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Abstract

The work of Jansana on selfextensional logics with conjunction, that was partially
based on the well-known work of Font and Jansana on providing a general algebraic
semantics for sentential logics, is abstracted to cover selfextensional logics with conjunc-
tion, formalized as π-institutions. Analogs are provided in this more general context
of the main results of Jansana: 1. The class of algebras AlgS naturally associated
with a selfextensional logic S with a conjunction is a variety. 2. Every selfextensional
logic with a conjunction is fully selfextensional. 3. For every algebraic signature with
a binary term ∧, there is a dual isomorphism between the set of selfextensional logics
with conjunction ∧, ordered by extension, and the set of all subvarieties of the variety
axiomatized by the semilattice equations with respect to ∧, ordered by inclusion. In
order to prove analogs of these results at the categorical level, we use the powerful ma-
chinery developed in the last few years in this area, including results from the theory
of varieties and quasi-varieties of algebraic systems.

1 Introduction

Given a deductive system S = 〈L,`S〉, and a set Γ ⊆ FmL(V ), the Frege relation ΛS(Γ) of
S relative to Γ is the binary relation on FmL(V ) defined, for all φ, ψ ∈ FmL(V ), by

〈φ, ψ〉 ∈ ΛS(Γ) iff Γ, φ `S ψ and Γ, ψ `S φ.

If this relation is a congruence on the formula algebra, for all Γ ⊆ FmL(V ), then S is said to
be Fregean. The name comes from the fact that this property may be viewed as the formal
counterpart of Frege’s compositionality principle for truth and is originally due to Suszko
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(see, e.g., [20, 21]). Fregean deductive systems were extensively studied by Czelakowski and
Pigozzi in [8, 9].

Given, on the other hand, a π-institution I = 〈Sign,SEN, C〉 and an axiom family
F = {FΣ}Σ∈|Sign|, the Frege equivalence system ΛI(F ) = {ΛIΣ(F )}Σ∈|Sign| of I relative to
F is the equivalence system on SEN, defined, for all Σ ∈ |Sign|, by

〈φ, ψ〉 ∈ ΛIΣ(F ) iff CΣ′(FΣ′ ,SEN(f)(φ)) = CΣ′(FΣ′ , SEN(f)(ψ)),
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′).

A π-institution I = 〈Sign,SEN, C〉, with N a category of natural transformations on
SEN, is said to be N -Fregean if, for every axiom family F , the Frege relation ΛI(F ) is an
N -congruence system on SEN. This property directly generalizes the previously defined
Fregean property for deductive systems.

There are many logics in the literature that are not Fregean. Many of these, however, do
satisfy a weaker property called selfextensionality. Given a deductive system S = 〈L,`S〉,
the interderivability relation Λ(S) of S is the binary relation on FmL(V ) defined, for all
φ, ψ ∈ FmL(V ) by

〈φ, ψ〉 ∈ Λ(S) iff φ `S ψ and ψ `S φ.

The deductive system S is called selfextensional if Λ(S) is a congruence relation on the
formula algebra. The name is due to Wójcicki (see [35]). The Tarski congruence Ω̃(S) is the
largest congruence on the formula algebra that is included in the interderivability relation
of S, whence an equivalent condition to selfextensionality is the condition Λ(S) = Ω̃(S).

As one would imagine, given a π-institution I = 〈Sign,SEN, C〉, the interderivability or
Frege equivalence system of I is the equivalence system Λ(I) = {ΛΣ(I)}Σ∈|Sign| on SEN,
that is defined, for all Σ ∈ |Sign|, by

〈φ, ψ〉 ∈ ΛΣ(I) iff CΣ(φ) = CΣ(ψ).

A π-institution I, as above, with N a category of natural transformations on SEN, is said to
be N -selfextensional if Λ(I) is an N -congruence system on SEN. Since, in the π-institution
framework, it is also true that the Tarski N -congruence system Ω̃N (I) is the largest N -
congruence system that is included in the Frege equivalence system Λ(I), we obtain that I
is N -selfextensional if and only if Λ(I) = Ω̃N (I).

One of the main achievements of Abstract Algebraic Logic has been the classification of
sentential logics into different steps of an algebraic hierarchy of logics that roughly reflect
the strength of the ties between the logic and a naturally associated algebraic counterpart.
The stronger these ties are, the closer the connection between metalogical properties that
the logic possesses and corresponding algebraic properties of the algebraic counterpart. The
sentential logics that form the widest class in this hierarchy are the protoalgebraic logics,
that were introduced and studied by Czelakowski [6] and Blok and Pigozzi [3]. A deductive
system S = 〈L,`S〉 is protoalgebraic if, for every theory T of S and all φ, ψ ∈ FmL(V ),

〈φ, ψ〉 ∈ Ω(T ) implies T, φ `S ψ and T, ψ `S φ,
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in other words, S is protoalgebraic if, whenever two formulas are congruent modulo the
Leibniz congruence of the theory T , they must also be interderivable modulo T , for every
theory T of S. Two other characterizations of protoalgebraicity turn out to be very useful in
various contexts. The first states that S is protoalgebraic if and only if the Leibniz operator
on the theories of the logic is monotone, i.e., for every T1, T2 ∈ Th(S), if T1 ⊆ T2, then
Ω(T1) ⊆ Ω(T2). The second, syntactic in nature, asserts that S is protoalgebraic if and only
if, there exists a set ∆ of formulas in two variables, that satisfies

1. `S ∆(φ, φ), for all φ ∈ FmL(V ), and

2. φ, ∆(φ, ψ) `S ψ, for all φ, ψ ∈ FmL(V ).

Other classes that one encounters in the algebraic hierarchy of sentential logics are the
classes of equivalential logics [18, 5], of weakly algebraizable logics [7], of algebraizable
logics [14, 15, 16] and of finitely algebraizable logics [4] among others.

One of the main reasons that selfextensional deductive systems have been recently at
the focus of many studies in Abstract Algebraic Logic is that they can be found in every
class of the Leibniz hierarchy. Therefore, as Jansana points out in [17], their study “can
bring to the surface phenomena that do not come to it naturally when studying the classes
of the Leibniz hierarchy”.

Recently, analogs of the Tarski operator and of the Leibniz operator have also been
introduced for π-institutions (see [22] for the former and [27] for the latter). This has
led to the introduction of a categorical abstract hierarchy of π-institutions that consists of
classes similar to the classes in which the standard hierarchy classifies deductive systems.
Protoalgebraic π-institutions were introduced in [27], equivalential π-institutions in [29],
weakly algebraizable π-institutions in [30] and syntactically N -algebraizable π-institutions
in [34]. The introduction of these classes and their study leads naturally to the attempt,
initiated in [33] and continued in the present work, of studying selfextensional π-institutions
and their properties with the hope that they will provide in the categorical theory insights
as valuable as those provided by the study of selfextensional deductive systems.

In the remainder of this introduction, we summarize a few facts concerning protoal-
gebraic π-institutions, that constitute the widest of the main classes in the categorical
abstract hierarchy of π-institutions, and revisit a few concepts from the theory of mod-
els of π-institutions [23] that will be needed to define full N -selfextensionality and full
N -Fregeanity.

A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, is said to be N -protoalgebraic, if, for every theory family T of I, all Σ ∈ |Sign| and
all φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ ΩN
Σ (T ) implies CΣ(TΣ, φ) = CΣ(TΣ, ψ).

A characterization of N -protoalgebraicity using the N -Leibniz operator states that I is
N -protoalgebraic if and only if the N -Leibniz operator is monotone on the collection of
all theory families of I, i.e., if and only if, for all T, T ′ ∈ ThFam(I), if T ≤ T ′, then
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ΩN (T ) ≤ ΩN (T ′). The syntactic characterization of protoalgebraicity for deductive systems,
given above, is not valid in the context of π-institutions. The existence of a collection ∆
of binary natural transformations on SEN in N , such that, for all Σ ∈ |Sign| and all
φ, ψ ∈ SEN(Σ),

1. ∆Σ(φ, φ) ⊆ CΣ(∅) and

2. ψ ∈ CΣ(φ, ∆Σ(φ, ψ))

provides only a sufficient condition for I to be N -protoalgebraic rather than characterizing
N -protoalgebraicity (see proposition 3.2 of [28]).

Given a π-institution I = 〈Sign, SEN, C〉, an (N,N ′)-model of I is a π-institution
I ′ = 〈Sign′,SEN′, C ′〉, with N ′ a category of natural transformations on SEN′, together
with an (N, N ′)-logical morphism 〈F, α〉 : I〉−seI ′. The π-institution I ′ is the 〈F, α〉-min
(N,N ′)-model of I on SEN′ if, for every C ′′, such that I ′′ = 〈Sign′, SEN′, C ′′〉 is also a model
of I via 〈F, α〉, we have that C ′ ≤ C ′′. An (N, N ′)-model I ′ of I via an (N,N ′)-logical
morphism 〈F, α〉 : I〉−seI ′ will be said to be a full (N, N ′)-model of I if its Tarski-reduction
I ′N ′

= 〈Sign′, SEN′N
′
, C ′N ′〉 is the 〈F, πN ′

F α〉-min (N,N ′)-model of I on SEN′N
′
.

I I ′-〈F, α〉
I ′N ′-

〈ISign′ , π
N ′〉

A strengthening of the notion of an N -selfextensional π-institution is that of a fully N -
selfextensional π-institution and a strengthening of the notion of an N -Fregean π-institution
is that of a fully N -Fregean π-institution. Both terms are analogs of corresponding notions
pertaining to deductive systems [11]. A π-institution I = 〈Sign,SEN, C〉, with N a category
of natural transformations on SEN, is said to be fully N -selfextensional if and only if, for
every full (N,N ′)-model I ′ of I via a surjective (N,N ′)-logical morphism, the π-institution
I ′ is N ′-selfextensional. Similarly, I is fully N -Fregean, if, for every full (N, N ′)-model I ′ of
I via a surjective (N, N ′)-logical morphism, I ′ is N ′-Fregean. Babyonyshev [1] has shown
that, for deductive systems, the corresponding notions are such that fully selfextensional
deductive systems form a proper subclass of all selfextensional deductive systems and that
fully Fregean deductive systems form a proper subclass of Fregean deductive systems. Since
deductive systems may be easily recast as π-institutions, his results also show that the notion
of full N -selfextensionality is different from that of N -selfextensionality in general and the
same applies to the notion of full N -Fregeanity versus N -Fregeanity.

Many of the selfextensional deductive systems S that have been studied in the literature
have a conjunction, i.e., a binary term ∧, such that the following rules

φ, ψ `S φ ∧ ψ, φ ∧ ψ `S φ, φ ∧ ψ `S ψ

are either primitive or derived rules of S. This has led, first, Font and Jansana in [11]
and, later, Jansana in [17] to study selfextensional logics with conjunction in the context of
Abstract Algebraic Logic. The main methodological difference between the two treatments
is that [11] uses the tool of Gentzen systems for its studies, whereas [17] revisits many of the
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results already proven in [11] but provides alternative proofs avoiding the use of Gentzen
systems.

Our main goal in this work is to follow the work of Jansana [17] and provide general-
izations of many of his results for N -selfextensional π-institutions with an N -conjunction
without using machinery from the theory of Gentzen systems, despite the fact that, by now,
the categorical theory has been expanded enough to also contain analogs of many of the
results of [11] as applying to Gentzen systems (see, e.g., [25]). Some of the main results that
will be proven in the present paper are summarized next. All relevant definitions will be
given in detail in subsequent sections. The following list is only meant as a quick preview.

1. Let I = 〈Sign,SEN, C〉, with N a category of natural transformations on SEN, be a
symmetrically N -rule based π-institution that is surjectively N -semilattice based and
has theorems. Then the class of N -algebraic systems AlgN (I) constitutes the N -core
corN (KN

I ) of the intrinsic N -variety KN
I of the π-institution I.

2. If I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN, is
a symmetrically N -rule based π-institution that is N -selfextensional and has an N -
conjunction, then I is fully N -selfextensional.

3. Let SEN : Sign → Set, with N a category of natural transformations on SEN, be a
symmetrically N -rule based functor and ∧ a binary natural transformation in N . Then
there exists a dual isomorphism between the set of all non-pseudo-axiomatic, surjec-
tively N -semilattice based π-institutions on SEN that have ∧ as an N -conjunction,
ordered by extension, and the set of all (SEN, N)-surjective subvarieties of the variety
of N -algebraic systems axiomatized by the semilattice N -equations,

x ∧ x ≈ x, x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z, x ∧ y ≈ y ∧ x,

ordered by inclusion.

Besides these three main results, a characterization will be provided of the symmet-
rically N -rule based and N -selfextensional π-institutions I = 〈Sign, SEN, C〉 with an N -
conjunction ∧ as being exactly those π-institutions for which there exists a class K of N -
algebraic systems that satisfies the semilattice equations relative to ∧ and, such that, for
all Σ ∈ |Sign| and all φ0, . . . , φn−1 ∈ SEN(Σ), φ ∈ CΣ(φ0, . . . , φn−1) if and only, for every
N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 ∈ K and every surjective 〈F, α〉 : SEN →se SEN′,

αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ≤′F (Σ) αΣ(φ).

2 Preliminaries

Let SEN : Sign → Set be a set-valued functor and N a category of natural transfor-
mations on SEN. When such a distinguished functor is under consideration, all varieties
or quasi-varieties that will be discussed will be varieties or quasi-varieties of N -algebraic
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systems defined by collections of N -equations or N -quasi-equations in the sense of [32].
As a consequence, if K is a class of N -algebraic systems and A = 〈SEN′, 〈N ′, F ′〉〉,B =
〈SEN′′, 〈N ′′, F ′′〉〉 are two N -algebraic systems in K, by an N -morphism 〈F, α〉 : A → B
we will always mean an (N ′, N ′′)-epimorphic translation 〈F, α〉 : SEN′ → SEN′′, such that
the following triangle commutes

N ′ N ′′

N

F ′
¡

¡
¡

¡ª

F ′′
@

@
@

@R

where the dotted line denotes the correspondence established between N ′ and N ′′ by the
(N ′, N ′′)-epimorphic property of 〈F, α〉, i.e., given any σ : SENn → SEN in N , it will always
be assumed that σ′ := F ′(σ) and σ′′ := F ′′(σ) correspond under the (N ′, N ′′)-epimorphic
property of 〈F, α〉.

The basic logical structures that will serve as the underlying structure of our investi-
gations are π-institutions. They were introduced in [10] as a modification of institutions
[12, 13] with the intention of keeping the category-theoretic institutional framework that
successfully handles the syntactic aspects of multi-signature logical systems while, at the
same time, stripping the institution formalism from its model-theoretic content. Recall
from [10] that a π-institution I = 〈Sign,SEN, C〉 is a triple consisting of

(i) a category Sign, whose objects are called signatures;

(ii) a set-valued functor SEN : Sign → Set from the category Sign of signatures, called
the sentence functor and giving, for each signature Σ, a set whose elements are
called sentences over that signature Σ or Σ-sentences;

(iii) a mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, called Σ-closure,
such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1(A)) ⊆ CΣ2(SEN(f)(A)), for all Σ1, Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2),
A ⊆ SEN(Σ1).

A π-institution I = 〈Sign, SEN, C〉 is said to be finitary, if, for all Σ ∈ |Sign|, CΣ :
P(SEN(Σ)) → P(SEN(Σ)) is a finitary closure operator in the usual sense, i.e., if, for every
Σ ∈ |Sign| and every Φ ⊆ SEN(Σ),

CΣ(Φ) =
⋃
{CΣ(Φ′) : Φ′ ⊆ω Φ},

where by ⊆ω is denoted the finite subset relation.
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Given a functor SEN : Sign → Set, a collection θ = {θΣ}Σ∈|Sign|, such that θΣ is an
equivalence relation on SEN(Σ), for all Σ ∈ |Sign|, is called an equivalence family on
SEN. If, in addition, for all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2), θ satisfies

SEN(f)2(θΣ1) ⊆ θΣ2 ,

then θ is said to be an equivalence system on SEN. If N is a category of natural
transformations on SEN and an equivalence system θ on SEN satisfies, for all σ : SENn →
SEN in N , all Σ ∈ |Sign| and all φ0, ψ0, . . . , φn−1, ψn−1 ∈ SEN(Σ),

〈φi, ψi〉 ∈ θΣ, i < n, imply 〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1〉 ∈ θΣ,

then θ is a said to be an N -congruence system on SEN.
Given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transforma-

tions on SEN, one may associate with I an N -congruence system and an equivalence sys-
tem that have played very significant roles in the Abstract Algebraic Logic literature in
classifying sentential logics and π-institutions. Given Σ ∈ |Sign|, a Σ-theory of I is a
subset TΣ ⊆ SEN(Σ), such that CΣ(TΣ) = TΣ. A theory family T = {TΣ}Σ∈|Sign| of
I is a collection of Σ-theories of I, Σ ∈ |Sign|. A theory family T is called a theory
system if, for all Σ1, Σ2 ∈ |Sign| and all f ∈ Sign(Σ1, Σ2), SEN(f)(TΣ1) ⊆ TΣ2 . Notice
that this terminology conforms with the one introduced for equivalence families/systems
on SEN, given previously. The collection of all theory families of I is denoted ThFam(I).
Ordered by signature-wise inclusion, which is denoted by ≤, it forms a complete lattice,
which is denoted by ThFam(I) = 〈ThFam(I),≤〉. The collection of all theory systems
of I is denoted by ThSys(I) and forms a complete sublattice of ThFam(I), denoted by
ThSys(I) = 〈ThSys(I),≤〉.

The Tarski N -congruence system Ω̃N (I) of I is the largest N -congruence system on
SEN that is compatible with every theory family of I in the sense that, for every theory
family T = {TΣ}Σ∈|Sign| of I, all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ Ω̃N
Σ (I) and φ ∈ TΣ imply ψ ∈ TΣ.

Such an N -congruence system is called a logical N -congruence system of I. The Frege
equivalence system of I is the equivalence system Λ(I) = {ΛΣ(I)}Σ∈|Sign| on SEN,
defined, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), by

〈φ, ψ〉 ∈ ΛΣ(I) iff CΣ(φ) = CΣ(ψ).

Note that the Tarski N -congruence system of I is the largest N -congruence system of I that
is included in the Frege equivalence system of I. In [26] a π-institution I = 〈Sign,SEN, C〉,
with N a category of natural transformations on SEN, was called N -selfextensional if its
Frege equivalence system is an N -congruence system. Since the Tarski N -congruence system
of I is the largest N -congruence system of I that is included in the Frege equivalence system
of I, I being N -selfextensional is equivalent to the condition that Ω̃N (I) = Λ(I).
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A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, is called fully N -selfextensional if, for every full (N,N ′)-model of I via a surjective
(N,N ′)-logical morphism 〈F, α〉 : I〉−seI ′, I ′ is N ′-selfextensional.

Given a π-institution I = 〈Sign, SEN, C〉, the Frege operator ΛI maps an axiom
family F = {FΣ}Σ∈|Sign| of I to the equivalence system ΛI(F ) = {ΛIΣ(F )}Σ∈|Sign| of I that
is defined, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ) by

〈φ, ψ〉 ∈ ΛIΣ(F ) iff CΣ′(FΣ′ ∪ {SEN(f)(φ)}) = CΣ′(FΣ′ ∪ {SEN(f)(ψ)}),
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′).

If F happens to be an axiom system (rather than simply an axiom family), we have ΛIΣ(F ) =
ΛΣ(IF ), where IF = 〈Sign,SEN, CF 〉 is given, for all Σ ∈ |Sign| and all Φ∪{φ} ⊆ SEN(Σ),
by

φ ∈ CF
Σ (Φ) iff φ ∈ CΣ(FΣ ∪ Φ).

A π-institution I = 〈Sign,SEN, C〉, with N a category of natural transformations on
SEN, is called N -Fregean if, for every theory family T of I, ΛI(T ) is an N -congruence
system on SEN. Of course, by considering the theorem system Thm = {ThmΣ}Σ∈|Sign| :=
{CΣ(∅)}Σ∈|Sign| of I it is easy to see that, if I is N -Fregean, then it is also N -selfextensional.

Let SEN : Sign → Set be a functor and N a category of natural transformations on
SEN. A closure system C on SEN and the corresponding π-institution I = 〈Sign,SEN, C〉
are said to be N -rule based if, for all Σ ∈ |Sign|, Φ∪{φ} ⊆ SEN(Σ), such that φ ∈ CΣ(Φ),
there exists an N -rule 〈X, σ〉 of C of length at most |Φ|+, and ~ψ ∈ SEN(Σ)ω, such that
XΣ(~ψ) ⊆ Φ and σΣ(~ψ) = φ, i.e., such that φ follows from Φ by an application of 〈X, σ〉.
This definition of an N -rule based π-institution was borrowed from [31], where it was used
as a platform to discuss a generalized version of Bloom’s Theorem for π-institutions. The
reader may consult that paper for the definition of an N -rule and for many more details on
these two concepts.

A finitary π-institution I = 〈Sign,SEN, C〉 will be said to be symmetrically N -rule
based if it is N -rule based and, in addition, if, for some Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),
CΣ(φ) = CΣ(ψ), then, there exist natural transformations σ〈Σ,φ〉, σ〈Σ,ψ〉 : SENk → SEN
in N and ~χ ∈ SEN(Σ)k, such that σ

〈Σ,φ〉
Σ (~χ) = φ, σ

〈Σ,ψ〉
Σ (~χ) = ψ and 〈{σ〈Σ,φ〉}, σ〈Σ,ψ〉〉,

〈{σ〈Σ,ψ〉}, σ〈Σ,φ〉〉 are both N -rules of I.
A set-valued functor SEN : Sign → Set, with N a category of natural transformations

on SEN, is said to be symmetrically N -rule based if, for every finitary closure system
C on SEN, the π-institution I = 〈Sign, SEN, C〉 is symmetrically N -rule based.

In the last part of this section, we will briefly revisit some of the definitions and results
concerning the two classes KN

I and AlgN (I) of N -algebraic systems associated with a given
π-institution I = 〈Sign,SEN, C〉, with N a category of natural transformations on SEN.
All the results mentioned here without proof are proven in detail in Section 2 of [33].

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Consider the triple 〈SENN , 〈N, F 〉〉, where SENN : Sign → Set is the quotient
functor SEN/Ω̃N (I), N is the quotient category of N by Ω̃N (I) and F : N → N maps a
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natural transformation σ : SENn → SEN in N to its quotient σ : (SENN )n → SENN . All
these concepts were defined in [22], where they were shown to be well-defined. The triple
〈SENN , 〈N,F 〉〉 is an N -algebraic system. The variety that it generates in the sense of [32]
will be denoted by KN

I and will be called, by analogy with the intrinsic variety KS associated
with a deductive system S, the intrinsic N -variety of the π-institution I. An N -equation
σ ≈ τ , with σ, τ : SENn → SEN in N , is an N -identity of the intrinsic variety KN

I of a
π-institution I if and only if, for every λ : SENk → SEN in N , all Σ, Σ′ ∈ |Sign|, f ∈
Sign(Σ, Σ′) and all ~φ ∈ SEN(Σ)n, ~χ ∈ SEN(Σ′)k−1,

CΣ′(λΣ′(SEN(f)(σΣ(~φ)), ~χ)) = CΣ′(λΣ′(SEN(f)(τΣ(~φ)), ~χ)). (1)

Note that Equation (1) abbreviates the following sets of equations, for all i < k:

CΣ′(λΣ′(χ0, . . . , χi−1, SEN(f)(σΣ(~φ)), χi+1, . . . , χk−1) =
CΣ′(λΣ′(χ0, . . . , χi−1, SEN(f)(τΣ(~φ)), χi+1, . . . , χk−1)).

The abbreviating convention in Equation (1) will be followed throughout the paper when
it is convenient to shorten the longer expressions that it represents.

Proposition 1 (Proposition 1 of [33]) Let I = 〈Sign, SEN, C〉 be a π-institution, with
N a category of natural transformations on SEN. Then, for every σ, τ : SENn → SEN in
N , KN

I |= σ ≈ τ if and only if, for every λ : SENk → SEN in N , all Σ, Σ′ ∈ |Sign|, f ∈
Sign(Σ, Σ′) and all ~φ ∈ SEN(Σ)n, ~χ ∈ SEN(Σ′)k−1,

CΣ′(λΣ′(SEN(f)(σΣ(~φ)), ~χ)) = CΣ′(λΣ′(SEN(f)(τΣ(~φ)), ~χ)).

From the proof of Proposition 1, we also infer that, if I happens to be N -selfextensional,
then

KN
I |= σ ≈ τ iff 〈σΣ(~φ), τΣ(~φ)〉 ∈ Ω̃N

Σ (I), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n,

iff 〈σΣ(~φ), τΣ(~φ)〉 ∈ ΛΣ(I), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n,

iff CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)) for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n.

(2)

The class AlgN (I) was also defined in [33]. A class with the same name had been
defined in [24], but the definition of [33] was modified so as to require model morphisms to
be surjective, a requirement not imposed in [24].

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. The N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 is said to be an (I, N)-algebraic system
if and only if there exists a surjective (N,N ′)-epimorphic translation 〈F, α〉 : I →se SEN′,
such that the 〈F, α〉-min (N, N ′)-model I ′ = 〈Sign′,SEN′, C ′〉 of I on SEN′ is N ′-reduced,
i.e., iff I ′ is a reduced (N,N ′)-full model of I via 〈F, α〉. Let AlgN (I) denote the class of
all (I, N)-algebraic systems.

The next proposition relates the two classes KN
I and AlgN (I). More specifically, it

states that AlgN (I) is a subclass of KN
I and that, moreover, the class KN

I is the variety of
N -algebraic systems that is generated by the class AlgN (I).
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Proposition 2 (Proposition 2 of [33]) Let I = 〈Sign, SEN, C〉 be a π-institution, with
N a category of natural transformations on SEN. Then AlgN (I) ⊆ KN

I and, moreover,
KN
I = VN (AlgN (I)), where VN denotes the variety operator (which was shown in Theorem

4 of [32], an analog of Birkhoff’s Theorem, to be equal to the operator HSP).

Observe, now, that Proposition 2 yields the following interesting corollary:

Corollary 3 Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN. Then, if the class AlgN (I) of all (I, N)-algebraic systems is a
variety, it is necessarily equal to the intrinsic N -variety KN

I of I.

3 Semilattice-Based π-Institutions

In this section, following the work of Jansana [17], we introduce and study the notion of a
semilattice-based π-institution. It is shown that a π-institution I = 〈Sign, SEN, C〉, with
N a category of natural transformations on SEN, is N -semilattice-based if and only if it is
N -selfextensional and has an N -conjunction.

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. A natural transformation ∧ : SEN2 → SEN in N is said to be an N -conjunction
of I if,

1. for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), φ ∧Σ ψ ∈ CΣ(φ, ψ) and

2. for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), φ, ψ ∈ CΣ(φ ∧Σ ψ).

It is not difficult to see that if I has two N -conjunctions ∧ and ∧′, then, for all Σ ∈ |Sign|
and all φ, ψ ∈ SEN(Σ), the two Σ-sentences φ ∧Σ ψ and φ ∧′Σ ψ are Σ-interderivable in I.

Lemma 4 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, with N a category of natural
transformations on SEN, and that ∧,∧′ : SEN2 → SEN are two N -conjunctions of I. Then,
for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), CΣ(φ ∧Σ ψ) = CΣ(φ ∧′Σ ψ).

Proof:
Since both ∧ and ∧′ are N -conjunctions of I, we have, for all Σ ∈ |Sign| and all

φ, ψ ∈ SEN(Σ), CΣ(φ ∧Σ ψ) = CΣ(φ, ψ) = CΣ(φ ∧′Σ ψ). ¥
I is said to be N -conjunctive if it has an N -conjunction.
Lemma 4 together with the well-known characterization of the Tarski N -congruence

system Ω̃N (I) of a π-institution I (see [22]) give the following

Proposition 5 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transforma-
tions on SEN, is N -selfextensional with two N -conjunctions ∧,∧′ : SEN2 → SEN. Then, for
all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ) and all σ : SENn → SEN in N , Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)
and ~χ ∈ SEN(Σ′)n−1, we have that

CΣ′(σΣ′(SEN(f)(φ) ∧Σ′ SEN(f)(ψ), ~χ)) = CΣ′(σΣ′(SEN(f)(φ) ∧′Σ′ SEN(f)(ψ), ~χ)).
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Proof:
Since I is N -selfextensional, we have that Λ(I) = Ω̃N (I), i.e., that the Frege relation

system Λ(I) of I is an N -congruence system. The result now follows by Lemma 4 and the
N -congruence system property of Λ(I). ¥

Some of the critical properties of an N -conjunction are “transferred” from a π-institution
I to all its (N, N ′)-models via surjective (N,N ′)-logical morphisms. One of them is the
defining property of the N -conjunction. The fact that it transfers asserts that all the
(N,N ′)-models of I via surjective (N, N ′)-logical morphisms are N ′-conjunctive.

Proposition 6 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, with N a category of
natural transformations on SEN, that has an N -conjunction ∧. If I ′ = 〈Sign′, SEN′, C ′〉,
with N ′ a category of natural transformations on SEN′, is a model of I via a surjec-
tive (N, N ′)-logical morphism 〈F, α〉 : I〉−seI ′, then, for all Σ′ ∈ |Sign′| and all φ′, ψ′ ∈
SEN′(Σ′), we have

1. C ′
Σ′(φ

′, ψ′) = C ′
Σ′(φ

′ ∧′Σ′ ψ′) and

2. φ′ ∈ C ′
Σ′(ψ

′) if and only if C ′
Σ′(ψ

′) = C ′
Σ′(φ

′ ∧′Σ′ ψ′).

Proof:

1. Suppose that Σ′ ∈ |Sign′| and φ′, ψ′ ∈ SEN′(Σ′). Then, by the surjectivity of 〈F, α〉,
we have that, there exist Σ ∈ |Sign| and φ, ψ ∈ SEN(Σ), such that F (Σ) = Σ′ and
αΣ(φ) = φ′, αΣ(ψ) = ψ′. Since ∧ is an N -conjunction of I, we have that CΣ(φ, ψ) =
CΣ(φ ∧Σ ψ). Therefore, since 〈F, α〉 is an (N, N ′)-logical morphism, we get that
αΣ(φ), αΣ(ψ) ∈ C ′

F (Σ)(αΣ(φ ∧Σ ψ)) and αΣ(φ ∧Σ ψ) ∈ C ′
F (Σ)(αΣ(φ), αΣ(ψ)). These

are equivalent, respectively, to φ′, ψ′ ∈ C ′
Σ′(φ

′ ∧′Σ′ ψ′) and φ′ ∧′Σ′ ψ′ ∈ C ′
Σ′(φ

′, ψ′).
Therefore, we obtain that C ′

Σ′(φ
′, ψ′) = C ′

Σ′(φ
′ ∧′Σ′ ψ′).

2. Part 2 follows easily from Part 1.

¥
Suppose, now, that SEN : Sign → Set is a functor, with N a category of natural trans-

formations on SEN, and K is a class of N -algebraic systems. K is said to be N -semilattice-
based if there exists a ∧ : SEN2 → SEN in N , such that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, with
SEN′ : Sign′ → Set, all Σ ∈ |Sign′| and all φ, ψ, χ ∈ SEN′(Σ), we have that

1. φ ∧′Σ φ = φ

2. φ ∧′Σ (ψ ∧′Σ χ) = (φ ∧′Σ ψ) ∧′Σ χ

3. φ ∧′Σ ψ = ψ ∧′Σ φ,
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where, of course, by ∧′ : SEN′2 → SEN′ is denoted, as usual, the natural transformation in
N ′, with ∧′ := F ′(∧). In this case, we will say that K is N -semilattice-based relative to
∧ or that K is an N -semilattice class relative to ∧.

For every 〈SEN′, 〈N ′, F ′〉〉 ∈ K, with SEN′ : Sign′ → Set, a posystem≤′ = {≤′Σ}Σ∈|Sign′|
may be defined on SEN′, by letting, for all Σ ∈ |Sign′|, ≤′Σ be given by

φ ≤′Σ ψ iff φ ∧′Σ ψ = φ, for all φ, ψ ∈ SEN′(Σ).

Given an N -semilattice-based class K relative to ∧ and a 〈SEN′, 〈N ′, F ′〉〉 ∈ K, an axiom
family or axiom system F = {FΣ}Σ∈|Sign′| on SEN′ is said to be an N -semilattice filter
family or an N -semilattice filter system, respectively, if

1. FΣ 6= ∅, for all Σ ∈ |Sign′|,
2. φ, ψ ∈ FΣ imply that φ ∧′Σ ψ ∈ FΣ, for all Σ ∈ |Sign′| and all φ, ψ ∈ SEN′(Σ),

3. if φ ≤′Σ ψ and φ ∈ FΣ, then ψ ∈ FΣ, for all Σ ∈ |Sign′| and all φ, ψ ∈ SEN′(Σ).

Given 〈SEN′, 〈N ′, F ′〉〉 ∈ K, as before, and, for all Σ ∈ |Sign′|, φΣ ∈ SEN′(Σ), the col-
lection [φΣ)Σ∈|Sign′|, where [φΣ) = {ψ ∈ SEN′(Σ) : φΣ ≤′Σ ψ}, for all Σ ∈ |Sign′|, is
an N -semilattice filter family of 〈SEN′, 〈N ′, F ′〉〉, called the N -semilattice filter family
generated by the {φΣ}Σ∈|Sign′|.

A finitary π-institution I = 〈Sign, SEN, C〉, with N a category of natural transforma-
tions on SEN, is N -semilattice-based if there exists a natural transformation ∧ : SEN2 →
SEN in N and a class K of N -algebraic systems, such that K is N -semilattice-based relative
to ∧ and, for all Σ ∈ |Sign|, all n > 0 and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ ∈ CΣ(φ0, . . . , φn−1) iff αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ≤′F (Σ) αΣ(φ),
for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K
and all surjective 〈F, α〉 : SEN →se SEN′.

(3)

If this is the case I is said to be N -semilattice-based relative to ∧ and K. If I is
N -semilattice-based relative to ∧ and K in such a way that, for every 〈SEN′, 〈N ′, F ′〉〉 ∈ K,
there exists at least one surjective (N, N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′,
then I will be said to be surjectively N -semilattice-based relative to ∧ and K. It is
simply called surjectively N -semilattice-based if it is surjectively N -semilattice-based
relative to some ∧ and K.

Condition (3) implies that, if I is N -semilattice-based relative to ∧ and K, then, for all
Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ),

CΣ(φ) = CΣ(ψ) iff αΣ(φ) = αΣ(ψ), for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K
and all surjective 〈F, α〉 : SEN →se SEN′.

This remark immediately yields:
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Proposition 7 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transfor-
mations on SEN, is a surjectively N -semilattice-based π-institution relative to ∧ and K.
Then, for all σ, τ : SENn → SEN in N , we have that

K |= σ ≈ τ iff CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n.

Proof:
Let σ, τ : SENn → SEN be in N . We have that K |= σ ≈ τ if and only if, by definition,

for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all Σ′ ∈ |Sign′| and all ~φ′ ∈ SEN′(Σ′)n, σ′Σ′(~φ′) = τ ′Σ′(~φ′),
which holds iff, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all surjective 〈F, α〉 : SEN →se SEN′, all
Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, σ′F (Σ)(αΣ(~φ)) = τ ′F (Σ)(αΣ(~φ)), which is equivalent to

αΣ(σΣ(~φ)) = αΣ(τΣ(~φ)), which, since I is N -semilattice based relative to ∧ and K, holds,
by the preceding remark, if and only if CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)). ¥

Recall now that a finitary π-institution I = 〈Sign, SEN, C〉, with N a category of
natural transformations on SEN, is said to be symmetrically N -rule based if it is N -rule
based and, in addition, if, for some Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), CΣ(φ) = CΣ(ψ), then, there
exist natural transformations σ〈Σ,φ〉, σ〈Σ,ψ〉 : SENk → SEN in N and ~χ ∈ SEN(Σ)k, such
that σ

〈Σ,φ〉
Σ (~χ) = φ, σ

〈Σ,ψ〉
Σ (~χ) = ψ and 〈{σ〈Σ,φ〉}, σ〈Σ,ψ〉〉, 〈{σ〈Σ,ψ〉}, σ〈Σ,φ〉〉 are both N -rules

of I.

Proposition 8 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural trans-
formations on SEN, is a symmetrically N -rule based π-institution that is surjectively N -
semilattice-based relative to ∧ and K. Then, for all Σ ∈ |Sign|, and all φ, ψ ∈ SEN(Σ),

CΣ(φ) = CΣ(ψ) iff K |= σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉.

Proof:
Suppose, first, that CΣ(φ) = CΣ(ψ). Then, since both 〈{σ〈Σ,φ〉}, σ〈Σ,ψ〉〉 and 〈{σ〈Σ,ψ〉},

σ〈Σ,φ〉〉 are N -rules of I, we get that, for all Σ ∈ |Sign| and all ~χ ∈ SEN(Σ), CΣ(σ〈Σ,φ〉
Σ (~χ)) =

CΣ(σ〈Σ,ψ〉
Σ (~χ)). Therefore, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se

SEN′, we get that αΣ(σ〈Σ,φ〉
Σ (~χ)) = αΣ(σ〈Σ,ψ〉

Σ (~χ)). Thus, we get that σ
〈Σ,φ〉′
F (Σ) (αΣ(~χ)) =

σ
〈Σ,ψ〉′
F (Σ) (αΣ(~χ)). Since 〈F, α〉 is surjective, we obtain K |= σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉.

Suppose, conversely, that K |= σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉. Then, for all Σ′ ∈ |Sign|, all ~χ ∈
SEN(Σ′)k, all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′, we get that
σ
〈Σ,φ〉′
F (Σ′) (αΣ′(~χ)) = σ

〈Σ,ψ〉′
F (Σ′) (αΣ′(~χ)), which implies that αΣ′(σ

〈Σ,φ〉
Σ′ (~χ)) = αΣ′(σ

〈Σ,ψ〉
Σ′ (~χ)). In

particular, we get that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′,
αΣ(φ) = αΣ(ψ), whence, since I is N -semilattice-based relative to ∧ and K, we get that
CΣ(φ) = CΣ(ψ). ¥

Given a class K of N -algebraic systems, recall from [32] the variety of N -algebraic systems
generated by K. This variety will be denoted by VN (K) in the sequel. By one of the main
results of [32], forming an analog of the well-known Birkhoff’s Theorem of Universal Algebra
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for N -algebraic systems, VN (K) is generated by taking homomorphic images of subsystems
of direct products of the N -algebraic systems in K. Using this terminology, Proposition 8
has the following corollary:

Corollary 9 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transfor-
mations on SEN, is a symmetrically N -rule based π-institution that is surjectively N -
semilattice-based relative to ∧ and K. Then I is also N -semilattice-based relative to ∧
and VN (K).

Proof:
Since VN (K) satisfies exactly the same N -equations as K, K is N -semilattice based relative

to ∧ and the N -semilattice property is defined by N -equations, we conclude that VN (K) is
also N -semilattice based relative to ∧.

Clearly, since K ⊆ VN (K), we have, for all Σ ∈ |Sign| and all φ0, . . . , φn−1, φ ∈ SEN(Σ),
that, if, for every 〈SEN′, 〈N ′, F ′〉〉 ∈ VN (K) and all surjective 〈F, α〉 : SEN →se SEN′,
αΣ(φ0 ∧Σ · · · ∧Σ φn−1) ≤′F (Σ) αΣ(φ), then φ ∈ CΣ(φ0, . . . , φn−1).

Suppose, conversely, that Σ ∈ |Sign| and φ0, . . . , φn−1, φ ∈ SEN(Σ) are such that
φ ∈ CΣ(φ0, . . . , φn−1). Then we have that CΣ(φ0 ∧Σ · · · ∧Σ φn−1 ∧Σ φ) = CΣ(φ0 ∧Σ

· · · ∧Σ φn−1). Then, by Proposition 8, K |= σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉 ≈ σ〈Σ,φ0∧Σ···∧Σφn−1〉.
Thus, we get that VN (K) |= σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉 ≈ σ〈Σ,φ0∧Σ···∧Σφn−1〉. This shows that,
for all 〈SEN′, 〈N ′, F ′〉〉 ∈ VN (K) and all surjective 〈F, α〉 : SEN →se SEN′, we have that
σ
〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉′
F (Σ) (αΣ(~χ)) = σ

〈Σ,φ0∧Σ···∧Σφn−1〉′
F (Σ) (αΣ(~χ)), which yields that

αΣ(σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉
Σ (~χ)) = αΣ(σ〈Σ,φ0∧Σ···∧Σφn−1〉

Σ (~χ))

and, therefore, αΣ(φ0 ∧Σ · · · ∧Σ φn−1 ∧Σ φ) = αΣ(φ0 ∧Σ · · · ∧Σ φn−1). Since VN (K) is
N -semilattice based relative to ∧, we get that αΣ(φ0 ∧Σ · · · ∧Σ φn−1) ≤′F (Σ) αΣ(φ). ¥

Next, it will be shown that if I is a symmetrically N -rule based π-institution that is
surjectively N -semilattice-based relative to ∧ and K and, also, surjectively N -semilattice-
based relative to ∧′ and K′, then we must have that VN (K) = VN (K′).

Proposition 10 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution that is surjectively N -semilattice-based
relative to ∧ and K and, also, surjectively N -semilattice-based relative to ∧′ and K′. Then
VN (K) = VN (K′).

Proof:
It suffices to show that, for all σ, τ : SENn → SEN in N , we have that VN (K) |= σ ≈ τ

if and only if VN (K′) |= σ ≈ τ . We indeed have

VN (K) |= σ ≈ τ iff K |= σ ≈ τ (by definition)
iff CΣ(σΣ(~φ)) = CΣ(τΣ(~φ))

for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n (by Proposition 7)
iff K′ |= σ ≈ τ (by Proposition 7)
iff VN (K′) |= σ ≈ τ. (by definition)
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¥
The unique variety of N -algebraic systems generated by any class K relative to which

I is surjectively N -semilattice based, as specified by Proposition 10, will be denoted by
VN (I).

It will be shown in the next proposition that every N -semilattice-based π-institution
relative to ∧ is N -selfextensional and N -conjunctive relative to ∧. This result will help
in Theorem 12 to show that if I is a symmetrically N -rule based π-institution that is
surjectively N -semilattice-based, then the class VN (I) is the intrinsic N -variety KN

I of I.

Proposition 11 Suppose that I = 〈Sign,SEN, C〉, with N a category of natural transfor-
mations on SEN, is an N -semilattice-based π-institution relative to ∧. Then

1. I is N -selfextensional;

2. ∧ is an N -conjunction of I.

Proof:
Suppose that I is N -semilattice-based relative to ∧. Thus, there exists a class K of

N -algebraic systems, such that I is N -semilattice-based relative to ∧ and K. This means
that, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), we have that

CΣ(φ) = CΣ(ψ) iff αΣ(φ) = αΣ(ψ), for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K
and all surjective 〈F, α〉 : SEN →se SEN′.

This implies that, if Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), such that CΣ(φ) = CΣ(ψ), then, for all
Σ′ ∈ |Sign|, all f ∈ Sign(Σ, Σ′), all σ : SENk → SEN in N and all ~χ ∈ SEN(Σ′)k−1,

σ′F (Σ′)(SEN′(F (f))(αΣ(φ)), αΣ′(~χ)) = σ′F (Σ′)(SEN′(F (f))(αΣ(ψ)), αΣ′(~χ)).

Therefore, for all Σ′ ∈ |Sign|, all f ∈ Sign(Σ, Σ′), all σ : SENk → SEN in N and all
~χ ∈ SEN(Σ′)k−1, αΣ′(σΣ′(SEN(f)(φ), ~χ)) = αΣ′(σΣ′(SEN(f)(ψ), ~χ)). Since this is true for
all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′, we get that

CΣ′(σΣ′(SEN(f)(φ), ~χ)) = CΣ′(σΣ′(SEN(f)(ψ), ~χ)).

Therefore, by Theorem 4 of [22], 〈φ, ψ〉 ∈ Ω̃N
Σ (I) and I is N -selfextensional.

For the second statement, by the assumption that I is N -semilattice-based relative to
∧ and K, we get that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all surjective 〈F, α〉 : SEN →se SEN′, all
Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ),

αΣ(φ ∧Σ ψ) = αΣ(φ) ∧′F (Σ) αΣ(ψ) ≤′F (Σ) αΣ(φ), αΣ(ψ).

Therefore, we have that CΣ(φ ∧Σ ψ) = CΣ(φ, ψ), i.e., that ∧ is an N -conjunction of I. ¥
Proposition 11 will be used now to show that, if I is a symmetrically N -rule based

π-institution that is surjectively N -semilattice-based, then the class VN (I) is the intrinsic
N -variety KN

I of I.
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Theorem 12 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution that is surjectively N -semilattice-based.
Then, VN (I) = KN

I .

Proof:
Suppose that I is surjectively N -semilattice based relative to ∧ and K. Since both VN (I)

and KN
I are, by definition, varieties, it suffices to show that, for every σ : τ : SENn → SEN

in N , we have that KN
I |= σ ≈ τ if and only if VN (I) |= σ ≈ τ . We have that KN

I |= σ ≈ τ if
and only if, by Proposition 1 (Proposition 1 of [33]), for all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n,
〈σΣ(~φ), τΣ(~φ)〉 ∈ Ω̃N

Σ (I). Since, by Proposition 11, I is N -selfextensional, this holds if and
only if, for all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, 〈σΣ(~φ), τΣ(~φ)〉 ∈ ΛΣ(I), i.e., CΣ(σΣ(~φ)) =
CΣ(τΣ(~φ)). But, by Proposition 7, this is equivalent to K |= σ ≈ τ , which holds if and only
if VN (I) |= σ ≈ τ . ¥

In the following theorem, Theorem 15, one of the main theorems of the paper, it is
shown that a symmetrically N -rule based π-institution I = 〈Sign,SEN, C〉, where N is
a category of natural transformations on SEN, is N -semilattice-based if and only if it
is N -selfextensional and N -conjunctive. This is an analog of Theorem 3.2 of [17] for π-
institutions. Lemma 13 (along with its Corollary 14), that precedes the main theorem,
provides a technical result that will be used in the proof of Theorem 15

Lemma 13 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transforma-
tions on SEN, is a symmetrically N -rule based, N -selfextensional and N -conjunctive π-
institution relative to ∧. Then, for all Σ ∈ |Sign| and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ ∈ CΣ(φ0, . . . , φn−1) iff
〈SENN , 〈N,−N 〉〉 |= σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉 ≈ σ〈Σ,φ0∧Σ···∧Σφn−1〉.

Proof:
We have that φ ∈ CΣ(φ0, . . . , φn−1) if and only if, since I is N -conjunctive relative to ∧,

φ ∈ CΣ(φ0∧Σ · · · ∧Σ φn−1) if and only if, for the same reason, CΣ(φ0∧Σ · · · ∧Σ φn−1∧Σ φ) =
CΣ(φ0 ∧Σ · · · ∧Σ φn−1) if and only if, since I is symmetrically N -rule based, for all Σ′ ∈
|Sign| and all ~χ ∈ SEN(Σ′)n, CΣ′(σ

〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉
Σ′ (~χ)) = CΣ′(σ

〈Σ,φ0∧Σ···∧Σφn−1〉
Σ′ (~χ))

if and only if, since I is N -selfextensional, for all Σ′ ∈ |Sign| and all ~χ ∈ SEN(Σ′)n,
〈σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉

Σ′ (~χ), σ〈Σ,φ0∧Σ···∧Σφn−1〉
Σ′ (~χ)〉 ∈ Ω̃N

Σ′(I), if and only if, for all Σ′ ∈ |Sign|
and all ~χ ∈ SEN(Σ′)n, σ

〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉N
Σ′ (~χN ) = σ

〈Σ,φ0∧Σ···∧Σφn−1〉N
Σ′ (~χN ), i.e., if and

only if, by definition, 〈SENN , 〈N,−N 〉〉 |= σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉 ≈ σ〈Σ,φ0∧Σ···∧Σφn−1〉. ¥
Lemma 13 gives immediately the following corollary that will provide the exact form in

which its content will be used in the proof of Theorem 15.

Corollary 14 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transfor-
mations on SEN, is a symmetrically N -rule based, N -selfextensional and N -conjunctive
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π-institution relative to ∧. Then, for all Σ ∈ |Sign| and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ ∈ CΣ(φ0, . . . , φn−1) iff αΣ(φ0 ∧Σ · · · ∧Σ φn−1) ≤N
F (Σ) αΣ(φ)

for all surjective 〈F, α〉 : SEN →se SENN .

Proof:
The right-to-left implication is clear if one considers the natural (N, N)-epimorphic

projection 〈ISign, πN 〉 : SEN → SENN . In fact, if the right-hand side of the equivalence
holds, then φN

0 ∧N
Σ · · ·∧N

Σ φN
n−1 ≤N

Σ φN , whence (φ0∧Σ · · ·∧Σ φn−1)N ≤N
Σ φN , and, therefore,

φ0 ∧Σ · · · ∧Σ φn−1 ≤Σ φ, which shows, since I is N -conjunctive relative to ∧, that φ ∈
CΣ(φ0, . . . , φn−1).

For the reverse implication, assume that φ ∈ CΣ(φ0, . . . , φn−1). Then, by Lemma 13,
we have that 〈SENN , 〈N,−N 〉〉 |= σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉 ≈ σ〈Σ,φ0∧Σ···∧Σφn−1〉. Considering
the instance of this N -equation for Σ and ~χ, such that σ

〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉
Σ (~χ) = φ0 ∧Σ

· · ·∧Σ φn−1∧Σ φ and σ
〈Σ,φ0∧Σ···∧Σφn−1〉
Σ (~χ) = φ0∧Σ · · ·∧Σ φn−1, we obtain that, for all surjec-

tive 〈F, α〉 : SEN →se SENN , σ
〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉N
F (Σ) (αΣ(~χ)) = σ

〈Σ,φ0∧Σ···∧Σφn−1〉N
F (Σ) (αΣ(~χ)).

Hence, for all surjective 〈F, α〉 : SEN →se SENN ,

αΣ(σ〈Σ,φ0∧Σ···∧Σφn−1∧Σφ〉
Σ (~χ)) = αΣ(σ〈Σ,φ0∧Σ···∧Σφn−1〉

Σ (~χ)),

which gives, by the choice of ~χ, that αΣ(φ0∧Σ· · ·∧Σφn−1∧Σφ) = αΣ(φ0∧Σ· · ·∧Σφn−1). Thus,
αΣ(φ0)∧N

F (Σ) · · ·∧N
F (Σ) αΣ(φn−1)∧N

F (Σ) αΣ(φ) = αΣ(φ0)∧N
F (Σ) · · ·∧N

F (Σ) αΣ(φn−1), which gives
that αΣ(φ0)∧N

Σ · · ·∧N
Σ αΣ(φn−1) ≤N

F (Σ) αΣ(φ), i.e., that αΣ(φ0∧Σ · · ·∧Σ φn−1) ≤N
F (Σ) αΣ(φ).

This concludes the proof of the corollary. ¥

Theorem 15 Suppose that I = 〈Sign, SEN, C〉with N a category of natural transforma-
tions on SEN, is a symmetrically N -rule based π-institution. I is N -selfextensional and
N -conjunctive if and only if it is N -semilattice-based.

Proof:
The implication from right to left is the content of Proposition 11. For the reverse

implication, suppose that I is a symmetrically N -rule based π-institution, that is N -
selfextensional and N -conjunctive relative to ∧. Then, the singleton class

K = {〈SENN , 〈N,−N 〉〉}

is an N -semilattice-based class relative to ∧. By Corollary 14, we have that for all Σ ∈ |Sign|
and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ ∈ CΣ(φ0, . . . , φn−1) iff αΣ(φ0 ∧Σ · · · ∧Σ φn−1) ≤N
F (Σ) αΣ(φ)

for all surjective 〈F, α〉 : SEN →se SENN ,

which shows that I is N -semilattice based relative to ∧ and K. ¥
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Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. I is said to have theorems if, for every Σ ∈ |Sign|, ThmΣ := CΣ(∅) 6= ∅. It
is said to be non-pseudo-axiomatic if, for all Σ ∈ |Sign|, SEN(Σ) 6= ∅ and the set of
all its Σ-theorems is the set of all Σ-sentences that are derivable from every Σ-formula,
i.e., if CΣ(∅) =

⋂
φ∈SEN(Σ) CΣ(φ), for all Σ ∈ |Sign|. This is equivalent to saying that

the set of all its Σ-theorems is the intersection of all its nonempty Σ-theories, i.e., that
CΣ(∅) =

⋂
∅6=T∈ThΣ(I)(T ). These definitions are direct generalizations of the corresponding

definitions of [17] and will be used to formulate an analog of Lemma 3.3 of [17] showing
that a π-institution with theorems is non-pseudo-axiomatic and, moreover, that, if I is
surjectively N -semilattice-based relative to ∧ and K, then, for every N -algebraic system
〈SEN′, 〈N ′, F ′〉〉 in K and any of its signatures Σ′, the semilattice 〈SEN′(Σ′),∧′Σ′〉 has a
greatest element which is determined as the image of an appropriately chosen theorem of
I under any surjective (N,N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′ (at least one
such exists since I is surjectively N -semilattice based relative to K).

Lemma 16 Suppose I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, is a π-institution with theorems. Then I is non-pseudo-axiomatic. Moreover, if I is
surjectively N -semilattice-based relative to ∧ and K, then, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, with
SEN′ : Sign′ → Set, and all Σ′ ∈ |Sign′|, the semilattice 〈SEN′(Σ′),∧′Σ′〉 has a greatest
element, which is αΣ(φ), for every surjective 〈F, α〉 : SEN →se SEN′, every Σ ∈ |Sign|,
with F (Σ) = Σ′ and every Σ-theorem φ of I.

Proof:
Obviously, for all Σ ∈ |Sign|, ThmΣ ⊆ ⋂{T ∈ ThΣ(I) : T 6= ∅}. For the reverse

inclusion, suppose that Σ ∈ |Sign| and φ ∈ SEN(Σ), such that φ ∈ ⋂{T ∈ ThΣ(I) : T 6= ∅}.
Then, since I has theorems, we have that φ ∈ ⋂

T∈ThΣ(I) T = ThmΣ.
Finally, let 〈SEN′, 〈N ′, F ′〉〉 ∈ K, with SEN′ : Sign′ → Set, Σ′ ∈ |Sign′|, χ ∈ SEN′(Σ′)

and suppose that 〈F, α〉 : SEN →se SEN′ is surjective, that Σ ∈ |Sign| is such that F (Σ) =
Σ′, that ψ ∈ SEN(Σ) is such that αΣ(ψ) = χ and that φ ∈ ThmΣ. Then we have φ ∈ CΣ(ψ),
whence, since I is N -semilattice-based relative to ∧ and K and 〈SEN′, 〈N ′, F ′〉〉 ∈ K, we get
that αΣ(ψ) ≤′F (Σ) αΣ(φ), i.e., χ ≤′Σ′ αΣ(φ). Since Σ′ ∈ |Sign′| and χ ∈ SEN′(Σ′) are
arbitrary, this concludes the proof of the lemma. ¥

Suppose now that SEN : Sign → Set is a set-valued functor, with N a category of nat-
ural transformations on SEN, and K is an N -semilattice-based class of N -algebraic systems
relative to ∧. We define on SEN a closure system CK = {CK

Σ}Σ∈|Sign| as follows: For all
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Σ ∈ |Sign| and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ ∈ CK
Σ(φ0, . . . , φn−1) iff αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ≤′F (Σ) αΣ(φ),

for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K
and all surjective 〈F, α〉 : SEN →se SEN′.

φ ∈ CK
Σ(∅) iff ψ ≤′F (Σ) αΣ(φ),

for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all ψ ∈ SEN′(F (Σ))
and all surjective 〈F, α〉 : SEN →se SEN′.

This definition is extended so that, for all Σ ∈ |Sign|, Φ ∪ {φ} ⊆ SEN(Σ), we have

φ ∈ CK
Σ(Φ) iff there exists finite Φ′ ⊆ Φ, such that φ ∈ CK

Σ(Φ′).

It is shown in the following proposition that, thus defined, IK = 〈Sign, SEN, CK〉 is a finitary
non-pseudo-axiomatic π-institution.

Proposition 17 Suppose that SEN : Sign → Set is a set-valued functor, with N a category
of natural transformations on SEN, and K is an N -semilattice-based class of N -algebraic
systems relative to ∧. Then IK = 〈Sign,SEN, CK〉 is a finitary, non-pseudo-axiomatic
π-institution.

Proof:
It is easy to show that, for every Σ ∈ |Sign|, CK

Σ is reflexive and monotone. So, to show
that it is a closure operator on SEN(Σ), we just show idempotency. Suppose that Φ∪{φ} ⊆
SEN(Σ), such that φ ∈ CK

Σ(CK
Σ(Φ)). Thus, there exists Ψ = {ψ0, . . . , ψn−1} ⊆ω CK

Σ(Φ), such
that φ ∈ CK

Σ(Ψ). Thus, for every i < n, there exists Ψi = {ψi
0, . . . , ψ

i
ni−1} ⊆ω Φ, such that

ψi ∈ CK
Σ(Ψi). Hence, by the definition of CK, we get that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and

all surjective 〈F, α〉 : SEN →se SEN′,

αΣ(ψ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(ψn−1) ≤′F (Σ) αΣ(φ)

and, also, for all i < n,

αΣ(ψi
0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(ψi

ni−1) ≤′F (Σ) αΣ(ψi).

Therefore, we obtain
∧

i<n(αΣ(ψi
0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(ψi

ni−1)) ≤′F (Σ) αΣ(ψ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(ψn−1)
≤′F (Σ) αΣ(φ).

This proves that φ ∈ CK
Σ(

⋃
i<n Ψi), which, since Ψi ⊆ω Φ, for all i ∈ I, establishes that

φ ∈ CK
Σ(Φ), showing that CK

Σ is also idempotent, i.e., it is a closure operator on SEN(Σ).
To finish the proof that CK is a closure system on SEN, it suffices to show that it is

structural. To this end, suppose that Σ, Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), and φ0, . . . , φn−1, φ ∈
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SEN(Σ), such that φ ∈ CK
Σ(φ0, . . . , φn−1). Thus, by the definition of CK, we get that, for all

〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′, we have that

αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ≤′F (Σ) αΣ(φ).

Since K is N -semilattice-based relative to ∧, ≤′ is a posystem on SEN′, which yields that

SEN(F (f))(αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1)) ≤′F (Σ′) SEN(F (f))(αΣ(φ)).

Since 〈F, α〉 is (N, N ′)-epimorphic, this holds if and only if

SEN(F (f))(αΣ(φ0 ∧Σ · · · ∧Σ φn−1)) ≤′F (Σ′) SEN(F (f))(αΣ(φ)).

This, in turn, is equivalent, since α is a natural transformation, with

αΣ′(SEN(f)(φ0 ∧Σ · · · ∧Σ φn−1)) ≤′F (Σ′) αΣ′(SEN(f)(φ)).

Now, the fact that ∧ is a natural transformation yields that

αΣ′(SEN(f)(φ0) ∧Σ′ · · · ∧Σ′ SEN(f)(φn−1)) ≤′F (Σ′) αΣ′(SEN(f)(φ)).

Finally, once more using the fact that 〈F, α〉 is (N, N ′)-epimorphic, we get that

αΣ′(SEN(f)(φ0)) ∧′F (Σ′) · · · ∧′F (Σ′) αΣ′(SEN(f)(φn−1)) ≤′F (Σ′) αΣ′(SEN(f)(φ)),

which proves that SEN(f)(φ) ∈ CK
Σ′(SEN(f)(φ0), . . . ,SEN(f)(φn−1)), and establishes struc-

turality.
That CK is a finitary closure system on SEN is straightforward from its definition. So

to conclude the proof of the proposition, it suffices now to show that IK is non-pseudo-
axiomatic. To this end, it suffices to show that

⋂{T ∈ ThΣ(IK) : T 6= ∅} ⊆ ThmK
Σ, for

all Σ ∈ |Sign|. To do this, we show that
⋂

ψ∈SEN(Σ) CK
Σ(ψ) ⊆ ThmK

Σ. Suppose, in fact,
that φ ∈ SEN(Σ), such that φ ∈ CK

Σ(ψ), for all ψ ∈ SEN(Σ). This is equivalent, by
the definition of CK, to the statement that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective
〈F, α〉 : SEN →se SEN′, we have αΣ(ψ) ≤′F (Σ) αΣ(φ). Thus, since 〈F, α〉 is surjective, we
get that, for all χ ∈ SEN′(F (Σ)), χ ≤′F (Σ) αΣ(φ). Therefore, by the definition of CK, we
obtain that φ ∈ ThmK

Σ, as required. ¥
It is now shown that, if SEN : Sign → Set is a set-valued functor, with N a category

of natural transformations on SEN, and K is N -semilattice-based relative to ∧, then the
π-institution IK is also N -semilattice based relative to ∧ and K. This forms an analog of
Proposition 3.4 of [17] in the context of π-institutions.

Proposition 18 Let SEN : Sign → Set be a set-valued functor, with N a category of
natural transformations on SEN, and K an N -semilattice-based class of N -algebraic systems
relative to ∧. Then IK is N -semilattice based relative to ∧ and K. If, moreover, IK is
symmetrically N -rule based and surjectively N -semilattice-based relative to ∧ and a subclass
L of K, such that K = VN (L), then VN (IK) = K.
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Proof:
The proof of the first statement is straightforward if one takes into account the definitions

of IK and that of an N -semilattice-based π-institution relative to ∧ and K.
For the second statement, suppose that IK is symmetrically N -rule based and surjec-

tively N -semilattice-based relative to ∧ and L, such that K = VN (L). Then, we have, by
the definition of VN (IL),

K = VN (L) (by the hypothesis)
= VN (IL) (by Proposition 10)
= VN (IK). (since IK = IL)

¥
Moreover, it may now be shown that, if I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is a symmetrically N -rule-based and surjectively N -
semilattice based π-institution, that is non-pseudo-axiomatic, then the π-institution IVN (I)

that is generated by its canonical class of N -algebraic systems, coincides with I. This forms,
in the present context, an analog of Proposition 3.5 of [17].

Proposition 19 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a non-pseudo-axiomatic, symmetrically N -rule-based and surjectively N -semilattice
based π-institution. Then IVN (I) = I.

Proof:
It suffices to show that, for all Σ ∈ |Sign|, φ0, . . . , φn−1, φ ∈ SEN(Σ), we have that

φ ∈ C
VN (I)
Σ (φ0, . . . , φn−1) if and only if φ ∈ CΣ(φ0, . . . , φn−1). We indeed have

φ ∈ C
VN (I)
Σ (φ0, . . . , φn−1)

iff αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ≤′F (Σ) αΣ(φ),
for all 〈SEN′, 〈N ′, F ′〉〉 ∈ VN (I) and all surjective 〈F, α〉 : SEN →se SEN′,

iff αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ∧′F (Σ) αΣ(φ) = αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1),
for all 〈SEN′, 〈N ′, F ′〉〉 ∈ VN (I) and all surjective 〈F, α〉 : SEN →se SEN′,

iff αΣ(φ0 ∧Σ · · · ∧Σ φn−1 ∧Σ φ) = αΣ(φ0 ∧Σ · · · ∧Σ φn−1),
for all 〈SEN′, 〈N ′, F ′〉〉 ∈ VN (I) and all surjective 〈F, α〉 : SEN →se SEN′,

iff CΣ(φ0 ∧Σ · · · ∧Σ φn−1 ∧Σ φ) = CΣ(φ0 ∧Σ · · · ∧Σ φn−1)
iff φ ∈ CΣ(φ0 ∧Σ · · · ∧Σ φn−1).

¥
An N -semilattice-based and non-psedo-axiomatic π-institution I = 〈Sign, SEN, C〉 rel-

ative to ∧, where N is a category of natural transformations on SEN, is determined by the
pairs of all Σ-sentences which are interderivable, for every Σ ∈ |Sign|, i.e., by its Frege rela-
tion Λ(I). Moreover the relation of extension between π-institutions over the same sentence
functor that are N -semilattice-based relative to ∧ and non-pseudo-axiomatic corresponds
to the signature-wise inclusion relation between their Frege relations.
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Notice that, if I = 〈Sign,SEN, C〉 and I ′ = 〈Sign, SEN, C ′〉 are any two π-institutions,
such that C ≤ C ′, then, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), if 〈φ, ψ〉 ∈ ΛΣ(I), then
CΣ(φ) = CΣ(ψ), which immediately implies that C ′

Σ(φ) = C ′
Σ(ψ), i.e., that 〈φ, ψ〉 ∈ ΛΣ(I ′).

Therefore Λ(I) ≤ Λ(I ′). For the special case where I and I ′ are N -semilattice-based
relative to ∧ and non-pseudo-axiomatic the converse implication also holds. This results in
the following analog of Proposition 3.6 of [17].

Proposition 20 Let I = 〈Sign, SEN, C〉, I ′ = 〈Sign, SEN, C ′〉, with N a category of nat-
ural transformations on SEN, be two non-pseudo-axiomatic, N -semilattice-based π-insti-
tutions relative to ∧. Then

Λ(I) ≤ Λ(I ′) if and only if I ≤ I ′.

Therefore, if Λ(I) = Λ(I ′), then I = I ′.

Proof:
We already noticed that the right-to-left implication holds. For the reverse implication,

assume that I, I ′ are non-pseudo-axiomatic and N -semilattice-based relative to ∧, such
that Λ(I) ≤ Λ(I ′). Then we have, for all Σ ∈ |Sign| and all φ0, . . . , φn−1, φ ∈ SEN(Σ),

φ ∈ CΣ(φ0, . . . , φn−1) iff φ ∈ CΣ(φ0 ∧Σ · · · ∧Σ φn−1)
iff CΣ(φ0 ∧Σ · · · ∧Σ φn−1 ∧Σ φ) = CΣ(φ0 ∧Σ · · · ∧Σ φn−1)

implies C ′
Σ(φ0 ∧Σ · · · ∧Σ φn−1 ∧Σ φ) = C ′

Σ(φ0 ∧Σ · · · ∧Σ φn−1)
iff φ ∈ C ′

Σ(φ0 ∧Σ · · · ∧Σ φn−1)
iff φ ∈ C ′

Σ(φ0, . . . , φn−1).

If, on the other hand, φ ∈ CΣ(∅), then, since I is non-pseudo-axiomatic, we get that
φ ∈ CΣ(ψ), for all ψ ∈ SEN(Σ), whence CΣ(φ ∧Σ ψ) = CΣ(ψ), for all ψ ∈ SEN(Σ),
i.e., 〈φ ∧Σ ψ,ψ〉 ∈ ΛΣ(I), for all ψ ∈ SEN(Σ). Therefore, 〈φ ∧Σ ψ, ψ〉 ∈ ΛΣ(I ′), for all
ψ ∈ SEN(Σ), showing that φ ∈ C ′

Σ(ψ), for all ψ ∈ SEN(Σ) and, thus, since I ′ is also
non-pseudo-axiomatic, φ ∈ C ′

Σ(∅). Hence I ≤ I ′. ¥
Let SEN : Sign → Set be a functor, with N a category of natural transformations on

SEN. A variety K of N -algebraic systems will be said to be (SEN, N)-surjective if it is
generated by a subclass L ⊆ K, such that, for every 〈SEN′, 〈N ′, F ′〉〉 ∈ L, there exists at
least one surjective (N,N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′.

If Propositions 18, 19 are combined with Proposition 20, we obtain an analog of an
isomorphism obtained in [19] in the case of sentential logics using Gentzen systems. It is
a bijection between the non-pseudo-axiomatic, surjectively semilattice-based π-institutions
relative to ∧ on a symmetrically N -rule based sentence functor SEN and the (SEN, N)-
surjective semilattice-based varieties relative to ∧, that becomes a dual isomorphism when
the orderings of the π-institutions by extension and of the varieties by inclusion are taken
into account. The isomorphism result of [19] was revisited in [17], where a proof that is not
based on Gentzen systems is provided.
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Theorem 21 Let SEN : Sign → Set, with N a category of natural transformations on
SEN, be a symmetrically N -rule based functor, and ∧ : SEN2 → SEN in N . Then, there
exists a dual isomorphism between the non-pseudo-axiomatic, surjectively N -semilattice
based π-institutions on SEN relative to ∧, ordered under extension, and the collection of
all (SEN, N)-surjective subvarieties of the variety of all N -algebraic systems satisfying the
equations

x ∧ x ≈ x;
x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z;
x ∧ y ≈ y ∧ x,

ordered by inclusion. The isomorphism is given by I 7→ VN (I).

Proof:
If I = 〈Sign,SEN, C〉 and I ′ = 〈Sign, SEN, C ′〉 are non-pseudo-axiomatic, symmetri-

cally N -rule-based and surjectively N -semilattice based π-institutions on SEN relative to
∧, such that VN (I) = VN (I ′), then , by Proposition 19, we get that I = I ′. Therefore
I 7→ VN (I) is injective. That it is onto is given by Proposition 18, since we have that every
N -semilattice-based variety K relative to ∧ defines an N -semilattice-based π-institution IK,
such that VN (IK) = K.

If I is a symmetrically N -rule-based and N -selfextensional π-institution, then its Frege
relation system determines the equations that hold in the variety VN (I) and, hence, deter-
mines the variety itself. Now, by Proposition 20, given two non-pseudo-axiomatic, symmet-
rically N -rule-based and N -semilattice based π-institutions on SEN relative to ∧, I ≤ I ′ if
and only if VN (I ′) ⊆ VN (I). Thus, I 7→ VN (I) is a dual isomorphism. ¥

4 Full N-Selfextensionality

It has been shown in Theorem 12 that, if I = 〈Sign, SEN, C〉, with N a category of natural
transformations on SEN, is a symmetrically N -rule based π-institution that is surjectively
N -semilattice-based, then, VN (I) = KN

I . In this section it is shown that, for a symmetrically
N -rule-based and surjectively N -semilattice based π-institution I = 〈Sign, SEN, C〉 relative
to ∧, the two classes VN (I) and AlgN (I) coincide. A proof is also provided of the fact
that every N -conjunctive and N -selfextensional, symmetrically N -rule-based π-institution
is fully N -selfextensional. These two results parallel in the context of π-institutions two of
the main theorems, Theorems 3.12 and 3.13, respectively, of [17].

We start with an analog of Lemma 3.8 of [17], showing that, given a symmetrically
N -rule based π-institution I that is N -semilattice-based and has theorems, then, for every
N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 ∈ KN

I and all surjective (N, N ′)-epimorphic translations
〈F, α〉 : SEN →se SEN′, the theory families of the 〈F, α〉-min (N, N ′)-model of I on SEN′

coincide with the N -semilattice filter families of 〈SEN′, 〈N ′, F ′〉〉.

Lemma 22 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution, that is surjectively N -semilattice-based
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and has theorems. For every 〈SEN′, 〈N ′, F ′〉〉 ∈ KN
I and all surjective (N,N ′)-epimorphic

translations 〈F, α〉 : SEN →se SEN′, the theory families of the 〈F, α〉-min (N,N ′)-models of
I on SEN are exactly the N -semilattice filter families of 〈SEN′, 〈N ′, F ′〉〉.

Proof:
Let T = {TΣ′}Σ′∈|Sign′| be a theory family of the 〈F, α〉-min (N, N ′)-model I ′ =

〈Sign′, SEN′, C ′〉 of I on SEN′. Since I has theorems and 〈F, α〉 is surjective, we have
that TΣ′ 6= ∅, for all Σ′ ∈ |Sign′|. Moreover, since, by Proposition 11, for all Σ ∈ |Sign|
and all φ, ψ ∈ SEN(Σ), we have that CΣ(φ ∧Σ ψ) = CΣ(φ, ψ), and 〈F, α〉 is surjective, we
must have that, for all Σ′ ∈ |Sign′| and φ′, ψ′ ∈ SEN′(Σ′), C ′

Σ′(φ
′ ∧′Σ′ ψ′) = C ′

Σ′(φ
′, ψ′).

Therefore, for every theory family T of I ′, all Σ′ ∈ |Sign′| and all φ′, ψ′ ∈ SEN′(Σ′), we
have that φ′ ∧′Σ′ ψ′ ∈ TΣ′ if and only if φ′, ψ′ ∈ T ′Σ′ . Therefore T is indeed an N -semilattice
filter family of 〈SEN′, 〈N ′, F ′〉〉.

Suppose, conversely, that T = {TΣ′}Σ′∈|Sign′| is an N -semilattice filter family of 〈SEN′,
〈N ′, F ′〉〉 ∈ KN

I . To see that T is a theory family of the 〈F, α〉-min (N, N ′)-model I ′ =
〈Sign′, SEN′, C ′〉 of I on SEN′, it suffices to show, by surjectivity of 〈F, α〉, that, for all
Σ ∈ |Sign′|, we have C ′

F (Σ)(TF (Σ)) ⊆ TF (Σ).
Suppose, to this end, that φ ∈ SEN(Σ), such that αΣ(φ) ∈ C ′

F (Σ)(TF (Σ)). By Lemma
2.1 of [26], I ′ is also finitary, which supplies φ0, . . . , φn−1 ∈ SEN(Σ), with αΣ(φ0), . . . ,
αΣ(φn−1) ∈ TF (Σ), such that αΣ(φ) ∈ C ′

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)). Following the notation
used in the proof of Lemma 2.1 of [26] and the proof technique of Lemma 13 of [33], it suffices
to show, by induction on n, that, for all n ≥ 0, Xn

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) ⊆ TF (Σ).
If n = 0, then X0

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) = {αΣ(φ0), . . . , αΣ(φn−1)} ⊆ TF (Σ). Sup-
pose, as the induction hypothesis, that Xk

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) ⊆ TF (Σ). For the

induction step, let χ′ ∈ Xk+1
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)). Then, there exist, by definition,

χ0, . . . , χm−1, χ ∈ SEN(Σ), such that αΣ(χ) = χ′, αΣ(χi) ∈ Xk
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)),

for all i < m, and χ ∈ CΣ(χ0, . . . , χm−1). Now, since I is N -semilattice-based relative to
∧ and KN

I , we obtain that αΣ(χ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(χm−1) ∧′F (Σ) αΣ(χ) = αΣ(χ0) ∧′F (Σ)

· · · ∧′F (Σ) αΣ(χm−1). Thus, since, by the inductive hypothesis, αΣ(χ0), . . . , αΣ(χm−1) ∈
Xk

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) ⊆ TF (Σ), we get, taking into account that TF (Σ) is the Σ′-
component of an N -semilattice filter family of 〈SEN′, 〈N ′, F ′〉〉, that

αΣ(χ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(χm−1) ∧′F (Σ) αΣ(χ) = αΣ(χ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(χm−1)
∈ TF (Σ),

whence, again using the fact that TF (Σ) is the Σ′-component of an N -semilattice filter family
of 〈SEN′, 〈N ′, F ′〉〉, we obtain that χ′ = αΣ(χ) ∈ TF (Σ) as well. ¥

Next, the task of showing that, given a symmetrically N -rule based and surjectively
N -semilattice based π-institution, any 〈SEN′, 〈N ′, F ′〉〉 ∈ KN

I , and any surjective 〈F, α〉 :
SEN →se SEN′, the Frege relation system of the 〈F, α〉-min (N,N ′)-model of I on SEN′ is
N ′-reduced is undertaken. This will help us establish in the sequel one of the main results
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of the paper, namely, that AlgN (I) = KN
I , and, as a consequence, that AlgN (I), in this

specific case, is a variety of N -algebraic systems.

Lemma 23 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transforma-
tions on SEN, is a symmetrically N -rule based and surjectively N -semilattice-based π-
institution. Then, for every 〈SEN′, 〈N ′, F ′〉〉 ∈ KN

I and all surjective 〈F, α〉 : SEN →se SEN′,
the Frege relation Λ(I ′) of the 〈F, α〉-min (N, N ′)-model I ′ = 〈Sign′, SEN′, C ′〉 of I on SEN′

is the identity relation system on SEN′. Therefore I ′ is N ′-reduced.

Proof:
By the surjectivity of 〈F, α〉, it suffices to show that, for all Σ ∈ |Sign| and all φ, ψ ∈

SEN(Σ), such that αΣ(φ) 6= αΣ(ψ), we have that 〈αΣ(φ), αΣ(ψ)〉 6∈ ΛF (Σ)(I ′). To this end
consider the sets

TαΣ(φ) = {χ ∈ SEN′(F (Σ)) : αΣ(φ) ≤′F (Σ) χ}
and

TαΣ(ψ) = {χ ∈ SEN′(F (Σ)) : αΣ(ψ) ≤′F (Σ) χ}.
Since 〈SEN′, 〈N ′, F ′〉〉 ∈ KN

I and I is surjectively N -semilattice-based, both TαΣ(φ) and
TαΣ(ψ) are F (Σ)-components of N -semilattice filter families of 〈SEN′, 〈N ′, F ′〉〉. Therefore,
by Lemma 22, they are both F (Σ)-theories of I ′. Since αΣ(φ) 6= αΣ(ψ), we must have
αΣ(φ) 6∈ TαΣ(ψ) or αΣ(ψ) 6∈ TαΣ(φ). This shows that C ′

F (Σ)(αΣ(φ)) 6= C ′
F (Σ)(αΣ(ψ)) and,

hence, that 〈αΣ(φ), αΣ(ψ)〉 6∈ ΛF (Σ)(I ′), as required.
That I ′ is N ′-reduced follows now from the fact that Ω̃N (I ′) ≤ Λ(I ′) = ∆SEN′ . This

also verifies that I ′ is N ′-selfextensional in this case. ¥

Lemma 24 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution, that is surjectively N -semilattice-based
and has theorems. Then, for every finitary (N,N ′)-model I ′ = 〈Sign′,SEN′, C ′〉 of I via a
surjective (N,N ′)-logical morphism 〈F, α〉 : I〉−seI ′, such that Λ(I ′) = ∆SEN′, we have that

1. 〈SEN′, 〈N ′, F ′〉〉 ∈ KN
I and

2. C ′ coincides with the closure system C ′min of the 〈F, α〉-min (N, N ′)-model I ′min =
〈Sign′,SEN′, C ′min〉 of I on SEN′.

Proof:

1. We have, by the hypothesis, Ω̃N ′
(I ′) ≤ Λ(I ′) = ∆SEN′ , whence Ω̃N ′

(I ′) = ∆SEN′ ,
showing that I ′ is N ′-reduced, and, therefore, that 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I) ⊆ KN

I ;
the last inclusion provided by Proposition 2.

2. Let I ′min = 〈Sign′, SEN′, C ′min〉 denote the 〈F, α〉-min (N, N ′)-model of I on SEN′.
To show that C ′ = C ′min, it suffices to show that, given T ∈ ThFam(I ′min), we
have, for all Σ ∈ |Sign|, C ′

F (Σ)(TF (Σ)) ⊆ TF (Σ). Suppose, to this end, that φ ∈
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SEN(Σ), such that αΣ(φ) ∈ C ′
F (Σ)(TF (Σ)). Thus, since I ′ is finitary, there exist

φ0, . . . , φn−1 ∈ SEN(Σ), with αΣ(φ0), . . . , αΣ(φn−1) ∈ TF (Σ), such that αΣ(φ) ∈
C ′

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)). Therefore, since I is N -semilattice-based relative to
∧ and KN

I and I ′ is a model of I, we get that

C ′
F (Σ)(αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) ∧′F (Σ) αΣ(φ))

= C ′
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1), αΣ(φ))

= C ′
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1))

= C ′
F (Σ)(αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1)).

But, then, since Λ(I ′) = ∆SEN′ , we get that αΣ(φ0) ∧′F (Σ) · · · ∧′F (Σ) αΣ(φn−1) =
αΣ(φ0)∧′F (Σ) · · ·∧′F (Σ)αΣ(φn−1)∧′F (Σ)αΣ(φ), whence, since TF (Σ) is, by Lemma 22, the
F (Σ)-component of an N -semilattice filter family of I ′min and αΣ(φ0), . . . , αΣ(φn−1) ∈
TF (Σ), we get that αΣ(φ0)∧′F (Σ) · · ·∧′F (Σ)αΣ(φn−1)∧′F (Σ)αΣ(φ) ∈ TF (Σ), and, therefore,
by the same property, αΣ(φ) ∈ TF (Σ). Thus TF (Σ) = C ′

F (Σ)(TF (Σ)), i.e., T is indeed a
theory family of I ′.

¥
We are now ready to show that, given a symmetrically N -rule based π-institution I, that

is surjectively N -semilattice-based and has theorems, the class AlgN (I) consists exactly of
those members 〈SEN′, 〈N ′, F ′〉〉 of its intrinsic N -variety KN

I that are such there exists a
surjective (N, N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′. This class was called the
N -core of KN

I and denoted by corN (KN
I ) in previous work. Theorem 25 is an analog in the

context of π-institutions of another of the main theorems, Theorem 3.12, of [17].

Theorem 25 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution, that is surjectively N -semilattice-based
and has theorems. Then

1. AlgN (I) = corN (KN
I );

2. I is N -semilattice-based relative to AlgN (I).

Proof:
By Proposition 2, we have that AlgN (I) ⊆ KN

I . Moreover, by the definition of the class
AlgN (I), for every 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I), there exists at least one surjective (N, N ′)-
epimorphic translation 〈F, α〉 : SEN →se SEN′. Therefore AlgN (I) ⊆ corN (KN

I ). By Lemma
23, we also get that corN (KN

I ) ⊆ AlgN (I). Therefore we obtain that AlgN (I) = corN (KN
I ).

Finally, since, by Corollary 9 and Theorem 12, I is N -semilattice-based relative to KN
I , we

get that I is N -semilattice-based relative to AlgN (I). ¥
Theorem 25 together with Theorem 15 imply the following
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Corollary 26 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution with theorems, that is N -selfextensional
and has an N -conjunction. Then AlgN (I) = corN (KN

I ).

Finally, the section concludes with the analog of a theorem first proved in [11] via the
use of Gentzen systems and subsequently revisited in [17], where it is given as Theorem
3.13 with a proof avoiding the use of Gentzen systems. Roughly speaking, it states that
every symmetrically N -rule based π-institution that is N -conjunctive and N -selfextensional
is also fully N -selfextensional.

Recall, before stating Theorem 27 formally, that a π-institution I = 〈Sign,SEN, C〉,
with N a category of natural transformations on SEN, is said to be fully N -selfextensional
if, for every (N,N ′)-full model I ′ of I via a surjective (N, N ′)-epimorphic translation, I ′ is
N ′-selfextensional.

Theorem 27 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a symmetrically N -rule based π-institution, that is N -conjunctive and N -selfexten-
sional. Then I is fully N -selfextensional.

Proof:
Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on

SEN, is a symmetrically N -rule based π-institution, that is N -selfextensional and has an N -
conjunction ∧. Then, by Theorem 15 and its proof, I is surjectively N -semilattice based and
it is N -semilattice based relative to ∧ and KN

I . By Proposition 2, AlgN (I) ⊆ KN
I , whence,

by Lemma 23, if 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I) and 〈F, α〉 : SEN →se SEN′ is a surjective
(N,N ′)-epimorphic translation, then the Frege relation system of the 〈F, α〉-min (N, N ′)-
model I ′ of I on SEN′ is the identity equivalence system on SEN′, i.e., Λ(I ′) = ∆SEN′ and,
therefore, I ′ has the N ′-congruence property.

Now suppose that I ′ is a full (N,N ′)-model of I via a surjective (N, N ′)-logical mor-
phism 〈F, α〉 : I〉−seI ′. Then, by definition, I ′N ′

is the 〈F, πN ′
F α〉-min (N, N ′)-model of I on

SEN′N
′
. Therefore, by what was said in the previous paragraph, I ′N ′

has the N ′-congruence
property. But, by Proposition 3.7 of [26], the congruence property is preserved by bilogical
morphisms and 〈ISign′ , π

N ′〉 : I ′ `se I ′N ′
is an (N ′, N ′)-bilogical morphism, whence I ′ also

has the N ′-congruence property. This shows that I is fully N -selfextensional. ¥
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