Secrecy-Preserving Reasoning using Secrecy Envelopes

Giora Slutzki, George Voutsadakis and Vasant Honavar
Department of Computer Science
Iowa State University
Ames, IA 50011, USA

Abstract
In many applications of networked information systems, the need to share information often has to be balanced against the need to protect secret information from unintended disclosure, e.g., due to copyright, privacy, security, or commercial considerations. We study the problem of secrecy-preserving reasoning, that is, answering queries using secret information, whenever it is possible to do so, without compromising secret information. In the case of a knowledge base that is queried by a single querying agent, we introduce the notion of a secrecy envelope. This is a superset of the secret part of the knowledge base that needs to be concealed from the querying agent in order to ensure that the secret information is not compromised. We establish several important properties of secrecy envelopes and present an algorithm for computing minimal secrecy envelopes. We extend our analysis of secrecy preserving reasoning to the setting where different parts of the knowledge base need to be protected from different querying agents that are subject to certain restrictions on the sharing of answers supplied to them by the knowledge base.

1 Introduction
The rapid expansion of the Internet and the widespread adoption and use of distributed databases and networked information systems offer unprecedented opportunities for productive interaction and collaboration among autonomous individuals and across organizations in virtually every area of human endeavor. However, the need to share information (e.g., advance warning of an impending terrorist attack provided by FBI to a friendly nation) often has to be balanced against the need to protect sensitive or confidential information (e.g., the particular pieces of intelligence used to infer the likelihood of an attack on a specific target, the likely attackers, or the specific sources that were relied on to gather such information) from unintended disclosure. One can envision similar need for selective sharing of information arising from privacy, security, or commercial considerations in scenarios that involve interactions among different governmental agencies (e.g., intelligence, law enforcement, public policy), or independent nations acting on matters of global concern (e.g., counter-terrorism, international finance), and participants in business transactions (e.g., healthcare, insurance). Consequently, problems of trust, privacy and security in information systems in general, and networked information systems (e.g., the web), in particular, are topics of significant current interest.

Early work on information protection focused on access control mechanisms (see [Bertino et al., 2006] for a survey). For instance, work on policy languages for the web [Bonatti et al., 2006; Kolovski et al., 2007; Kagal et al., 2006] involves specifying syntax-based restrictions on access to specific resources or operations on the web. Giereth [Giereth, 2005] has studied the hiding of a fragment of an RDF document by encrypting it while the rest of the document remains publicly readable. Farkas et al. [Farkas et al., 2006; Jain and Farkas, 2006] have proposed a privacy information flow model to prevent unwanted inferences in data repositories. Jain and Farkas [Jain and Farkas, 2006] have proposed an RDF authorization model that can selectively control access to stored RDF triples using a pre-specified set of syntactic rules. In a recent paper [Cuenca Grau and Horrocks, 2008] Grau and Horrocks have introduced a framework that combines logic and probabilistic approaches to guarantee privacy preservation. A growing body of work on data linkage [O’Keefe et al., 2004] addresses the problem of disclosure of personal data from aggregate information or from separately released, non-confidential information about an individual. Recent research on privacy preserving data mining [Clifton et al., 2002] addresses the design of algorithms for constructing predictive models that describe shared characteristics of groups of individuals, e.g., patients in a clinical trial, without revealing information about specific individuals, e.g., clinical records of individual participants in the clinical trial.

Most of the existing methods for the protection of secret information rely on forbidding access to the sensitive parts of a knowledge base. Such approaches can be overly restrictive in scenarios where it is possible, and may be desirable, for a knowledge base to use secret knowledge to answer queries without risking disclosure of the secret knowledge [Bao et al., 2007]. This calls for algorithms for secrecy-preserving reasoning, that is, answering queries using secret information, whenever it is possible to do so, without compromising secret information. Against this background, we introduce the
A reasoner for the entailment system E.

We define $Z^+ = \{ x \in X : Z \vDash x \}$, the E-deductive closure of $Z \subseteq X$. E will be assumed fixed in what follows and, even though many of the concepts encountered will be relative to E, this fact will not always be made explicit.

A knowledge base $K = \langle K, B, Q, A \rangle$ over E consists of:

1. A finite set $K \subseteq X$, which represents the knowledge contained in K;
2. A finite subset B of K, representing the browsable knowledge that the querying agent has unrestricted access to;
3. A query set $Q \subseteq X$;
4. An answer set A, which is, usually either $\{ Y, U \}$ or $\{ Y, N, U \}$, for YES, NO and UNKNOWN.

Additionally, K has a subset $S \subseteq K^+$, the secret or secrecy set, which the knowledge base needs to keep secret from the querying agent. We assume that the querying agent has available a reasoner for the entailment system E. Thus, since the agent can browse B, S has to satisfy the condition $B^+ \cap S = \emptyset$.

Let $K = \langle K, B, Q, A \rangle$ be a knowledge base over an entailment system $E = \langle X, \vdash_E \rangle$. Given a function $R : Q \rightarrow \{ Y, N, U \}$, we use the following notational conventions:

$$Q_Y = \{ x \in Q : R(x) = Y \}$$

and, similarly, for Q_U (and for Q_N, in case the language has negation). A computable function $R : Q \rightarrow \{ Y, N, U \}$ is a reasoner for $K = \langle K, B, Q, A \rangle$ if it satisfies:

1. Interderivable Axiom: If $x \vdash_E y$ and $y \vdash_E x$, then $R(x) = R(y)$, for all $x, y \in X$;
2. Yes-Axiom: $B^+ \subseteq Q_Y \subseteq K^+$;
3. No-Axiom: $Q_N = \{ \neg x : x \in Q_Y \}$, in case X is a language that includes a logical negation.

A reasoner R for K is a secrecy-preserving reasoner if

$$Q_Y^+ \cap S = \emptyset. \quad (1)$$

The Interderivable Axiom ensures that two E-equivalent queries are always answered the same way. The Yes-Axiom requires that all consequences of the browsable part in the knowledge base K are answered positively to the querying agent and that every positively answered query is a consequence of the information contained in the knowledge set K. On the other hand, the No-Axiom asserts that all negations of queries with positive answers have negative answers and, therefore, all negations of queries with negative answers have positive answers. Finally, Condition (1) asserts that the querying agent cannot discover information in its secret set given information in the set of queries with positive answers (including browsable sets, by the Yes-Axiom).

3 Security Envelopes

Let $K = \langle K, B, Q, A \rangle$ be a knowledge base. Given any $Q' \subseteq Q$, we say that Q' is inferentially closed if $Q^+ \cap Q = Q'$. Note that, assuming $Q = Q^+$, the inferential closure requirement reduces to $Q^+ = Q'$. A K-reasoner R is inferentially closed if Q_Y is inferentially closed, i.e., any consequence of a finite set of Y-queries is a Y-query. If a set $S \subseteq K^+ \setminus B^+$ is to be protected by a K-reasoner R, we must have $S \subseteq Q_U$. This, however, may not be enough: It is likely that knowledge outside of S could be elicited by the querying agent and, in turn, be used to deduce information in S. To prevent this, the K-reasoner must make a possibly larger subset E_S, $S \subseteq E_S \subseteq K^+ \setminus B^+$, and this set should satisfy

Secrecy-Set Axiom: $(K^+ \setminus E_S)^+ \cap S = \emptyset$.

This Axiom is equivalent to Condition (1), if one takes $Q_Y = K^+ \setminus E_S$, i.e., every query not in E_S is answered positively (which is necessarily the case when $A = \{ Y, U \}$). A reasoner satisfying this axiom is said to be a secrecy-preserving K-reasoner (w.r.t. the secrecy-set S). The set E_S, which is not necessarily unique, is called a security or secrecy envelope (or just an envelope) of S. Envelope sets E_S always exist (e.g., the set $K^+ \setminus B^+$ is one such set), but, in order for the reasoner to be as useful, i.e., as informative, as possible, the K-reasoner should rather aim to have E_S as small as possible.

We say that an envelope E_S is a tight envelope if it is irredundant in the sense that removing any query from E_S (i.e., answering it with Y instead of U and adapting the N answers accordingly, if the language has negation), would compromise the secrecy of S. In other words, tight envelopes must satisfy the following condition:

- **Tight Envelope Property:**
 $$\forall \alpha \in E_S (\exists F \subseteq \{ K^+ \setminus E_S \} \mid (F \cup \{ \alpha \})^+ \cap S \neq \emptyset),$$

 where \subseteq_f denotes “finite subset”.

 Clearly, tight envelopes are precisely those that are minimal with respect to set inclusion. A tight envelope E_S of S is said to be optimal if it has the smallest cardinality among all tight envelopes of S. If the smallest possible (and hence optimal) envelope for a set S is S itself (which, of course, is not always the case), then S satisfies

- **Strong Secrecy-Set Axiom:** $(K^+ \setminus S)^+ \cap S = \emptyset$.

Given a knowledge base K, let F_K be the collection of all sets that satisfy the strong secrecy-set axiom, namely

$$F_K = \{ S \subseteq K^+ \setminus B^+ : (K^+ \setminus S)^+ \cap S = \emptyset \}$$

and note that $\emptyset, K^+ \setminus B^+ \subseteq F_K$. The following proposition gives a precise characterization of F_K.

Proposition 1 \(S \in \mathcal{F}_K \) if \(K^+ \setminus S \) is inerferentially closed.

Proof: First suppose that \(K^+ \setminus S \) is inerferentially closed i.e. \((K^+ \setminus S)^+ = K^+ \setminus S\). Then,

\[
\emptyset = (K^+ \setminus S) \cap (K^+ \setminus S)^+ \cap S
\]

implying \(S \in \mathcal{F}_K \). Conversely, suppose that \(S \in \mathcal{F}_K \), i.e. \((K^+ \setminus S)^+ \cap S = \emptyset\), and let \(\alpha \in (K^+ \setminus S)^+ \). We need to show that \(\alpha \in K^+ \setminus S \). Since clearly \(\alpha \in K^+ \), it suffices to show that \(\alpha \notin S \). But \(\alpha \in (K^+ \setminus S)^+ \), so membership in \(S \) would lead to a contradiction. \(\square \)

The following observation is interesting and easy to prove.

Lemma 2 \(\mathcal{F}_K \) is closed under arbitrary unions.

Proof: Let \(A_i \subseteq \mathcal{F}_K, i \in I \). Then \((K^+ \setminus A_i)^+ \cap A_i = \emptyset\), for all \(i \in I \). Therefore

\[
(K^+ \setminus \bigcup_{i \in I} A_i)^+ \cap \bigcup_{i \in I} A_i = \bigcup_{i \in I} [(K^+ \setminus A_i)^+ \cap A_i] \subseteq \bigcup_{i \in I} (K^+ \setminus A_i)^+ \cap A_i \]

whence \(\bigcup_{i \in I} A_i \in \mathcal{F}_K \). \(\square \)

The next lemma reveals a connection between tight envelopes and \(\mathcal{F}_K \). Note, however, that every \(S \in \mathcal{F}_K \) is its own, and hence optimal, envelope.

Lemma 3 If \(S \subseteq E_S \subseteq K^+ \setminus B^+ \) is a tight envelope of \(S \), then \(E_S \in \mathcal{F}_K \).

Proof: By definition, the hypothesis implies \((K^+ \setminus E_S)^+ \cap S = \emptyset \). Our task is to show that \((K^+ \setminus E_S)^+ \cap E_S = \emptyset \). Suppose there is an \(\alpha \in X \) which satisfies (i) \(\alpha \in E_S \setminus S \) and (ii) \(\alpha \in (K^+ \setminus E_S)^+ \). From (ii) it follows that there is a subset \(F \subseteq_f K^+ \setminus E_S \) such that \(\alpha \in F^+ \). On the other hand, since \(E_S \) is a tight envelope, there is a subset \(G \subseteq_f K^+ \setminus E_S \) such that for some \(\beta \in S \) and \(\beta \in (G \cup \{\alpha\})^+ \). Define the set \(H = F \cup G \). Then \(H \subseteq_f K^+ \setminus E_S \) and we have \(\beta \in (G \cup \{\alpha\})^+ \subseteq H^+ \subseteq (K^+ \setminus E_S)^+ \) which contradicts our hypothesis. \(\square \)

4 Computing Security Envelopes

There are some important computational problems related to envelopes of secrecy-sets. Given a knowledge base \(K = (K, B, Q, A) \) and \(S \subseteq_f K^+ \), a \(K \)-reasoner has to calculate a security envelope for \(S \), preferably a tight one or even optimal. Some questions relevant to these computational tasks are the following (all in the context of a fixed and given knowledge base \(K \) and secrecy set \(S \)): Does \(S \) satisfy the Strong Secrecy-Set Axiom? Is a given \(K \)-reasoner secrecy preserving? Is a given \(F \subseteq K^+ \) a tight envelope? One of the more interesting questions is how to efficiently compute tight security envelopes for given secrecy sets, especially in restricted types of knowledge bases, e.g. hierarchical (i.e., partial order) or propositional knowledge bases.

Below we give a general "lazy" approach that a \(K \)-reasoner \(R \) may adopt: wait for the queries and when one comes along, figure out how to answer it so that no information about the secrecy set \(S \) is revealed, taking into account \(R \)'s answers to the queries asked up to this point. This is the greedy heuristic with the greediness criterion being the local concern of making sure that the secrecy set is not compromised at this point of time, without giving any consideration as to how the current response may constrain \(R \)'s answers to future queries. Clearly, this approach produces a history-dependent \(K \)-reasoner, i.e., different query histories may yield different \(K \)-reasoners. We concentrate on the construction of the \(Y, N, U \) answer sets and the envelope \(E_S \) of \(S \) rather than on the equivalent task of providing the responses \(R(\alpha) \) for an incoming query \(\alpha \).

1. Lazy Reasoner Algorithm (LRA)

2. input \(S \)

3. \(X_Y \leftarrow B^+ \); \(X_U \leftarrow E_S \leftarrow S \); \(X_N \leftarrow \neg X_Y \)

4. while TRUE do

5. input \(\alpha \)

6. if \(\alpha \notin Q \) then ERROR & ignore \(\alpha \)

7. else

8. if \(\alpha \notin X_Y \cup X_U \cup X_N \) then

9. if \(\alpha \in K^+ \) then

10. if \((X_Y \cup \{\alpha\})^+ \cap S \neq \emptyset \)

11. then \(X_U \leftarrow X_U \cup \{\alpha, \neg \alpha\}; E_S \leftarrow E_S \cup \{\alpha\} \)

12. else \(X_Y \leftarrow X_Y \cup \{\alpha\}; X_N \leftarrow X_N \cup \{\neg \alpha\} \)

13. else

14. if \(\alpha \notin \neg K^+ \) then \(X_U \leftarrow X_U \cup \{\alpha, \neg \alpha\} \)

15. else \(X_Y \leftarrow X_Y \cup \{\neg \alpha\}; X_N \leftarrow X_N \cup \{\alpha\} \)

It should be clear that LRA defines a \(K \)-reasoner in that all relevant axioms are upheld at all times during the execution. The algorithm is equivalent to an algorithm presented in [Voutsadakis et al., 2008], whose execution is guided by a fixed ordering of the set of queries. It was proved in [Voutsadakis et al., 2008] that the algorithm produces a secrecy-preserving \(K \)-reasoner for \(S \), which is also maximally informative. This means that it provides a tight envelope \(E_S \) for \(S \). This algorithm will be generalized in Section 5 to deal with the case of multiple agents querying a single knowledge base. Each agent has, in general, a different browsable set and a difference secrecy set from those of other agents.

4.1 Security Envelopes in Hierarchical Knowledge Bases

We now focus on the task of computing tight (or optimal) envelopes in the restricted, yet practically important case of hierarchical (i.e., partial order) knowledge bases. In this context the knowledge base is a finite directed (acyclic) graph \(G = (V, E) \), where the vertex set \(V \) represents the elements of the given poset and the arcs in \(E \) represent a partial order. Of particular interest are hierarchical knowledge bases that are also transitive, i.e., transitive DAGs (TDAGs), e.g., the familiar "is-a" and "part-of" hierarchies.

The inferential closure of the given ontology \(G \) is its transitive closure \(G^+ = (V, E^+) \). The set of queries is \(Q = \)
is often referred to as the Directed Multicut, whose removal will disrupt all the paths from E. Garg et al. establish that the multicut is hard to approximate [Leighton and Rao, 1999; and, even worse, its optimization version of finding the smallest multicut is hard to approximate [Calinescu et al., 2005; Cheriyan et al., 2001; Chuzhoy and Khanna, 2006]. The question as to whether there exists a polynomial time algorithm for computing an optimal security envelope for TDAG-structured knowledge bases remains open.

We give two simple heuristics, the first based on a Max Flow-Min Cut algorithm and the second on computing reachability.

Example 1: Let $G = (V, E)$ be a DAG and suppose that the set of secret edges is $S = \{(s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k)\} \subseteq E^+$. We first present an algorithm based on computing minimum cuts. The algorithm does compute a multicut, but it is not guaranteed to output a tight multicut.

1. **Simple MultiCut Algorithm (SMC)**
2. $H \leftarrow G$
3. for $i = 1$ to k
4. $C_i \leftarrow \text{Min-Cut}(H, s_i, t_i)$
5. $H \leftarrow H \setminus C_i$
6. $C \leftarrow C_1 \cup C_2 \cup \ldots \cup C_k$

 Clearly, the algorithm runs in polynomial time and $H = G \setminus C$ at termination. It is also easy to see that the set C computed by the SMC algorithm is a multicut of G with respect to S, i.e., in the graph H (at termination) there is no path from s_i to t_i, $i = 1, 2, \ldots, k$. Thus, C is a security envelope of S. Unfortunately, the envelope C need not be tight; this is essentially because later cuts may have edges that make edges in previous cuts redundant. For instance, in the graph $G = \{(s_1, s_2, t_1, t_2), (s_1, s_2), (s_2, t_2), (t_2, t_1)\}$, the first cut could be $C_1 = \{(s_1, s_2)\}$ whereas the second cut must then be $C_2 = \{(s_2, t_2)\}$. As a result, we obtain the multicut $C = C_1 \cup C_2 = \{(s_1, s_2), (s_2, t_2)\}$ which clearly is not tight.

 Consider next the transitive closure of G. In this case, the first min-cut C_1 will definitely not include the edge (s_2, t_2) and will have to have three edges (either all those leaving s_1 or all those entering t_1), say $C_1 = \{(s_1, t_1), (s_1, s_2), (s_1, t_2)\}$. The second cut will still have to be $C_2 = \{(s_2, t_2)\}$. The union of these two cuts is, in fact, a tight envelope; indeed, it is optimal. □

Example 2: The second algorithm is based on repeatedly computing the reachability sets for the vertices s_i within the given directed (acyclic) graph:

1. **Simple Reachability Algorithm (SRA)**
2. $H \leftarrow G$
3. for $i = 1$ to k
4. $R_i \leftarrow \{(u, t_i) \in E \mid u \in V \text{ is reachable from } s_i\}$
5. $H \leftarrow H \setminus R_i$
6. $R \leftarrow R_1 \cup R_2 \cup \ldots \cup R_k$

 I.e., for each vertex u reachable from s_i we remove the edge (u, t_i) from the graph and place it in R (only if it does exist in the graph H). The set R resulting at termination is an envelope of S. Applying SRA to the graph G from the previous example results in the envelope $R = \{(t_2, t_1), (s_2, t_2)\}$ which is not tight. On the other hand, applying SRA to the transitive closure of G yields the envelope $R = \{(s_1, t_1), (s_1, t_2), (t_2, t_1), (s_2, t_2)\}$ which actually is optimal. The SRA algorithm is not guaranteed to produce an optimal envelope in the case of TDAG-structured knowledge bases. To see this let $G = \{(s_1, s_2, t_1, t_2), (s_1, s_2), (s_1, t_2), (t_2, t_1), (s_2, t_2), (t_1, t_2)\}$. The algorithm will output the edges entering the terminals: $R_1 = \{(s_1, t_1), (s_2, t_1)\}$ and $R_2 = \{(s_2, t_2), (t_1, t_2)\}$. The union of these two cuts is not tight because the edge (t_1, t_2) is redundant. □

5 Multi-Agent Secrecy-Preserving Reasoning

The discussion so far has focused on the restricted case of a knowledge base that is queried by a single querying agent. We now extend our analysis to a knowledge base that can be queried by multiple querying agents. We first note that when

(a) the agents are forbidden from sharing with each other the answers supplied to them by the knowledge base, or

(b) the secrecy sets for all querying agents are identical, or

(c) the querying agents are allowed to freely share the answers supplied to them by the knowledge base,

the setting with multiple querying agents poses no new challenges beyond those encountered in the setting with a single querying agent. Hence, we assume that the knowledge base can have different secrecy sets for different querying agents, and that the querying agents are subject to some restrictions on the sharing of the answers supplied to them by the knowledge base. This is intended to model practical scenarios where there are legal restrictions on sharing of information across different organizations. The main idea behind our approach in this section will be to assume that there is no external communication between the querying agents at all, but that a “communication graph” is internally stored in the knowledge base and the R-reasoner shares answers to queries
between the agents “depending on the edges” of the communication graph.

Let $G = (V, E)$ be a directed graph, called the communication graph, whose nodes represent the querying agents and whose edges represent “a way” in which answers to queries are to be passed (or shared) between the querying agents. Let $K = (K, \{B_v\}_{v \in V}, Q, A)$ be a knowledge base with a secrecy set S_u, for each $v \in V$. Consider a corresponding knowledge base $K_v = (K, B_v, Q, A)$ and a reasoner $R_v : Q \rightarrow A$, with a security envelope E_v for S_u, as discussed in Sections 2 and 3. We use the following notation: $Q_v = R_v^{-1}(Y) = K^+ \setminus E_v$; this is precisely the set of all Y-queries of the K_v-reasoner R_v.

The goal of the K-reasoner in a multiple querying-agent environment is to prevent u from figuring out formulas in S_u, for all $u \in V$; however, it is quite possible, depending on the protocol being used, that u might figure out formulas in E_v, for $v \neq u$. Whenever this presents a hindrance in an actual application, such a protocol should not be used.

All the queries to K will take the form (u, x, D) where the u indicates that the query is initiated by agent u, $x \in Q$ is the actual query, and $D \subseteq V$ indicates the subset of agents with whom the answer to the query should be shared (parentheses will be omitted for singleton). As hinted above, one can devise several ways in which, given a communication graph G, the actual communication protocol can be carried out. Some of these ways are listed and discussed below. The list is not intended to be exhaustive, but rather an initial indication of protocols that may prove useful in some particular applications. In fact, we consider the variety of communication regimes between the querying agents to be an important, application-dependent, research question, open to future exploration.

In the remainder of the section, we assume that for a query $q = (u, x, D)$, each $v \in D \cup \{u\}$ will receive the answer $(Y, N$ or U) as well as the initiator u and the query x. In particular, two distinct agents in D are not made aware of each others’ membership in D. We consider two very simple models of communication between the querying agents.

1. **Edge-queries:** Here the set of queries is $Q_e = \{ (u, x, v) \mid (u, v) \in E \land x \in Q \}$; a query $q = (u, x, v)$ is initiated by u and the answer $R_e(q)$ is submitted to both u and v (and nobody else).

2. **Partial-neighborhood-queries:** Here the query set represents a generalization of the previous two cases $Q_n = \{ (u, x, D) \mid u \in V \land x \in Q \land D \subseteq \text{Adj}(u) \}$; the query $q = (u, x, D)$ is initiated by u and the answer $R_n(q)$ is shared with the subset D of neighbors of vertices adjacent to u. A full-neighborhood-query is one in which $D = \text{Adj}(u)$.

Even though the edge-queries represent the simplest kind of communication, through its analysis we will be able to get the basic idea of our approach to the core problem of sharing the answers to queries while protecting the required secret information.

5.1 Edge queries

We shall first consider the edge-queries protocol. Consider a single edge $(u, v) \in E$ and a corresponding query $q = (u, x, v)$. What should $R_e(q)$ be, given that its goal is to disclose neither

1. $x \in S_u$, to u, nor
2. $x \in S_v$ to v?

Define the function $R_e : Q_e \rightarrow A$ by setting $R_e(q)$ to be U, if $R_u(x) = U$ or $R_v(x) = U$, and Y, otherwise. I.e., $R_e(q) = Y$ iff $x \in K^+ \setminus (E_u \cup E_v)$, as usual, we define $R_e((u, x, v)) = N$ if, and only if, $R_e((u, \neg x, v)) = Y$, in case the underlying language has negation. It is easy to see that R_e satisfies conditions 1 and 2.

Example 3: We want to illustrate a situation in which a querying agent may learn about the membership of a query in another agent’s envelope. Suppose $(u, v), (v, w) \in E$, u poses the query $q = (u, x, v)$ and v poses the query $q' = (v, x, w)$. Here are the four possibilities of answers:

1. $R_e(q) = R_e(q') = Y$: in this case u learns that $x \in Q^v \cap Q^w = K^+ \setminus (E_u \cup E_v) \wedge w$ learns that $x \in Q^v \cap Q^w = K^+ \setminus (E_u \cup E_v)$ and v learns that $x \in Q^v \cap Q^w$.
2. $R_e(q) = Y \& R_e(q') = U$: in this case u learns that $x \in Q^v \cap Q^w = K^+ \setminus (E_u \cup E_v)$, w learns that $x \in E_u \cup E_v$ and v learns that $x \in E^w \setminus (E_u \cup E_v)$.
3. $R_e(q) = U \& R_e(q') = Y$: in this case u learns that $x \in E_u \cup E_v$ and w learns that $x \in Q^v \cap Q^w = K^+ \setminus (E_u \cup E_v)$ and v learns that $x \in E^w \setminus (E_u \cup E_v)$.
4. $R_e(q) = R_e(q') = U$: in this case u learns that $x \in E_u \cup E_v$, w learns that $x \in E_u \cup E_v$ and v learns that $x \in E^w \setminus (E_u \cap E_w)$.

5.2 Neighborhood queries

Consider now the query $q = (u, x, D)$, initiated by u, whose answer is to be shared with those of its neighbors that happen to belong to the subset $D \subseteq \text{Adj}(u)$. In defining $R_n(q)$, the overall goal of being as informative as possible should be balanced against preserving secrecy. Thus R_n must not disclose either

1. $x \in S_u$, to u, or
2. $x \in S_v$ to v, for any $v \in D$.

Define the function $R_n : Q_n \rightarrow A$ by setting $R_n(q)$ to be U, if $R_u(x) = U$ or $R_v(x) = U$, for some $v \in D$, and Y, otherwise. In other words, $R_n(q) = Y$ iff $x \in K^+ \setminus (E_u \cup \bigcup_{v \in D} E_v)$. It follows that R_n will answer U to every query $q = (u, x, D)$ with $x \in E_u \cup \bigcup_{v \in D} E_v$. Again, we define $R_n((u, x, D)) = N$ if, and only if, $R_n((u, \neg x, D)) = Y$, in case the logical language has negation. Again, it can be easily verified that 1 and 2 are satisfied.

Summary

The widespread adoption of, and reliance on networked information systems call for methods for balancing the need to
share information against the need to protect sensitive or secret information. Most of the existing methods for the protection of secret information rely on forbidding access to the sensitive parts of a knowledge base. However, many applications call for a more flexible approach that allows the knowledge base to use secret information to answer queries whenever it is possible to do so without risking the disclosure of secret information. In this paper, we have formalized this problem of secrecy-preserving reasoning: introduced the notion of a secrecy envelope, i.e., a superset of secret information that should be protected in order to ensure that the secret information is protected, and analyzed some of its key properties; defined the notions of tight and optimal secrecy envelopes (depending on the order of the incoming queries). We have also introduced a simple model to facilitate the analysis of secrecy-preserving reasoning in the case of a knowledge base that answers queries from multiple querying agents with different secrecy sets, with the possibility of sharing the answers supplied to them with each other (specified by some “answer sharing” protocols). Work in progress is aimed at designing and implementing of secrecy-preserving reasoners for a broad class of knowledge bases of interest in practical applications, including, in particular, hierarchical, propositional, RDF, and computationally tractable subclasses of description logic knowledge bases.

References

