
over a language L, Q the query space in L, A = {U,Y,N} the answer space, and
R a reasoner for K. We define: QY = R−1(Y ), QN = R−1(N), QU = R−1(U)
and further assume that q ∈ QY iff ¬q ∈ QN .

(a) R is strongly privacy-preserving w.r.t. K if it satisfies the following two
axioms:
• Honesty Axiom: q ∈ QY ⇒ K ⊢ q.
• Strong Safety Axiom: ∀α such that 6⊢ α and SIG(α) ⊆ SIG(Kh), Kh ⊢

α ⇒ (Kv ∪ QY 6⊢ α).
(b) R is weakly privacy-preserving w.r.t. K if it satisfies the Honesty Axiom

and the following axiom:
• Weak Safety Axiom: ∀α, α ∈ Kh ⇒ (Kv ∪ QY 6⊢ α)

The honesty axiom requires that reasoners provide answers that do not con-
tradict the given KB (i.e., K ∪ QY is consistent). The strong safety axiom re-
quires that the answers provided by reasoners do not disclose any consequence
that can be drawn from the hidden knowledge alone. The weak safety axiom
requires the reasoner to protect only axioms (and their semantically equivalent
syntactic variants) that are explicitly mentioned in the hidden part of the KB
(but not necessarily their consequences).

Definition 2 (Strategy). Let L be a language, KL the class of all knowledge
bases over L, and RL the class of all reasoners over KL. A strategy for L

is a function R : KL → RL, such that, for every K ∈ KL, R = R(K) is



a reasoner for K. The strong/weak safety scope of a strategy R, Scope(R) =
{K ∈ KL| R(K) is a strongly/weakly privacy-preserving reasoner for K}.

A strategy needs to compromise between the two apparently conflicting goals
of generality, i.e., of having the largest possible scope, and of informativeness,
i.e., of yielding reasoners that provide as much information as possible.

3 Privacy-Preserving Reasoning with Hypergraphs

In this section, we provide a new application of the framework for privacy-
preserving reasoning that was developed in [1] and was briefly reviewed in Section
2. More precisely, we show how the framework can be adapted to perform various
types of privacy-preserving reasoning with information that can be represented
in the form of a hypergraph. Even though “hypergraphical ontologies” form a
rather special class of arbitrary ontologies, they still merit special consideration
since, on the one hand, they extend hierarchical ontologies, which have many
applications in practice, and, on the other, provide additional tools for dealing
with information that is not directly expressible in hierarchical form. The RDF
connectivity problem studied in the next section provides such an example.

Definition 3 (Hypergraph). A hypergraph is a pair G = 〈V, E〉, where V

is the set of nodes and E = {Ei}i∈I is a family of subsets of V , called edges. G

is simple if all edges are distinct. G is r-uniform if all edges have cardinality
r. An r-uniform hypergraph is ordered if the occurrence of nodes in every edge
is ordered. The class of all hypergraphs is denoted by HG.

Let G = 〈V, E〉, with E = {Ei}i∈I , be a simple hypergraph. Assume E =
Ev ∪ Eh, with Ev = {Ej}j∈J and Eh = {Ek}k∈K , such that J ∪ K = I and
J ∩ K = ∅. Ev is the set of visible edges and Eh is the set of hidden edges. G is
called r-ordered if it is both r-uniform and ordered.

Example 2: Consider the hypergraph described pictorially in Figure 1. It

Fig. 1. A Pictorial Representation of a Hypergraph.

has three visible edges E1, E2, E3 and one hidden edge E4. �



To extend our framework for privacy-preserving reasoning with hierarchical
ontologies to privacy-preserving reasoning with arbitrary hypergraphs we intro-
duce closure properties on the potential edges of a hypergraph. More specifically,
given a hypergraph G = 〈V, E〉, a closure property P on the set of subsets of
V is a property that may be expressed by “rules of inference”. The following
examples illustrate this idea:

Examples: (a) For 2-ordered hypergraphs, i.e., for directed graphs, consider
reachability. Formally, the closure property can be expressed as P =“for all
vertices x, y, z, (x, z) follows from (x, y) and (y, z)”. The corresponding rule of
inference is

(x, y), (y, z)

(x, z)
.

(b) For arbitrary hypergraphs, the t-exclusive closure is P =“for all E, F, D ⊆
V , such that D ⊆ E ∩ F and |D| = t, (E ∪ F )\D follows from E, F”.

The corresponding rule of inference is

{x1, . . . , xn, z1, . . . , zt}, {z1, . . . , zt, y1, . . . , ym}

{x1, . . . , xn, y1, . . . , ym}
.

This rule will be used when studying privacy-preserving resource connectivity in
RDF Graphs. �

For instance, looking back at the example of Figure 1, it is easily seen that
1-exclusive closure allows the following two derivations.

{1, 2, 3}, {3, 4, 5}

{1, 2, 4, 5}
,

{3, 4, 5}, {5, 6}

{3, 4, 6}
.

Given a hypergraph G = 〈V, E〉, together with a collection IR of rules of
inference, E ⊆ V is said to be directly derivable by, or inferred from, a set
E1, . . . , En ∈ P(V ) if there exists a rule R in IR, such that E1,...,En

E
is an instance

of R. Given A∪{E} ⊆ P(V ), we say that A entails E, written A ⊢IR
G E, if there

exists a sequence A0, . . . , An ∈ P(V ), such that An = E and, for all i ≤ n,
Ai ∈ A or Ai is inferred from Aj1 , . . . , Ajk

, for some j1, . . . , jk < i. Such a
sequence is called a proof of E from A. Define CIR

G : 2P(V ) → 2P(V ) by

CIR
G (A) = {E ⊆ V : A ⊢IR

G E}.

Note that the entailment relation ⊢, that was used in the general definition
of reasoner (see Section 2), is replaced in this context by the specific entailment
relation ⊢IR

G . Evidently, different rules of inference give rise to different entailment
relations.

Given a hypergraph G = 〈V, E〉, together with a collection IR of rules of
inference for G, we set the query space to be Q = P(V ) and the answer space
A = {Y, N, U}. A reasoner for G is then a function R : P(V ) → {Y, N, U}.



Definition 4 (Privacy-Preserving Reasoner). Let the set of edges E of the
hypergraph G = 〈V, E〉 be partitioned into a visible part Ev and a hidden part Eh

and let IR be a collection of rules of inference. Then, a weakly-privacy preserving
reasoner for G (w.r.t. IR) is a reasoner R : Q → A, that satisfies the axioms

1. Honesty: QY ⊆ CIR
G (E);

2. Weak Safety: CIR
G (Ev ∪ QY ) ∩ Eh = ∅.

A strongly-privacy preserving reasoner for G, on the other hand, is a reasoner
R : Q → A, that satisfies Honesty and

2’. Strong Safety: CIR
G (Ev ∪ QY ) ∩ CIR

G (Eh) = ∅.

As an illustration of the concepts presented in Definition 4, consider again Ex-
ample 2. Let us focus on reachability reasoning, i.e., on inferring conclusions
about whether a given vertex is reachable from another vertex by following a se-
quence of partially overlapping edges. Then, it is clear that a privacy-preserving
reasoner for G cannot answer “Y ” to all three queries concerning the visible
edges of G, since, in that case, it would compromise the hidden information that
{1, 6} is an edge in the hypergraph.

These definitions of privacy-preserving reasoners on hypergraphs generalize
the corresponding definitions for weakly and strongly privacy-preserving reason-
ers, respectively, for hierarchical ontologies that were presented in [1]. In fact,
very similarly to the case of hierarchical ontologies, one obtains

Lemma 1. R is a strongly privacy-preserving reasoner for G = 〈V, Ev ∪ Eh〉 iff
R is a weakly privacy-preserving reasoner for G+ = 〈V, Ev ∪ CIR

G (Eh)〉.

Proof: For honesty, notice that CIR
G (Ev ∪ Eh) = CIR

G (Ev ∪ CIR
G (Eh)). For the

Safety condition, R is a strongly privacy-preserving reasoner for G = 〈V, Ev∪Eh〉
iff CIR

G (Ev ∪QY )∩CIR
G (Eh) = ∅ iff R is a weakly privacy-preserving reasoner for

G = 〈V, Ev ∪ CIR
G (Eh)〉. �

Moreover, as in the case of hierarchical ontologies (see [1]), a hierarchy of
privacy-preserving reasoning strategies for hypergraphical ontologies may be ob-
tained based on the generality and the informativeness of the reasoners that they
produce.

Let G = 〈V, Ev ∪ Eh〉 be a hypergraph and IR a collection of rules of infer-
ence for reasoning with G. As before, ⊢IR

G denotes the hypergraphical inference
according to IR and CIR

G the corresponding closure operator. We now proceed
to define several classes of hypergraphs that have safe strategies with different
degrees of informativeness. Define, first, given any integer n ≥ 0,

Cn
G(A) := CIRn

G (A) = {E ⊆ V : A ⊢IR
G E via a proof of length at most n}.

Since the set IR of rules of inference will be assumed to be fixed in a specific
context, we choose to omit it in order to simplify notation.

Now define the following classes of hypergraphs, for all m, n ≥ 0:

Sm,n = {G ∈ HG : Cn
G(Cm

G (E) − Eh) ∩ Eh = ∅}.



If m or n are substituted by +, then the full closure operator C+
G := CIR

G will
be assumed. Hypergraphs in the class Sm,n are termed (m, n)-safe. Intuitively,
m represents a restriction on the ability of the reasoner to detect possible safety
hazards and n a similar restriction on the ability of the querying agent to discover
knowledge from previous answers and the visible part of the hypergraph. Note
that S+,+ :=

⋂∞
m=1 Sm,+. The following reasoners are members of the hierarchy

Sm,+, m ≥ 1.
The dummy reasoner: A dummy reasoner responds to every query with

the answer “U”. It preserves the safety of precisely those hypergraphs that satisfy
CG(Ev)∩Eh = ∅, i.e., its safety scope is S1,+. This strategy has the widest safety
scope but is the least informative.

The obvious reasoner: An obvious reasoner responds with an answer “Y ”
to only those queries that follow from Ev. Its weak safety scope is also S1,+.

The safe reasoner: A safety reasoner has QY = CG(E)−Eh. This reasoner
satisfies by definition Honesty and it satisfies Weak Safety iff CG(CG(E)−Eh)∩
Eh = ∅. Thus, its weak safety scope is S+,+. If one sets QY = Cm

G (E)− Eh, then
the safety scope becomes Sm,+.

The naive reasoner: A naive reasoner always gives away all the information
that it has, i.e., QY = CG(E). It is trivially honest but its weak safety scope
consists only of those hypergraphs with no hidden edges.

4 Privacy-Preserving Reachability Reasoning for RDFs

In [8], the authors introduce a representation of RDF Graphs, i.e., sets of RDF
triples, in the form of RDF bipartite graphs, which are ordinary labeled bipartite
graphs. Using this representation they provide a satisfactory algorithmic answer
to the problem of resource connectivity in RDF Graphs. We sketch in this section
how the framework of Section 3 may be applied in order to obtain privacy-
preserving resource connectivity reasoning with RDF Graphs. Contrasted to the
work presented in [8], our work introduces the privacy-preservation aspect in the
reasoning and, moreover, resource connectivity is tackled more directly, using the
hypegraphical representation of an RDF Graph rather than, first, transforming
the RDF Graph to an ordinary bipartite graph.

We now provide some more details regarding this framework.

Definition 5. An RDF statement is a triple (a, b, c). a is called the subject, b

the predicate and c the object of the statement. a, b and c can be URI’s, literals
or blank nodes. They are collectively referred to as values. The only restriction
that is applied to the syntax is that b must be a URI. An RDF Graph T is a set
of RDF triples. The set of all values occurring in T is denoted by univ(T ).

Let T be an RDF Graph. A path or triple path P is a sequence of RDF triples
(t1, t2, . . . , tn), with tk = (sk, pk, ok), such that {si, pi, oi}∩{si+1, pi+1, oi+1} 6= ∅,
i < n. A triple path (t1, . . . , tn) is said to connect resources x and y if n = 1 and
x, y ∈ t1 or x ∈ {s1, p1, o1}, x 6∈ {si, pi, oi : 1 < i ≤ n} and y ∈ {sn, pn, on}, y 6∈
{si, pi, oi : 1 ≤ i < n}. x is reachable from y if there exists a triple path that
connects x and y.



Thus, the problem of RDF reachability or, equivalently, connectivity of RDF
resources is the problem of determining, given an RDF Graph and two of its
resources, whether there exists a triple path connecting these resources.

To solve the RDF resource connectivity problem, Hayes and Gutierrez [8]
transform the given RDF Graph T into a labeled bipartite graph β(T ). They
show that two resources x, y are connected in T if and only if there exists a
path in β(T ) between the corresponding nodes vx and vy. This enables them to
apply ordinary graph reachability algorithms to solve the resource connectivity
problem.

Although the framework of [8] does not involve privacy-preserving reasoning,
the results of Section 3 may be applied in this context to study privacy-preserving
resource connectivity in RDFs. Roughly speaking, this is the problem of inferring
connectivity between various RDF resources without revealing hidden connec-
tions. We formulate this problem and provide a solution in what follows.

Let T be a partially hidden RDF Graph, i.e., a set of triples T together with
a partition T = Tv ∪Th of T into a subset Tv of visible triples and a subset Th of
hidden triples. Since we concentrate on the problem of connectivity of resources,
the ordering of the elements in the triple is irrelevant. So T will be represented
by the hypergraph G := G(T ) = 〈V, E〉, with V = univ(T ), E = {{s, p, o} :
(s, p, o) ∈ T }, such that E = Ev ∪ Eh is also partitioned into a visible part
Ev = {{s, p, o} : (s, p, o) ∈ Tv} and a hidden part Eh = {{s, p, o} : (s, p, o) ∈ Th}.

Consider the class HG≤3 of all hypergraphs G = 〈V, E〉, such that |E| ≤ 3,
for all E ∈ E . Let EW consists of the following two inference rules:

– 1-Exclusion Rule: {x,y,z},{z,w}
{x,y,w}

– Weakening Rule: {x,y,z}
{x,y} .

The 1-Exclusion Rule simulates in this context the reasoning taking place when
one uses transitivity to reveal new relations from given ones in a partial ordering.
To provide an explanation for the Weakening Rule, consider as the intended
meaning of a triple the existence of a mutual pairwise relationship between its
members. Then, the Weakening Rule expresses the fact that, if three elements
are pairwise-related, then any two of them also are.

A proof of E ⊆ V from a set A ⊆ P(V ) is defined as before and, if there
exists a proof of E from A, we write A ⊢EW

G E. CEW
G (A) = {E ⊆ V : A ⊢EW

G E}
denotes the corresponding closure operator.

Example 3: Consider an RDF Graph T , whose standard pictorial represen-
tation is given in Figure 2. The hypergraph G(T ) associated with T is

G(T ) = {{“Slutzki”, type, Literal}, (1)
{slutzki, last-name, “Slutzki”}, (2)
{slutzki, type, Faculty}, (3)
{slutzki, teaches, game-theory}, (4)
{teaches, Domain, Faculty}, (5)
{teaches, Range, Course}, (6)
{game-theory, type, Course}} (7)



Fig. 2. A Pictorial Representation of an RDF Graph.

Consider A = {(5), (6), (7)} ⊆ G(T ) and E = {{game-theory, Faculty}}. Then
A ⊢EW

G(T ) E is witnessed by the following proof:

(5) (An Axiom)
{teaches, Faculty} (By Weakening)
(6) (An Axiom)
{Faculty, Range, Course} (By 1-Exclusion)
{Faculty, Course} (By Weakening)
(7) (An Axiom)
{game-theory, type, Faculty} (By 1-Exclusion)
{game-theory, Faculty} (By Weakening)

�

A weakly EW-privacy preserving reasoner for reachability in G ∈ HG≤3 is
a privacy-preserving reasoner according to Definition 4, where IR is replaced by
EW. Similarly, we may define a strongly EW-privacy-preserving reasoner for G.
As a corollary of Lemma 1, we obtain

Corollary 1. R is a strongly EW-privacy-preserving reasoner for G = 〈V, Ev ∪
Eh〉 iff R is a weakly EW-privacy-preserving reasoner for G+ = 〈V, Ev∪CEW

G (Eh)〉.

Example 3 (Cont’d): Suppose now that Eh = {(2)} and let E = {Faculty,

Literal}. E ∈ CEW
G(T )(E) but CEW

G(T )(Ev ∪ {E}) ∩ Eh 6= ∅. Therefore, every weakly

privacy-preserving reasoner for G(T ) must answer “U” to the query E.
Suppose, next, that Eh = {(2), (4)} and E = {“Slutzki”, Faculty}. In this

case, E ∈ CEW
G(T )(E) and CEW

G(T )(Ev ∪ {E})∩CEW
G(T )(Eh) 6= ∅. Thus, every strongly

privacy-preserving reasoner for G(T ) must answer “U” to the query E. �

The following proposition attests to the fact that privacy-preserving reason-
ing using EW corresponds exactly to reasoning about connectivity of resources
in RDF Graphs.

Proposition 1. In an RDF Graph T , resource b is reachable from resource a

iff G(T ) ⊢EW
G {a, b}.

Proof:
⇒: Suppose b is reachable from a. Then, there exists a sequence of RDF

triples (s1, p1, o1), . . . , (sn, pn, on), such that a ∈ {s1, p1, o1}, b ∈ {sn, pn, on}
and {si, pi, oi} ∩ {si+1, pi+1, oi+1} 6= ∅, for all i < n. Suppose, without loss of



generality, that a = s1, b = on and oi = si+1, for all i < n. We show by induction
on i that, for all i ≤ n, G(T ) ⊢EW

G {a, oi}.
For i = 1, this follows by the Weakening Rule. Assume it is true for i = k−1.

Then G(T ) ⊢EW
G {a, ok−1} and, by the definition of ⊢EW

G and the fact that
sk = ok−1, G(T ) ⊢EW

G {ok−1, pk, ok}. Hence, by the 1-Exclusion Rule, G(T ) ⊢EW
G

{a, pk, ok} and, by the Weakening Rule, G(T ) ⊢EW
G {a, ok}, as desired.

⇐: Suppose, conversely, that G(T ) ⊢EW
G {a, b}. Then, there exists a proof

E1, . . . , En of {a, b} from E in ⊢EW
G . We show, by induction on i ≤ n that, for

all x, y ∈ Ei, y is reachable from x in the RDF graph T .
For i = 1, E1 is an edge in E , whence, if x, y ∈ E1, y is reachable from x.

Assume that, for all i < k, and all x, y ∈ Ei, y is reachable from x in T . If Ek ∈ E ,
the conclusion follows as in the base of the induction. If Ek follows from Ej , j < k,

by the Weakening Rule, then the conclusion follows trivially from the induction
hypothesis. If Ek = {x, y, w} follows from Ei = {x, y, z}, Ej = {z, w}, i, j < k,
by the 1-Exclusion Rule, then, by the induction hypothesis, z is reachable from
x, y in T and w is reachable from z in T , whence any element in any pair chosen
from among x, y, w is reachable from the other element in the pair in T . �

Proposition 1 shows that the study of privacy-preserving resource connec-
tivity in an RDF Graph T = Tv ∪ Th is equivalent to ⊢EW

G -privacy-preserving
reasoning on G(T ) = 〈V, Ev ∪ Eh〉.

5 Summary and Discussion

Related Work: Problems of trust, privacy and security in information systems
in general, and networked information systems (e.g., the web) in particular,
are topics of significant current interest. For early work on security and access
control policies in computer systems and databases see the survey [2]. Recent
work on policy languages for the web [4, 14, 3, 15, 11, 10, 7, 12] focuses on speci-
fying syntax-based restrictions on access to specific resources or operations on
the web. Research on encryption of sensitive information focuses on preventing
unauthorized access to such information using cryptographic protocols [6]. In
contrast to our work, access control policies and encryption techniques do not
allow the use of hidden knowledge to answer queries even if it might be possi-
ble to do so without risking its disclosure. Farkas et al. [5, 9] have proposed a
privacy information flow model to prevent unwanted inferences in data reposito-
ries. Their framework, as opposed to ours, uses closed world semantics. Jain and
Farkas [9] have proposed an RDF authorization model that assigns a security
label to each (stored or inferred) RDF triple using a pre-specified set of syntactic
rules. On the other hand, our approach to privacy-preserving reasoning, and, as
a consequence, also to RDF resource connectivity reasoning uses a semantics-
based approach.

Summary: In this paper we extended on our previous work on privacy-preser-
ving reasoning. We developed a framework for performing privacy-preserving
reasoning with various inference systems on hypergraphical ontologies, i.e., on



knowledge bases that may be represented by hypergraphs. We used the hyper-
graphical inference framework to give an example on how privacy-preserving
reachability reasoning, which is tantamount to privacy-preserving resource con-
nectivity, in RDF Graphs may be carried out. In future work we hope to tackle
general privacy-preserving reasoning with RDF Graphs starting for simplicity
with the ρdf fragment, presented in [13].
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