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Abstract

Taking after work of Tokarz, pragmatic matrix systems are intro-
duced to provide a semantics for logics formalized as w-institutions.
Unlike referential semantics which can only be associated with self-
extensional 7-institutions, but similarly with the case of pseudo-refe-
rential semantics, it is shown that every m-institution can be endowed
with a pragmatic matrix system semantics. Self-extensional m-institu-
tions are characterized as exactly those that possess a pragmatic ma-
trix system semantics with respect to which the underlying algebraic
system of the m-institution satisfies a specific property called exten-
sionality.

1 Introduction

The area of referential semantics deals with the general problem of defining
the primitive notion of truth of a sentence in some formal language at a
“world”. To assign a meaning to a given sentence one may use one of the
following two methods, among others:

(a) A map from the set of possible worlds W to {0,1} which takes the
value 1 for exactly those worlds in W in which the sentence is true.
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(b) A map from the set of possible worlds W into itself that maps a certain
world a to a world b exactly in case the sentence describes in world a
the world b.

The first approach is the one adopted in the study of referential semantics
for sentential logics by Wdjcicki in [7, 8] and of pseudo-referential semantics
for sentential logics by Malinowski [4] and by Marek [5]. Similarly, it was the
approach taken in studying referential and pseudo-referential semantics for
m-institutions in [10] and [12], respectively. In the present work, we follow
the second approach, adopted by Tokarz [6] that led to the introduction of
the so called pragmatic matriz semantics for sentential logics.

Consider a language type L = (A, p), where A is a set of logical con-
nectives/operation symbols and p : A - w is a function assigning to each
operation symbol its arity. Let V be a countable set of variables. De-
note by Fmg(V) = (Fmg(V), L) the free L-algebra generated by V. A
logic S = (L£,+s) consists of a language type together with a structural
consequence relation on Fmg (V). As is well-known, structural consequence
relations are in one-to-one correspondence with structural closure operators
(see, e.g., page 33 of [2]). Thus, a logic may be equivalently represented as
a pair S = (£,C), where C' is a structural closure operator on Fmg (V).

A generalized matrix, or gmatrix, for £ is a pair A = (A, D), where
A = (A, LA) is an L-algebra and D is a family of subsets of A.

A gmatrix A = (A, D) determines a logic S* = (£,C*), defined, for all
DU {p} € Fme(V), by

@ eCH®) iff for all h e Hom(Fmg(V),A) and all D €D,
h(®) < D implies h(yp) € D.

Given a class K of gmatrices for £, the logic determined by K is defined
by SK = (£,CK), where CX = Ny C2.

A class of gmatrices for £ is said to form a gmatrix semantics for a
logic S = (£,C) if C¥ =C.

A referential algebra for £ is an L-algebra R = (R, L®) such that R
consists of a collection of subsets of a set U of base or reference points.
For all a e U, set D, ={X e R:ae X} and D ={D, :a € U}. Then the
gmatrix R = (R, D) for L is called a referential gmatrix for £ over U.

A logic § = (L, C) is self-extensional if for all «, 5 € Fm,(V),

C(a)=C(B) implies C(p(a,z)) = C(p(B,%)),
for all p(x,Z) € Fmg(V).
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A fundamental result due to Wéjcicki [7] (see, also, [9]) asserts that a logic
S = (L£,C) is self-extensional if and only if it has a referential semantics,
i.e., if and only if C' = C®, for some referential gmatrix R. Thus, non-self-
extensional logics do not possess a referential gmatrix semantics.

Malinowski defined in [4] pseudo-referential gmatrices. The concept is
a generalization of referential gmatrices and it is obtained by considering,
in addition to the set U of reference points, a distinguished collection U* ¢
P(U) of subsets of the set of reference points. We define, for all V e U*, the
set

Dy={XeR:XnV #g}

and set D = {Dy : V e U*}. A matrix of the form R = (R, D) is called a
pseudo-referential gmatrix for £. Note that, by taking U* = {{u} :u €
U} one obtains referential gmatrices as a special case. Malinowski shows
in the Theorem of [4] that every logic - not just self-extensional ones - has
a pseudo-referential gmatrix semantics. This work of Malinowski initiated
an effort to provide a semantics along the lines of referential semantics to a
class of sentential logics wider than the class of self-extensional ones.

In [6] Tokarz, switching from the first to the second approach outlined
at the beginning of this Introduction, devised pragmatic gmatrices as an
alternative to Malinowksi’s pseudo-referential gmatrices. Besides following
a different philosophical paradigm, pragmatic gmatrices have the advantage
of being more intuitive than pseudo-referential ones.

The main idea is to replace the requirement that the underlying universe
of the algebra be a subset of P(U), i.e., of 2V, as in the case of referential
algebras, by that of being a subset of UY, i.e., a collection P of functions from
the set of base points to itself. Now to define the filter family of the gmatrix
that serves as the model of the sentential logic one needs a distinguished set
of base points T' ¢ U whose elements are termed facts. We define, for all
uelU

Dy ={peP:p(u)eT)

and we set D ={D, :ueU}. A pragmatic gmatrix system for £ is one
of the form P = (P, D), where P = (P, LF) is an L-algebra. Tokarz shows in
Theorem 1 of [6] that every logic has a pragmatic gmatrix semantics. Tokarz
then defines the notions of extensional and strongly extensional languages
with respect to a pragmatic gmatrix P and shows that they characterize self-
extensional logics. Thus, if one restricts to languages that are extensional or
strongly extensional in this sense, one captures exactly the logics for which
the referential gmatrices of Wdjcicki form a suitable semantics.
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The author has studied in a series of papers referentiality and self-
extensionality and has established results paralleling those of W¢jcicki for
logical systems formalized as w-institutions (see, e.g., [10, 11]). Moreover, in
[12], paralleling the work of Malinowksi, pseudo-referential gmatrix system
semantics was introduced for mw-institutions and it was shown that every
m-institution possesses a pseudo-referential gmatrix semantics.

In this work, pragmatic gmatrix system semantics is introduced for =-
institutions motivated by the same goal that led Tokarz to the introduction
of the pragmatic gmatrix semantics for sentential logics, i.e., to provide an
alternative, based on a different paradigm, to pseudo-referential matrix sys-
tem semantics that would be applicable to a wider class of w-institutions
than just the class of self-extensional ones. We, in fact, show in Theorem 1
that every m-institution has a pragmatic gmatrix system semantics. More-
over, by introducing the notion of a base algebraic system that is extensional
with respect to a pragmatic gmatrix system, we show in Corollary 4 that
self-extensional m-institutions, which are w-institutions having a referential
gmatrix system semantics, are captured exactly by those that are based
on extensional algebraic systems with respect to some pragmatic gmatrix
system.

2 Preliminaries

Let Sign be a category and SEN : Sign — Set a Set-valued functor. The
clone of all natural transformations on SEN is the category U with
collection of objects SEN®, « an ordinal, and collection of morphisms 7 :
SEN® - SEN? B-sequences of natural transformations 7; : SEN® — SEN.
Composition of (r; :i < 8) : SEN® — SEN? with (0, : j < ) : SEN® — SEN?

(r:1<B) (oj 7<)

SEN® SEN? SEN?

is defined by
(oj:j<y)e(rizi<B)=(oj((ri:i<B)):j<).

A subcategory of this category with all objects of the form SEN*, k < w,
and such that:

e it contains all projection morphisms pFi: SENF - SEN, i <k, k < w,
with p& : SEN(2)* - SEN given by

P (8) = ¢4, for all g e SEN(Z)F,
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e for every family {r; : SEN* — SEN : i < ¢} of natural transformations
in N, (r;:4 <) : SEN*¥ - SEN’ is also in N,

is referred to as a category of natural transformations on SEN (see,
e.g., Section 2 of [10]).
An algebraic system is a triple A = (Sign, SEN, V) consisting of:

e A category Sign of signatures;

e A functor SEN : Sign — Set giving for each signature ¥ € |Sign|, the
set SEN(X) of ¥-sentences;

e A category of natural transformations N on SEN.

Usually, in a specific context, a fixed underlying algebraic system is assumed,
called the base algebraic system and denoted by A’ = (Sign’, SEN’, N*).
Then, an N'-algebraic system A = (Sign,SEN, N) is one such that there
exists a surjective functor N’ — N that preserves all projection natural
transformations (and, consequently, all arities of natural transformations
involved).

An interpreted N'’-algebraic system is a pair A = (A, (F, a)), such that
A is an N’-algebraic system and (F,a) : A’ - A is an algebraic system
morphism. In other words:

e F:Sign’ - Sign is a functor;
e a: SEN’ - SENo F is a natural transformation, such that, for all

0" : (SEN’)¥ - SEN’, all ¥ € |Sign| and all ¢y, ..., k-1 € SEN* (D),

k
SEN'(D)F — 2, SEN(F(%))*

b
UZ UF(E)

SEN’(X)

SEN(F(X))

ax(03(g0; - 0k-1)) = ors)(@n(@0), - - an(Pr-1)),

where ¢ : SEN¥ — SEN is the image natural transformation on SEN
of o® in N°.
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A gmatrix system (for A’) is a pair A = (A, D), where A is an interpreted
N'-algebraic system and D = {D:i € I} is a collection of filter families on
A ie, D' = {Diz}2€|5ign|, such that D% ¢ SEN(X), for all ¥ € |Sign| and all
el

Let A’ = (Sign’, SEN’, N*) be a base algebraic system. A 7-institution
based on A’ (see [1] and, also, [3] for the closely related notion of an insti-
tution) is a pair Z = (A", C), where C = {Cs }sc[sign| is a closure system on
A’ ie., a collection of closure operators Cy, : P(SEN’(X)) - P(SEN’ (X)),
Y€ |Sign"|, which satisfies the structurality condition, i.e., for all 3,%’ €
|Sign’|, f € Sign"(%,Y’) and ® c SEN*(X),

SEN’(f)(Cs(®)) € Cs/(SEN*(f)(®)).

Let A’ = (Sign’, SEN’, N*) be a base algebraic system and let A = (A, D)
be a gmatrix system for A", with A = (A, (F,a)) and A = (Sign, SEN, N).
The gmatrix system A generates a closure system C* on A’ by the follow-
ing rule: For all ¥ ¢ |Sign’| and all ® u {p} ¢ SEN*(X),

Qe C%((I)) iff for all ¥/ ¢ |Signb|,f € Signb(E,E') and all i € I,
sy (SEN'(f)(®)) € Dip ) |
implies  axy (SEN'(f)(¢)) € D}«“(E')‘

If K is a class of gmatrix systems for A", then we set

oK =N ch,
AeK

where the intersection is applied signature-wise. The corresponding -
institutions are denoted by T* = (A", C*) and ZX = (A", CK). Note that
both are based on the base algebraic system A°.

Let A’ = (Sign’, SEN’, N*) be a base algebraic system and Z = (A®,C)
be a m-institution based on A’. We say that a class of gmatrix systems K
for A’ is a gmatrix system semantics for 7 in case CK = C.

The remainder of this work will focus on a special kind of gmatrix system
semantics for m-institutions, the so-called pragmatic gmatriz system seman-
tics, introduced in Section 3.

3 Pragmatic Gmatrix Systems

Let A’ = (Sign’, SEN’, N*) be a base algebraic system.
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Consider a category Sign and a functor PTS : |Sign| - Set giving, for
all ¥ € |Sign|, the set PTS(X) of ¥-base or Y-reference points.
Let, also, FCT : |Sign| - Set be such that, for all 3 € |Sign|,

FCT(Z) € PTS(X).

This functor gives, for every X € [Sign|, the set of 3-facts. Thus, X-facts
are also ¥-base points.

A pragmatic N'-algebraic system (based on PTS) is an N’-alge-
braic system P = (Sign, SEN, N}, where, for all ¥ € |Sign|,

SEN(Z) ¢ PTS(2)PTS®),

i.e., a subset of the set of all functions from PTS(X) to itself.

A pragmatic gmatrix system (based on PTS over FCT) is a gmatrix
system P = (P, D), where P = (P,(F,a)) is an interpreted pragmatic N°-
algebraic system based on PTS and

D ={D*?:¥ ¢|Sign|,p e PTS(X)},

where
pEo_ [ {keSEN(R): k(p) e FCT(R)}, if X'=3,
> 2, TDES

The same argument presented by Tokarz in Section IT of [6] shows that it is
not the case that CT is self-extensional, for every pragmatic gmatrix system
P.

Theorem 1 Let A’ = (Sign",SENI’,NI’) be a base algebraic system and T =
(A’ C) a m-institution based on A’ Then, there exists a pragmatic gmatriz
system P = (P, D), based on PTS over FCT, with P = (P,(F,«)) and P =
(Sign, SEN, N), such that C = C¥.

Proof: Set Sign = Sign’. Define, for all ¥ € [Sign|,
PTS(X) = P(SEN" (X)),

where, as usual, P here denotes the powerset operator. Now, set, for all
¥ € |Sign|,

FCT(X) = {SEN"(Z) - {¢} : ¢ € SEN*(2)} c PTS(X).
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Next, for all ¥ € |Sign|, ¢ € SEN’(X), define a function k% : PTS(X) -
PTS(X) by setting, for all X ¢ SEN’(X),

kz’@(X) _ SENb(E) —{p}, if p e Os(X),
SEN(X), otherwise.

Claim: For all ¥ ¢ |Sign|, and all ¢, € SEN"(X), if ¢ # v, then k™% # k>,
Proof: If ¢ # 1, then

K>#(SEN’(Z)) = SEN'(T)-{¢p},
k=¥ (SEN*(X)) SEN’(%) - {¢}.

Since ¢ # 1, we clearly have
k>?(SEN* (X)) # k™Y (SEN" (%)),

whence k=% £ k=Y. []

Now we define the pragmatic N'-algebraic system P = (Sign, SEN, N)
as follows:

e For all ¥ € |Sign|,
SEN(Z) = {k™% : ¢ e SEN’(2)}.

For all £,% ¢ [Sign|, f ¢ Sign(%,%’), SEN(f) : SEN(Z) — SEN(X')
is given by setting, for all ¢ € SEN’(X),

SEN(f)(k:E’w) - X SEN'(f)(¢)

It is clear that SEN : Sign — Set, thus defined, is a functor, since,
for all 33, %', %" € |Sign| and all f € Sign(X,Y’), g € Sign(X',X"), we
have, for all ¢ € SEN"(X),

SEN(f) SEN(g)

SEN(X) SEN(X) SEN(X")

SEN(g)(SEN(f)(k*%?)) = SEN(g)(k= SEN(N(¥)
_ pESEN(9)(SEN'(f)(¢))

= EE"SEN'(gf)(¥)
= SEN(gf) (k).
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e For all o" : (SEN’)¥ - SEN’ in N’, we define ¢ : SEN* — SEN by
letting, for all ¥ € [Sign|, oy, : SEN(X)* - SEN(X) be given, for all
P05+ PE-1 € SENb(Z)a

b
O-E(kZ#PO, o 7k27<ﬁk—1) = k2oxn(Popr-1)

o : SEN*¥ - SEN is a natural transformation, since, for all ¥,%' €
|Sign|, all f ¢ Sign(X,%’) and all g, ..., pp_1 € SEN* (D),

%))

SEN(X)* SEN(X)
SEN(f)* SEN(f)
SEN(Z')k SEN(X')

osy (SEN(f)(k¥#0), ..., SEN(f)(k™#r-1))
= sy (KZSEN (Do) | k= SEN' (1)
= 1505 (SEN*(£)(90),.. SEN"(f) (k1))
— k2’7SENb(f)(0'b2(8007"'7@16—1))

= SEN(f) (k=% (P0r21-1))
= SEN(f)(O'E(kZ#PO’ L ’k:27gpk_1 ))

Finally, we set N be the category of natural transformations on SEN
consisting of all natural transformations of the form o, for o® in N*.

Now define the algebraic system morphism (I,a): A’ — P as follows:
e I:Sign’ - Sign is the identity functor (recall Sign = Sign");
e o :SEN’ — SEN is defined by letting, for all 3 € |Sign|,
oy, : SEN’(X) - SEN(X)
be given, for all p e SEN’(X), by
as(p) = k™.

Again this is a bona fide natural transformation since, for all 3,%’ €
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|Sign|, all f € Sign(X,¥’) and all ¢ € SEN*(X),

ays

SEN’(X) SEN(X)
SEN’(f) SEN(f)
SEN’ (%) SEN(X)

ax(SEN'(f)(g) = K¥SENOE)
SEN(f)(k>#)

SEN(f)(eax(#))-

Thus, the pair P = (P, (I,«)) is an interpreted pragmatic N’-algebraic sys-
tem based on PTS.

Now, following the standard procedure for a pragmatic gmatrix system,
we define, for all ¥ € [Sign| and all X € PTS(X), i.e., X ¢ SEN"(X),

X o,X
D> ={D5" }sve/sign|
by setting, for all ¥’ € |Sign]|,

DEX _ {E¥¥ e SEN(X) : k™% (X) e FCT(X)}, if X' =%,
¥ g, if ¥+ 3.

and let
D = {D*¥ : ¥ ¢|Sign|, X ¢ SEN*(Z)}.

Then the structure P = (P, D) is a pragmatic gmatrix system based on PTS
over FCT.

Before continuing with the claim that will conclude the proof of the
theorem, we note that, for all ¥ € |Sign| and all p € SEN’(X), because of
the definition of &> and of FCT(X), we get

sx [ {F¥¥eSEN(E):peCxn(X)}, if X =%,
Dyi™ = @, if ¥+ 3.

Claim: C = C".
Proof: Suppose, first, that ¥ ¢ [Sign| and ® U {p} ¢ SEN’(X), such that
¢ ¢ Cx(®). Then, for all ¢ € D,

as(9)(®) = k79(®) = SEN’(X) - {¢} e FCT(X).
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Thus, by the definition of D, ax(¢) € Dg’q), for all ¢ € ®. On the other
hand,
ax(9)(®) = k*#(®) = SEN'(X) ¢ FCT(X).

So ax(p) ¢D§’¢. It follows that ¢ ¢ CL(®).
Suppose, conversely, that 3 € |[Sign| and ® u {¢} ¢ SEN’(X), such that
p € Cx(®). Consider X' € |Sign|, f € Sign(X,>’), such that, for all ¢ € ,

oy (SEN'(£)(9)) € DS,

for some X’ ¢ SEN*('). Then, for all ¢ € ®, k7 SEN'(N@) ¢ DZ" This
implies that SEN’(f)(¢) € Csy(X'), for all ¢ € ®. Since, by hypothesis,
@ € Ox(P), we get, by structurality,

SEN’(f)(p) € Csy(SEN*(£)(®)) € Csv(X').
This shows that k‘EI’SENb(f)(“D)(X’) € Dg:’X’, or, equivalently, that
asy (SEN’(f)(¢)) € DS~

Hence, we conclude that ¢ € C%(®). [ ]

By the claim, we conclude that every w-institution Z has a pragmatic
gmatrix system semantics, namely one consisting of the single pragmatic
gmatrix system constructed in this proof, which may be called the canonical
pragmatic gmatrix system associated with the w-institution Z. [ |

In Section 4, we characterize those m-institutions that are self-extensional
based on the type of the available pragmatic gmatrix system semantics for
them.

4 Extensionality

Let A’ = (Sign’, SEN’, N*) be a base algebraic system.

Let P = (P, D) be a pragmatic gmatrix system based on PTS over FCT,
with P = (P, (F,a)) and P = (Sign, SEN, N).

Let ¥ € [Sign’| and ¢, 1 € SEN?(X). Then ¢, 1) are called coreferential
with respect to P, or P-coreferential, in symbols ¢ ~I% 1, if, for all
>’ € |Sign’|, all f € Sign’(%,%’) and all a e PTS(F (X)),

as/(SEN'(f)())(a) e FCT(F (X))
iff ax (SEN"(f)(¥))(a) e FCT(F(X)).
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We say that A’ is extensional with respect to P, or P-extensional,
written P € Ext(A"), if, for all o® : (SEN’)* - SEN’ in N’ all ¥ ¢ |Sign’|
and all (10071/}07 v 7Q0k717¢k71 € SEN[)(Z)7

PO~ 0y - s Pt ~5 k-1
imply 0% (00, .-, r-1) ~5 0% (o, - .-, Pr-1).

Let again X € |Sign’| and ¢,1 € SEN’(X). Then ¢ and 1 are called syn-
onymous with respect to P, or P-synonymous, written ¢ wHZD ¥, if, for
all X’ € |Sign’| and all f € Sign’(%,%’),

sy (SEN(f)(9)) = s (SEN() (¥)).

Moreover, A’ is said to be strongly extensional with respect to P, or
strongly P-extensional, in symbols P € Ext(A"), if ~F < &P where, here,
< denotes signature-wise inclusion.

Since, obviously, ~ < ~F, we have that

PeExt(A’) iff ~F==" implies PeExt(A").

Thus, Ext(A®) ¢ Ext(A").

Given a base algebraic system A’ = (Sign", SEN’ N *) and a m-institution
T =(A",C) based on A", recall that the intederivabilty relation system
of Z is the equivalence system A(Z) = {Ay (I)}E€|Signb‘7 defined, for all 3 €

|Sign’| by setting, for all o, € SEN’(X),

(o) e An(Z) iff Cx(p)=Cx(v).

In general, A(Z) is an equivalence system but not an N’-congruence sys-
tem. The m-institution Z is called self-extensional if A(Z) is a congruence
system, i.e., if, for all o : (SEN")* - SEN’ in N*, all ¥ ¢ |Sign’| and all
00,10, - -, Pr-1,Pp-1 € SEN'(D),

@il (Z)ip;, for all i < k, imply o%(o,- .-, pr-1)As(Z)o% (Yo, - - -, 1)

Theorem 2 Let A’ = (Signb,SEN",Nb) be a base algebraic system and
P = (P,D) a pragmatic gmatriz system for A*. If P e Ext(A’), then
TP = (A", C?) is a self-extensional w-institution.

Proof: Suppose P € Ext(A®). Let X ¢ |Sign’|, o’ : (SEN")¥ - SEN’ in N*
and ©o,%0, ..., Pp-1,Vr-1 € SEN’(Z), such that @;Asx(ZF)1;, for all i < k.
This means that Cy(p;) = C5(v;), for all i < k. By the definition of C¥,
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this implies that ¢; ~HED 5, for all ¢ < k. Therefore, by the P-extensionality
of A’,
U%(@Ou v 7(10/671) Ng 0—;(1/}07 s 71/}]4:71)'

Thus, reversing the steps, we now obtain

C5(0% (%0, -, p1-1)) = Cx (0% (o, - -, V1))

This gives that J"E(goo, e pr-1)Ay (IP)UI’E(¢0, .., ¥g_1), which shows that
7P is self-extensional. [ |

Consider again a base algebraic system A’ = (Sign", SEN’, N'). Let Sign
be a category and PTS® :|Sign| - Set. A gmatrix system R = (R,C) for A",
with R = (R, (F,aft)) and R = (Sign, SEN® NF) is called a referential
gmatrix system (based on PTS%) if:

e R is an interpreted N'’-algebraic system, such that, for all ¥ e |Sign|,
SEN® (%) c P(PTSE(R));

e The collection of filter families C is given by
C = {C*?:% ¢|Sign|,p e PTSH(D)},

where, for all ¥ ¢ [Sign| and all p e PTSE(E), O™ = {C5" }ye[sign] i
defined by setting, for all ¥’ € |Sign|,

e | {Xe SENE(RD):pe X}, if X =%,
o g, if 2+ 3.

Note that, if R is a referential gmatrix system for A", then we have, for all
3 € |Sign’| and all ® u {p} ¢ SEN* (),

e CR(®) iff for all X' ¢ |Sign’|, f e Sign’ (%, %),
Noea  (SEN"(£)(9)) € af, (SEN"(f)(¢)).

It was shown in Theorem 8 of [10], based on a fundamental result of Wéjcicki,
that a 7-institution Z = (A®,C) based on A’ is self-extensional if and only
if it is of the form Z%® = (A®, C®) for some referential gmatrix system R.

Theorem 3 Let A’ = (Signb,SEN",N") be a base algebraic system. Sup-
pose that R = (R,C), with R = (R, (F,a®)) and R = (Sign, SEN® N s
a referential gmatriz system for A®. Then there exists a pragmatic gmatriz
system P = (P, D) e Ext(A"), such that C* = CR.
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Proof: Let R = (R,C), with R = (R, (F,a®)) and R = (Sign,SEN® NT),
be a referential gmatrix system for A’ based on PTS® : |Sign| — Set, i.e.,
such that SENY (%) ¢ P(PTSE(X)), for all ¥ € |Sign|.

For every ¥ € |Sign|, let px € PTSE(X) and gx ¢ PTS®(XZ). We define
PTS? : |Sign| — Set by setting

PTS? (%) =PTSE(Z)u{gs}, for all ¥ € |Sign].
Define, also FCT : |Sign| — Set by setting
FCT(X) ={¢x}, for all ¥ €|Sign].

Note that FCT < PTS”. Next, for all ¥ € |Sign|, X ¢ SENT(X), define
p= X PTSP(X) = PTSY () by setting, for all a e PTSY (%),

X () = qs, if (a=gx oracecX),
ps, otherwise.

Claim: If X,Y ¢ SEN?(X), with X # Y, then p™¥ # p>Y.

Proof: If X # Y, then there exists z € X\Y or y € Y\X. Assume without
loss of generality that the first occurs. Then, we have p™~ () = gs, whereas
p>Y (2) = py # g=. Thus, p™X # p™Y. [ ]

We now proceed to define the pragmatic gmatrix system P based on
PTS” over FCT.
First, define the algebraic system P = (Sign, SEN”, N”) as follows:

e Foe every X € |Sign|, define
SENT(%) = {p®¥ : X e SENE(D)}.

Moreover, for all 3, %" € [Sign| and all f € Sign(X,Y’), we define
SENY(f):SENP () - SENT (%) by setting, for all X € SEN?(X),

SENP(f)(pE,X) :pE’,SENR(f)(X)'
This makes SEN” : Sign — Set a functor.

e Now consider ¢’ : (SEN*)* — SEN’ in N*. We define o : (SENT)¥ -
SEN” by letting, for all ¥ € |Sign|, 0% : SENP(2)*F — SEN?(X) be
given, for all Xj,..., X;_1 € SEN(X), by

5 (

3, X
> p 07'

27Xk71) _ pE,Ug(XoqukJ)'

o )

This is a well defined natural transformation. We set N¥ to be the

collection of all natural transformations of the form o as o ranges

in N*. Then N¥ is a category of natural transformations on SEN*".
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The triple P = (Sign, SEN”, N¥) is the algebraic system reduct of P. It is
clearly a pragmatic N°-algebraic system based on PTS?.
Next, define the pair (F,a’) : A® - P as follows:

e F:Sign’ — Sign is the functor inherited by the referential gmatrix
system R.

e o’ : SEN’ - SEN” o F is defined by letting, for all ¥ € [Sign’|, o :
SEN!(X) - SENT(F(X)) be given, for all ¢ € SEN*(X), by

O!R
o5 (e) = pF Ik,

Then o : SEN? - SENY o F is a well defined natural transformation.

With these definitions the pair P = (P,(F,a’)) becomes an interpreted
pragmatic N’-algebraic system based on PTS?.

Finally, for all a € PTS”(2), set D™ = {D,"}sy¢isign|s Where, for all
Y. € |Sign|,

pua_ [ (77N eSENT(R):p™ ¥ (a) = g5}, X' =T,
> 2, if Y ¢ 3.

and let
D ={D*":¥ ¢|Sign|,a e PTS"(2)}.

This completes the definition of the pragmatic gmatrix system P. We note
that, because of the definition of P, if one defines a : SEN » SEN? by
letting, for all ¥ € [Sign|, ay : SEN®(X) - SENP(X) be given, for all
X e SENE(X), by
_uX
OéE(X) =p )

then the following diagrams commute:

Sign’ SEN'(X)
YN
Sign - Sign SENF(F(T)) SEN”(F(3))

ap(x)

It only remains to show that P € Ext(A’) and that C¥ = C¥.
Claim: A’ = (Sign’ SEN’, N*) is strongly extensional with respect to P =
(P.,D).



CAAL: Pragmatic Matrix System Semantics 16

Proof: It suffices to show that ~ < ~. To this end, let ¥ € |Sign’| and ¢, 1) €
SEN’(X), such that ¢ ~% 1. Then, for all ¥ € |Sign’|, f € Sign’(%,%’),
and a € PTST (F (X)),

as/(SEN'(f)())(a) e FCT(F (X))
iff as (SEN"(f)(¥))(a) e FCT(F(X)),

i.e., for all ¥’ € |Sign®|, f € Sign’(%,%’), and a ¢ PTST (F(X)),
as/(SEN'(f)())(a) = qp(sry iff  as/(SEN'(£)(¥))(a) = gr(sn.-
Equivalently, for all ¥/ € |Sign’| and all f € Sign’ (%, %),
asy(SEN(£)(9)) = asy (SEN"(f)(¥)),

: P
Le., @ my 7). [ |

And the final claim:
Claim: C* = C¥.
Proof: We have, for all ¥ € |Sign’| and all ® U {p} c SEN’(X), that ¢ €
CE(®) if and only if, for all X’ € [Sign’|, all f € Sign’(%,%’) and all a €
PTSP(F(3)),

of, (SEN"(£)(®)) < {p" )X e SEN"(F (X)) : pF &)X (a) = gp(s)}

implies

o, (SEN*(f)(p)) € {p" )X e SEN"(F (")) : pF V¥ (a) = gy }-
iff, for all ¥ ¢ |Sign’|, all f € Sign’(%,¥’) and all a e PTSY (F(¥)),

pF(z:'),ag,(SENb(f)(@)(a) = qp(y, all g€ P,
implies p" =05 (SEN'()(2)) (¢) = ar(srys

iff, for all X’ € |Sign’|, all f € Sign’(X,%’) and all p e PTS?(F (X)),

pe () s (SEN'(f)(¢)) implies peash(SEN'(f)()),

ped
if and only if p € CR(®). ]
This completes the proof of the theorem. [ |

We close this work by providing a corollary that summarizes what was
accomplished:
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Corollary 4 Let A® = (Signl’,SENb,N") be a base algebraic system and
T =(A" C) a r-institution based on A’. Then, the following statements are
equivalent:

(i) C =C® for some referential gmatriz system R;

(ii) C =C¥ for some pragmatic gmatriz system P with respect to which A’
1s strongly extensional;

(iii) C =C¥ for some pragmatic gmatriz system P with respect to which A®
s extensional;

(iv) Z is self-extensional.
Proof:

(i)<>(iv) This is essentially Theorem 8 of [10].

)
(i)=(ii) By Theorem 3.

i)

)

(ii)=(iii) Follows from Ext(A"’) c Ext(A").

(iii)=(iv) By Theorem 2.
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