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Abstract

In their celebrated monograph “A General Algebraic Semantics for
Sentential Logics”, Font and Jansana introduced full models of a sen-
tential logic S and proved the “Subdirect Product Theorem”: For any
sentential logic S, the class of all algebraic reducts of (Tarski) reduced
full models of S coincides with the closure under subdirect products
of the class of all algebraic reducts of (Leibniz) reduced matrix models
of S. In this note the required machinery is developed that leads to
the formulation of an analog of this theorem for logics formalized as
π-institutions.

1 Introduction

Let L be an algebraic language and let V be a fixed countably infinite set of
propositional variables. The set of terms or formulas over L is denoted by
FmL(V ). It is well-known that the set of terms forms a free L-algebra over
V , which is denoted by FmL(V ) = ⟨FmL(V ),L⟩.

A sentential logic S = ⟨L,C⟩ consists of an algebraic language L to-
gether with a structural closure operator C ∶ P(FmL(V )) → P(FmL(V )).
Structurality means that, for every homomorphism h ∶ FmL(V )→ FmL(V ),

h(C(Φ)) ⊆ C(h(Φ)), for all Φ ⊆ FmL(V ).
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Sentential logics constitute the underlying structures of the general theory
of abstract algebraic logic. (See the monographs [2, 6, 7] and the books [4, 5]
for overviews of this theory.)

An L-matrix is a pair A = ⟨A, F ⟩, where A = ⟨A,LA⟩ is an L-algebra
and F ⊆ A. Given a sentential logic S = ⟨L,C⟩, an L-matrix A = ⟨A, F ⟩ is
called an S-matrix and F is called an S-filter if, for all Φ∪{φ} ⊆ FmL(V ),

φ ∈ C(Φ) implies h(Φ) ⊆ F ⇒ h(φ) ∈ F,
for every h ∶ FmL(V )→A.

The collection of all S-matrices is denoted by Mat(S) and the collection of
all S-filters on an algebra A is denoted by FiS(A). The collection of all S-
filters on A forms a complete lattice under inclusion, denoted by FiS(A) =
⟨FiS(A),⊆⟩.

Given an S-matrix A = ⟨A, F ⟩, the Leibniz congruence of A, or of F
on A (see [2], Theorem 1.5, and, also, [4], Theorem 0.5.3), denoted Ω(A) =

ΩA(F ), is the largest congruence θ on A that is compatible with F in the
sense that, for all a, a′ ∈ A,

⟨a, a′⟩ ∈ θ and a ∈ F imply a′ ∈ F.

The S-matrix A is called (Leibniz) reduced ([4], Definition 0.5.6) if
Ω(A) = idA, the identity congruence on A. The collection of all reduced S-
matrices is denoted by Mat∗(S). In the early days of abstract algebraic logic,
when the focus of the investigations was almost exclusively on the so-called
protoalgebraic logics [1], the widest class of logics thought to be amenable to
algebraic investigations (see, e.g., Introduction of [2]), the class of algebras
thought to constitute the “right” algebraic counterpart of a sentential logic S
was the class of algebraic reducts of reduced S-matrices, denoted by Alg∗(S):

Alg∗(S) = {A ∶ (∃F ∈ FiS(A))(⟨A, F ⟩ ∈Mat∗(S))}
= {A ∶ (∃F ∈ FiS(A))(Ω

A(F ) = idA)}.

An L-generalized matrix, or L-gmatrix for short, is a pair A = ⟨A,F⟩,

where A = ⟨A,LA⟩ is an L-algebra and F ⊆ P(A) is a collection of subsets
of A. When F is a closure system, A is also known as an abstract logic

(see [6], p. 15, and, also, [4], p. 410). Given a sentential logic S = ⟨L,C⟩, an
L-gmatrix A = ⟨A,F⟩ is called an S-gmatrix if, for all F ∈ F , F ∈ FiS(A).
The collection of all S-gmatrices is denoted by GMat(S). Given an S-
gmatrix A = ⟨A,F⟩, the Tarski congruence of A, or of F on A, denoted
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Ω̃(A) = Ω̃A(F), is the largest congruence θ on A that is compatible with
all filters F ∈ F . It is not very difficult to see that

Ω̃A(F) = ⋂
F ∈F

ΩA(F ). (1)

The S-gmatrix A is called (Tarski) reduced if Ω̃(A) = idA (see Defini-
tion 1.12 of [6]). The collection of all reduced S-gmatrices is denoted by
GMat∗(S). During their investigations in [6], Font and Jansana realized,
based on the study of a variety of examples, that in the most general case of
(not necessarily protoalgebraic) sentential logics, the class of algebras that
constitutes the “right” algebraic counterpart for a sentential logic S may
be the class Alg(S) of algebraic reducts of reduced S-gmatrices, which are
called S-algebras (see Definition 2.16 of [6]):

Alg(S) = {A ∶ (∃F ⊆ FiS(A))(⟨A,F⟩ ∈ GMat∗(S))}

= {A ∶ (∃F ⊆ FiS(A))(Ω̃
A(F) = idA)}.

In Theorem 2.23 of [6], it is shown that, for any sentential logic S, the
class AlgS is the class of all subdirect products of algebras in the class
Alg∗S, i.e., that AlgS = PSAlg

∗S.
The structure of the present work follows the development of the relevant

machinery that leads to the formulation of an analog of Theorem 2.23 of [6]
to logics formalized as π-institutions.

In Section 2 we introduce some of the basics of the theory of π-insti-
tutions as related to categorical abstract algebraic logic, with the goal of
defining formally the classes of algebraic systems and of algebraic system
reducts of reduced matrix systems associated with a given π-institution.
These two classes correspond in the categorical framework to the classes
AlgS and Alg∗S, described above, in the framework of sentential logics.
Section 3 introduces the notion of subdirect product for algebraic systems.
The notion aims at capturing as closely as possible the ordinary notion used
in universal algebra (see, e.g., Definition 8.1 of [3]). The main difference,
apart from the added complexity of the notion of an algebraic system as
compared with that of a universal algebra, is that we consider, so-called,
interpreted algebraic systems, i.e., algebraic systems with a fixed interpre-
tation from a base algebraic system to their elements. The base algebraic
system is taken to be the underlying algebraic system over which the π-
institution modeling the logical system is based. These broadens the notion
of the free algebra of formulas (or terms) used in (universal) abstract alge-
braic logic. Finally, in Section 4, the main result of the paper, the Subdirect
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Product Theorem, which is the analog of Theorem 2.23 of [6], is formulated,
based on the notions introduced in Sections 2 and 3, and its proof is given.

2 Preliminaries

An algebraic system A = ⟨Sign,SEN,N⟩ consists of a category Sign, a
Set-valued functor SEN ∶ Sign → Set and a category N of natural transfor-
mations on SEN (see, e.g., Section 2 of [9]).

Example 1 Consider a language L, the formula algebra FmL(V ) and an

L-algebra A = ⟨A,LA⟩. Both can be considered as algebraic systems in a
rather trivial way. For the first, take SignL to be the one element cate-
gory ☀L, with collection of morphisms all assignments from variables to
formulas, i.e., maps a ∶ V → FmL(V ). The identity of this category is
the “insertion of variables” map and composition is the Kleisli composition
b ○ a ∶ V → FmL(V ) given by b ○ a = b∗a, where b∗ ∶ FmL(V ) → FmL(V ) is
the extension of the assignment b ∶ V → FmL(V ) to formulas, effected by the
freeness of FmL(V ) on V . The functor SENL ∶ ☀L → Set sends the only
object ∗ of ☀L to FmL(V ) and an assignment a to the endomorphism a∗.
Finally, the category NL of natural transformations is the clone of finitary
operations of FmL(V ) generated by the basic operations in L. So the free
algebra FmL(V ) is formalized as the algebraic system F = ⟨☀L,SENL,NL⟩.

In some contexts it is preferable to drop the morphisms altogether and
consider☀L to be the trivial category. In that case, we write F

t, where the
superscript refers to the trivialization of the signature category.

In a similar way we formalize the L-algebra A as an algebraic system
A = ⟨☀A,SENA,NA⟩ (using the same letter and relying on context to avoid
confusion). The category ☀A has a unique object ∗ and its morphisms
are all the endomorphisms of A with ordinary composition. The functor
SENA ∶ ☀A → Set maps ∗ to A and an endomorphism h ∶ A → A to its
underlying mapping h ∶ A → A. Finally, NA is the clone of operations on A

generated by the fundamental operations LA of the L-algebra A.
In analogy with the preceding case, we may want to drop the morphisms,

in which case we write A
t for the resulting algebraic system.

Let Sign be a category and SEN ∶ Sign → Set a functor. A clo-

sure system C = {CΣ}Σ∈∣Sign∣ on SEN is a collection of closure operators
CΣ ∶ P(SEN(Σ)) → P(SEN(Σ)), Σ ∈ ∣Sign∣, that satisfy the structurality

condition

SEN(f)(CΣ1
(Φ)) ⊆ CΣ2

(SEN(f)(Φ)),
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for all Σ1,Σ2 ∈ ∣Sign∣, f ∈ Sign(Σ1,Σ2) and Φ ⊆ SEN(Σ1).
A closure system on an algebraic system A = ⟨Sign,SEN,N⟩ is a

closure system on SEN.
A π-institution I = ⟨A,C⟩ is a pair consisting of an algebraic system

A = ⟨Sign,SEN,N⟩ and a closure system C = {CΣ}Σ∈∣Sign∣ on A.

Example 2 Consider a sentential logic S = ⟨L,C⟩. The sentential logic S
may be formalized as a π-institution in a rather trivial way. In fact, we let
IS = ⟨F ,C⟩, where C∗ = C. Note that structurality of C gives the required
structurality of C∗, expressed in this case by the inclusion a∗(C∗(Φ)) ⊆
C∗(a∗(Φ)), for all assignments a ∶ V → FmL(V ) and all Φ ⊆ FmL(V ).

Alternatively, we can also formalize S as It
S
= ⟨F t,C⟩. In this case

structurality of C∗ is trivial.

Suppose, for the remainder of this discussion that I = ⟨A,C⟩, with A =
⟨Sign,SEN,N⟩, is a fixed π-institution.

An (N -)algebraic system A
′ = ⟨Sign′,SEN′,N ′⟩ is an algebraic sys-

tem, such that there exists a surjective functor O′ ∶ N → N ′ that preserves all
projection natural transformations. This condition implies that O′ preserves
the arities of all objects and, therefore, also the arities of all natural trans-
formations in N . We usually denote σ′ = O′(σ), the natural transformation
in N ′ that is the image of σ in N .

Example 3 Note that A as an algebraic system is an NL-algebraic system.
The surjective functor from NL onto NA preserves all projections and maps
the fundamental term operations in L as applied to FmL(V ) to the corre-

sponding fundamental operations in LA. This map has a unique extension
to the clone of operations on FmL(V ), since this clone is generated by the
operations in L. Moreover, it is onto since the clone of operations NA is

generated by the the operations in LA.

An (interpreted) algebraic system (for I) is a pair A′ = ⟨A′, ⟨F,α⟩⟩,
where

• A
′ = ⟨Sign′,SEN′,N ′⟩ is an algebraic system;

• ⟨F,α⟩ ∶A →A
′ is an algebraic system morphism, i.e., a pair consisting

of a functor F ∶ Sign → Sign′ and a natural transformation α ∶ SEN→
SEN′ ○F , such that

αΣ′(σΣ(φ0, . . . , φk−1)) = σ
′

F (Σ)(αΣ(φ0), . . . , αΣ(φk−1)),
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for all σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign∣ and all φ0, . . . , φk−1 ∈
SEN(Φ).

Example 4 Consider the π-institution It
S
= ⟨F t,C⟩.

• The pair F = ⟨F , ⟨J, ζ⟩⟩, where J ∶ F t → F is the only available functor
and ζ∗ = idFmL(V ), is an interpreted algebraic system for It

S
.

• The pair A = ⟨A.⟨F,α⟩⟩, where F ∶ F t → A is the only available
functor and α∗ ∶ FmL(V ) → A is the underlying set map of an L-
homomorphism α∗ ∶ FmL(V ) → A, is also an interpreted algebraic
system for It

S
.

A matrix system (for I) is a pair A′ = ⟨A′, T ′⟩, whereA′ is an algebraic
system and T ′ = {T ′

Σ′
}Σ′∈∣Sign′∣ is a sentence family of A′, i.e., a collection

of subsets T ′
Σ′
⊆ SEN′(Σ′), for all Σ′ ∈ ∣Sign′∣. We denote the collection of

all sentence families of A′ by SenFam(A′).1

A matrix system A′ = ⟨A′, T ′⟩ defines (or generates or induces) a
closure system CA′ on SEN in the following way: For all Σ ∈ ∣Sign∣ and all
Φ ∪ {φ} ⊆ SEN(Σ), we have

φ ∈ CA′

Σ
(Φ) iff αΣ′(SEN(f)(Φ)) ⊆ T ′F (Σ′) ⇒ αΣ′(SEN(f)(φ)) ∈ T ′F (Σ′),

for all Σ′ ∈ ∣Sign∣, f ∈ Sign(Σ,Σ′).

We denote the defining condition more succinctly by Φ ⊧A
′

Σ
φ. So we have,

by definition, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CA′

Σ (Φ) iff Φ ⊧A
′

Σ φ.

Example 5 Consider again the algebraic system F
t and the interpreted

algebraic system F = ⟨F , ⟨J, ζ⟩⟩. Let T ∈ Th(S) be a ∗-theory of the π-
institution It

S
, i.e., a theory of the sentential logic S. Consider the matrix

system for It
S
given by

F = ⟨F ,{T}⟩.

Then, we have, for all Φ ∪ {φ} ⊆ FmL(V ),

φ ∈ CF
∗(Φ) iff Φ ⊆ T ⇒ φ ∈ T

iff φ ∈ C{T,FmL(V )}(Φ),

where C{T,FmL(V )} is the closure system on FmL(V ), with T and FmL(V )
as its only closed sets.

1In preceding papers by the author sentence families have also been called “axiom

families” and their collection was denoted by AxFam(A′).



CAAL: The Subdirect Product Theorem 7

A matrix system A′ = ⟨A′, T ′⟩ is called an I-matrix system if C ≤ CA′,
i.e., if, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies φ ∈ CA′

Σ (Φ).

In this case, we say that T ′ is an I-filter family of A′. The collection of
all I-filter families of A′ is denoted by FiFamI(A′) and the collection of all
I-matrix systems is denoted by MatSys(I).

Example 6 Consider the algebraic system F
t and the interpreted algebraic

system A = ⟨A, ⟨F,α⟩⟩. Let T ′ ⊆ A be a subset of A. We have:

T ′ ∈ FiFamI
t
S(A)

iff for all Φ ∪ {φ} ⊆ FmL(V ), φ ∈ C∗(Φ) ⇒ φ ∈ C
⟨A,T ′⟩
∗ (Φ)

iff for all Φ ∪ {φ} ⊆ FmL(V ), φ ∈ C∗(Φ) ⇒ (α∗(Φ) ⊆ T ′⇒ α∗(φ) ∈ T ′).

A few comments concerning the current context as contrasted to that
encountered in the theory of sentential logics are in order. Under the for-
malization in Example 6, a matrix system does not capture the notion of the
logical matrix from the theory of sentential logics. Whereas in the theory of
sentential logics one requires the condition

φ ∈ C(Φ) ⇒ (∀α∗ ∶ FmL(V ) →A)(α∗(Φ) ⊆ T ′⇒ α∗(φ) ∈ T ′),

for T ′ to be an S-filter on A, in the present case, one works with a fixed
algebraic morphism ⟨F,α⟩ interpreting It

S
into A. In the context of π-

institutions, this is justified by the fact that, in considering interpretations
across institutions, one is having in mind mapping signatures of one log-
ical system to signatures of another, not merely homomorphisms between
structures over the same signature in the same logical system (which, af-
ter all, should be morphisms of a single institution representing the logical
system under consideration and its models). Against this radically different
background, it seems reasonable to admit as a model of one logical system
another system into which the symbols of the first can be mapped under a
specific interpretation, rather than across all possible interpretations.

Continuing with the general theory, a generalized matrix system

(for I) or gmatrix system (for I) is a pair A′ = ⟨A′,T ′⟩, where A′ is an
algebraic system and T ′ ⊆ SenFam(A′) is a collection of sentence families of
A′.

A gmatrix system A
′ = ⟨A′,T ′⟩ defines (or generates or induces) a

closure system CA
′

on SEN in the following way:

CA
′

= ⋂
T ′∈T ′

C⟨A
′,T ′⟩.
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So we have, by definition, for all Σ ∈ ∣Sign∣ and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CA
′

Σ (Φ) iff Φ ⊧⟨A
′,T ′⟩

Σ
φ, for all T ′ ∈ T ′.

A gmatrix system A
′ = ⟨A′,T ′⟩ is called an I-gmatrix system if C ≤

CA
′

. The collection of all I-gmatrix systems is denoted by GMatSys(I).
Let A′ be an algebraic system and T ′ a sentence family of A′. Recall that

a congruence system θ on A′ is a collection θ = {θΣ}Σ∈∣Sign′∣, such that,
for all Σ ∈ ∣Sign′∣, θΣ is an equivalence relation on SEN′(Σ) and such that
the family θ is invariant under both natural transformations in N ′ (making
each θΣ a congruence) and signature morphisms in Sign′ (making the family
θ a system), i.e.,

• for all Σ ∈ ∣Sign′∣, all σΣ ∶ SEN′(Σ)k → SEN′(Σ), and all ϕ0, ψ0, . . . ,

ϕk−1, ψk−1 ∈ SEN
′(Σ),

⟨ϕi, ψi⟩ ∈ θΣ, i < k, implies ⟨σ′Σ(ϕ0, . . . , ϕk−1), σ
′
Σ(ψ0, . . . , ψk−1)⟩ ∈ θΣ;

• for all Σ,Σ′ ∈ ∣Sign′∣, all f ∶ Sign′(Σ,Σ′), ϕ,ψ ∈ SEN′(Σ),

⟨ϕ,ψ⟩ ∈ θΣ implies ⟨SEN′(f)(ϕ),SEN′(f)(ψ)⟩ ∈ θΣ′ .

The Leibniz congruence system ΩA
′

(T ′) of T ′ is the largest congruence
system on A′ that is compatible with T ′ (see Proposition 2.2 of [8]) in the
sense that, for all Σ ∈ ∣Sign′∣ and all φ,ψ ∈ SEN′(Σ),

⟨φ,ψ⟩ ∈ ΩA
′

Σ (T
′) and φ ∈ T ′Σ imply ψ ∈ T ′Σ.

Equivalently, T ′ is a signature-wise union of congruence classes modulo
ΩA

′

(T ′).
Let A′ be an algebraic system and T ′ ⊆ FiFamI(A′). The Tarski con-

gruence system Ω̃A
′

(T ′) of T ′ is the largest congruence system on A′ that
is compatible with all T ′ ∈ T ′ (see Theorem 3 of [9]). It is not difficult to
see that

Ω̃A
′

(T ′) = ⋂
T ′∈T ′

ΩA
′

(T ′).

An I-matrix system A′ = ⟨A′, T ′⟩ is said to be (Leibniz) reduced if
ΩA

′

(T ′) =∆A
′

, the (signature-wise) identity congruence system on A′. The
collection of all reduced I-matrix systems is denoted by MatSys∗(I).

Similarly, an I-gmatrix system A
′ = ⟨A′,T ′⟩ is said to be (Tarski) re-

duced if Ω̃A
′

(T ′) =∆A
′

. The collection of all reduced I-gmatrix systems is
denoted by GMatSys∗(I).



CAAL: The Subdirect Product Theorem 9

An algebraic system A′ is called an I∗-algebraic system if A′ is the
algebraic system reduct of a reduced I-matrix system, i.e., if and only if there
exists T ′ ∈ FiFamI(A′), such that ⟨A′, T ′⟩ ∈MatSys∗(I). The collection of
all I∗-algebraic systems is denoted by AlgSys∗(I):

AlgSys∗(I) = {A′ ∶ (∃T ′ ∈ FiFamI(A′))(ΩA
′

(T ′) =∆A
′

)}.

On the other hand, an algebraic system A′ is called an I-algebraic system

if A′ is the algebraic system reduct of a reduced I-gmatrix system, i.e., if
and only if there exists T ′ ⊆ FiFamI(A′), such that ⟨A′,T ′⟩ ∈ GMatSys∗(I).
The collection of all I-algebraic systems is denoted by AlgSys(I):

AlgSys(I) = {A′ ∶ (∃T ′ ⊆ FiFamI(A′))(Ω̃A
′

(T ′) =∆A
′

)}.

3 Subdirect Products

Consider an algebraic system A
′ = ⟨Sign′,SEN′,N ′⟩. An algebraic system

A
′′ = ⟨Sign′′,SEN′′,N ′′⟩ is called an algebraic subsystem of A

′ if the
following hold:

• Sign′′ = Sign′;

• SEN′′(Σ) ⊆ SEN′(Σ), for all Σ ∈ ∣Sign′∣, and

SEN′′(f) = SEN′(f) ↾SEN′′(Σ), for all f ∈ Sign
′(Σ,Σ′);

• σ′′ = σ′ ↾SEN′′(Σ), for all σ ∶ SEN
k → SEN in N .

Moreover, if A′ = ⟨A′, ⟨F ′, α′⟩⟩ is an interpreted algebraic system, then A′′ =
⟨A′′, ⟨F ′′, α′′⟩⟩ is an (interpreted) algebraic subsystem of A′ if A′′ is an
algebraic subsystem of A′ and, in addition, the following diagram commutes

A

✠�
�
�
�
�

⟨F ′′, α′′⟩
❅
❅
❅
❅
❅

⟨F ′, α′⟩

❘
A
′′

⟨ISign, ι⟩
✲ A

′

where ⟨ISign, ι⟩ ∶A′′ →A
′ denotes the signature-wise inclusion morphism.

Consider, next, a collection {Ai ∶ i ∈ I} of algebraic systems A
i =

⟨Signi,SENi,N i⟩. The product algebraic system

∏
i∈I

A
i = ⟨∏

i∈I

Signi,∏
i∈I

SENi,∏
i∈I

N i⟩
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is defined as follows:

• ∏i∈I Sign
i is the category with objects ∏i∈I ∣Sign

i∣. For all Σi,Σ′i ∈
∣Signi∣, i ∈ I,

∏
i∈I

Signi(⟨Σi ∶ i ∈ I⟩, ⟨Σ′i ∶ i ∈ I⟩) =∏
i∈I

Signi(Σi,Σ′i).

• ∏i∈I SEN
i ∶∏i∈I Sign

i → Set is defined by setting

∏
i∈I

SENi(⟨Σi ∶ i ∈ I⟩) =∏
i∈I

SENi(Σi), for all Σi ∈ ∣Signi∣, i ∈ I,

and

∏
i∈I

SENi(⟨f i ∶ i ∈ I⟩)(⟨φi ∶ i ∈ I⟩) = ⟨SENi(f i)(φi) ∶ i ∈ I⟩,

for all Σi,Σ′i ∈ ∣Signi∣, f i ∈ Signi(Σi,Σ′i) and all φi ∈ SENi(Σi), i ∈ I.

• σ∏i∈I N
i

∶ (∏i∈I SEN
i)k →∏i∈I SEN

i is defined, for all Σi ∈ ∣Signi∣ and
all φi0, . . . , φ

i
k−1 ∈ SEN

i(Σi), i ∈ I, by

σ∏
N i

⟨Σi ∶i∈I⟩
(⟨φi0 ∶ i ∈ I⟩, . . . , ⟨φ

i
k−1 ∶ i ∈ I⟩) = ⟨σ

i
Σi(φi0, . . . , φ

i
k−1) ∶ i ∈ I⟩.

Furthermore, if Ai = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, are interpreted algebraic sys-
tems, then their (interpreted) product algebraic system is ∏i∈I A

i =
⟨∏i∈I A

i,∏i∈I⟨F
i, αi⟩⟩, where ∏i∈I A

i is the product algebraic system of the
A

i, i ∈ I, and ∏i∈I⟨F
i, αi⟩ ∶ A → ∏i∈I A

i is the unique algebraic system
morphism that makes the following diagram commute

A

✠�
�
�
�
�

∏i∈I⟨F
i, αi⟩

❅
❅
❅
❅
❅

⟨F i, αi⟩

❘
∏A

i

⟨P i, pi⟩
✲ A

i

where ⟨P i, pi⟩ ∶∏i∈I A
i →A

i is the i-th projection morphism.
Consider again a collection {Ai ∶ i ∈ I} of algebraic systems. An algebraic

system A
′ is a subdirect product algebraic system of the A

i, i ∈ I, if
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it is an algebraic subsystem of the direct product algebraic system ∏i∈I A
i,

such that, for all i ∈ I, the composition

A
′
⊂

⟨ISign′ , ι⟩✲ ∏
i∈I

A
i ⟨P i, pi⟩ ✲ A

i

is a surjective algebraic system morphism.
On the other hand, an interpreted algebraic system A′ = ⟨A′, ⟨F ′, α′⟩⟩

is an (interpreted) subdirect product algebraic system of the inter-
preted algebraic systemsAi = ⟨Ai, ⟨F i, αi⟩⟩, i ∈ I, ifA′ is a subdirect product
algebraic system of the A

i, i ∈ I, and the following diagram commutes

A

✠�
�
�
�
�
�
�

⟨F ′, α′⟩

❅
❅
❅
❅
❅
❅
❅

⟨F i, αi⟩

❘
A
′
⊂

⟨ISign′ , ι⟩
✲ ∏

i∈I

A
i

∏i∈I⟨F
i, αi⟩

❄

⟨P i, pi⟩
✲ A

i

(2)

We will denote by PS(K) the class of all subdirect product algebraic systems
of families of algebraic systems belonging to the class K.

4 The Subdirect Product Theorem

Having built the necessary machinery, we are now in a position to formulate
the promised analog of Theorem 2.23 of [6], which was the main goal of our
work.

Theorem 7 Let I = ⟨A,C⟩ be a π-institution based on the algebraic system
A = ⟨Sign,SEN,N⟩. Then

AlgSys(I) = PS(AlgSys
∗(I)).

Proof: Suppose that Ai = ⟨Ai, ⟨F i, αi⟩⟩ ∈ AlgSys∗(I), for all i ∈ I. Then,
there exist T i ∈ FiFamI(Ai), such that ⟨Ai, T i⟩ ∈ MatSys∗(I). Consider
a subdirect product algebraic system A′ = ⟨A′, ⟨F ′, α′⟩⟩ of the collection
Ai = ⟨Ai, ⟨F i, αi⟩⟩, as in Diagram (2). We must show A′ ∈ AlgSys(I), i.e.,
we must exhibit a collection T ′ ⊆ FiFamI(A′), such that Ω̃A

′

(T ′) =∆A
′

.
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For all i ∈ I, we define Si = ι−1(pi
−1

(T i)). Then, since T i ∈ FiFamI(Ai),
we get that Si ∈ FiFamI(A′). We define T ′ = {Si ∶ i ∈ I}. Then, we have

Ω̃A
′

(T ′) = Ω̃A
′

({Si ∶ i ∈ I})
= Ω̃A

′

({(piι)−1(T i) ∶ i ∈ I})
= ⋂i∈I Ω

A′((piι)−1(T i)) (by Equation (1))

= ⋂i∈I(piι)−1(ΩA
i

(T i)) (piι surjective)

= ⋂i∈I(piι)−1(∆A
i

) (⟨Ai, T i⟩ reduced)
= ∆A

′

.

Since Ω̃A
′

(T ′) =∆A
′

, we get A′ ∈ AlgSys(I), as desired.
Suppose, conversely, that A′ = ⟨A′, ⟨F ′, α′⟩⟩ ∈ AlgSys(I). Then, there

exists T ′ ⊆ FiFamI(A′), such that ⟨A′,T ′⟩ ∈ GMatSys∗(I), i.e., such that
Ω̃A

′

(T ′) =∆A
′

. We consider the algebraic systems

A′/ΩA
′

(T ′) = ⟨A′/ΩA
′

(T ′), ⟨F ′, πΩ
A
′
(T ′)α⟩⟩, T ′ ∈ T ′.

A

✠�
�
�
�
�

⟨F ′, α′⟩
❅
❅
❅
❅
❅

⟨F ′, πΩ
A
′
(T ′)α′⟩

❘
A
′

⟨ISign′ , π
Ω
A
′
(T ′)⟩

✲ A
′/ΩA

′

(T ′)

Clearly, since ΩA
′/ΩA

′
(T ′)(T ′/ΩA

′

(T ′)) = ∆A
′/ΩA

′
(T ′), for all T ′ ∈ T ′, we get

that A′/ΩA
′

(T ′) ∈ AlgSys∗(I), for all T ′ ∈ T ′. We, next form the direct
product algebraic system ∏T ′∈T ′ A

′/ΩA
′

(T ′) (right triangle in the diagram
below). We claim that the following diagram gives a (interpreted) subdirect
product algebraic system.

A

✙✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟

⟨F ′, α′⟩

❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍❍

⟨F ′, πΩ
A
′
(T ′)α′⟩

❥
A
′

∏T ′⟨ISign′ , π
Ω
A
′
(T ′)⟩

✲ ∏
T ′

A
′/ΩA

′

(T ′)

∏T ′⟨F
′, πΩ

A
′
(T ′)α′⟩

❄

⟨P T ′ , pT
′

⟩
✲ A

′/ΩA
′

(T ′)

This will conclude the proof, since then A′ ∈ PS(AlgSys∗(I)).
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First, we show that ∏T ′⟨ISign′ , π
Ω
A
′
(T ′)⟩ is injective. Let Σ ∈ ∣Sign′∣ and

φ,ψ ∈ SEN′(Σ), such that

⟨πΩ
A
′
(T ′)

Σ
(φ) ∶ T ′ ∈ T ′⟩ = ⟨πΩ

A
′
(T ′)

Σ
(φ) ∶ T ′ ∈ T ′⟩.

This means, by the definitions involved, that φ/ΩA
′

Σ
(T ′) = ψ/ΩA

′

Σ
(T ′), for

all T ′ ∈ T ′. Hence

⟨φ,ψ⟩ ∈ ⋂T ′∈T ′ Ω
A′

Σ
(T ′)

= Ω̃A
′

(T ′) (by Equation (1))

= ∆A
′

(⟨A′,T ′⟩ reduced).

Therefore, φ = ψ and ∏T ′⟨ISign′ , π
Ω
A
′
(T ′)⟩ is injective.

Next, we show that, for all T ′ ∈ T ′, the composition

A
′
∏T ′ ⟨ISign′ , π

Ω
A′(T ′)⟩✲ ∏

T ′
A
′/ΩA

′

(T ′)
⟨PT

′
, p

T
′
⟩ ✲ A

′/ΩA
′

(T ′)

is a surjective morphism. To this end, let Σ ∈ ∣Sign′∣ and φ/ΩA
′

Σ
(T ′) ∈

SEN′(Σ)/ΩA
′

Σ
(T ′). Then, we have

pT
′

Σ
(⟨πΩ

A
′
(T ′)

Σ
(φ) ∶ T ′ ∈ T ′⟩) = pT

′

Σ
(⟨φ/ΩA

′

Σ
(T ′) ∶ T ′ ∈ T ′⟩)

= φ/ΩA
′

Σ
(T ′).

Therefore, ⟨P T ′ , pT
′

⟩○∏T ′⟨ISign′ , π
Ω
A
′
(T ′)⟩ is surjective, for all T ′ ∈ T ′, show-

ing that A′ is a subdirect product algebraic system. ∎
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