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Abstract

Let S = 〈L,⊢S〉 be a deductive system. An S-secrecy logic is a quadru-
ple K = 〈FmL(V ), K, B, S〉, where FmL(V ) is the algebra of L-formulas,
K, B are S-theories, with B ⊆ K, and S ⊆ K is such that S ∩ B = ∅. K

corresponds to information deducible from a knowledge base, B to infor-
mation deducible from the publicly accessible (or browsable) part of the
knowledge base and S is a secret set, a set of sensitive or private informa-
tion that the knowledge base aims at concealing from its users. To provide
models for this context, the notion of an S-secrecy structure is introduced.
It is a quadruple A = 〈A, KA, BA, SA〉, consisting of an L-algebra A, two
S-filters KA, BA on A, with BA ⊆ KA, and a subset SA ⊆ KA, such that
SA ∩ BA = ∅. Several model theoretic/universal algebraic and categori-
cal properties of the class of S-secrecy structures, endowed with secrecy
homomorphisms, are studied relating to various universal algebraic and
categorical constructs.

1 Introduction

The work presented in this paper falls in the intersection of several areas of
study. Intuitions from the theory of abstract algebraic logic are used to provide
categorical and model theoretic results pertaining to the class of models of the
logical theory of secrecy-preserving reasoning [1, 25]. In the remainder of this
introduction, we motivate this theory and provide a few pointers to the material
and the results that inspired those proven in this paper. In the next section, we
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will give a more detailed presentation of the setting of secrecy-preserving rea-
soning, as introduced in [25]. In particular, it will be shown how this framework
gives rise to our categorical and model-theoretic studies.

The advance of the internet and the widespread use of databases and in-
formation systems offer unprecedented opportunities for productive interaction
and collaboration among individuals as well as across organizations in many
areas of human endeavor. These capabilities for sharing information often have
to be balanced against the need to protect sensitive or confidential information
from unintended disclosure. Consider for instance, the following information
sharing scenario:

Example: Suppose that John buys Drug A for cancer. Drug A is a generic
drug and generic drugs are covered by John’s insurance policy. Suppose that
the exact drug that John takes is to be kept secret from his insurance company
to avoid unintended or illegal consequences (such as, e.g., denying coverage or
unduly increasing his premiums). If the publicly available knowledge

Drug A is a generic drug
Generic drugs are covered by insurance policy

is combined with the secret knowledge

John buys Drug A

the information
John is covered by insurance policy,

needed for reimbursement, can be inferred without disclosing the secret knowl-
edge. �

In [25], inspired by [1], the theoretical foundations of secrecy-preserving
reasoning, that is, the process of answering queries against knowledge bases
that include secret knowledge, based on inference that may use secret knowl-
edge without disclosing it, are developed. A very closely related approach to
secrecy-preserving reasoning, that has a very similar goal and comparable scope,
is that of data privacy setting, which has been presented in a series of papers
(see, e.g., [21, 22, 20]). Yet another, more general, approach that is able to
handle secrecy-preserving reasoning under a set of parameters fixing various
characteristics of the context in which the reasoning process occurs (such as
confidentiality policies, user awareness and enforcement policies) is termed con-
trolled query evaluation. This approach was pioneered in [18] for the specific
case of the enforcement policy of refusal (the alternative being lying) for both
known and unknown (the two types of user awareness) secrecies (secrecies and
potential secrets being the types of available confidentiality policies). In a series
of subsequent publications (see, e.g., [7, 4, 5, 6]) controlled query evaluation
was extended to various other combinations of the parameters and careful com-
parisons were presented of the different characteristics of the types of reasoning
arising from varying the parameters. The readers are encouraged to consult
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the literature on controlled query evaluation for more details, but also for some
additional examples on secrecy-preserving reasoning.

At the heart of the approach in [25] lies a logical system S, for which a sound
and complete proof system is available. A knowledge base K over the logical
system consists of

• a (finite) set K of sentences, representing the knowledge stored in the
knowledge base, together with

• a designated subset B ⊆ K, representing the part of the knowledge that
is publicly available, as well as

• a subset S of the deductive closure K+ of K, that represents the sensitive
or secret knowledge and is, for obvious reasons, disjoint from the set B+,
representing information deducible from publicly available knowledge.

A querying agent may ask queries against this knowledge base, which are sen-
tences of the logical language. The knowledge base has the task of combining
both public and secret information to answer these queries, while at the same
time ensuring that its responses are not jeopardizing the safety status of the
secret information. A more detailed presentation of the framework will be pro-
vided in Section 2. We outline, next, the connections with the other areas from
which we borrow ideas in this paper.

One particular kind of a logical system that can be used as the founda-
tion for this framework is an ordinary deductive system (or sentential logic) S
in the sense of abstract algebraic logic, see, e.g., [11, 12]. Under this assump-
tion, a knowledge base would consist of a (finitely based) S-theory K of S,
together with a subtheory B of K, representing the publicly available knowl-
edge, and a subset S of the theoryK, which represents the secret knowledge and
is disjoint from B. Furthermore, according to the model theory of first-order
logic [10, 13, 15], the form of the structures that are appropriate as models of
this theory is A = 〈A,KA, BA, SA〉, where A is a universal algebra over the
same signature as the deductive system S, KA and BA are S-filters on A in
the usual sense of abstract algebraic logic, such that BA ⊆ KA, and SA is a
subset of the filter KA, such that SA ∩BA = ∅. These structures are termed S-
secrecy structures. The particularly simple form of secrecy structures allows
us to study their class with respect to both several ordinary universal algebraic
(model-theoretic) properties [9, 16] and several categorical properties. In par-
ticular, we will take advantage of many common features that the category of
S-secrecy structures has with concrete regular categories (see, e.g., [17]) in or-
der to prove an analog of the well-known Birkhoff’s Subdirect Representation
Theorem and to characterize its subdirectly irreducible members.

The paper is organized as follows: In Section 2, we elaborate on the setting
introduced in [25] for performing secrecy-preserving reasoning with knowledge
bases containing secret or sensitive information. This review section is necessary
for the reader to develop a sense of the context in which our categorical and
model theoretic results that follow are intended to be used. In Section 3 the
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main features of the central category under study are introduced. More pre-
cisely, the notion of an S-secrecy structure, that of a secrecy homomorphism,
and those of a secrecy congruence, of a subobject and of an equalizer are used
to provide the first basic results pertaining to the category of S-secrecy struc-
tures. In Section 4, products in the same category are introduced and studied.
The notion of direct indecomposability is characterized in a theorem extending
a well-known theorem of universal algebra and an example is given pointing
out some of the differences between the two frameworks. In Section 5, the ho-
momorphism and isomorphism theorems of universal algebra are extended to
cover the case of secrecy structures. Of course, secrecy homomorphisms assume
the place of algebraic homomorphisms and, also, all congruences considered are
secrecy congruences. This feature reveals a close connection with the theory
of the Leibniz operator in abstract algebraic logic. In Section 6, the study of
several properties of the category of secrecy structures is undertaken. In fact, it
is shown that the category of S-secrecy structures shares many properties that
characterize concrete regular categories [17]. In Section 7, subdirect products
and strict subdirect products of secrecy structures are defined, based on the
notions of direct products and subobjects of secrecy structures. Furthermore,
the notion of a subdirectly irreducible and strictly subdirectly irreducible se-
crecy structure is also introduced. An analog of Birkhoff’s Theorem for secrecy
structures asserts that every secrecy structure is a strict subdirect product of
strictly subdirectly irreducible secrecy structures. For finite secrecy structures
the non-strict analog is also shown to hold. Subdirectly irreducible structures
are characterized in Section 8, which is the last section of the paper.

2 Secrecy-Preserving Reasoning

Consider an algebraic (or logical, depending on the point of view) language
type L and let FmL(V ) be the set of all L-terms (or L-formulas) with variables
in a fixed denumerable set V and FmL(V ) the corresponding term or formula
algebra. Let S = 〈L,⊢S〉 be an L-deductive system, i.e., a pair consisting of a
fixed language type L and a finitary and structural consequence relation ⊢L ⊆
P(FmL(V )) × FmL(V ), that is, a relation satisfying the following properties,
for every Γ ∪ ∆ ∪ {φ, ψ} ⊆ FmL(V ):

1. Γ ⊢S φ, if φ ∈ Γ,

2. Γ ⊢S φ implies ∆ ⊢S φ, if Γ ⊆ ∆,

3. Γ ⊢S φ and ∆ ⊢S ψ, for all ψ ∈ Γ, imply ∆ ⊢S φ,

4. Γ ⊢S φ implies Γ′ ⊢S φ, for some finite Γ′ ⊆ Γ,

5. Γ ⊢S φ implies σ(Γ) ⊢S σ(φ), for every endomorphism σ of FmL(V ).

We also assume that a presentation of this deductive system in terms of a
set RS of axioms and rules of inference is available, which makes it possible
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to write S-proofs in the ordinary way. Sometimes, instead of writing Γ ⊢S φ,
we use the equivalent notation φ ∈ CS(Γ) or φ ∈ Γ+. Since only one deductive
system will be under consideration in a specific context, using the last notational
convention, that hides the deductive system, is unlikely to cause any confusion.

Given a deductive system S = 〈L,⊢S〉, the Frege relation Λ(S) of S is the
equivalence relation on FmL(V ), defined, for all φ, ψ ∈ FmL(V ), by

〈φ, ψ〉 ∈ Λ(S) iff CS(φ) = CS(ψ).

This relation is used to define the Fregean hierarchy in abstract algebraic logic.
In the context of secrecy, it is used to provide natural closure conditions with
respect to entailment that knowledge bases and reasoners should satisfy.

Let S = 〈L,⊢S〉 be a deductive system. An S-knowledge base K =
〈K,B, S〉 consists of

1. A finite set K ⊆ FmL(V ), called the knowledge set;

2. A subset B ⊆ K, called the browsable part;

3. A subset S ⊆ K+\B+, called the secret part.

Example (Continued): We take up again the example of Section 1 and show
how it can be formalized in the context of a knowledge base according to the
preceding definition.

Let S = 〈L,⊢S〉 be a deductive system representing classical propositional
logic and let us assume that L contains the connectives ∧ and → (although it is
sufficient that they be derived connectives). Let, also, p, q, r, s be propositional
variables and assume that

p represents “Drug A is a generic drug”;
q represents “Generic drugs are covered by insurance policy”;
s represents “John buys Drug A”;
r represents “John is covered by insurance policy”.

According to the scenario played out in the example, p, q and p ∧ q ∧ s→ r are
public knowledge, whereas s is supposed to remain confidential. Note that, if
the insurance company knows p, q, p ∧ q ∧ s→ r and r, it cannot infer s.

In the formalism of an S-knowledge base, the following K = 〈K,B, S〉 could
be chosen to model this scenario:

K = {p, q, s, p ∧ q ∧ s→ r}
B = {p, q, p ∧ q ∧ s→ r}
S = {s}.

A secrecy-preserving reasoner (which will be formalized below) could answer
positively, if asked about the truth of r, since its truth can be inferred under
S by K (including S = {s}), and its disclosure does not allow one to infer s,
based on B ∪ {r}. �

A K-reasoner R : FmL(V ) → {Y, U} is a function that satisfies the follow-
ing axioms:
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1. Inferential Closure: R−1(Y )+ = R−1(Y );

2. Yes-Axiom: B+ ⊆ R−1(Y ) ⊆ K+;

3. Secrecy Axiom: (K+\R−1(U))+ ∩ S = ∅.

Inferential Closure ensures that every formula that is derivable by a set of for-
mulas that the reasoner reveals must also be revealed. This is a reasonable
assumption made under the hypothesis that an agent querying the knowledge
base has available a reasoning engine as powerful as that of the knowledge base
itself. The Yes-Axiom ensures that every formula that belongs to the browsable
part is revealed by the reasoner and that every formula revealed by the rea-
soner is a formula derivable from the knowledge set. Finally, the Secrecy Axiom
asserts that no secret knowledge is derivable from the set of formulas that the
reasoner reveals to a querying agent.

Note that the definition of a knowledge base together with these three axioms
imply the following conditions: First, for all φ, ψ ∈ FmL(V ), if 〈φ, ψ〉 ∈ Λ(S),
then R(φ) = R(ψ). Second, S ⊆ R−1(U) ⊆ K+\B+. Finally, because of
Conditions 1 and 2, Condition 3 may be rewritten in the simpler form R−1(Y )∩
S = ∅.

Given a deductive system S = 〈L,⊢S〉 and an S-knowledge base K =
〈K,B, S〉, note that a reasoner, whose goal is to answer queries as truthfully
as possible without revealing secret information, might need to hide more in-
formation than contained in the secret part due to the fact that some formulas
in the secret part may be deducible from formulas not belonging to the secret
part. This idea if formalized in the notion of a security or secrecy envelope [19].
A K-secrecy envelope or security envelope E is a subset E ⊆ FmL(V )
satisfying

1. Inferential Closure: (K+\E)+ ⊆ K+\E;

2. Envelope Axiom: S ⊆ E ⊆ K+\B+;

3. Secrecy Axiom: (K+\E)+ ∩ S = ∅.

If S = 〈L,⊢S〉 is a deductive system, K = 〈K,B, S〉 an S-knowledge base
and R : X → {Y, U} a K-reasoner, we define ER ⊆ X by ER = R−1(U) ∩K+.
Conversely, if E is a K-secrecy envelope, we define RE : X → {Y, U} by setting,
for all x ∈ X ,

RE(x) =

{

Y, if x ∈ K+\E
U, otherwise

It is not very difficult to see that these two mappings from reasoners to se-
curity envelopes and vice-versa establish a correspondence between K-security
envelopes and sets of the form R−1(U), where R is a K-reasoner.

Proposition 1 Let S = 〈L,⊢S〉 be a deductive system and K = 〈K,B, S〉 be an
S-knowledge base. For every K-reasoner R, the set ER is a K-secrecy envelope.
Conversely, for every K-secrecy envelope E, the function RE is a K-reasoner.
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Moreover, for every K-reasoner R and for every K-secrecy envelope E, we have
RER

= R and ERE
= E.

Proof: For inferential closure, note that (K+\ER)+ = (K+\R−1(U))+ =
R−1(Y )+ = R−1(Y ) = K+\R−1(U) = K+\ER. For the Envelope Axiom, we
have, by the definition of S, that S ⊆ K+ and, also, that (K+\R−1(U))+ ∩S =
∅, which implies that R−1(Y ) ∩ S = R−1(Y )+ ∩ S = ∅. Hence, S ⊆ R−1(U),
showing that S ⊆ R−1(U) ∩K+ = ER. Moreover,

ER = R−1(U) ∩K+ (by the definition of ER)
= K+\R−1(Y )
⊆ K+\B+ (by the Yes-Axiom).

Secrecy for ER corresponds exactly to Secrecy for R.
Suppose, conversely, that E is a K-secrecy envelope. Then

R−1
E (Y )+ = (K+\E)+ = K+\E = R−1

E (Y ),

and, hence, RE is inferentially closed. For the Yes-Axiom, we have B+ ⊆
K+\E = R−1

E (Y ) ⊆ K+. Finally, Secrecy for RE follows directly from Secrecy
for E. The last pat of the proposition is easy to show. �

The secrecy-preserving setting that was presented in this section, motivates
the introduction of S-secrecy structures (defined in Definition 2) as the models
of a secrecy-preserving framework based on the notion of a knowledge base. A
structure similar to a knowledge base, but in which the knowledge set is replaced
by K+, i.e., is an S-theory, with K not necessarily finite, and the browsable
part is replaced by B+ is called an S-secrecy logic. Thus, an S-secrecy logic
S = 〈FmL(V ),K,B, S〉 consists of S-theories K,B, such that B ⊆ K and a
subset S ⊆ K, such that S ∩ B = ∅. An S-secrecy logic may be interpreted
in a structure A consisting of an L-algebra A accompanied by two S-filters
KA, BA ∈ FiSA, such that BA ⊆ KA and an arbitrary subset SA ⊆ KA, such
that SA and BA are disjoint. S-secrecy structures will be the main objects of
study in the remainder of the paper. The logical aspects of the theory as well
as a study of this framework from an abstract algebraic logic point of view will
be presented in work that is currently in progress.

3 Category of S-Secrecy Structures

In the sequel, we will always be referring to a fixed but arbitrary (finitary
and structural) deductive system (a.k.a. sentential logic or, simply, logic) S =
〈L,⊢S〉, where L is a fixed algebraic type. Recall that, given an L-algebra
A = 〈A,LA〉, an S-filter on A, is a subset F ⊆ A, such that, for every Γ∪{φ} ⊆
FmL(V ), such that Γ ⊢S φ, and every homomorphism h : FmL(V ) → A, if
h(Γ) ⊆ F , then h(φ) ∈ F . By FiSA is denoted the collection of all S-filters on
A.

7



Definition 2 An S-secrecy structure A = 〈A,KA, BA, SA〉 is a quadruple
consisting of

1. an L-algebra A = 〈A,LA〉;

2. two S-filters KA, BA on A, such that BA ⊆ KA;

3. a subset SA ⊆ KA, such that SA ∩BA = ∅.

The filters KA and BA will be referred to as the knowledge filter and
browsable filter of A, respectively, and the set SA as the secrecy set of A.
Definition 2 is illustrated in Figure 1.

Figure 1: A secrecy structure.

Definition 3 Let S = 〈L,⊢S〉 be a deductive system and A = 〈A,KA, BA, SA〉,
B = 〈B,KB, BB, SB〉 two S-secrecy structures. A secrecy homomorphism
h : A → B from A to B is an L-homomorphism h : A → B, such that

h(KA) ⊆ KB, h(BA) ⊆ BB, h(SA) ⊆ SB.

h is said to be a strict secrecy homomorphism if

KA = h−1(KB), BA = h−1(BB), SA = h−1(SB).

Obviously, S-secrecy structures with secrecy homomorphisms between them
form a category, which will be denoted by S-Str. On the other hand, we will
use the notation L-Alg to denote the category of all L-algebras with L-algebra
homomorphisms between them.

The appropriate congruences to consider in the setting of S-secrecy struc-
tures are those congruences on the algebra reduct of a secrecy structure that are
compatible with each of the filters and the secrecy set of the secrecy structure.
Recall that, given an L-algebra A and a set F ⊆ A, a congruence θ on A is said
to be compatible with F if

〈a, b〉 ∈ θ and a ∈ F imply b ∈ F, for all a, b ∈ A.

This condition is equivalent to saying that F is a union of θ-equivalence classes.
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Definition 4 Let S = 〈L,⊢S〉 be a deductive system and A = 〈A,KA, BA, SA〉
an S-secrecy structure. A congruence θ on A is said to be a secrecy congru-
ence on A if it is compatible with each of KA, BA, SA. SCon(A) denotes the
collection of all secrecy congruences on A.

Once secrecy congruences are defined, they may be used to define quotient
secrecy structures. The construction is the familiar one from universal algebra
on the algebra reducts and the familiar one from abstract algebraic logic on the
knowledge and browsable filters and on the secrecy set of the secrecy structures.

Proposition 5 Let S = 〈L,⊢S〉 be a deductive system, A = 〈A,KA, BA, SA〉
an S-secrecy structure and θ ∈ SCon(A). Then the quadruple A/θ = 〈A/θ,
KA/θ,BA/θ, SA/θ〉 is an S-secrecy structure, termed the quotient secrecy
structure of A by the secrecy congruence θ.

Proof:
It is known by universal algebra and abstract algebraic logic that A/θ is

an L-algebra and that KA/θ,BA/θ are S-filters. Moreover, it is immediate
that BA/θ ⊆ KA/θ and that SA/θ ⊆ KA/θ. To see that SA/θ ∩ BA/θ = ∅,
assume that φ/θ ∈ SA/θ ∩ BA/θ. Then, φ/θ ∈ SA/θ and φ/θ ∈ BA/θ. But,
by compatibility, these membership relations imply that φ ∈ SA and φ ∈ BA.
These contradict the disjointness of SA and BA. �

Recall that given algebras A = 〈A,LA〉 and B = 〈B,LB〉 and an algebra
homomorphism h : A → B, we denote by Ker(h) the kernel of h, defined by

Ker(h) = {(a1, a2) ∈ A2 : h(a1) = h(a2)}.

This notion extends in a straightforward way to the kernel Ker(h) of a secrecy
homomorphism h : A → B from an S-secrecy structure A to an S-secrecy
structure B. The following theorem asserts that strict secrecy homomorphisms
and kernels are related exactly as strict matrix homomorphisms and kernels are
related in the theory of logical matrices.

Theorem 6 1. Let S = 〈L,⊢S〉 be a deductive system, A = 〈A,KA, BA,
SA〉,B = 〈B,KB, BB, SB〉 S-secrecy structures and h : A → B a strict
secrecy homomorphism. Then, the kernel Ker(h) is a secrecy congruence
on A.

2. Let S = 〈L,⊢S〉 be a deductive system, A = 〈A,KA, BA, SA〉 an S-secrecy
structure and θ ∈ SCon(A). Then, the projection homomorphism πθ :
A → A/θ is a strict secrecy homomorphism πθ : A → A/θ.

Proof:

1. It suffices to show that Ker(h) is compatible with KA, BA and SA. Let
(a1, a2) ∈ Ker(h), such that a1 ∈ KA. Then h(a2) = h(a1) ∈ h(KA) ⊆
KB, whence, since h is strict, a2 ∈ h−1(KB) = KA. Therefore, Ker(h) is
compatible with KA. A similar argument shows that it is also compatible
with BA and SA.
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2. πθ : A → A/θ is obviously an L-algebra homomorphism. It is a strict
secrecy homomorphism, since (πθ)−1(KA/θ) = (πθ)−1(KA/θ) = KA and,

similarly, for (πθ)−1(BA/θ) and (πθ)−1(SA/θ).

�

Next, we characterize subobjects in the category S-Str. Sometimes, when
convenient, we will also be considering the forgetful functor U from S-Str to
Set mapping a given S-secrecy structure A = 〈A,KA, BA, SA〉 to the universe
A of its L-algebra reduct A. The pair (S-Str, U) forms what is known as a
concrete category. We specialize the general definition of subobject in an
arbitrary concrete category to the concrete category (S-Str, U). A subobject
in (S-Str, U) is a monomorphism m : A → B, such that, for every f : C → A
in Set, for which there is an h : C → B, with h = m ◦ f in Set, it also holds
that f : C → A is a secrecy homomorphism.

A B-m

C

6
f h

�
�

�
��

A B-m

C

6
f h

�
�

�
��

It is shown, next, that subobjects in S-Str are essentially subalgebras with filters
and secrecy sets that are restrictions of the corresponding filters and secrecy sets
of the original structures.

Proposition 7 Let S = 〈L,⊢S〉 be a deductive system and A = 〈A,KA, BA,
SA〉,B = 〈B,KB, BB, SB〉 S-secrecy structures. A secrecy monomorphism m :
A → B is a subobject in S-Str iff m : A → B is a subobject in L-Alg and it is
strict.

Proof:
Suppose that m : A → B is a subobject in L-Alg, KA = m−1(KB), BA =

m−1(BB) and SA = m−1(SB). Let f : C → A be such that, there exists
h : C → B, with h = m ◦ f . Since h : C → B is an L-Alg-morphism and
m : A → B is a subobject in L-Alg, f : C → A is an algebra homomorphism.
We must show that f : C → A is an S-Str-morphism. It suffices to show that
f(KC) ⊆ KA, f(BC) ⊆ BA and f(SC) ⊆ SA. We only show the first inclusion.
The remaining two are proven similarly. We have f(KC) ⊆ m−1(m(f(KC))) ⊆
m−1(h(KC)) ⊆ m−1(KB) = KA.

Suppose, conversely, that m : A → B is a subobject in S-Str. Let f : C → A
be such that, there exists h : C → B, with h = m ◦ f . Consider the secrecy
algebra C′ = 〈C, h−1(KB), h−1(BB), h−1(SB)〉. Then h : C′ → B is in S-Str,
such that h = m ◦ f , whence, since m : A → B is a subobject in S-Str, we get
that f : C′ → A is a secrecy homomorphism. But, then, f : C → A is in L-Alg
and this proves that m : A → B is a subobject in L-Alg.
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To see that KA = m−1(KB), notice that the left-to-right inclusion is trivial.
For the right-to-left inclusion, consider the set map iA : A → A and the S-
Str morphism m : 〈A,m−1(KB),m−1(BB),m−1(SB)〉 → B. It is such that
m ◦ iA = m in Set. Thus, since m : A → B is a subobject in S-Str, we get that
iA : 〈A,m−1(KB),m−1(BB),m−1(SB)〉 → A is also an S-Str morphism. This
means that m−1(KB) ⊆ KA. The other two equalities may be proven similarly.

�

Finally, we end this section with a proof that the category S-Str of S-secrecy
structures has equalizers. Recall that in the category L-Alg the equalizer of
g, h : A → B is the subalgebra E of A with universe E = {a ∈ A : g(a) = h(a)}
together with the inclusion homomorphism e : E →֒ A.

E A-e
B

-g
-

h

Theorem 8 The category S-Str has equalizers.

Proof:
Let g, h : A → B be two parallel arrows in S-Str. Define E = 〈E,KE , BE ,

SE〉 and e : E → A by setting (E, e) to be the equalizer of g, h : A → B in
L-Alg and KE = e−1(KA), BE = e−1(BA) and SE = e−1(SA). It is easy to see,
using Proposition 7, that e : E → A is a subobject in S-Str. Given f : C → A
in S-Str, such that g ◦ f = h ◦ f ,

E A-e

C

f
�

�
��

B
-g
-

h

we obtain the diagram

E A-e

C

f̄
@

@
@I

f
�

�
��

B
-g
-

h

in L-Alg and, since (E, e) is an equalizer of g and f in L-Alg, there exists unique
f̄ : C → E, such that f = e ◦ f̄ . But we also have e(f̄(KC)) = f(KC) ⊆ KA,
whence f̄(KC) ⊆ e−1(KA) = KE and, similarly, f̄(BC) ⊆ BE and f̄(SC) ⊆ SE .
Thus, f̄ : C → E is the unique secrecy homomorphism, such that f = e ◦ f̄ ,
showing that (E , e) is the equalizer of g and h in S-Str. �

Summarizing, the notion of an S-secrecy structure was defined and secrecy
homomorphisms between secrecy structures were introduced giving rise to the
category S-Str. Secrecy congruences of S-secrecy structures were described and
they helped define the notion of a quotient secrecy structure. It was shown that
strict secrecy homomorphisms and secrecy congruences are very closely related.
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Subobjects in the category of S-secrecy structures were defined following the
usual definition of subobjects in concrete categories and a characterization was
provided in terms of subalgebras and restrictions of filters and secrecy sets.
Finally, it was proven that S-Str has equalizers by extending the well-known
construction of equalizers in categories of algebras.

4 Products of Secrecy Structures

Let S = 〈L,⊢S〉 be a deductive system and A = 〈A,KA, BA, SA〉,B = 〈B,
KB, BB, SB〉 two S-secrecy structures. Define the quadruple

A× B = 〈A × B,KA ×KB, BA ×BB, SA × SB〉.

Then A × B is an S-secrecy structure, called the direct product secrecy
structure of A and B. This is easy to see once we recall from abstract algebraic
logic that, given a sentential logic S, two algebras A and B and S-filters F and
G on A and B, respectively, then the set F ×G is also an S-filter on the product
algebra A× B.

The following theorem lists a few properties satisfied by the direct product
of two secrecy structures. The most important ones are inherited from the
fact that the underlying L-algebra of the product is the direct product of the
underlying algebras of the factors in the sense of universal algebra.

Theorem 9 Let S = 〈L,⊢S〉 be a deductive system and Ai = 〈Ai,KAi
, BAi

,
SAi

〉, i = 1, 2, be two S-secrecy structures. Then, for i = 1, 2, πi : A1×A2 → Ai

is a surjective secrecy homomorphism from A = A1 × A2 onto Ai. Moreover,
in Con(A), we have Ker(π1) ∩ Ker(π2) = ∆A,Ker(π1) ∨ Ker(π2) = ∇A and
Ker(π1) and Ker(π2) permute. Finally, we also have π−1

1 (KA1
) ∩ π−1

2 (KA2
) =

KA1×A2
, π−1

1 (BA1
)∩π−1

2 (BA2
) = BA1×A2

and π−1
1 (SA1

)∩π−1
2 (SA2

) = SA1×A2
.

All parts of Theorem 9 follow very easily from the definitions and the corre-
sponding universal algebraic statements (see, e.g., Theorem II.7.3 of [9]).

In the next proposition, it is shown that, given two S-secrecy structures
A and B, the direct product A × B, as defined above, is their product in the
category S-Str. Note, here, that this construction may be extended to arbitrary
products

∏

i∈I Ai of arbitrary collections Ai, i ∈ I, of S-secrecy structures, as
long as the index set I is not empty. For empty I, the product at the level of
L-algebras yields the trivial one-element algebra 1. It is impossible, however,
to extend this definition to S-secrecy structures: The reason is that, in that
case, the condition S1 ∩ B1 = ∅ would force S1 or B1 to be the empty set.
This condition would, then, prevent the existence of a secrecy homomorphism
from any other secrecy algebra A, with nonempty secrecy set SA or nonempty
browsable filter BA, respectively, to 1.

Proposition 10 Let S = 〈L,⊢S〉 be a deductive system and Ai = 〈Ai,KAi
,

BAi
, SAi

〉, i = 1, 2, be two S-secrecy structures. Then the S-secrecy structure

12



A1×A2, together with the projection secrecy homomorphisms πi : A1×A2 → Ai,
i = 1, 2, constitutes a product of A1 and A2 in the category S-Str.

Proof:
Given the fact that A1×A2, together with the projections, forms a product

of A1 and A2 in L-Alg, it suffices to show that, for every B = 〈B,KB, BB, SB〉
and every secrecy homomorphisms fi : B → Ai, i = 1, 2, the unique L-Alg
homomorphism 〈f1, f2〉 : B → A1 × A2, that completes the diagram

B

f1

@
@

@
@

@I
A1 A1 × A2

�π1 A2
-π2

6

〈f1, f2〉 f2

�
�

�
�
��

is also a secrecy homomorphism 〈f1, f2〉 : B → A1 × A2. We have, indeed, for
all b ∈ KB,

〈f1, f2〉(b) = 〈f1(b), f2(b)〉
⊆ KA1

×KA2

= KA1×A2
,

whence 〈f1, f2〉(KB) ⊆ KA1×A2
and, similarly, 〈f1, f2〉(BB) ⊆ BA1×A2

and
〈f1, f2〉(SB) ⊆ SA1×A2

. This proves that 〈f1, f2〉 : B → A1 × A2 is a secrecy
homomorphism. �

Product congruences are defined next. The goal is to generalize the well-
known theorem of universal algebra characterizing direct products of algebras
in terms of factor congruences. It will be shown in Theorem 12 that, given two
product congruences on a secrecy structure, the structure can be decomposed
into the direct product of two secrecy structures. Recall that, given an L-
algebra A, a congruence θ ∈ Con(A) is a factor congruence if there exists a
congruence θ∗ ∈ Con(A), such that θ ∩ θ∗ = ∆A, θ ∨ θ∗ = ∇A and θ and θ∗

permute. In that case, θ, θ∗ are referred to as a pair of factor congruences
on A.

Definition 11 Let S = 〈L,⊢S〉 be a deductive system and A = 〈A,KA, BA,
SA〉 an S-secrecy structure. A congruence θ ∈ Con(A) is a product congru-
ence if

• there exists a congruence θ∗ ∈ Con(A), such that θ and θ∗ is a pair of
factor congruences;

• KA/θ and KA/θ
∗ are S-filters on A/θ and A/θ∗, respectively, and KA =

π−1(KA/θ) ∩ π∗−1

(KA/θ
∗), where π, π∗ are the natural projections;

• Similarly for the browsable filters and the secrecy sets.

13



Given a pair of product congruences θ′, θ′′ on A, set

KA′ = {a/θ′ : a ∈ KA}, BA′ = {a/θ′ : a ∈ BA} and SA′ = {a/θ′ : a ∈ SA},

and, similarly,

KA′′ = {a/θ′′ : a ∈ KA}, BA′′ = {a/θ′′ : a ∈ BA} and SA′′ = {a/θ′′ : a ∈ SA}.

Then, define the S-secrecy structures A′ and A′′ as follows:

A′ = 〈A/θ′,KA′ , BA′ , SA′〉, A′′ = 〈A/θ′′,KA′′ , BA′′ , SA′′〉.

Theorem 12 Let S = 〈L,⊢S〉 be a deductive system and A = 〈A,KA, BA, SA〉
an S-secrecy structure. If θ′, θ′′ is a pair of product congruences on A, then
A ∼= A′ × A′′ under the secrecy isomorphism h(a) = 〈a/θ′, a/θ′′〉, for every
a ∈ A.

Proof:
We know (Theorem II.7.5 of [9]) that h : A ∼= A/θ′×A/θ′′. It is easy to see,

by the definition of product congruences, that h(KA) = KA/θ′ × KA/θ′′ and,
similarly, for BA and SA. �

Definition 13 An S-secrecy structure A = 〈A,KA, BA, SA〉 is called trivial
if its underlying L-algebra A is trivial. A is (directly) indecomposable if A
is not isomorphic to a direct product of two nontrivial secrecy structures.

It is not difficult to see that there exist either one or four trivial S-secrecy
structures depending on whether or not the deductive system S has theorems.
If S does not have theorems then the following are trivial S-secrecy structures:

T0 = 〈1, {0}, {0}, ∅〉,
T1 = 〈1, {0}, ∅, ∅〉,
T2 = 〈1, {0}, ∅, {0}〉,
T3 = 〈1, ∅, ∅, ∅〉.

On the other hand, if S does have theorems, then all its S-filters are non-empty,
whence only T0 is a valid S-secrecy structure.

Theorems 9 and 12 yield immediately a characterization of direct indecom-
posability of S-secrecy structures in terms of the non-existence of non-trivial
product congruences.

Corollary 14 Let S be a deductive system. An S-secrecy structure A is directly
indecomposable iff the only product congruences on A are ∆A and ∇A.

Finally, Theorem 15, an analog of Theorem II.7.10 of [9] for S-secrecy struc-
tures, asserts that every finite S-secrecy structure can be decomposed into a
direct product of directly indecomposable S-secrecy structures.
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Theorem 15 Let S be a deductive system. Every finite S-secrecy structure is
isomorphic to a direct product of directly indecomposable S-secrecy structures.

Proof:
Let A = 〈A,KA, BA, SA〉 be a finite S-secrecy structure. We proceed by

induction on the cardinality of A. If A = 1 is trivial, with universe {0}, then
A can be either of T0, . . . , T3. In all cases except the second, A is obviously
directly indecomposable. In the second case, 〈1, {0}, ∅, ∅〉 ∼= 〈1, {0}, {0}, ∅〉 ×
〈1, {0}, ∅, {0}〉 and the two structures on the right are directly indecomposable
S-secrecy structures. (Since they are also trivial structures, T2 is also directly
indecomposable.) Suppose, next, that A is a nontrivial finite S-secrecy struc-
ture, such that, for every S-secrecy structure B, with |B| < |A|, B is isomorphic
to a direct product of directly indecomposable S-secrecy structures. If A is di-
rectly indecomposable, then there is nothing to prove. If not, then, there exist
nontrivial S-secrecy structures B, C, such that A ∼= B × C. But, then, by the
induction hypothesis, B ∼= B1×· · ·×Bn and C ∼= C1×· · ·×Cm, with Bi, 1 ≤ i ≤ n
and Cj , 1 ≤ j ≤ m, directly indecomposable. Therefore

A ∼= B × C ∼= B1 × · · · × Bn × C1 × · · · × Cm,

showing that A is also a direct product of directly indecomposable S-secrecy
structures. �

Note that a direct product decomposition A ∼=
∏n

i=1 Ai of an S-secrecy
structure A into (not necessarily directly indecomposable) S-secrecy structures
Ai, i = 1, . . . , n, implies that there exists a direct product decomposition of
the L-algebra A into factors Ai. The converse, however, does not hold. A
direct product decomposition of A into (not necessarily directly indecompos-
able) factors Ai, i = 1, . . . , n, does not necessarily yield a direct decomposition
of A into a direct product of S-secrecy structures Ai, i = 1, . . . , n, with un-
derlying algebraic reducts Ai, i = 1, . . . , n, respectively. Moreover, it may be
that, whereas A ∼=

∏n
i=1 Ai is a decomposition into directly indecomposable

S-secrecy structures, the corresponding direct decomposition of A is not into
directly indecomposable L-algebras. To illustrate these points consider the S-
secrecy structure F = 〈F, {0, a, b, 1}, {1}, {a, b}〉, with underlying L-algebra the
finite distributive lattice F over the language L = 〈{∧,∨}, {∧,∨ 7→ 2}〉, de-
picted on the left-hand side in Figure 2. Whereas it is clear that F has a direct
product decomposition into the direct product of two copies of the 2-element
chain, depicted on the right-hand side in Figure 2, the S-secrecy structure F is
directly indecomposable.

We present, next, a definition and a lemma from [9] (see Definition II.7.13
and Lemma II.7.14, respectively), that will help us to identify in Theorem 18
necessary and sufficient conditions for an S-secrecy structure to be a subobject
in S-Str of a given direct product of a collection of S-secrecy structures. We
start with defining separation of points.
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Figure 2: A finite distributive lattice.

Definition 16 Let A and B be sets and h : A → B a function. If a1, a2 ∈ A,
h is said to separate a1 and a2 if h(a1) 6= h(a2). The maps hi : A→ Ai, i ∈ I,
separate points if for each a1, a2 ∈ A, with a1 6= a2, there is an i ∈ I, such
that hi(a1) 6= hi(a2).

The following lemma uses the terminology of Definition 16 to characterize
those families of functions hi : A → Ai, i ∈ I, from a set A to a collection of
sets Ai, whose product h : A→

∏

i∈I Ai is injective.

Lemma 17 (Lemma II.7.14 of [9]) For an indexed family of maps hi : A→
Ai, i ∈ I, the following are equivalent:

(a) The maps hi separate points.

(b) h : A →
∏

i∈I Ai, defined, for every a ∈ A, by h(a) = 〈hi(a) : i ∈ I〉, is
injective.

(c)
⋂

i∈I Ker(hi) = ∆A.

Theorem 18 undertakes the task of providing necessary and sufficient con-
ditions for a given S-secrecy structure to be a substructure of a direct product
of S-secrecy structures. Having such conditions is very useful for the study of
subdirect products. But this will be postponed until the last two sections of the
paper. For the universal algebraic analog of this result, see Theorem II.7.15 of
[9].

Theorem 18 Let S be a deductive system and A = 〈A,KA, BA, SA〉, Ai =
〈Ai,KAi

, BAi
, SAi

〉, i ∈ I, be S-secrecy structures. Let hi : A → Ai, i ∈ I, be
an indexed family of secrecy homomorphisms, such that

⋂

i∈I

h−1
i (KAi

) = KA,
⋂

i∈I

h−1
i (BAi

) = BA and
⋂

i∈I

h−1
i (SAi

) = SA. (1)

Then, the natural homomorphism h : A →
∏

i∈I Ai, defined by h(a) = 〈hi(a) :
i ∈ I〉, for all a ∈ A, is a subobject in S-Str iff

⋂

i∈I Ker(hi) = ∆A iff the maps
hi separate points.
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Proof:
Taking into account Proposition 7 and Lemma 17, we only need to show

that h−1(K∏

i∈I
Ai

) =
⋂

i∈I h
−1
i (KAi

) and, similarly,

h−1(B∏

i∈I Ai
) =

⋂

i∈I

h−1
i (BAi

) and h−1(S∏

i∈I Ai
) =

⋂

i∈I

h−1
i (SAi

).

But these follow from Conditions (1) and the definition of
∏

i∈I Ai. �

Summarizing, we have defined the notion of a direct product of S-secrecy
structures and shown that direct products are in fact categorical products in
S-Str. A characterization was given in terms of product congruences, which are
factor congruences of universal algebras, satisfying some additional conditions
that help streamline the S-filters and secrecy sets of the product with those
of its generated factors. The trivial S-secrecy structures, i.e., those having a
trivial algebraic reduct, were listed. Based on these, a criterion for the direct
indecomposability of S-secrecy structures was established and, moreover, it was
shown that every finite S-secrecy structure can be decomposed into a direct
product of directly indecomposable factors. Finally, borrowing the notion of
separation of points from universal algebra, we were able to provide necessary
and sufficient conditions for an S-secrecy structure to be a substructure of a
direct product of S-secrecy structures.

5 Secrecy Homomorphism Theorems

In this section, we extend the four universal algebraic homomorphism theorems
to cover the case of S-secrecy structures. We start with the classical homomor-
phism theorem (see, e.g., Theorem II.6.12 of [9]). Recall that, by Theorem 6,
given S-secrecy structures A = 〈A,KA, BA, SA〉,B = 〈B,KB, BB, SB〉 and a
strict secrecy homomorphism h : A → B, the kernel Ker(h) is a secrecy congru-
ence on A and, conversely, given an S-secrecy structure A = 〈A,KA, BA, SA〉
and θ ∈ SCon(A), the projection homomorphism πθ : A → A/θ is a strict
secrecy homomorphism πθ : A → A/θ.

Theorem 19 (Secrecy Homomorphism Theorem) Let S be a deductive
system, A = 〈A,KA, BA, SA〉,B = 〈B,KB, BB, SB〉 be S-secrecy structures
and f : A ։ B a strict surjective secrecy homomorphism. Then, there ex-
ists a secrecy isomorphism h : A/Ker(f) → B, such that f = h ◦ π, where
π : A → A/Ker(f) is the natural projection secrecy homomorphism.

A A/Ker(f)-π

B

f
@

@
@
@R

h
�

�
�

�	
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Proof:
The mapping h : A/Ker(f) → B is defined, as usual, by

h(a/Ker(f)) = f(a), for all a ∈ A.

It is well-known that h is a well-defined algebra isomorphism h : A/Ker(f) → B,
such that f = h ◦ π. Thus, it suffices to show that h(KA/Ker(f)) = KB and,
similarly, h(BA/Ker(f)) = BB and h(SA/Ker(f)) = SB. We show the first equality
in detail: Let a/Ker(f) ∈ KA/Ker(f) = KA/Ker(f). Since f is a strict secrecy
homomorphism, Ker(f) is compatible withKA. Therefore a ∈ KA. This implies
that h(a/Ker(f)) = f(a) ∈ f(KA) ⊆ KB and proves the left-to-right inclusion.
To show the reverse inclusion, suppose that b ∈ KB. Then, since f : A → B is
strict and surjective, there exists a ∈ KA, such that f(a) = b. Thus, we have
b = f(a) = h(a/Ker(f)) ∈ h(KA/Ker(f)) = h(KA/Ker(f)). This proves the
right-to-left inclusion. �

We proceed with an analog of the Second Isomorphism Theorem of universal
algebra (see, e.g., Theorem II.6.15 of [9]) for S-secrecy structures.

Theorem 20 (Second Secrecy Isomorphism Theorem) Let S be a deduc-
tive system, A = 〈A,KA, BA, SA〉 an S-secrecy structure and θ, η ∈ SCon(A),
such that θ ⊆ η. Then, the mapping h : (A/θ)/(η/θ) → A/η defined by

h((a/θ)/(η/θ)) = a/η, for all a ∈ A,

is a secrecy isomorphism from (A/θ)/(η/θ) to A/η.

Proof:
First, notice that η/θ is a secrecy congruence on A/θ. To show compatibility

of η/θ with KA/θ = KA/θ, assume that 〈a/θ, b/θ〉 ∈ η/θ and a/θ ∈ KA/θ. Then
〈a, b〉 ∈ η and a ∈ KA, by the compatibility of θ with KA. Therefore b ∈ KA,
by the compatibility of η with KA. Thus, b/θ ∈ KA/θ = KA/θ. Similarly, it
may be shown that η/θ is also compatible with BA/θ and SA/θ.

It is known from universal algebra that h : (A/θ)/(η/θ) → A/η, defined by
h((a/θ)/(η/θ)) = a/η, for all a ∈ A, is an algebra isomorphism. So it suffices to
show that it preserves the S-filters and the secrecy sets. Since all three equalities
may be shown similarly, we only show in detail that h(K(A/θ)/(η/θ)) = KA/η.
Suppose that a/η = h(K(A/θ)/(η/θ)) = h(KA/θ/(η/θ)) = h((KA/θ)/(η/θ)).
Thus, there exists b ∈ KA, such that a/η = h((b/θ)/(η/θ)) = b/η. Hence, by
the compatibility of η with KA, a ∈ KA, showing that a/η ∈ KA/η = KA/η.
If, conversely, a/η ∈ KA/η = KA/η, we get that a ∈ KA, whence a/η =
h((a/θ)/(η/θ)) ∈ h((KA/θ)/(η/θ)) = h(K(A/θ)/(η/θ)). �

Let A = 〈A,KA, BA, SA〉 be an S-secrecy structure. An S-secrecy structure
B = 〈B,KB, BB, SB〉 is called a secrecy substructure of A, written B ≤ A, if
B is an L-subalgebra of A and KB = KA ∩B, BB = BA ∩B and SB = SA ∩B,
i.e., if the inclusion morphism i : B →֒ A is a subobject in S-Str, according to
the definition in Section 3 and the characterization in Proposition 7.
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Next, we adapt Definition II.6.16 of [9] to accommodate S-secrecy struc-
tures. This definition will supply the needed notions and notation to enable
the formulation of an analog of the Third Isomorphism Theorem for S-secrecy
structures.

Definition 21 Let S be a deductive system and A = 〈A,KA, BA, SA〉 be an
S-secrecy structure. Suppose B is a subset of A and θ ∈ SCon(A). Let Bθ =
{a ∈ A : B ∩ a/θ 6= ∅}. Let Bθ be the subalgebra of A generated by Bθ and

KBθ = KA ∩Bθ, BBθ = BA ∩Bθ, SBθ = SA ∩Bθ.

Also define θ↾B = θ ∩B2, the restriction of θ to B.

It is well-known from universal algebra that, if B = 〈B,LB〉 is a subal-
gebra of A, the universe of Bθ is Bθ and that the restriction of θ to B is
a congruence on B. Moreover, the Third Isomorphism Theorem asserts that
B/θ↾B

∼= Bθ/θ↾Bθ (see, e.g., Lemma II.6.17 and Theorem II.6.18 of [9]). We
proceed, next, to extend these results to the framework of S-secrecy structures
and secrecy congruences.

Lemma 22 Let S be a deductive system and A = 〈A,KA, BA, SA〉, B =
〈B,KB, BB, SB〉 be S-secrecy structures, such that B ≤ A, and θ ∈ SCon(A).

1. Bθ = 〈Bθ,KBθ , BBθ , SBθ 〉 is a secrecy substructure of A, whose underlying
algebraic reduct has universe Bθ.

2. θ↾B is a secrecy congruence on B.

Proof:

1. We know, by the corresponding universal algebraic result (Lemma II.6.17
of [9]), that Bθ is a subalgebra of A, with universe Bθ. This, together with
the definitions of KBθ , BBθ and SBθ , yield, taking into account Proposition
7, that Bθ is an S-secrecy substructure of A.

2. Since, again, it is known that θ↾B is a congruence on B, it suffices to
show that it is compatible with the S-filters and the secrecy set of B.
These compatibility relations follow directly from the corresponding com-
patibility relations assumed for A. For instance, if 〈b1, b2〉 ∈ θ↾B and
b1 ∈ KB, then 〈b1, b2〉 ∈ θ and b1 ∈ KA, whence b2 ∈ KA, showing that
b2 ∈ KA ∩B = KB. �

Having Lemma 22 at hand, it now makes sense to formulate the generaliza-
tion of the Third Isomorphism Theorem of universal algebra (Theorem II.6.18
of [9]) for S-secrecy structures.

Theorem 23 (Third Secrecy Isomorphism Theorem) Let S be a deduc-
tive system and A = 〈A,KA, BA, SA〉, B = 〈B,KB, BB, SB〉 be S-secrecy struc-
tures, such that B ≤ A, and θ ∈ SCon(A). Then B/θ↾B

∼= Bθ/θ↾Bθ .
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Proof:
All quotients involved make sense due to Lemma 22. Furthermore, since, by

Theorem II.6.18 of [9], B/θ↾θ
∼= Bθ/θ↾Bθ via the algebra isomorphism

h(b/θ↾B) = b/θ↾Bθ , for all b ∈ B,

it suffices to show that h(KB/θ↾B
) = KBθ/θ↾

Bθ
and, similarly, h(BB/θ↾B

) =

BBθ/θ↾
Bθ

and h(SB/θ↾B
) = SBθ/θ↾

Bθ
. But all these relations are straightforward

based on the corresponding definitions. �

To prove a version of the Correspondence Theorem of universal algebra (The-
orem II.6.20 of [9]) for secrecy structures, we define, as in the theory of logical
matrices, the largest secrecy congruence on an S-secrecy structure A. This is
the largest congruence on the underlying algebra A, that is compatible with
both the knowledge and the browsable filters and with the secrecy set of A. We
first show that such a congruence always exists.

Theorem 24 Let S be a deductive system and A = 〈A,KA, BA, SA〉 be an S-
secrecy structure. Then, there exists a largest congruence Ω(A) on A compatible
with each of KA, BA, SA. Thus, SCon(A) has the structure of a complete lat-
tice and SCon(A) ∼= [∆A,Ω(A)], where the latter is viewed as an interval in
Con(A).

Proof:
As in the case of logical matrices, notice that ∆A is compatible with each

filter and with the secrecy set and, also, that the collection C of all congruences
on A having this property has a maximal element and is closed under congruence
joins. The existence of the maximal element may be shown by an application of
Zorn’s Lemma. That the congruence join of two congruences that are compatible
with a given subset of A is also a congruence compatible with the same set
is a well-known fact from the theory of logical matrices (see, e.g., [11]). The
existence of a maximal element and the closedness under joins yield immediately
that there exists a unique maximal element in C. This element is the one denoted
by Ω(A). �

The secrecy congruence Ω(A), whose existence is asserted in Theorem 24, will
be called the Leibniz secrecy congruence of A. The Secrecy Correspondence
Theorem states that, given a secrecy congruence θ on a secrecy structure A,
the lattice of all secrecy congruences of the quotient secrecy structure A/θ is
isomorphic to the interval [θ,Ω(A)] in the lattice of secrecy congruences of A.

Theorem 25 (Secrecy Correspondence Theorem) Let S be a deductive
system, A = 〈A,KA, BA, SA〉 be an S-secrecy structure and θ ∈ SCon(A).
Then, the function h with domain [θ,Ω(A)], defined by h(η) = η/θ, for all
η ∈ [θ,Ω(A)], is a lattice isomorphism from [θ,Ω(A)] to SCon(A/θ), where
[θ,Ω(A)] is viewed as a sublattice of SCon(A).

Proof:
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The mapping h is injective because it is injective on the set of all congruences
of A including θ. To see that it is surjective, suppose that η′ ∈ SCon(A/θ). Let
η = {〈a, b〉 ∈ A2 : 〈a/θ, b/θ〉 ∈ η′}. We have

• η ∈ Con(A): Follows directly from the fact that η′ ∈ Con(A/θ).

• η ∈ SCon(A): Let us show in detail that η is compatible with KA. Sup-
pose, to this end, that 〈a, b〉 ∈ η and a ∈ KA. Then 〈a/θ, b/θ〉 ∈ η′

and a/θ ∈ KA/θ = KA/θ. Thus, since η′ ∈ SCon(A/θ), we get that
b/θ ∈ KA/θ. Since θ ∈ SCon(A), we must have b ∈ KA. Therefore, η is
in fact compatible with KA. Compatibility with each of BA and SA may
be proven similarly.

• θ ≤ η: 〈a, b〉 ∈ θ implies 〈a/θ, b/θ〉 ∈ ∆A/θ ⊆ η′, whence 〈a, b〉 ∈ η.

• η′ = η/θ = h(η).

Thus, h is also surjective. Finally, the fact that 〈a/θ, b/θ〉 ∈ η/θ iff 〈a, b〉 ∈ η
implies that η1 ≤ η2 iff η1/θ ≤ η2/θ, i.e., that h is a lattice isomorphism. �

Summarizing, in this section analogs of the well-known Homomorphism The-
orem and Isomorphism Theorems of universal algebra were provided for S-
secrecy structures. Theorem 19 provided an analog of the Homomorphism The-
orem, Theorem 20 an analog of the Second Isomorphism Theorem and Theorem
23 an analog of the Third Isomorphism Theorem. Finally, to prove Theorem
25, an analog of the Correspondence Theorem, the notion of the Leibniz secrecy
congruence of an S-secrecy structure was introduced, which is the largest se-
crecy congruence on the structure, and it was asserted that it exists for every
S-secrecy structure, in a way similar to the existence of the Leibniz congruence
of an S-matrix in the theory of abstract algebraic logic.

6 Properties Related to Regularity

In this section, we show that the category S-Str shares many of the prop-
erties that define a regular concrete category. For general categorical defini-
tions and notation, the reader is referred to the standard references [2, 8, 14].
Specifically for material pertaining to the existence and characterization of
subdirect products in regular concrete categories we refer to the works by
Pultr and Vinárek [17, 23, 24]. We start by proving that the forgetful func-
tor U : S-Str → Set from the category of S-secrecy structures to the category
of small sets, that forgets both the algebraic structure and the filters and secrecy
set of an S-secrecy structure preserves all small limits.

Proposition 26 Let S be a deductive system. Then, the forgetfull functor U :

S-Str → Set, with A = 〈A,KA, BA, SA〉
U
7→ A, preserves all small limits.

Proof:
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It is well-known that the forgetful functor U ′ : L-Alg → Set preserves all
small limits. Thus, it suffices to show (see the diagram below) that the forgetful
functor U ′′ : S-Str → L-Alg preserves all small limits.

S-Str L-Alg-U ′′

Set

U
@

@
@
@R

U ′
�

�
�

�	

Suppose to this end that (L, l) is a limit of the small diagram D : I → S-Str in
the category S-Str. Consider the corresponding diagram U ′′ ◦D : I → L-Alg.
We must show that (U ′′(L), U ′′(l)) is a limit of U ′′ ◦D in L-Alg. Let (A, f) be
a cone in L-Alg over U ′′ ◦D.

U ′′(D(i)) U ′′(D(j))-
U ′′(D(h))

A

fi

�
�

�
�	

fj

@
@

@
@R

Construct the quadruple A = 〈A,KA, BA, SA〉, where KA =
⋂

i∈|I| f
−1
i (KD(i))

and, similarly, BA =
⋂

i∈|I| f
−1
i (BD(i)) and SA =

⋂

i∈|I| f
−1
i (SD(i)). It is not

difficult to see that A is an S-secrecy structure and that f ′
i : A → D(i), with

U ′′(f ′
i) = fi, is a secrecy homomorphism. Thus, since (L, l) is a limit of D

in S-Str, there exists a unique secrecy homomorphism m : A → L, such that
li ◦ m = f ′

i , for all i ∈ |I|. The algebra homomorphism U ′′(m) may now be
shown to be the unique morphism in L-Alg such that U ′′(li) ◦ U ′′(m) = fi. �

The following result asserts that, given a bijection between two sets and
an S-secrecy structure on its codomain, one may endow the domain with an
S-secrecy structure so that the given bijection becomes a secrecy isomorphism.

Proposition 27 Given a deductive system S, if A is a set, B = 〈B,KB, BB, SB〉
an S-secrecy structure and f : A→ B a bijection, then, there exists an S-secrecy
structure A = 〈A,KA, BA, SA〉, such that f : A → B is a secrecy isomorphism.

Proof:
This is fairly obvious. Based on f , viewed as a “renaming” of the elements

of B, we endow A with both an algebraic and a secrecy structure, resulting in
an S-secrecy structure A = 〈A,KA, BA, SA〉, in such a way that f : A → B is
a secrecy isomorphism identical with f on A. �

By the definition of the forgetful functor U : S-Str → Set, we obtain

Proposition 28 Let S be a deductive system and A an S-secrecy structure. If
h : A → A is a secrecy isomorphism and U(h) = iA, then h = iA.
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Motivated by Definition 1.3 of [17], we define, for a set X , the preordered
class S-StrX = ({A : U(A) = X},≺) by setting A ≺ B iff the identity iX : X →
X is a secrecy homomorphism iX : A → B. A meet of Ai, i ∈ I, in S-StrX , if
it exists, will be denoted by

∧

i∈I Ai.

Proposition 29 Let S be a deductive system. For every set X, the collection
S-StrX is a set and it is finite for finite X, provided that L is finite.

Proof:
This is a consequence of the fact that, given a universe X ∈ |Set|, there

exists only a set of L-algebraic structures on X and only a set of subsets and,
therefore, also of triples of subsets, of X . A similar reasoning yields finiteness
in case X is finite, provided that L is finite. �

Moreover, it can be easily seen that, S-StrX is a partially ordered set and,
also, that, as partially ordered sets, S-StrX and S-StrY are isomorphic, when-
ever there is a bijection between the underlying universes X and Y .

Corollary 30 For every set X, the pre-ordered set S-StrX is a partially ordered
set and every bijection f : X → Y , induces an isomorphism S-StrX

∼= S-StrY .

Finally, in Proposition 31, one of the key results of this section that will be
used in Section 8 to provide characterizations of subdirectly irreducible struc-
tures, it is asserted that, similarly with the case of arbitrary concrete categories
(see Section 1 of [17]), every secrecy homomorphism admits a subobject decom-
position into an onto set mapping followed by a subobject in S-Str.

Proposition 31 Let S be a deductive system and A = 〈A,KA, BA, SA〉,B =
〈B,KB, BB, SB〉 two S-secrecy structures. For every secrecy homomorphism
h : A → B, there is an S-secrecy structure C and a decomposition h = h1 ◦ h2,

A B-h

C

h2

@
@

@
@R

h1

�
�

�
��

called a subobject decomposition, with h1 : C → B a subobject in S-Str and
h2 : A→ C onto.

Proof:
Let h : A → B be a secrecy homomorphism. Since it is an algebra homomor-

phism h : A → B, there exists, by the Homomorphism Theorem of universal
algebra, a surjective algebra homomorphism h2 : A → A/Ker(h), with h2(a) =
a/Ker(h), for all a ∈ A, and an algebra monomorphism h1 : A/Ker(h) → B,
with h1(a/Ker(h)) = h(a), for all a ∈ A. Define on A/Ker(h) the sets

KC = h−1
1 (KB), BC = h−1

1 (BB), SC = h−1
1 (SB).
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Let C = 〈A/Ker(h),KC, BC , SC〉. Obviously, h2 : A → A/Ker(h) is an onto
set function and h1 : C → B, is a well-defined secrecy homomorphism that
is also a subobject in S-Str. Indeed, if a ∈ A, we have a/Ker(h) ∈ KC iff
a/Ker(h) ∈ h−1

1 (KB) iff h1(a/Ker(h)) ∈ KB. One may show similarly that
h−1

1 (BB) = BC and h−1
1 (SB) = SC . By Proposition 7, this shows that h1 is a

subobject in S-Str. �

In the following corollary, it is asserted that, if one insists that the onto
mapping h2 : A → C in the subobject decomposition of an injective secrecy
morphism h : A → B be such that h2 = iA : A ≺ C, then the subobject
decomposition is unique. This is the analog of Proposition 1.6 of [17] for S-
secrecy structures.

Corollary 32 Let S be a deductive system and A = 〈A,KA, BA, SA〉,B =
〈B,KB, BB, SB〉 two S-secrecy structures. For every injective secrecy homomor-
phism h : A → B, there exists exactly one subobject decomposition h = h1 ◦ h2,
such that h2 = iA : A ≺ C:

A B-h

C

h2 = iA
@

@
@
@R

h1 = h

�
�

�
��

Proof:
Obviously, the set mappings satisfying the hypothesis are unique and are

given by h1 = h and h2 = iA. Since h1 is supposed to be a subobject in S-Str, we
must have C = 〈A, h−1(KB), h−1(BB), h−1(SB)〉. This also satisfies iA : A ≺ C,
since we have a ∈ KA implies h(a) ∈ KB and, therefore, a ∈ h−1(KB) and,
similarly, for the browsable filters and the secret sets. �

Lemma 34 shows that the existence of a subobject m : A → B between two
finite S-secrecy structures, such that A ≺ B forces the two structures to be
identical. For its proof, we will employ Proposition 33.

Proposition 33 Let S be a deductive system and m′ : A → B, e : A → C and
m : C → B secrecy homomorphisms, such that

A B-m′

C

e
@

@
@
@R

m

�
�

�
��

m′ = m ◦ e is a subobject in S-Str and e is onto. Then e is a secrecy isomor-
phism.

Proof:
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Let e′ : C → A be such that e◦e′ = iC . Then m′◦e′◦e = m◦e◦e′◦e = m◦e,
whence, since e is onto, we get that m′ ◦ e′ = m. Thus, since m′ is a subobject
and m : C → B is a secrecy homomorphism, e′ : C → A must also be a secrecy
homomorphism. But e ◦ e′ = iC and, because m′ ◦ e′ ◦ e = m ◦ e = m′, it is also
the case that e′ ◦ e = iA, showing that e is a secrecy isomorphism. �

Lemma 34 Let S be a deductive system. If X is a finite set, A,B ∈ S-StrX ,
with A ≺ B, and there exists a subobject m : A → B then A = B.

Proof:
Denote by i : A ≺ B the secrecy homomorphism, that is identical with iX on

X . By Proposition 33, m is a secrecy isomorphism. Set h = m−1 ◦ i : A → A.
This is a monomorphism. Taking into account the fact that X is finite, we
conclude that hn = iA, for some n > 0. Thus, h is an isomorphism, showing
that i is an isomorphism by Proposition 28. �

Proposition 35, an analog of Proposition 1.8 of [17] for S-secrecy structures,
relates subobjects of direct products of secrecy structures built on the diagonal
with meets in the partially ordered class S-StrX , for a given set X .

Proposition 35 Let S be a deductive system.

1. If A =
∧

i∈I Ai is a meet in S-StrX , then m : A →
∏

i∈I Ai defined by
m(a) = 〈a : i ∈ I〉, for all a ∈ X, is a subobject in S-Str.

2. If Ai, i ∈ I, are in S-StrX and the diagonal mapping d : X → XI carries
a subobject m : A →

∏

i∈I Ai in S-Str, then A =
∧

i∈I Ai.

Proof:

1. Corollary 32 may be used to prove this part (see proof of Proposition 1.8 of
[17]). Alternatively, it is easy to see that m : A →

∏

i∈I Ai is a subobject
in L-Alg and, also, that, for all a ∈ A, we have

a ∈ m−1(K∏

i∈I
Ai

) iff m(a) ∈ K∏

i∈I
Ai

iff 〈a : i ∈ I〉 ∈
∏

i∈I KAi

iff a ∈ KAi
, i ∈ I,

iff a ∈ K∧

i∈I Ai

iff a ∈ KA.

and, similarly, for the browsable filters and the secret sets.

2. Letm : A →
∏

i∈I Ai be the subobject mapping that acts like the diagonal
on X . Let, also, fi : B ≺ Ai and set f =

∏

i∈I fi (see diagram below).

A Ai
-

i
B�

fi

∏

i∈I Ai

m

�
�

�
��

?

πi f

@
@

@
@I
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Then, in Set, we have πi ◦ f = iX = πi ◦ m, for all i ∈ I, whence
f = m = m ◦ iX . Thus, since m is a subobject, we get that iX : B → A is
a secrecy homomorphism, showing that B is the meet of the Ai in S-StrX .

�

Finally, we conclude this section by showing that, every subobject n : A →
∏

i∈I Bi may be decomposed into a subobject of a product having surjective
components (i.e., a subdirect product, as defined in Definition 37) followed by
a product of subobjects.

Proposition 36 Let S be a deductive system and n : A →
∏

i∈I Bi be a subob-
ject in S-Str. Then, there exists subobjects ni : Ai → Bi and m : A →

∏

i∈I Ai

in S-Str, such that n =
∏

i∈I ni ◦m and πi ◦m is onto.

Proof:
Let π′

i :
∏

i∈I Bi → Bi, i ∈ I, be the projection secrecy homomorphisms and
π′

i ◦ n = ni ◦ hi subobject decompositions, for all i ∈ I (see diagram below).

Bi

π′
i

�
�

�
�

�
��

ni

@
@

@
@

@
@I

A

n

@
@

@
@

@
@I

∏

i∈I Bi

∏

i∈I Ai�
∏

i∈I ni
Ai-πi

6

m hi

�
�

�
�

�
��

We get
π′

i ◦
∏

i∈I ni ◦m = ni ◦ πi ◦m
= ni ◦ hi

= π′
i ◦ n,

whence
∏

i∈I ni◦m = n, showing thatm is a subobject, since n is, by hypothesis,
a subobject (see Proposition 1.2 (2) of [17]). �

Summarizing, in this section, we have studied properties related to regular
concrete categories as applied to the category S-Str of S-secrecy structures.
In Proposition 26 it was shown that the forgetful functor from the category
of S-secrecy structures to the category of small sets preserves all small lim-
its. Given a set X , the pre-ordered class S-StrX of all S-secrecy structures
with universe X was defined and in Proposition 29 it was asserted that this
class is finite, whenever X and L are finite. Moreover, in Corollary 30 it was
shown that it is actually a partially ordered class. The existence of the key
notion of subobject decomposition of a secrecy homomorphism was the content
of Proposition 31 and Corollary 32 showed that, in case the homomorphism is
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injective, the decomposition has a unique canonical representative. Proposition
35 established some useful connections between subobjects of direct products of
S-secrecy structures with universe X , supported by the diagonal mapping, and
meets in the partially ordered set S-StrX . Finally, in Proposition 36 the decom-
position of an arbitrary subobject of a direct product structure into a subdirect
product and a product of subobjects was obtained. All the properties studied
in this section are known to hold for arbitrary regular concrete categories (see,
e.g., [17]).

7 Subdirect Products and Irreducibility

In the remainder of the paper, we study subdirect products, subdirect repre-
sentations and subdirect irreducibility for S-secrecy structures. We draw from
relevant results in universal algebra as well as from results that hold for arbi-
trary regular concrete categories. We start by defining subdirect products for
S-secrecy structures.

Definition 37 Let S be a deductive system. An S-secrecy structure A = 〈A,
KA, BA, SA〉 is a (strict) subdirect product of an indexed family {Ai}i∈I of
S-secrecy structures if

1. A ≤
∏

i∈I Ai, i.e., A is a secrecy substructure of the product
∏

i∈I Ai;

2. πi : A → Ai is a (strict) surjective secrecy homomorphism, for all i ∈ I,
where πi :

∏

i∈I Ai → A is the projection secrecy homomorphism.

A secrecy embedding h : A →
∏

i∈I Ai is a (strict) subdirect embedding
if h(A) is an S-secrecy structure and a (strict) subdirect product of the secrecy
structures Ai. It is shown, next, inspired by Lemma II.8.2 of [9], that given a
collection of secrecy congruences on an S-secrecy structure A, whose intersection
is the identity, one may define a strict subdirect embedding of A into the product
of the quotient secrecy structures.

Lemma 38 Let S be a deductive system, A an S-secrecy structure and θi, i ∈ I,
secrecy congruences on A, such that

⋂

i∈I θi = ∆A. Then e : A →
∏

i∈I Ai,
defined by e(a) = 〈a/θi : i ∈ I〉, is a strict subdirect embedding of secrecy
structures.

Proof:
The fact that e : A →

∏

i∈I A/θi is a subdirect embedding of L-algebras is
given by the corresponding universal algebraic result (see Lemma II.8.2 of [9]).
Moreover, by the compatibility of θi with each of the theories and the secrecy
sets, we get e−1(K∏

i∈I
A/θi

) = e−1(
∏

i∈I KA/θi
) = e−1(

∏

i∈I KA/θi) = KA

and, similarly, e−1(B∏

i∈I
A/θi

) = BA and e−1(S∏

i∈I
A/θi

) = SA. �

An S-secrecy structure A = 〈A,KA, BA, SA〉 is (finitely) subdirectly
irreducible, denoted by (FSI) SI, if, for every subdirect embedding n : A →
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∏

i∈I Ai, (I finite), at least one of πi◦n : A → Ai is a secrecy isomorphism. More-
over, A = 〈A,KA, BA, SA〉 is strictly (finitely) subdirectly irreducible, de-
noted by (SFSI) SSI, if, for every strict subdirect embedding n : A →

∏

i∈I Ai,
(I finite), at least one of πi ◦ n : A → Ai is a secrecy isomorphism.

The following theorem characterizes strictly subdirectly irreducible S-secrecy
structures A by means of the existence of a monolith in the lattice of all secrecy
congruences SCon(A). This result generalizes Theorem II.8.4 of [9], an analog
characterizing subdirectly irreducible universal algebras.

Theorem 39 Let S be a deductive system. An S-secrecy structure A is strictly
subdirectly irreducible iff A is trivial or there exists a minimum secrecy con-
gruence θ in SCon(A)\{∆A}. This minimum element

⋂

(SCon(A)\{∆A}) is
a principal secrecy congruence of A, which is a monolith in the lattice of all
secrecy congruences of A.

Proof:
If A is not trivial and SCon(A)\{∆A} has no minimum element, then the

natural map e : A →
∏

i∈I A/θi, defined in Lemma 38, is a subdirect embedding.
Since A → A/θ is not injective for any θ ∈ I, it follows that A is not strictly
subdirectly irreducible.

If A is trivial and e : A →
∏

i∈I Ai is a strict subdirect embedding then, it
can be easily checked that at least one of the factors has to be an isomorphic
trivial S-secrecy algebra to the original, which shows that A is strictly subdi-
rectly irreducible. So suppose that A is not trivial and let e : A →

∏

i∈I Ai be
a strict subdirect embedding. Consider θ =

⋂

(SCon(A)\{∆A}) 6= ∆A. Choose
〈a, b〉 ∈ θ, with a 6= b. For some i ∈ I, e(a)i 6= e(b)i. Hence 〈a, b〉 6∈ Ker(πi ◦ e).
Thus θ 6⊆ Ker(πi◦e). Since Ker(πi◦e) ∈ SCon(A), this implies Ker(πi◦e) = ∆A

and, therefore, πi ◦ e : A → Ai is a secrecy isomorphism. Consequently A is
strictly subdirectly irreducible.

Now, if SCon(A)\{∆A} has a minimum element θ, then, for any 〈a, b〉 ∈ θ,
with a 6= b, we have that the secrecy congruence ΘA(a, b) generated by 〈a, b〉
satisfies ΘA(a, b) ⊆ θ and, hence, θ = ΘA(a, b). �

We define, next, the notion of weak subdirect irreducibility. Informally
speaking, an S-secrecy structure A is weakly subdirectly irreducible if the class
of all structures that do not admit A as a subobject is closed under non-empty
products. Note here, the addition of the condition that products be nonempty,
that was not needed in the case of arbitrary regular concrete categories (see,
e.g., Section 2 of [17], modulo a slightly modified notation). It will then be
shown that, for finite S-secrecy structures, subdirect irreducibility is equivalent
to weak subdirect irreducibility, an analog for S-secrecy structures of Lemma
2.3 of [17].

Let A be an S-secrecy structure. Denote by S-Str¬A the full subcategory of
S-Str generated by all objects B, such that there does not exist a subobject A →
B. An S-secrecy structure A is weakly (finitely) subdirectly irreducible
(WSI (WFSI))) if S-Str¬A is closed under nonempty (finite) products.
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Lemma 40 Let S be a deductive system. A finite S-secrecy structure A =
〈A,KA, BA, SA〉 is SI (FSI) iff it is WSI (WFSI).

Proof:
Suppose, first, that A is subdirectly irreducible. Let Bi, i ∈ I 6= ∅, be a

collection of S-secrecy structures in S-Str¬A. Assume that
∏

i∈I Bi is not in
S-Str¬A. Thus, there exists a subobject n : A →

∏

i∈I Bi. Consider the secrecy
morphism m : A →

∏

i∈I Ai, given in Proposition 36 (using the same notation).
Since A is subdirectly irreducible, there exists i0 ∈ I, such that πi0◦m : A → Ai0

is a secrecy isomorphism. But, then, ni0 ◦ πi0 ◦ m : A → Bi0 is a subobject,
which contradicts the fact that Bi0 is in S-Str¬A.

Suppose, conversely, that S-Str¬A
is closed under nonempty products. Let

m : A →
∏

i∈I Ai be a subobject, such that πi ◦m : A → Ai is onto, for every
i ∈ I. Since

∏

i∈I Ai is not in S-Str¬A (due to the fact that m is a subobject),
there exists an i0 ∈ I, such that Ai0 is not in S-Str¬A either. Thus, there exists
a subobject n : A → Ai0 . Since πi0 ◦m : A → Ai0 is onto, |A| = |Ai0 |, and, this
being finite, n is onto. Thus, it is an isomorphism. Set f = n−1◦πi0 ◦m : A → A
and observe that this is injective and, for sufficiently large k, fk = iA. Thus, f
is an isomorphism and, hence, πi0 ◦m = n ◦ f is also an isomorphism. �

In Lemma 41, it is shown that, whenever a finite S-secrecy structure is
embeddable into a direct product of structures, then , it is also embeddable into
a product consisting only of finitely many of the factors.

Lemma 41 Let S be a deductive system, A = 〈A,KA, BA, SA〉 be a finite S-
secrecy structure and assume that m : A →

∏

i∈I Ai is a subobject in S-Str.
Then, there exists a finite J ⊆ I and a subobject n : A →

∏

j∈J Aj.

Proof:
For every pair a, b ∈ A, with a 6= b, we have that m(a) 6= m(b). Thus, there

exists ia,b ∈ I, such that m(a)(ia,b) 6= m(b)(ia,b). Moreover, for every a 6∈ KA,
we have m(a) 6∈

∏

i∈I KAi
, whence, there exists ka, such that m(a)(ka) 6∈ KAka

.
Similarly, for a 6∈ BA, we get an la ∈ I, such that m(a)(la) 6∈ BAla

and, for
every a 6∈ SA, we get an sa ∈ I, such that m(a)(sa) 6∈ SAsa

. Let J = {ia,b : a 6=
b} ∪ {ka; a 6∈ KA} ∪ {la : a 6∈ BA} ∪ {sa : a 6∈ SA}. Notice that J ⊆ I is finite.
Consider the mapping n : A →

∏

j∈J Aj , defined by n(c)(j) = m(c)(j), for all
c ∈ A. This map induces a subobject n : A →

∏

j∈J Aj in L-Alg. To see that
this is also a subobject in S-Str, notice that

KA = m−1(K∏

i∈I
Ai

)

=
⋂

i∈I(πi ◦m)−1(KAi
)

⊆
⋂

j∈J (πj ◦ n)−1(KAj
)

= n−1(
∏

j∈J KAj
)

= n−1(K∏

j∈J
Aj

).

On the other hand, if a 6∈ KA, then m(a) 6∈ KAka
, whence a 6∈ n−1(K∏

j∈J Aj
).

Thus, we get that KA = n−1(K∏

j∈J
Aj

). Similarly, one sees that BA =

n−1(B∏

j∈J
Aj

) and SA = n−1(S∏

j∈J
Aj

). �
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Lemmas 40 and 41 establish the following corollary asserting the equiv-
alence for finite S-secrecy structures of being subdirectly irreducible, finitely
subdirectly irreducible and weakly (finitely) subdirectly irreducible.

Corollary 42 Let S be a deductive system and A = 〈A,KA, BA, SA〉 a finite
S-secrecy structure. Then, the following statements are equivalent:

1. A is subdirectly irreducible;

2. A is finitely subdirectly irreducible;

3. A is weakly (finitely) subdirectly irreducible.

In general, the following diagram of implications holds between the four
notions of subdirect irreducibility (See Remark 2.4 of [24] for a similar diagram
in the case of semiregular categories; be aware, however, of slight modifications
in the definitions involved.):

FSI WFSI-

SI WSI-

? ?

The two horizontal implications can be shown exactly as was the left-to-right
implication in the proof of Theorem 40.

Finally, we conclude this section by providing a strict analog of Birkhoff’s
Subdirect Representation Theorem for S-secrecy structures. The original ver-
sion [3] states that every algebra is isomorphic to a subdirect product of sub-
directly irreducible algebras. We also present in Proposition 45 an analog of
Proposition 2.6 of [17] for S-secrecy structures, which states that every finite
S-secrecy structure is expressible as a subdirect product of finitely many sub-
directly irreducible structures.

Theorem 43 (Birkhoff’s Analog) Let S be a deductive system. Every S-
secrecy structure A is isomorphic to a strict subdirect product of strictly subdi-
rectly irreducible S-secrecy structures (which are strict homomorphic images of
A).

Proof:
We know that all trivial structures are subdirectly irreducible. So we only

need to condider the case of nontrivial A. For a, b ∈ A, with a 6= b, we can
find, using Zorn’s lemma, a secrecy congruence θa,b of A, which is maximal
with respect to the property 〈a, b〉 6∈ θa,b. As

⋂

a6=b θa,b = ∆A, we can apply
Lemma 38 to show that A is strictly subdirectly embeddable in the product
of the indexed family of S-secrecy structures {A/θa,b}a6=b. It suffices now to
show that each of these secrecy structures is strictly subdirectly irreducible. If
not, then there exists a minimum congruence θ/θa,b in SCon(A/θa,b)\{∆A/θa,b

},
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such that θ/θa,b =
⋂

(SCon(A/θa,b)\{∆A/θa,b
}). But, then, by Theorem 25,

there exists a minimum congruence θ ∈ SCon(A), such that θa,b $ θ. By the
maximality of θa,b with respect to 〈a, b〉 6∈ θa,b, this implies that 〈a, b〉 ∈ θ.
Thus, since θ ∈ SCon(A), i.e., θ ⊆ Ω(A), we get that 〈a, b〉 ∈ Ω(A). But then
ΘA(a, b)∨A θa,b, the secrecy join of the secrecy congruence ΘA(a, b), generated
by 〈a, b〉, and of θa,b, is the smallest secrecy congruence in [θa,b,Ω(A)]\{θa,b},
showing that A/θa,b is subdirectly irreducible. �

Combining with Lemma 41, we get immediately the following

Corollary 44 Let S be a deductive system. Every finite S-secrecy structure A
is isomorphic to a strict subdirect product of finitely many strictly subdirectly
irreducible S-secrecy structures.

Indeed, using Lemma 41, any strict subdirect embedding of A into a direct
product of strictly subdirectly irreducible S-secrecy structures may be reduced
to a subdirect embedding into the product of finitely many of these structures
while retaining the property of being strict.

Proposition 45 Let S be a deductive system. Every finite S-secrecy structure
A is isomorphic to a subdirect product of finitely many subdirectly irreducible
S-secrecy structures.

Proof:
This proof uses the technique used for the proof of Proposition 45 of [17],

which addresses the finite case in an arbitrary regular concrete category that is
closed under finite products.

Suppose that the set of all finite secrecy structures that are not repre-
sentable as subdirect products of finite subdirectly irreducible secrecy structures
is nonempty. Then, consider a partial ordering of the finite S-secrecy structures,
such that 〈A,KA, BA, SA〉 ≤ 〈B,KB, BB, SB〉 iff |A| ≤ |B|, |KA| ≤ |KB|, |BA| ≤
|BB| and |SA| ≤ |SB|. It is clear that there exists a ≤-minimal structure in the
set of all finite structures that are not representable as subdirect products of fi-
nite subdirectly irreducible S-secrecy structures that has minimum cardinality,
call it A = 〈A,KA, BA, SA〉. Obviously, A cannot be itself subdirectly irre-
ducible. Thus, there exists a subobject m : A →

∏n
i=1 Bi, with πi ◦m : A → Bi

a surjective secrecy homomorphism that is not a secrecy isomorphism, for all
i = 1, . . . , n. Since A is ≤-minimal with respect to the property of being sub-
directly representable, there exist subdirect products mi : Bi →

∏ni

j=1 Aij , with
Aij subdirectly irreducible and πij◦mi onto, for every i = 1, . . . , n, j = 1, . . . , ni.
Consider m′ =

∏n
i=1mi ◦m : A →

∏n
i=1

∏ni

j=1 Aij .

A
∏n

i=1 Bi
-m

m′

@
@

@
@
@R

∏n
i=1

∏ni

j=1 Aij

?

∏n
i=1mi
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We get that m′ is a subobject and πij ◦ π′
i ◦m

′ = πij ◦mi ◦ πi ◦m is onto and
A is subdirectly representable. �

Summarizing, in this section we introduced and studied subdirect products
of S-secrecy structures. In Lemma 38, it was shown that a collection of secrecy
congruences on an S-secrecy structure, whose meet is the identity, induces a sub-
direct embedding of the structure into the product of the corresponding quotient
secrecy structures. After defining subdirectly irreducible and strictly subdirectly
irreducible S-secrecy structures, a characterization of the latter was provided in
Theorem 39 in terms of the existence of a minimum secrecy congruence different
from the identity in the lattice of secrecy congruences. Furthermore, the notion
of a weakly subdirectly irreducible S-secrecy structure A was defined in terms of
the closure under nonempty products of the full subcategory of structures with
objects those structures that do not admit A as a subobject. In Lemma 40, it
was shown that subdirect irreducibility and weak subdirect irreducibility coin-
cide for finite S-secrecy structures. Finally, in Theorem 43 an strict analog of
Birkhoff’s Subdirect Representation Theorem was proven and in Proposition 45
a similar result, asserting that every finite S-secrecy structure may be expressed
as a subdirect product of finitely many subdirectly irreducible structures, was
given.

8 Subdirectly Irreducibles

In this section, our goal is to provide some alternative characterizations of sub-
direct irreducibility. We start by first introducing the notions of a maximal and
of a weakly maximal S-secrecy structures.

An S-secrecy structure A = 〈A,KA, BA, SA〉 in S-StrX is maximal if it is
maximal in S-StrX . It is weakly maximal if, for all B ∈ S-StrX , such that
A ≺ B, there exists a subobject m : A → B.

Next, meet irreducible and weakly meet irreducible S-secrecy structures are
defined.

An S-secrecy structure A in S-StrX is said to be (finitely) meet irre-
ducible if A =

∧

i∈I Ai (I finite) implies that A = Ai, for some i ∈ I. It is said
to be weakly (finitely) meet irreducible if A =

∧

i∈I Ai (I finite) implies
that there exists an i ∈ I and a subobject m : A → Ai.

Finally, the notion of a monomorphic system in S-Str is defined. Monomor-
phic systems will be used in Theorem 46, an analog of the first part of Theorem
3.3 of [17], to characterize subdirectly irreducible maximal S-secrecy structures.
As the reader will notice, monomorphic systems are very closely related to the
notion of separation of points, as given in Definition 16.

A monomorphic system in S-Str is a system of secrecy homomorphisms
{mi : A → Bi}i∈I , such that, if mi(a) = mi(b), for all i ∈ I, then a = b.

Theorem 46 Let S be a deductive system. A maximal S-secrecy structure
A = 〈A,KA, BA, SA〉 is (finitely) subdirectly irreducible iff, for every (finite)
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monomorphic system {mi : A → Bi}i∈I , there exists i ∈ I, such that mi is a
monomorphism.

Proof:
Suppose that A is maximal. We assume, first, that there exists a monomor-

phic system {mi : A → Bi}i∈I , such that mi is not a monomorphism for any
i ∈ I, and, using Lemma 40, prove that A is not subdirectly irreducible.
(Note that the direction used here does not require that A be finite.) If
{mi : A → Bi}i∈I is a monomorphic system, such that no mi is a monomor-
phism, we may assume, without loss of generality, by Corollary 32, that every
mi is onto. Define m : A →

∏n
i=1 Bi by m(a) = 〈mi(a) : i ∈ I〉. This is a

monomorphism. Moreover, by Proposition 31, we get a subobject decomposi-
tion m = m′ ◦ m′′, with m′′ : A ≺ A′. Therefore, by the maximality of A in
S-StrX , m′′ = iA and m = m′ is a subobject. Since, obviously, the Bi’s are in
S-Str¬A, we get, by Lemma 40, that A is not subdirectly irreducible.

If, on the other hand, A is not subdirectly irreducible, then, there exists a
subdirect decomposition m : A →

∏n
i=1 Bi, with πi ◦m not a secrecy isomor-

phism. Obviously, {πi ◦m : A → Bi}i∈I is a monomorphic system. If we assume
that, for some k ∈ I, πk ◦m : A → Bk is a monomorphism, then, we may take,
without loss of generality, by Proposition 27, that Bk = A and πk ◦ m = iA.
Thus, A ≺ Bk and A 6= Bk, which contradicts the maximality of A. �

A similar theorem holds characterizing weakly subdirectly irreducible weakly
maximal S-structures in terms of monomorphic systems containing components
that are themselves monomorphisms.

Theorem 47 Let S be a deductive system and A be a weakly maximal secrecy
structure. Then A is weakly (finitely) subdirectly irreducible iff for every (finite)
monomorphic system {mi : A → Bi}i∈I , there exists i ∈ I, such that mi is a
monomorphism.

Proof:
Suppose that A is weakly maximal. Consider a monomorphic system {mi :

A → Bi}i∈I , such that for no i ∈ I does there exist a subobject n : A → Bi, i.e.,
such that Bi ∈ S-Str¬A, for all i ∈ I. We assume without loss of generality,
by Corollary 32, that every mi is onto. Define, as in the proof of Theorem
46, m : A →

∏n
i=1 Bi by m(a) = 〈mi(a) : i ∈ I〉. This is a monomorphism.

Moreover, by Proposition 31, we get a subobject decomposition m = m′ ◦m′′,
with m′′ : A ≺ A′. Therefore, by the weak maximality of A, there exists a
subobject n′′ : A → A′ and, hence, m = m′ ◦ n′′ : A →

∏

i∈I Bi is a subobject.
Thus, S-Str¬A is not closed under nonempty products, which shows that A is
not weakly subdirectly irreducible.

If, on the other hand, A is not weakly subdirectly irreducible, then, there
exists a collection Bi ∈ S-Str¬A, i ∈ I, and a subobject m : A →

∏

i∈I Bi.
Thus, {πi ◦m : A → Bi}i∈I is a monomorphic system whereas πi ◦m : A → Bi

is not a subobject for any i ∈ I. �
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In Proposition 48, we establish a sufficient condition under which a non-
maximal meet irreducible S-secrecy structure is subdirectly irreducible. A sim-
ilar sufficient condition under which a weakly meet-irreducible S-secrecy struc-
ture is weakly subdirectly irreducible is established in Proposition 49.

Proposition 48 Let S be a deductive system and A a non-maximal (finitely)
meet irreducible S-secrecy structure. Assume that, for all surjective h : A → B,
that is not a secrecy isomorphism, there exist ι : A ≺ C, A 6= C, and h̄ : C → B,
such that h̄ ◦ ι = h.

A B-h

C

ι
@

@
@R

h̄
�

�
��

Then A is (finitely) subdirectly irreducible.

Proof:
Suppose that A is not subdirectly irreducible. Thus, there exists a subdirect

representationm : A →
∏

i∈I Bi, with no πi◦m : A → Bi a secrecy isomorphism.
Therefore, since πi ◦ m is surjective, for all i ∈ I, there exist, by hypothesis,
ιi : A ≺ Ci, A 6= Ci, and πi ◦m : Ci → Bi,

A Bi
-πi ◦m

Ci

ιi
@

@
@R

πi ◦m
�

�
��

such that πi ◦m ◦ ιi = πi ◦ m. In that case A =
∧

i∈I Ci and A 6= Ci, for all
i ∈ I, whence A is not meet irreducible. �

Proposition 49 Let S be a deductive system and A a weakly (finitely) meet
irreducible S-secrecy structure and assume that, for all h : A → B, such that
B ∈ S-Str¬A, there exist ι : A ≺ C, A 6= C, with C ∈ S-Str¬A, and h̄ : C → B,
such that h̄ ◦ ι = h.

A B-h

C

ι
@

@
@R

h̄
�

�
��

Then A is weakly (finitely) subdirectly irreducible.

Proof:
Suppose that A is not weakly subdirectly irreducible. Thus, there exist

Bi ∈ S-Str¬A, and a subobject m : A →
∏

i∈I Bi. Consider πi ◦m : A → Bi,
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where Bi ∈ S-Str¬A, for every i ∈ I. By hypothesis, there exists ιi : A ≺ Ci,
A 6= Ci, Ci ∈ S-Str¬A, and πi ◦m : Ci → Bi,

A Bi
-πi ◦m

Ci

ιi
@

@
@R

πi ◦m
�

�
��

such that πi ◦m ◦ ιi = πi ◦m. In that case A =
∧

i∈I Ci but for no i ∈ I, does
there exist a subobject A → Ci, whence A is not weakly meet irreducible. �

In Lemma 50 the converse of Proposition 48 is established. Namely, it is
shown that a finitely subdirectly irreducible non-maximal S-secrecy structure
always satisfies the condition appearing in the hypothesis of Proposition 48.
The analogous converse to Proposition 49 will also be shown to hold in Lemma
51, that follows.

Lemma 50 Let S be a deductive system and A be a non-maximal S-secrecy
structure. If A is finitely subdirectly irreducible, then, for every surjective secrecy
homomorphism h : A → B, that is not a secrecy isomorphism, there exists an
ι : A ≺ C,A 6= C and an h̄ : C → B, such that h̄ ◦ ι = h.

Proof:
Since A is not maximal, there exists ι : A ≺ C, with A 6= C. Suppose that a

surjective h : A → B, that is not an isomorphism, does not satisfy the property
of the lemma. Define m : A → B × C by m(a) = 〈h(a), ι(a)〉, for every a ∈ A.
Then, there exists a subobject decomposition m = m′ ◦ ι′, with ι′ : A ≺ A′. By
hypothesis, since h = (π1 ◦m′) ◦ ι′, we obtain that A = A′, m = m′ and A is
not finitely subdirectly irreducible. �

Lemma 51 Let S be a deductive system and A a non-weakly maximal S-secrecy
structure. If A is weakly finitely subdirectly irreducible, then, for every secrecy
homomorphism h : A → B, with B ∈ S-Str¬A, there exists an ι : A ≺ C,A 6= C,
with C ∈ S-Str¬A, and a h̄ : C → B, such that h̄ ◦ ι = h.

Proof:
Let h : A → B, with B ∈ S-Str¬A, that does not satisfy the statement of

the lemma. Since A is not weakly maximal, there exists ι : A ≺ C, A 6= C and
C ∈ S-Str¬A. Define m : A → B × C as in the proof of Lemma 50. Then,
there exists a subobject decomposition m = m′ ◦ ι′, with ι′ : A ≺ A′. Since
h = (π1 ◦m

′) ◦ ι′ and h was assumed to not satisfy the statement of the lemma,
there exists a subobject n : A → A′ and m′ ◦ n : A → B × C is a subobject.
Thus B × C 6∈ S-Str¬A. Thus, since B, C ∈ S-Str¬A, we obtain that A is not
weakly finitely subdirectly irreducible. �

Our work culminates in Theorems 52 and 53, which characterize subdirectly
irreducible and weakly subdirectly irreducible S-secrecy algebras, respectively.
These two theorems are analogs of Theorems 3.6 and 3.7, respectively of [24],
which hold for arbitrary semiregular concrete categories with products.
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Theorem 52 Let S be a deductive system. An S-secrecy structure A is (fini-
tely) subdirectly irreducible iff either A is maximal and, for any (finite) mono-
morphic system {mi : A → Bi}i∈I , there exists an i ∈ I, such that mi is
a monomorphism, or A is not maximal, it is (finitely) meet irreducible and,
for every surjective h : A → B, not a secrecy isomorphism, there exists an
ι : A ≺ C,A 6= C, and a h̄ : C → B, such that h̄ ◦ ι = h.

Proof:
Follows from Proposition 35, Lemma 41, Theorem 46, Proposition 48 and

Lemma 50. �

Theorem 53 Let S be a deductive system. An S-secrecy structure A is weakly
(finitely) subdirectly irreducible iff either A is weakly maximal and, for any
(finite) monomorphic system {mi : A → Bi}i∈I , there exists an i ∈ I and
a subobject n : A → Bi, or A is not weakly maximal, it is weakly (finitely)
meet irreducible and, for every h : A → B, with B ∈ S-Str¬A, there exists an
ι : A ≺ C,A 6= C, with C ∈ S-Str¬A, and a h̄ : C → B, such that h̄ ◦ ι = h.

Proof:
Follows from Proposition 35, Lemma 41, Theorem 47, Proposition 49 and

Lemma 51. �

Summarizing, in this section the notions of a maximal, weakly maximal,
meet irreducible and weakly meet irreducible S-secrecy structures were defined.
Moreover, monomorphic systems in the category S-Str were introduced. In
Theorem 46, subdirectly irreducible maximal secrecy structures were charac-
terized in terms of the existence of a monomorphic component for all suitable
monomorphic systems. A similar characterization was given in Theorem 47 for
weakly subdirectly irreducible weakly maximal secrecy structures. Propositions
48 and 49 and Lemmas 50 and 51, on the other hand, deal with characteriza-
tions of subdirectly irreducible non-maximal and weakly subdirectly irreducible
non-weakly maximal S-secrecy structures. Theorems 52 and 53 put together
all these results providing complete characterizations of subdirectly irreducible
and weakly subdirectly irreducible S-secrecy structures, respectively.

In ongoing work, the model theoretic aspects of the theory will be studied.
For this purpose, one introduces S-secrecy filters and S-secrecy matrices, that
play in S-secrecy logic a role analogous to that of S-filters and S-matrices in
abstract algebraic logic. Furthermore, based on these notions, one may define a
hierarchy of secrecy logics similar to the abstract algebraic logic hierarchy based
on the Leibniz operator. This will also be a focal point in future work.
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