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Abstract

Taking after work of Tokarz, pragmatic matrix systems are intro-
duced to provide a semantics for logics formalized as π-institutions.
Unlike referential semantics which can only be associated with self-
extensional π-institutions, but similarly with the case of pseudo-refe-
rential semantics, it is shown that every π-institution can be endowed
with a pragmatic matrix system semantics. Self-extensional π-institu-
tions are characterized as exactly those that possess a pragmatic ma-
trix system semantics with respect to which the underlying algebraic
system of the π-institution satisfies a specific property called exten-
sionality.

1 Introduction

The area of referential semantics deals with the general problem of defining
the primitive notion of truth of a sentence in some formal language at a
“world”. To assign a meaning to a given sentence one may use one of the
following two methods, among others:

(a) A map from the set of possible worlds W to {0,1} which takes the
value 1 for exactly those worlds in W in which the sentence is true.
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(b) A map from the set of possible worldsW into itself that maps a certain
world a to a world b exactly in case the sentence describes in world a
the world b.

The first approach is the one adopted in the study of referential semantics
for sentential logics by Wójcicki in [7, 8] and of pseudo-referential semantics
for sentential logics by Malinowski [4] and by Marek [5]. Similarly, it was the
approach taken in studying referential and pseudo-referential semantics for
π-institutions in [10] and [12], respectively. In the present work, we follow
the second approach, adopted by Tokarz [6] that led to the introduction of
the so called pragmatic matrix semantics for sentential logics.

Consider a language type L = ⟨Λ, ρ⟩, where Λ is a set of logical con-
nectives/operation symbols and ρ ∶ Λ → ω is a function assigning to each
operation symbol its arity. Let V be a countable set of variables. De-
note by FmL(V ) = ⟨FmL(V ),L⟩ the free L-algebra generated by V . A
logic S = ⟨L,⊢S⟩ consists of a language type together with a structural
consequence relation on FmL(V ). As is well-known, structural consequence
relations are in one-to-one correspondence with structural closure operators
(see, e.g., page 33 of [2]). Thus, a logic may be equivalently represented as
a pair S = ⟨L,C⟩, where C is a structural closure operator on FmL(V ).

A generalized matrix, or gmatrix, for L is a pair A = ⟨A,D⟩, where
A = ⟨A,LA⟩ is an L-algebra and D is a family of subsets of A.

A gmatrix A = ⟨A,D⟩ determines a logic SA = ⟨L,CA⟩, defined, for all
Φ ∪ {ϕ} ⊆ FmL(V ), by

ϕ ∈ CA(Φ) iff for all h ∈ Hom(FmL(V ),A) and all D ∈ D,
h(Φ) ⊆D implies h(ϕ) ∈ D.

Given a class K of gmatrices for L, the logic determined by K is defined
by SK = ⟨L,CK⟩, where CK = ⋂A∈KC

A.
A class of gmatrices for L is said to form a gmatrix semantics for a

logic S = ⟨L,C⟩ if CK = C.
A referential algebra for L is an L-algebra R = ⟨R,LR⟩ such that R

consists of a collection of subsets of a set U of base or reference points.
For all a ∈ U , set Da = {X ∈ R ∶ a ∈ X} and D = {Da ∶ a ∈ U}. Then the
gmatrix R = ⟨R,D⟩ for L is called a referential gmatrix for L over U .

A logic S = ⟨L,C⟩ is self-extensional if for all α,β ∈ FmL(V ),

C(α) = C(β) implies C(ϕ(α, z)) = C(ϕ(β, z)),
for all ϕ(x, z) ∈ FmL(V ).
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A fundamental result due to Wójcicki [7] (see, also, [9]) asserts that a logic
S = ⟨L,C⟩ is self-extensional if and only if it has a referential semantics,
i.e., if and only if C = CR, for some referential gmatrix R. Thus, non-self-
extensional logics do not possess a referential gmatrix semantics.

Malinowski defined in [4] pseudo-referential gmatrices. The concept is
a generalization of referential gmatrices and it is obtained by considering,
in addition to the set U of reference points, a distinguished collection U∗ ⊆
P(U) of subsets of the set of reference points. We define, for all V ∈ U∗, the
set

DV = {X ∈ R ∶ X ∩ V ≠ ∅}

and set D = {DV ∶ V ∈ U∗}. A matrix of the form R = ⟨R,D⟩ is called a
pseudo-referential gmatrix for L. Note that, by taking U∗ = {{u} ∶ u ∈
U} one obtains referential gmatrices as a special case. Malinowski shows
in the Theorem of [4] that every logic - not just self-extensional ones - has
a pseudo-referential gmatrix semantics. This work of Malinowski initiated
an effort to provide a semantics along the lines of referential semantics to a
class of sentential logics wider than the class of self-extensional ones.

In [6] Tokarz, switching from the first to the second approach outlined
at the beginning of this Introduction, devised pragmatic gmatrices as an
alternative to Malinowksi’s pseudo-referential gmatrices. Besides following
a different philosophical paradigm, pragmatic gmatrices have the advantage
of being more intuitive than pseudo-referential ones.

The main idea is to replace the requirement that the underlying universe
of the algebra be a subset of P(U), i.e., of 2U , as in the case of referential
algebras, by that of being a subset of UU , i.e., a collection P of functions from
the set of base points to itself. Now to define the filter family of the gmatrix
that serves as the model of the sentential logic one needs a distinguished set
of base points T ⊆ U whose elements are termed facts. We define, for all
u ∈ U

Du = {p ∈ P ∶ p(u) ∈ T}

and we set D = {Du ∶ u ∈ U}. A pragmatic gmatrix system for L is one
of the form P = ⟨P,D⟩, where P = ⟨P,LP⟩ is an L-algebra. Tokarz shows in
Theorem 1 of [6] that every logic has a pragmatic gmatrix semantics. Tokarz
then defines the notions of extensional and strongly extensional languages
with respect to a pragmatic gmatrix P and shows that they characterize self-
extensional logics. Thus, if one restricts to languages that are extensional or
strongly extensional in this sense, one captures exactly the logics for which
the referential gmatrices of Wójcicki form a suitable semantics.
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The author has studied in a series of papers referentiality and self-
extensionality and has established results paralleling those of Wójcicki for
logical systems formalized as π-institutions (see, e.g., [10, 11]). Moreover, in
[12], paralleling the work of Malinowksi, pseudo-referential gmatrix system
semantics was introduced for π-institutions and it was shown that every
π-institution possesses a pseudo-referential gmatrix semantics.

In this work, pragmatic gmatrix system semantics is introduced for π-
institutions motivated by the same goal that led Tokarz to the introduction
of the pragmatic gmatrix semantics for sentential logics, i.e., to provide an
alternative, based on a different paradigm, to pseudo-referential matrix sys-
tem semantics that would be applicable to a wider class of π-institutions
than just the class of self-extensional ones. We, in fact, show in Theorem 1
that every π-institution has a pragmatic gmatrix system semantics. More-
over, by introducing the notion of a base algebraic system that is extensional
with respect to a pragmatic gmatrix system, we show in Corollary 4 that
self-extensional π-institutions, which are π-institutions having a referential
gmatrix system semantics, are captured exactly by those that are based
on extensional algebraic systems with respect to some pragmatic gmatrix
system.

2 Preliminaries

Let Sign be a category and SEN ∶ Sign → Set a Set-valued functor. The
clone of all natural transformations on SEN is the category U with
collection of objects SENα, α an ordinal, and collection of morphisms τ ∶
SENα → SENβ β-sequences of natural transformations τi ∶ SENα → SEN.
Composition of ⟨τi ∶ i < β⟩ ∶ SENα → SENβ with ⟨σj ∶ j < γ⟩ ∶ SENβ → SENγ

SENα
⟨τi ∶ i < β⟩ ✲ SENβ

⟨σj ∶ j < γ⟩✲ SENγ

is defined by

⟨σj ∶ j < γ⟩ ○ ⟨τi ∶ i < β⟩ = ⟨σj(⟨τi ∶ i < β⟩) ∶ j < γ⟩.

A subcategory of this category with all objects of the form SENk, k < ω,
and such that:

• it contains all projection morphisms pk,i ∶ SENk → SEN, i < k, k < ω,
with pk,i

Σ
∶ SEN(Σ)k → SEN given by

p
k,i
Σ
(φ) = φi, for all φ ∈ SEN(Σ)

k,
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• for every family {τi ∶ SEN
k → SEN ∶ i < ℓ} of natural transformations

in N , ⟨τi ∶ i < ℓ⟩ ∶ SENk → SENℓ is also in N ,

is referred to as a category of natural transformations on SEN (see,
e.g., Section 2 of [10]).

An algebraic system is a triple A = ⟨Sign,SEN,N⟩ consisting of:

• A category Sign of signatures;

• A functor SEN ∶ Sign → Set giving for each signature Σ ∈ ∣Sign∣, the
set SEN(Σ) of Σ-sentences;

• A category of natural transformations N on SEN.

Usually, in a specific context, a fixed underlying algebraic system is assumed,
called the base algebraic system and denoted by A♭ = ⟨Sign♭,SEN♭,N ♭⟩.
Then, an N ♭-algebraic system A = ⟨Sign,SEN,N⟩ is one such that there
exists a surjective functor N ♭ → N that preserves all projection natural
transformations (and, consequently, all arities of natural transformations
involved).

An interpreted N ♭-algebraic system is a pair A = ⟨A, ⟨F,α⟩⟩, such that
A is an N ♭-algebraic system and ⟨F,α⟩ ∶ A♭ → A is an algebraic system
morphism. In other words:

• F ∶ Sign♭ → Sign is a functor;

• α ∶ SEN♭ → SEN ○ F is a natural transformation, such that, for all
σ♭ ∶ (SEN♭)k → SEN♭, all Σ ∈ ∣Sign∣ and all ϕ0, . . . , ϕk−1 ∈ SEN

♭(Σ),
SEN♭(Σ)k αk

Σ ✲ SEN(F (Σ))k

SEN♭(Σ)
σ♭
Σ

❄

αΣ

✲ SEN(F (Σ))
σF (Σ)

❄

αΣ(σ♭Σ(ϕ0, . . . , ϕk−1)) = σF (Σ)(αΣ(ϕ0), . . . , αΣ(ϕk−1)),
where σ ∶ SENk → SEN is the image natural transformation on SEN
of σ♭ in N ♭.
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A gmatrix system (for A♭) is a pair A = ⟨A,D⟩, where A is an interpreted
N ♭-algebraic system and D = {Di ∶ i ∈ I} is a collection of filter families on
A, i.e., Di = {Di

Σ
}Σ∈∣Sign∣, such that Di

Σ
⊆ SEN(Σ), for all Σ ∈ ∣Sign∣ and all

i ∈ I.
Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. A π-institution

based on A♭ (see [1] and, also, [3] for the closely related notion of an insti-
tution) is a pair I = ⟨A♭,C⟩, where C = {CΣ}Σ∈∣Sign∣ is a closure system on

A♭, i.e., a collection of closure operators CΣ ∶ P(SEN♭(Σ)) → P(SEN♭(Σ)),
Σ ∈ ∣Sign♭∣, which satisfies the structurality condition, i.e., for all Σ,Σ′ ∈∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and Φ ⊆ SEN♭(Σ),

SEN♭(f)(CΣ(Φ)) ⊆ CΣ′(SEN♭(f)(Φ)).
Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and let A = ⟨A,D⟩

be a gmatrix system for A♭, with A = ⟨A, ⟨F,α⟩⟩ and A = ⟨Sign,SEN,N⟩.
The gmatrix system A generates a closure system CA on A♭ by the follow-
ing rule: For all Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆ SEN♭(Σ),

ϕ ∈ CA

Σ
(Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′) and all i ∈ I,

αΣ′(SEN♭(f)(Φ)) ⊆Di
F (Σ′)

implies αΣ′(SEN♭(f)(ϕ)) ∈ Di
F (Σ′).

If K is a class of gmatrix systems for A♭, then we set

CK = ⋂
A∈K

CA,

where the intersection is applied signature-wise. The corresponding π-
institutions are denoted by IA = ⟨A♭,CA⟩ and IK = ⟨A♭,CK⟩. Note that
both are based on the base algebraic system A♭.

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and I = ⟨A♭,C⟩
be a π-institution based on A♭. We say that a class of gmatrix systems K

for A♭ is a gmatrix system semantics for I in case CK = C.
The remainder of this work will focus on a special kind of gmatrix system

semantics for π-institutions, the so-called pragmatic gmatrix system seman-

tics, introduced in Section 3.

3 Pragmatic Gmatrix Systems

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
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Consider a category Sign and a functor PTS ∶ ∣Sign∣ → Set giving, for
all Σ ∈ ∣Sign∣, the set PTS(Σ) of Σ-base or Σ-reference points.

Let, also, FCT ∶ ∣Sign∣ → Set be such that, for all Σ ∈ ∣Sign∣,
FCT(Σ) ⊆ PTS(Σ).

This functor gives, for every Σ ∈ ∣Sign∣, the set of Σ-facts. Thus, Σ-facts
are also Σ-base points.

A pragmatic N ♭-algebraic system (based on PTS) is an N ♭-alge-
braic system P = ⟨Sign,SEN,N⟩, where, for all Σ ∈ ∣Sign∣,

SEN(Σ) ⊆ PTS(Σ)PTS(Σ),

i.e., a subset of the set of all functions from PTS(Σ) to itself.
A pragmatic gmatrix system (based on PTS over FCT) is a gmatrix

system P = ⟨P,D⟩, where P = ⟨P, ⟨F,α⟩⟩ is an interpreted pragmatic N ♭-
algebraic system based on PTS and

D = {DΣ,p ∶ Σ ∈ ∣Sign∣, p ∈ PTS(Σ)},
where

D
Σ,p
Σ′
= { {k ∈ SEN(Σ) ∶ k(p) ∈ FCT(Σ)}, if Σ′ = Σ,
∅, if Σ′ ≠ Σ.

The same argument presented by Tokarz in Section II of [6] shows that it is
not the case that CP is self-extensional, for every pragmatic gmatrix system
P.

Theorem 1 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and I =⟨A♭,C⟩ a π-institution based on Ab. Then, there exists a pragmatic gmatrix

system P = ⟨P,D⟩, based on PTS over FCT, with P = ⟨P, ⟨F,α⟩⟩ and P =⟨Sign,SEN,N⟩, such that C = CP.

Proof: Set Sign = Sign♭. Define, for all Σ ∈ ∣Sign∣,
PTS(Σ) = P(SEN♭(Σ)),

where, as usual, P here denotes the powerset operator. Now, set, for all
Σ ∈ ∣Sign∣,

FCT(Σ) = {SEN♭(Σ) − {ϕ} ∶ ϕ ∈ SEN♭(Σ)} ⊆ PTS(Σ).
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Next, for all Σ ∈ ∣Sign∣, ϕ ∈ SEN♭(Σ), define a function kΣ,ϕ ∶ PTS(Σ) →
PTS(Σ) by setting, for all X ⊆ SEN♭(Σ),

kΣ,ϕ(X) = { SEN♭(Σ) − {ϕ}, if ϕ ∈ CΣ(X),
SEN(Σ), otherwise.

Claim: For all Σ ∈ ∣Sign∣, and all ϕ,ψ ∈ SEN♭(Σ), if ϕ ≠ ψ, then kΣ,ϕ ≠ kΣ,ψ.
Proof: If ϕ ≠ ψ, then

kΣ,ϕ(SEN♭(Σ)) = SEN♭(Σ) − {ϕ},
kΣ,ψ(SEN♭(Σ)) = SEN♭(Σ) − {ψ}.

Since ϕ ≠ ψ, we clearly have

kΣ,ϕ(SEN♭(Σ)) ≠ kΣ,ψ(SEN♭(Σ)),
whence kΣ,ϕ ≠ kΣ,ψ. ∎

Now we define the pragmatic N ♭-algebraic system P = ⟨Sign,SEN,N⟩
as follows:

• For all Σ ∈ ∣Sign∣,
SEN(Σ) = {kΣ,ϕ ∶ ϕ ∈ SEN♭(Σ)}.

For all Σ,Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), SEN(f) ∶ SEN(Σ) → SEN(Σ′)
is given by setting, for all ϕ ∈ SEN♭(Σ),

SEN(f)(kΣ,ϕ) = kΣ′,SEN♭(f)(ϕ).
It is clear that SEN ∶ Sign → Set, thus defined, is a functor, since,
for all Σ,Σ′,Σ′′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), g ∈ Sign(Σ′,Σ′′), we
have, for all ϕ ∈ SEN♭(Σ),

SEN(Σ) SEN(f)✲ SEN(Σ′) SEN(g)✲ SEN(Σ′′)
SEN(g)(SEN(f)(kΣ,ϕ)) = SEN(g)(kΣ′ ,SEN♭(f)(ϕ))

= kΣ
′′,SEN♭(g)(SEN♭(f)(ϕ))

= kΣ
′′,SEN♭(gf)(ϕ)

= SEN(gf)(kΣ,ϕ).
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• For all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, we define σ ∶ SENk → SEN by
letting, for all Σ ∈ ∣Sign∣, σΣ ∶ SEN(Σ)k → SEN(Σ) be given, for all
ϕ0, . . . , ϕk−1 ∈ SEN

♭(Σ),
σΣ(kΣ,ϕ0 , . . . , kΣ,ϕk−1) = kΣ,σ♭Σ(ϕ0,...,ϕk−1).

σ ∶ SENk → SEN is a natural transformation, since, for all Σ,Σ′ ∈∣Sign∣, all f ∈ Sign(Σ,Σ′) and all ϕ0, . . . , ϕk−1 ∈ SEN
♭(Σ),

SEN(Σ)k σΣ ✲ SEN(Σ)

SEN(Σ′)k
SEN(f)k

❄

σΣ′
✲ SEN(Σ′)

SEN(f)
❄

σΣ′(SEN(f)(kΣ,ϕ0), . . . ,SEN(f)(kΣ,ϕk−1))
= σΣ′(kΣ′,SEN♭(f)(ϕ0), . . . , kΣ

′,SEN♭(f)(ϕk−1))
= kΣ

′,σ♭
Σ′
(SEN♭(f)(ϕ0),...,SEN

♭(f)(ϕk−1))

= kΣ
′,SEN♭(f)(σ♭

Σ
(ϕ0,...,ϕk−1))

= SEN(f)(kΣ,σ♭Σ(ϕ0,...,ϕk−1))
= SEN(f)(σΣ(kΣ,ϕ0 , . . . , kΣ,ϕk−1)).

Finally, we set N be the category of natural transformations on SEN
consisting of all natural transformations of the form σ, for σ♭ in N ♭.

Now define the algebraic system morphism ⟨I,α⟩ ∶A♭ → P as follows:

• I ∶ Sign♭ → Sign is the identity functor (recall Sign = Sign♭);

• α ∶ SEN♭ → SEN is defined by letting, for all Σ ∈ ∣Sign∣,
αΣ ∶ SEN

♭(Σ) → SEN(Σ)
be given, for all ϕ ∈ SEN♭(Σ), by

αΣ(ϕ) = kΣ,ϕ.
Again this is a bona fide natural transformation since, for all Σ,Σ′ ∈
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∣Sign∣, all f ∈ Sign(Σ,Σ′) and all ϕ ∈ SEN♭(Σ),
SEN♭(Σ) αΣ ✲ SEN(Σ)

SEN♭(Σ′)
SEN♭(f)

❄

αΣ′

✲ SEN(Σ′)
SEN(f)
❄

αΣ′(SEN♭(f)(ϕ)) = kΣ
′,SEN♭(f)(ϕ)

= SEN(f)(kΣ,ϕ)
= SEN(f)(αΣ(ϕ)).

Thus, the pair P = ⟨P, ⟨I,α⟩⟩ is an interpreted pragmatic N ♭-algebraic sys-
tem based on PTS.

Now, following the standard procedure for a pragmatic gmatrix system,
we define, for all Σ ∈ ∣Sign∣ and all X ∈ PTS(Σ), i.e., X ⊆ SEN♭(Σ),

DΣ,X = {DΣ,X
Σ′
}Σ′∈∣Sign∣

by setting, for all Σ′ ∈ ∣Sign∣,
D

Σ,X
Σ′
= { {kΣ,ϕ ∈ SEN(Σ) ∶ kΣ,ϕ(X) ∈ FCT(Σ)}, if Σ′ = Σ,
∅, if Σ′ ≠ Σ.

and let
D = {DΣ,X ∶ Σ ∈ ∣Sign∣,X ⊆ SEN♭(Σ)}.

Then the structure P = ⟨P,D⟩ is a pragmatic gmatrix system based on PTS
over FCT.

Before continuing with the claim that will conclude the proof of the
theorem, we note that, for all Σ ∈ ∣Sign∣ and all ϕ ∈ SEN♭(Σ), because of
the definition of kΣ,ϕ and of FCT(Σ), we get

D
Σ,X
Σ′
= { {kΣ,ϕ ∈ SEN(Σ) ∶ ϕ ∈ CΣ(X)}, if Σ′ = Σ,
∅, if Σ′ ≠ Σ.

Claim: C = CP.
Proof: Suppose, first, that Σ ∈ ∣Sign∣ and Φ ∪ {ϕ} ⊆ SEN♭(Σ), such that
ϕ ∉ CΣ(Φ). Then, for all φ ∈ Φ,

αΣ(φ)(Φ) = kΣ,φ(Φ) = SEN♭(Σ) − {φ} ∈ FCT(Σ).
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Thus, by the definition of D, αΣ(φ) ∈ DΣ,Φ
Σ

, for all φ ∈ Φ. On the other
hand,

αΣ(ϕ)(Φ) = kΣ,ϕ(Φ) = SEN♭(Σ) ∉ FCT(Σ).
So αΣ(ϕ) ∉DΣ,Φ

Σ
. It follows that ϕ ∉ CP

Σ
(Φ).

Suppose, conversely, that Σ ∈ ∣Sign∣ and Φ ∪ {ϕ} ⊆ SEN♭(Σ), such that
ϕ ∈ CΣ(Φ). Consider Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′), such that, for all φ ∈ Φ,

αΣ′(SEN♭(f)(φ)) ∈DΣ
′,X′

Σ′
,

for some X ′ ⊆ SEN♭(Σ′). Then, for all φ ∈ Φ, kΣ
′,SEN♭(f)(φ) ∈ DΣ

′,X′

Σ′
. This

implies that SEN♭(f)(φ) ∈ CΣ′(X ′), for all φ ∈ Φ. Since, by hypothesis,
ϕ ∈ CΣ(Φ), we get, by structurality,

SEN♭(f)(ϕ) ∈ CΣ′(SEN♭(f)(Φ)) ⊆ CΣ′(X ′).
This shows that kΣ

′,SEN♭(f)(ϕ)(X ′) ∈DΣ′,X′

Σ′
, or, equivalently, that

αΣ′(SEN♭(f)(ϕ)) ∈ DΣ
′,X′

Σ′
.

Hence, we conclude that ϕ ∈ CP

Σ
(Φ). ∎

By the claim, we conclude that every π-institution I has a pragmatic
gmatrix system semantics, namely one consisting of the single pragmatic
gmatrix system constructed in this proof, which may be called the canonical
pragmatic gmatrix system associated with the π-institution I. ∎

In Section 4, we characterize those π-institutions that are self-extensional
based on the type of the available pragmatic gmatrix system semantics for
them.

4 Extensionality

Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system.
Let P = ⟨P,D⟩ be a pragmatic gmatrix system based on PTS over FCT,

with P = ⟨P, ⟨F,α⟩⟩ and P = ⟨Sign,SEN,N⟩.
Let Σ ∈ ∣Sign♭∣ and ϕ,ψ ∈ SEN♭(Σ). Then ϕ,ψ are called coreferential

with respect to P, or P-coreferential, in symbols ϕ ∼P
Σ
ψ, if, for all

Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all a ∈ PTS(F (Σ′)),
αΣ′(SEN♭(f)(ϕ))(a) ∈ FCT(F (Σ′))

iff αΣ′(SEN♭(f)(ψ))(a) ∈ FCT(F (Σ′)).
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We say that A♭ is extensional with respect to P, or P-extensional,
written P ∈ Ext(A♭), if, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣
and all ϕ0, ψ0, . . . , ϕk−1, ψk−1 ∈ SEN♭(Σ),

ϕ0 ∼PΣ ψ0, . . . , ϕk−1 ∼PΣ ψk−1
imply σ♭

Σ
(ϕ0, . . . , ϕk−1) ∼PΣ σ♭Σ(ψ0, . . . , ψk−1).

Let again Σ ∈ ∣Sign♭∣ and ϕ,ψ ∈ SEN♭(Σ). Then ϕ and ψ are called syn-

onymous with respect to P, or P-synonymous, written ϕ ≈P
Σ
ψ, if, for

all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),
αΣ′(SEN♭(f)(ϕ)) = αΣ′(SEN♭(f)(ψ)).

Moreover, A♭ is said to be strongly extensional with respect to P, or
strongly P-extensional, in symbols P ∈ Ext(A♭), if ∼P ≤ ≈P, where, here,≤ denotes signature-wise inclusion.

Since, obviously, ≈P ≤ ∼P, we have that

P ∈ Ext(A♭) iff ∼P = ≈P implies P ∈ Ext(A♭).
Thus, Ext(A♭) ⊆ Ext(A♭).

Given a base algebraic systemA♭ = ⟨Sign♭,SEN♭,N ♭⟩ and a π-institution
I = ⟨A♭,C⟩ based on A♭, recall that the intederivabilty relation system

of I is the equivalence system Λ(I) = {ΛΣ(I)}Σ∈∣Sign♭∣, defined, for all Σ ∈

∣Sign♭∣ by setting, for all ϕ,ψ ∈ SEN♭(Σ),
⟨ϕ,ψ⟩ ∈ ΛΣ(I) iff CΣ(ϕ) = CΣ(ψ).

In general, Λ(I) is an equivalence system but not an N ♭-congruence sys-
tem. The π-institution I is called self-extensional if Λ(I) is a congruence
system, i.e., if, for all σ♭ ∶ (SEN♭)k → SEN♭ in N ♭, all Σ ∈ ∣Sign♭∣ and all
ϕ0, ψ0, . . . , ϕk−1, ψk−1 ∈ SEN

♭(Σ),
ϕiΛΣ(I)ψi, for all i < k, imply σ♭Σ(ϕ0, . . . , ϕk−1)ΛΣ(I)σ♭Σ(ψ0, . . . , ψk−1).

Theorem 2 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and

P = ⟨P,D⟩ a pragmatic gmatrix system for A♭. If P ∈ Ext(A♭), then

IP = ⟨A♭,CP⟩ is a self-extensional π-institution.

Proof: Suppose P ∈ Ext(A♭). Let Σ ∈ ∣Sign♭∣, σ♭ ∶ (SEN♭)k → SEN♭ in N ♭

and ϕ0, ψ0, . . . , ϕk−1, ψk−1 ∈ SEN
♭(Σ), such that ϕiΛΣ(IP)ψi, for all i < k.

This means that CP

Σ
(ϕi) = CP

Σ
(ψi), for all i < k. By the definition of CP,
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this implies that ϕi ∼PΣ ψi, for all i < k. Therefore, by the P-extensionality
of A♭,

σ♭Σ(ϕ0, . . . , ϕk−1) ∼PΣ σ♭Σ(ψ0, . . . , ψk−1).
Thus, reversing the steps, we now obtain

CP

Σ(σ♭Σ(ϕ0, . . . , ϕk−1)) = CP

Σ(σ♭Σ(ψ0, . . . , ψk−1)).
This gives that σ♭

Σ
(ϕ0, . . . , ϕk−1)ΛΣ(IP)σ♭Σ(ψ0, . . . , ψk−1), which shows that

IP is self-extensional. ∎

Consider again a base algebraic systemA♭ = ⟨Sign♭,SEN♭,N ♭⟩. Let Sign
be a category and PTSR ∶ ∣Sign∣ → Set. A gmatrix system R = ⟨R,C⟩ forA♭,
with R = ⟨R, ⟨F,αR⟩⟩ and R = ⟨Sign,SENR,NR⟩, is called a referential

gmatrix system (based on PTSR) if:

• R is an interpreted N ♭-algebraic system, such that, for all Σ ∈ ∣Sign∣,
SENR(Σ) ⊆ P(PTSR(Σ));

• The collection of filter families C is given by

C = {CΣ,p ∶ Σ ∈ ∣Sign∣, p ∈ PTSR(Σ)},
where, for all Σ ∈ ∣Sign∣ and all p ∈ PTSR(Σ), CΣ,p = {CΣ,p

Σ′
}Σ′∈∣Sign∣ is

defined by setting, for all Σ′ ∈ ∣Sign∣,
C

Σ,p
Σ′
= { {X ∈ SENR(Σ) ∶ p ∈ X}, if Σ′ = Σ,
∅, if Σ′ ≠ Σ.

Note that, if R is a referential gmatrix system for A♭, then we have, for all
Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆ SEN♭(Σ),

ϕ ∈ CR

Σ
(Φ) iff for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

⋂φ∈Φα
R
Σ′
(SEN♭(f)(φ)) ⊆ αR

Σ′
(SEN♭(f)(ϕ)).

It was shown in Theorem 8 of [10], based on a fundamental result of Wójcicki,
that a π-institution I = ⟨A♭,C⟩ based on A♭ is self-extensional if and only
if it is of the form IR = ⟨A♭,CR⟩ for some referential gmatrix system R.

Theorem 3 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system. Sup-

pose that R = ⟨R,C⟩, with R = ⟨R, ⟨F,αR⟩⟩ and R = ⟨Sign,SENR,NR⟩, is
a referential gmatrix system for A♭. Then there exists a pragmatic gmatrix

system P = ⟨P,D⟩ ∈ Ext(A♭), such that CP = CR.
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Proof: Let R = ⟨R,C⟩, with R = ⟨R, ⟨F,αR⟩⟩ and R = ⟨Sign,SENR,NR⟩,
be a referential gmatrix system for A♭ based on PTSR ∶ ∣Sign∣ → Set, i.e.,
such that SENR(Σ) ⊆ P(PTSR(Σ)), for all Σ ∈ ∣Sign∣.

For every Σ ∈ ∣Sign∣, let pΣ ∈ PTSR(Σ) and qΣ ∉ PTSR(Σ). We define
PTSP ∶ ∣Sign∣ → Set by setting

PTSP (Σ) = PTSR(Σ) ∪ {qΣ}, for all Σ ∈ ∣Sign∣.
Define, also FCT ∶ ∣Sign∣ → Set by setting

FCT(Σ) = {qΣ}, for all Σ ∈ ∣Sign∣.
Note that FCT ≤ PTSP . Next, for all Σ ∈ ∣Sign∣, X ∈ SENR(Σ), define
pΣ,X ∶ PTSP (Σ) → PTSP (Σ) by setting, for all a ∈ PTSP (Σ),

pΣ,X(a) = { qΣ, if (a = qΣ or a ∈X),
pΣ, otherwise.

Claim: If X,Y ∈ SENR(Σ), with X ≠ Y , then pΣ,X ≠ pΣ,Y .
Proof: If X ≠ Y , then there exists x ∈ X/Y or y ∈ Y /X. Assume without
loss of generality that the first occurs. Then, we have pΣ,X(x) = qΣ, whereas
pΣ,Y (x) = pΣ ≠ qΣ. Thus, pΣ,X ≠ pΣ,Y . ∎

We now proceed to define the pragmatic gmatrix system P based on
PTSP over FCT.

First, define the algebraic system P = ⟨Sign,SENP ,NP ⟩ as follows:
• Foe every Σ ∈ ∣Sign∣, define

SENP (Σ) = {pΣ,X ∶X ∈ SENR(Σ)}.
Moreover, for all Σ,Σ′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′), we define
SENP (f) ∶ SENP (Σ) → SENP (Σ′) by setting, for all X ∈ SENR(Σ),

SENP (f)(pΣ,X) = pΣ′,SENR(f)(X).

This makes SENP ∶ Sign → Set a functor.

• Now consider σ♭ ∶ (SEN♭)k → SEN♭ in N ♭. We define σP ∶ (SENP )k →
SENP by letting, for all Σ ∈ ∣Sign∣, σP

Σ
∶ SENP (Σ)k → SENP (Σ) be

given, for all X0, . . . ,Xk−1 ∈ SEN
R(Σ), by

σPΣ(pΣ,X0 , . . . , pΣ,Xk−1) = pΣ,σRΣ (X0,...,Xk−1).

This is a well defined natural transformation. We set NP to be the
collection of all natural transformations of the form σP as σ♭ ranges
in N ♭. Then NP is a category of natural transformations on SENP .



CAAL: Pragmatic Matrix System Semantics 15

The triple P = ⟨Sign,SENP ,NP ⟩ is the algebraic system reduct of P. It is
clearly a pragmatic N ♭-algebraic system based on PTSP .

Next, define the pair ⟨F,αP ⟩ ∶A♭ → P as follows:

• F ∶ Sign♭ → Sign is the functor inherited by the referential gmatrix
system R.

• αP ∶ SEN♭ → SENP ○ F is defined by letting, for all Σ ∈ ∣Sign♭∣, αP
Σ
∶

SEN♭(Σ) → SENP (F (Σ)) be given, for all ϕ ∈ SEN♭(Σ), by
αPΣ(ϕ) = pF (Σ),αR

Σ
(ϕ).

Then α ∶ SEN♭ → SENP ○ F is a well defined natural transformation.

With these definitions the pair P = ⟨P, ⟨F,αP ⟩⟩ becomes an interpreted
pragmatic N ♭-algebraic system based on PTSP .

Finally, for all a ∈ PTSP (Σ), set DΣ,a = {DΣ,a
Σ′
}Σ′∈∣Sign∣, where, for all

Σ′ ∈ ∣Sign∣,
D

Σ,a
Σ′
= { {pΣ,X ∈ SENP (Σ) ∶ pΣ,X(a) = qΣ}, if Σ′ = Σ,
∅, if Σ′ ≠ Σ.

and let
D = {DΣ,a ∶ Σ ∈ ∣Sign∣, a ∈ PTSP (Σ)}.

This completes the definition of the pragmatic gmatrix system P. We note
that, because of the definition of P, if one defines α ∶ SENR → SENP by
letting, for all Σ ∈ ∣Sign∣, αΣ ∶ SENR(Σ) → SENP (Σ) be given, for all
X ∈ SENR(Σ), by

αΣ(X) = pΣ,X ,
then the following diagrams commute:

Sign♭ SEN♭(Σ)

✠�
�
�
�

F
❅
❅
❅
❅

F

❘ ✠�
�
�
�αR

Σ

❅
❅
❅
❅

αP
Σ

❘
Sign

≡ ✲ Sign SENR(F (Σ))
αF (Σ)

✲ SENP (F (Σ))
It only remains to show that P ∈ Ext(A♭) and that CP = CR.
Claim: A♭ = ⟨Sign♭,SEN♭,N ♭⟩ is strongly extensional with respect to P =⟨P,D⟩.
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Proof: It suffices to show that ∼ ≤ ≈. To this end, let Σ ∈ ∣Sign♭∣ and ϕ,ψ ∈
SEN♭(Σ), such that ϕ ∼P

Σ
ψ. Then, for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′),

and a ∈ PTSP (F (Σ′)),
αΣ′(SEN♭(f)(ϕ))(a) ∈ FCT(F (Σ′))

iff αΣ′(SEN♭(f)(ψ))(a) ∈ FCT(F (Σ′)),
i.e., for all Σ′ ∈ ∣Sign♭∣, f ∈ Sign♭(Σ,Σ′), and a ∈ PTSP (F (Σ′)),

αΣ′(SEN♭(f)(ϕ))(a) = qF (Σ′) iff αΣ′(SEN♭(f)(ψ))(a) = qF (Σ′).
Equivalently, for all Σ′ ∈ ∣Sign♭∣ and all f ∈ Sign♭(Σ,Σ′),

αΣ′(SEN♭(f)(ϕ)) = αΣ′(SEN♭(f)(ψ)),
i.e., ϕ ≈P

Σ
ψ. ∎

And the final claim:
Claim: CP = CR.
Proof: We have, for all Σ ∈ ∣Sign♭∣ and all Φ ∪ {ϕ} ⊆ SEN♭(Σ), that ϕ ∈
CP

Σ
(Φ) if and only if, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all a ∈

PTSP (F (Σ′)),
αP
Σ′
(SEN♭(f)(Φ)) ⊆ {pF (Σ′),X ∈ SENP (F (Σ′)) ∶ pF (Σ′),X(a) = qF (Σ′)}

implies

αP
Σ′
(SEN♭(f)(ϕ)) ∈ {pF (Σ′),X ∈ SENP (F (Σ′)) ∶ pF (Σ′),X(a) = qF (Σ′)}.

iff, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all a ∈ PTSP (F (Σ′)),
pF (Σ

′),αR

Σ′
(SEN♭(f)(φ))(a) = qF (Σ′), all φ ∈ Φ,

implies pF (Σ
′),αR

Σ′
(SEN♭(f)(ϕ))(a) = qF (Σ′),

iff, for all Σ′ ∈ ∣Sign♭∣, all f ∈ Sign♭(Σ,Σ′) and all p ∈ PTSR(F (Σ′)),
p ∈ ⋂

φ∈Φ

αRΣ′(SEN♭(f)(φ)) implies p ∈ αRΣ′(SEN♭(f)(ϕ)),

if and only if ϕ ∈ CR

Σ
(Φ). ∎

This completes the proof of the theorem. ∎

We close this work by providing a corollary that summarizes what was
accomplished:
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Corollary 4 Let A♭ = ⟨Sign♭,SEN♭,N ♭⟩ be a base algebraic system and

I = ⟨A♭,C⟩ a π-institution based on A♭. Then, the following statements are

equivalent:

(i) C = CR for some referential gmatrix system R;

(ii) C = CP for some pragmatic gmatrix system P with respect to which A♭

is strongly extensional;

(iii) C = CP for some pragmatic gmatrix system P with respect to which A♭

is extensional;

(iv) I is self-extensional.

Proof:

(i)⇔(iv) This is essentially Theorem 8 of [10].

(i)⇒(ii) By Theorem 3.

(ii)⇒(iii) Follows from Ext(A♭) ⊆ Ext(A♭).
(iii)⇒(iv) By Theorem 2.

∎
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