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Abstract

The work of Jansana on selfextensional deductive systems with an implication sat-
isfying the deduction-detachment property, that was partially based on the well-known
work of Font and Jansana on providing a general algebraic semantics for sentential log-
ics, is abstracted to cover selfextensional logics with implication that are formalized as
π-institutions. Analogs are provided in this more general context of the main results of
Jansana. In the first, it was shown that the class of algebras canonically associated with
a deductive system with an implication having the deduction-detachment property is a
variety. In the second, selfextensionality of a deductive system possessing an implica-
tion with the deduction-detachment property was seen to imply full selfextensionality.
Finally, the existence of a dual isomorphism between selfextensional deductive systems
having an implication with the deduction-detachment property, ordered by extension,
and subvarieties of the variety, over the same similarity type, axiomatized by the Hilbert
equations is demonstrated. In order to prove analogs of these results at the categorical
level, the powerful machinery developed in the last few years in this area is brought to
bear. In particular, specific use is made for the first time, of the theory of varieties and
quasi-varieties of algebraic systems, as previously developed by the author.

1 Introduction

Two classes of deductive systems that have played an important role in the modern theory
of abstract algebraic logic are the classes of selfextensional and of Fregean logics. A de-
ductive system S = 〈L,`S〉 is said to be selfextensional if the interderivability relation is a
congruence on the formula algebra, i.e., if, for all φ, ψ ∈ FmL(V ) and all δ(p) ∈ FmL(V ),

φ a`S ψ imply δ(φ) a`S δ(ψ).
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These logics were introduced by Wójcicki in [28]. On the other hand, a deductive system
S = 〈L,`S〉 is said to be Fregean if interderivability modulo any set of formulas Γ ⊆ FmL(V )
is a congruence relation on the formula algebra, i.e., if, for all Γ∪{φ, ψ} ⊆ FmL(V ) and all
δ(p) ∈ FmL(V ),

Γ, φ a`S Γ, ψ imply Γ, δ(φ) a`S Γ, δ(ψ).

The name Fregean is due to the study by R. Suszko of non-Fregean logic and stems from
the fact that this property formalizes, in a certain sense, Frege’s compositionality principle
for truth. By taking Γ = ∅ in the definition of Fregean deductive systems, it is easily seen
that every Fregean deductive system is selfextensional.

One interesting feature of selfextensional and Fregean deductive systems from the point
of view of abstract algebraic logic, as exemplified in particular in the overview [], is the
fact that they span different classes of the Leibniz or abstract algebraic hierarchy of logics,
as established over the last few decades. The review article [10] and, in more detail, the
book [5] contain comprehensive treatments of the different classes of logics forming the
various steps in this hierarchy. As a consequence, results and techniques that are developed
within the classes of selfextensional or Fregean logics are applicable to a variety of logics in
different levels of the hierarchy providing intuitions differing in nature from those provided
by working inside a single specific class of the hierarchy.

The widest class of deductive systems in the Leibniz hierarchy, whose members form the
main objects of study in abstract algebraic logic, is the class of protoalgebraic deductive
systems. Given a deductive system S = 〈L,`S〉 and an S-theory T , recall that the Leibniz
congruence ΩS(T ) associated with T is the largest congruence θ on the formula algebra
FmL(V ) that is compatible with the theory T in the sense that, if φ, ψ ∈ FmL(V ), such
that 〈φ, ψ〉 ∈ θ and φ ∈ T , then ψ ∈ T . According to the original definition of Blok and
Pigozzi [3], a deductive system S = 〈L,`S〉 is protoalgebraic if, for all theories T of S and
all φ, ψ ∈ FmL(V ), 〈φ, ψ〉 ∈ ΩS(T ) implies that T, φ `S ψ. A better known characterization
of protoalgebraic deductive systems asserts that a deductive system is protoalgebraic if and
only if the Leibniz operator is monotone on the theories of the deductive system, i.e., if for
all theories T1 and T2 of S, T1 ⊆ T2 implies that ΩS(T1) ⊆ ΩS(T2). A stronger property
actually holds and also characterizes protoalgebraic deductive systems. But to state it
properly, the notion of a matrix model of a deductive system must be introduced first.

An L-matrix A = 〈A, F 〉 is a pair consisting of an L-algebra A = 〈A,LA〉 and a subset
F ⊆ A of the carrier A of A. Given a deductive system S = 〈L,`S〉, an L-matrix A is said
to be an S-matrix if F is an S-filter on A, i.e., if, for all Γ ∪ {φ} ⊆ FmL(V ), and every
L-homomorphism h : FmL(V ) → A,

Γ `S φ and h(Γ) ⊆ F imply h(φ) ∈ F.

The collection of all S-filters on A is denoted by FiS(A). The Leibniz congruence ΩA(F ),
also denoted by Ω(A), of an S-matrix A = 〈A, F 〉 is the largest congruence on A that is
compatible with the S-filter F , i.e., in a similar way as before, such that, if 〈a, b〉 ∈ ΩA(F )
and a ∈ F , then b ∈ F . Protoalgebraic deductive systems are also characterized as those
deductive systems S for which the Leibniz operator is monotone on the S-filters of any
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L-algebra, i.e., for every L-algebra A and all S-filters F, G of A, F ⊆ G implies that
ΩA(F ) ⊆ ΩA(G).

Yet one more alternative characterization of protoalgebraicity comes from the general-
ized matrices of a deductive system S. A generalized L-matrix or L-g-matrix A = 〈A, C〉 is a
pair consisting of an L-algebra A = 〈A,LA〉 together with a closed set system C ⊆ P(A) on
the universe A of A. Sometimes, the closure operator C : P(A) → P(A) corresponding to
the closed set system C is employed, in which case the g-matrix is denoted by A = 〈A, C〉.
Generalized matrices have a long history but were recently brought to the forefront of the
work in abstract algebraic logic via the results of Font and Jansana [9], where they were
referred to as abstract logics. A g-matrix A is said to be a g-matrix model of S, or an
S-g-matrix, if every closed set in C is an S-filter, i.e., if C ⊆ FiS(A). When one considers
g-matrices instead of matrices as the models of deductive systems, the Leibniz operator
is replaced by the Tarski operator. The Tarski congruence Ω̃A(C), or Ω̃(A), of an L-g-
matrix A = 〈A, C〉 is the largest congruence on the algebra A that is compatible with every
closed set F ∈ C. It is easily seen from the definition that Ω̃A(C) =

⋂
F∈C ΩA(F ). More-

over, a deductive system is protoalgebraic if and only if, for every S-g-matrix A = 〈A, C〉,
Ω̃A(C) = ΩA(

⋂ C).
Based on the notion of a g-matrix model of a deductive system S, one may define

strengthnenings of the concepts of a selfextensional and of a Fregean deductive system. Ac-
cording to Font and Jansana [9], a basic g-matrix model of S, or a basic S-g-matrix, is an S-g-
matrix A = 〈A, C〉, such that C = FiS(A), the entire collection of S-filters on A. Moreover,
an S-g-matrix is said to be a full S-g-matrix if its reduction A/Ω̃(A) = 〈A/Ω̃(A), C/Ω̃(A)〉
is a basic S-g-matrix. A deductive system S is then said to be fully selfextensional if every
full model A of S is selfextensional in the sense that the interderivability relation, or Frege
relation, Λ(A) = {〈a, b〉 ∈ A2 : C(a) = C(b)} of A is a congruence relation on A. Since the
S-g-matrix S = 〈FmL(V ),ThS〉 is a full model of S, it is obvious that every fully selfexten-
sional deductive system is selfextensional. On the other hand, a deductive system S is said
to be fully Fregean if, for every full model A of S, A is Fregean in the sense that, for every
F ∈ C, the relation ΛA(F ) = {〈a, b〉 ∈ A2 : C(F, a) = C(F, b)} is a congruence relation on
A. For a reason analogous to that with fully selfextensional and selfextensional logics, every
fully Fregean deductive system is Fregean. Moreover, Babyonyshev [1] has shown that both
the inclusion of fully selfextensional logics in the class of all selfextensional logics as well as
that of fully Fregean logics in the class of all Fregean logics are proper.

Besides selfextensionality and Fregeanity, another property that is critical in the de-
velopment of the theory of both [9] and [13] is that of possessing an implication system
with the deduction-detachment property. A deductive system S = 〈L,`S〉 is said to have
an implication ⇒ satisfying the deduction-detachment property, if there exists a set ⇒ of
binary terms (either primitive or derived) such that, for every φ ∈ FmL(V ), `S φ ⇒ φ and,
for all Γ ∪ {φ, ψ} ⊆ FmL(V ),

Γ, φ `S ψ iff Γ `S φ ⇒ ψ.

The implication from left to right is referred to as the deduction property of ⇒ whereas the
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implication from right to left as the detachment property of ⇒.
Having all these notions at hand, it is now possible to give the reader an overview of

the main results of [13], that will be at the focus of the investigations in the remainder
of the present paper. First, in Theorem 4.27 of [13] it is shown that, if S is a deductive
system with an implication that satisfies the deduction-detachment property, then the class
of algebras AlgS, canonically associated with S via an abstraction of the Lindenbaum-
Tarski process, is a variety. Second, in Theorem 4.31 of [13], every selfextensional deductive
system having an implication satisfying the deduction-detachment property is shown to
be fully selfextensional. Finally, given a similarity type L and a fixed binary term ⇒ of
L, Theorem 13 of [13] asserts that there exists a dual isomorphism between the collection
of selfextensional deductive systems in which ⇒ has the deduction-detachment property,
ordered by extension, and the collection of all subvarieties of the variety of all L-algebras
that is axiomatized by the Hilbert-algebra equations with respect to ⇒.

The goal of the present paper is to prove analogs of these results of Jansana so as to cover
selfextensional logics, with an implication satisfying a categorical analog of the deduction-
detachment property, that are formalized as π-institutions. In order to prove those analogs
at the categorical level, the powerful machinery developed in the last few years in the area
of Categorical Abstract Algebraic Logic is brought to bear. In particular, specific use is
made for the first time, of the theory of varieties and quasi-varieties of algebraic systems,
as previously developed by the author.

A brief overview of the contents and the main results of the paper is provided now. The
next section revisits some of the preliminaries that are required in order to state and prove
the main results of the paper. In particular, the definition of a π-institution, of a category of
natural transformations on a sentence functor, of theory systems, of N -congruence systems
and those of N -selfextensionality and of N -Fregeanity are recalled. Section 3 is entirely
new and key to the developments not only of the present paper but also of some other
forthcoming work by the author. It introduces two classes of N -algebraic systems related
to the sentence functor SEN of a given π-institution I = 〈Sign,SEN, C〉, where N is a
category of natural transformations on SEN. The first is the variety KN

I of N -algebraic
systems generated by the N -Tarski reduction SENN of SEN. This class corresponds in this
framework to the intrinsic variety KS associated to a deductive system S in the universal
algebraic framework. The second class is the class AlgN (I) of all N -algebraic systems that
are the algebraic system reducts of all Tarski reduced models of I via surjective logical
morphisms. This class is the one corresponding to the class AlgS of all algebraic reducts of
the reduced g-matrix models of S in the deductive system framework. In a very interesting
result paralleling one holding for deductive systems, it is shown that AlgN (I) is always a
subclass of KN

I and that, moreover, KN
I is the variety of N -algebraic systems that is generated

by AlgN (I). These results rely on the theory of varieties and quasivarieties of N -algebraic
systems studied in detail in [20, 21, 24]. Hilbert-based π-institutions are introduced and
studied in Section 4, where it is shown that a finitary π-institution I is N -Hilbert based if
and only if it is N -selfextensional and has the N -uniterm deduction-detachment property.
This section also contains analogs of the three main results of [13] that were summarized
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above. These analogs are formulated in the framework of finitary symmetrically N -rule
based π-institutions. Leaving aside for the moment the precise meaning of the terminology,
which will be introduced in detail in the following sections, the following results will be
obtained:

1. Let I = 〈Sign,SEN, C〉, with N a category of natural transformations on SEN,
be a finitary π-institution. If I is N -selfextensional and has an N -implication ⇒:
SEN2 → SEN with the deduction-detachment property, then AlgN (I) is a variety of
N -algebraic systems.

2. Every π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations
on SEN, that is N -selfextensional and has an N -implication ⇒: SEN2 → SEN with
the deduction-detachment property is also fully N -selfextensional.

3. Let SEN : Sign → Set be a set-valued functor, and N a category of natural trans-
formations on SEN. Suppose that SEN is symmetrically N -rule based and that
⇒: SEN2 → SEN is a binary natural transformation in N . Then, there exists a
dual isomorphism between the collection of all N -selfextensional π-institutions with
the deduction-detachment property relative to ⇒, ordered by extension, and the col-
lection of all subvarieties K of the variety of N -algebraic systems axiomatized by the
following Hilbert algebra equations (H1)-(H4) and satisfying the technical condition
K = VN (corN (K)), ordered by inclusion.

(H1) x ⇒ x ≈ y ⇒ y
(H2) (x ⇒ x) ⇒ x ≈ x
(H3) x ⇒ (y ⇒ z) ≈ (x ⇒ y) ⇒ (x ⇒ z)
(H4) (x ⇒ y) ⇒ ((y ⇒ x) ⇒ y) ≈ (y ⇒ x) ⇒ ((x ⇒ y) ⇒ x)

4. Finitary N -selfextensional π-institutions with an implication ⇒ in N , that has the
deduction-detachment property, are characterized as those π-institutions I for which,
there exists a class K of N -algebraic systems satisfying (H1)-(H4) and is connected to
I by the following two conditions:

(a) For all Σ ∈ |Sign| and all φ0, . . . , φn−1, φ ∈ SEN(Σ), if φ ∈ CΣ(φ0, . . . , φn−1),
then, for all A = 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′,

αΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒ φ) · · ·)) = 1′F (Σ);

(b) For all Σ ∈ |Sign|, φ ∈ SEN(Σ), φ ∈ CΣ(∅) if and only if, for all A = 〈SEN′, 〈N ′,
F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′, αΣ(φ) = 1′F (Σ),

where, by 1′F (Σ) is denoted the F (Σ)-sentence φ′ ⇒′
F (Σ) φ′, for any φ′ ∈ SEN′(F (Σ)).

Since K satisfies (H1), we have, for all φ′, ψ′ ∈ SEN′(F (Σ)), φ′ ⇒′
F (Σ) φ′ = ψ′ ⇒′

F (Σ)

ψ′, whence this definition of 1′F (Σ) is unambiguous.

The π-institutions that are characterized in this last part are referred to as N -Hilbert-
based in the paper.
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In Section 5 Fregean and fully Fregean π-institutions are studied. The main result obtained
in this section is that every finitary N -rule based and N -protoalgebraic π-institution that
is N -Fregean is also fully N -Fregean. In the final section, Section 6, of the paper, the spe-
cial case of N -Fregean π-institutions with the deduction-detachment theorem is considered
and some analogs of results holding for Fregean deductive systems with the deduction-
detachment theorem are shown to be valid in this more general context.

For all unexplained categorical terminology and notation the reader is referred to any
of [2, 4, 14]. For background on the theory of abstract algebraic logic and discussion of the
various classes of the abstract algebraic hierarchy, one of which is the class of protoalgebraic
deductive systems, the reader is referred to the review article [10], the monograph [9] and
the comprehensive treatise [5].

2 Preliminaries

Let SEN : Sign → Set be a set-valued functor and N a category of natural transformations
on SEN. When such a distinguished functor is under consideration, all varieties or quasi-
varieties that will be discussed will be varieties or quasi-varieties of N -algebraic systems
defined by collections of N -equations or N -quasi-equations in the sense of either [24] or
[25]. As a consequence, if K is a class of N -algebraic systems and A = 〈SEN′, 〈N ′, F ′〉〉,B =
〈SEN′′, 〈N ′′, F ′′〉〉 are two N -algebraic systems in K, by an N -morphism 〈F, α〉 : A → B
we will always mean an (N ′, N ′′)-epimorphic translation 〈F, α〉 : SEN′ → SEN′′, such that
the following triangle commutes

N ′ N ′′

N

F ′
¡

¡
¡

¡ª

F ′′
@

@
@

@R

where the dotted line denotes the correspondence established between N ′ and N ′′ by the
(N ′, N ′′)-epimorphic property of 〈F, α〉, i.e., given any σ : SENn → SEN in N , it will always
be assumed that σ′ := F ′(σ) and σ′′ := F ′′(σ) correspond under the (N ′, N ′′)-epimorphic
property of 〈F, α〉.

The basic logical structures that will serve as the underlying structures of our inves-
tigations are π-institutions. They were introduced in [8] as a modification of institutions
[11, 12]. Recall from [8] that a π-institution I is a triple I = 〈Sign, SEN, C〉, such that

(i) Sign is a category, whose objects are called signatures;

(ii) SEN : Sign → Set, is a set-valued functor from the category Sign of signatures,
called the sentence functor and giving, for each signature Σ, a set whose elements
are called sentences over that signature Σ or Σ-sentences;

(iii) CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, is a mapping, called Σ-closure,
such that
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(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),
(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),
(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),
(d) SEN(f)(CΣ1(A)) ⊆ CΣ2(SEN(f)(A)), for all Σ1, Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2),

A ⊆ SEN(Σ1).

A π-institution I = 〈Sign, SEN, C〉 is said to be finitary, if, for all Σ ∈ |Sign|, CΣ :
P(SEN(Σ)) → P(SEN(Σ)) is a finitary closure operator in the usual sense, i.e., if, for every
Σ ∈ |Sign| and every Φ ⊆ SEN(Σ),

CΣ(Φ) =
⋃
{CΣ(Φ′) : Φ′ ⊆ω Φ},

where by ⊆ω is denoted the finite subset relation.
Given a functor SEN : Sign → Set, a collection θ = {θΣ}Σ∈|Sign|, such that θΣ is an

equivalence relation on SEN(Σ), for all Σ ∈ |Sign|, is called an equivalence family on
SEN. If, in addition, for all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2), θ satisfies

SEN(f)2(θΣ1) ⊆ θΣ2 ,

then θ is said to be an equivalence system on SEN. If N is a category of natural
transformations on SEN and an equivalence system θ on SEN satisfies, for all σ : SENn →
SEN in N , all Σ ∈ |Sign| and all φ0, ψ0, . . . , φn−1, ψn−1 ∈ SEN(Σ),

〈φi, ψi〉 ∈ θΣ, i < n, imply 〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1〉 ∈ θΣ,

then θ is a said to be an N -congruence system on SEN.
Given a π-institution I = 〈Sign, SEN, C〉 and a category N of natural transformations

on SEN, one may associate with I an N -congruence system and an equivalence system that
have played very significant roles in the Abstract Algebraic Logic literature in classifying
sentential logics and π-institutions. Recall that an axiom family A = {AΣ}Σ∈|Sign| on
a sentence functor SEN : Sign → Set is simply a collection of subsets AΣ ⊆ SEN(Σ),
for all Σ ∈ |Sign|. It is said to be an axiom system on SEN if, in addition, for all
Σ1, Σ2 ∈ |Sign| and all f ∈ Sign(Σ1,Σ2), SEN(f)(AΣ1) ⊆ AΣ2 . Recall, also, that a
theory family T = {TΣ}Σ∈|Sign| of I is a collection of Σ-theories of I, Σ ∈ |Sign|.
Similarly, a theory family T is called a theory system if, for all Σ1,Σ2 ∈ |Sign| and all
f ∈ Sign(Σ1, Σ2), SEN(f)(TΣ1) ⊆ TΣ2 . The Tarski N -congruence system Ω̃N (I) of I
is the largest N -congruence system on SEN that is compatible with every theory family of
I in the sense that, for every theory family T = {TΣ}Σ∈|Sign| of I, all Σ ∈ |Sign| and all
φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ Ω̃N
Σ (I) and φ ∈ TΣ imply ψ ∈ TΣ.

Such an N -congruence system is called a logical N -congruence system of I. The Frege
equivalence system on SEN is the equivalence system Λ(I) = {ΛΣ(I)}Σ∈|Sign| on SEN,
defined, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), by

〈φ, ψ〉 ∈ ΛΣ(I) iff CΣ(φ) = CΣ(ψ).
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In [17] a π-institution I = 〈Sign,SEN, C〉, with N a category of natural transformations
on SEN, was called N -selfextensional if its Frege equivalence system is an N -congruence
system. Since it is always the case that Ω̃(I) ≤ Λ(I) and Ω̃(I) is the largest logical
N -congruence system of I, I being N -selfextensional is equivalent to the condition that
Ω̃N (I) = Λ(I).

A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, is called fully N -selfextensional if, for every full (N,N ′)-model of I via a surjective
(N,N ′)-logical morphism 〈F, α〉 : I〉−seI ′, I ′ is N ′-selfextensional.

Given a π-institution I = 〈Sign, SEN, C〉, the Frege operator ΛI maps an axiom
family F = {FΣ}Σ∈|Sign| of I to the equivalence system ΛI(F ) = {ΛIΣ(F )}Σ∈|Sign| of I that
is defined, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ) by

〈φ, ψ〉 ∈ ΛIΣ(F ) iff CΣ′(FΣ′ ∪ {SEN(f)(φ)}) = CΣ′(FΣ′ ∪ {SEN(f)(ψ)}),
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′).

If F happens to be an axiom system (rather than simply an axiom family), we have ΛIΣ(F ) =
ΛΣ(IF ), where IF = 〈Sign,SEN, CF 〉 is given, for all Σ ∈ |Sign| and all Φ∪{φ} ⊆ SEN(Σ),
by

φ ∈ CF
Σ (Φ) iff φ ∈ CΣ(FΣ ∪ Φ).

A π-institution I = 〈Sign,SEN, C〉, with N a category of natural transformations on
SEN, is called N -Fregean if, for every theory family T of I, ΛI(T ) is an N -congruence
system on SEN. Of course, by considering the theorem system Thm = {ThmΣ}Σ∈|Sign| :=
{CΣ(∅)}Σ∈|Sign| of I it is easy to see that, if I is N -Fregean, then it is also N -selfextensional.
Furthermore, I is called fully N -Fregean if, for every full (N, N ′)-model of I via a surjec-
tive (N, N ′)-logical morphism 〈F, α〉 : I〉−seI ′, the π-institution I ′ is N ′-Fregean.

Let SEN : Sign → Set be a functor and N a category of natural transformations on
SEN. A closure system C on SEN and the corresponding π-institution I = 〈Sign,SEN, C〉
are said to be N -rule based if, for all Σ ∈ |Sign|, Φ∪{φ} ⊆ SEN(Σ), such that φ ∈ CΣ(Φ),
there exists an N -rule 〈X, σ〉 of C of length at most |Φ|+, and ~ψ ∈ SEN(Σ)ω, such that
XΣ(~ψ) ⊆ Φ and σΣ(~ψ) = φ, i.e., such that φ follows from Φ by an application of 〈X, σ〉.
This definition of an N -rule based π-institution is borrowed from [22], where it was used
as a platform to discuss a generalized version of Bloom’s Theorem for π-institutions. The
reader may consult that paper for the definition of an N -rule and for many more details on
these two concepts.

A finitary π-institution I = 〈Sign,SEN, C〉 will be said to be symmetrically N -rule
based if it is N -rule based and, in addition, if, for some Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),
CΣ(φ) = CΣ(ψ), then, there exist natural transformations σ〈Σ,φ〉, σ〈Σ,ψ〉 : SENk → SEN
in N and ~χ ∈ SEN(Σ)k, such that σ

〈Σ,φ〉
Σ (~χ) = φ, σ

〈Σ,ψ〉
Σ (~χ) = ψ and 〈{σ〈Σ,φ〉}, σ〈Σ,ψ〉〉,

〈{σ〈Σ,ψ〉}, σ〈Σ,φ〉〉 are both N -rules of I.
A set-valued functor SEN : Sign → Set, with N a category of natural transformations

on SEN, is said to be symmetrically N -rule based if, for every finitary closure system
C on SEN, the π-institution I = 〈Sign, SEN, C〉 is symmetrically N -rule based.
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3 The Classes KN
I and AlgN(I)

Recall that, given a functor SEN : Sign → Set, with N a category of natural transfor-
mations on SEN, an N -algebraic system is a triple 〈SEN′, 〈N,F 〉〉, such that SEN′ :
Sign′ → Set is a functor, N ′ is a category of natural transformations on SEN′ and
F : N → N ′ is a surjective functor that preserves objects, i.e., preserves the arities of the
operations in the clones N and N ′. An N -algebraic morphism 〈F, α〉 : 〈SEN′, 〈N ′, F ′〉〉 →
〈SEN′′, 〈N ′′, F ′′〉〉 is an (N ′, N ′′)-epimorphic translation 〈F, α〉 : SEN′ →se SEN′′, such that,
for all σ : SENn → SEN in N , σ′ := F ′(σ) and σ′′ := F ′′(σ) correspond under the (N ′, N ′′)-
epimorphic property of 〈F, α〉.

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. Consider the triple 〈SENN , 〈N, F 〉〉, where SENN : Sign → Set is the quotient
functor SEN/Ω̃N (I), N is the quotient category of N by Ω̃N (I) and F : N → N maps a
natural transformation σ : SENn → SEN in N to its quotient σ : (SENN )n → SENN . All
these concepts were defined in [15], where they were shown to be well-defined. The triple
〈SENN , 〈N,F 〉〉 is an N -algebraic system. The variety that it generates in the sense of [24]
will be denoted by KN

I and will be called, by analogy with the intrinsic variety KS associated
with a deductive system S, the intrinsic N -variety of the π-institution I. It is shown
below that an N -equation σ ≈ τ , with σ, τ : SENn → SEN in N , is an N -identity of the
intrinsic variety KN

I of a π-institution I if and only if, for every λ : SENk → SEN in N , all
Σ, Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and all ~φ ∈ SEN(Σ)n, ~χ ∈ SEN(Σ′)k−1,

CΣ′(λΣ′(SEN(f)(σΣ(~φ)), ~χ)) = CΣ′(λΣ′(SEN(f)(τΣ(~φ)), ~χ)). (1)

Note that Equation (1) abbreviates the following sets of equations, for all i < k:

CΣ′(λΣ′(χ0, . . . , χi−1, SEN(f)(σΣ(~φ)), χi+1, . . . , χk−1) =
CΣ′(λΣ′(χ0, . . . , χi−1, SEN(f)(τΣ(~φ)), χi+1, . . . , χk−1)).

This abbreviating convention will be followed throughout the paper when it is convenient
to shorten these longer expressions.

Proposition 1 Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN. Then, for every σ, τ : SENn → SEN in N , KN

I |= σ ≈ τ if
and only if, for every λ : SENk → SEN in N , all Σ, Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and all
~φ ∈ SEN(Σ)n, ~χ ∈ SEN(Σ′)k−1,

CΣ′(λΣ′(SEN(f)(σΣ(~φ)), ~χ)) = CΣ′(λΣ′(SEN(f)(τΣ(~φ)), ~χ)).

Proof:
Suppose, first, that KN

I |= σ ≈ τ . Thus, for every N -algebraic system A ∈ KN
I , we must

have A |= σ ≈ τ . In particular, we obtain that 〈SENN , 〈N, F 〉〉 |= σ ≈ τ . Therefore, for
all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, we get that σΣ(~φN ) = τΣ(~φN ). Therefore, we get
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that σΣ(~φ)N = τΣ(~φ)N , i.e., 〈σΣ(~φ), τΣ(~φ)〉 ∈ Ω̃N
Σ (I). Now the conclusion follows by the

characterization of Ω̃N (I) contained in Theorem 4 of [15].
Suppose, conversely, that, for every λ : SENk → SEN in N , all Σ, Σ′ ∈ |Sign|, f ∈

Sign(Σ, Σ′) and all ~φ ∈ SEN(Σ)n, ~χ ∈ SEN(Σ′)k−1, the displayed equation in the statement
of the proposition holds. Then, by Theorem 4 of [15], we get that 〈σΣ(~φ), τΣ(~φ)〉 ∈ Ω̃N

Σ (I).
This means that σΣ(~φN ) = τΣ(~φN ), for every Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n. Thus, σ ≈ τ
holds in 〈SENN , 〈N,F 〉〉. Hence, since KN

I is the variety generated by 〈SENN , 〈N, F 〉〉, we
must also have that KN

I |= σ ≈ τ . ¥
From the proof of Proposition 1, we also infer that, if I happens to be N -selfextensional,

then

KN
I |= σ ≈ τ iff 〈σΣ(~φ), τΣ(~φ)〉 ∈ Ω̃N

Σ (I), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n,

iff 〈σΣ(~φ), τΣ(~φ)〉 ∈ ΛΣ(I), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n,

iff CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)) for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n.

(2)

The class AlgN (I) is defined next. Note that a class with the same name was defined
first in [16], but the definition presented here is slightly different because, here, the model
logical morphisms will be required to be surjective, which was not a requirement imposed
in [16].

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. The N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 is said to be an (I, N)-algebraic system
if and only if there exists a surjective (N,N ′)-epimorphic translation 〈F, α〉 : I →se SEN′,
such that the 〈F, α〉-min (N, N ′)-model I ′ = 〈Sign′,SEN′, C ′〉 of I on SEN′ is N ′-reduced,
i.e., iff I ′ is a reduced (N,N ′)-full model of I via 〈F, α〉. Let AlgN (I) denote the class of
all (I, N)-algebraic systems.

The next proposition relates the two classes KN
I and AlgN (I). More specifically, it

states that AlgN (I) is a subclass of KN
I and that, moreover, the class KN

I is the variety of
N -algebraic systems that is generated by the class AlgN (I).

Proposition 2 Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN. Then AlgN (I) ⊆ KN

I and, moreover, KN
I = V(AlgN (I)), where V

denotes the variety operator (which was shown in Theorem 4 of [24], an analog of Birkhoff’s
Theorem, to be equal to the operator HSP).

Proof:
Suppose that 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I). Then, there exists, by definition, a surjective

(N,N ′)-epimorphic translation 〈F, α〉 : I →se SEN′, such that the 〈F, α〉-min (N, N ′)-
model I ′ = 〈Sign′, SEN′, C ′〉 of I on SEN′ is N ′-reduced, i.e., such that Ω̃N ′

(C ′) = ∆SEN′ .
Now suppose that σ, τ : SENn → SEN in N are such that KN

I |= σ ≈ τ . This means
that, for all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, we have that 〈σΣ(~φ), τΣ(~φ)〉 ∈ Ω̃N

Σ (I).
Hence, since 〈F, α〉 : SEN →se SEN′ is surjective, by Proposition 8 of [15], we obtain
that 〈αΣ(σΣ(~φ)), αΣ(τΣ(~φ))〉 ∈ Ω̃N ′

F (Σ)(I ′). This is equivalent, by the (N,N ′)-epimorphic
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property of 〈F, α〉, to 〈σF (Σ)(αΣ(~φ)), τF (Σ)(αΣ(~φ))〉 ∈ Ω̃N ′
F (Σ)(I ′). This, in turn, once more

using the surjectivity of 〈F, α〉 together with the fact that Ω̃N ′
(I ′) = ∆SEN′ , is equivalent

to 〈SEN′, 〈N ′, F ′〉〉 |= σ ≈ τ . Therefore, we obtain that 〈SEN′, 〈N ′, F ′〉〉 ∈ KN
I , showing that

AlgN (I) ⊆ KN
I .

For the second part, it suffices to observe that 〈SENN , 〈N,F 〉〉 ∈ AlgN (I), which yields
that KN

I = V(〈SENN , 〈N,F 〉〉) ⊆ V(AlgN (I)). The opposite inclusion follows, of course,
from the first part and the fact that KN

I is, by definition, a variety. ¥
Observe, now, that Proposition 2 yields the following interesting corollary:

Corollary 3 Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN. Then, if the class AlgN (I) of all (I, N)-algebraic systems is a
variety, it is necessarily equal to the intrinsic N -variety KN

I of I.

4 Hilbert-Based π-Institutions

Let I = 〈Sign, SEN, C〉 be a π-institution, with N a category of natural transformations
on SEN. A binary natural transformation ⇒: SEN2 → SEN in N will be said to have the
deduction-detachment property or to be an N -deduction-detachment term for I,
if, for all Σ ∈ |Sign| and all Γ ∪ {φ, ψ} ⊆ SEN(Σ),

ψ ∈ CΣ(Γ, φ) iff φ ⇒Σ ψ ∈ CΣ(Γ),

where, of course φ ⇒Σ ψ := ⇒Σ (φ, ψ).
A π-institution I, as above, with N a category of natural transformations on SEN, is

said to have the N -uniterm deduction-detachment property (N-uDDP) relative to
a binary term ⇒ if ⇒ is an N -deduction-detachment term for I and it is said to have
the N -uniterm deduction-detachment property if it has the N -uniterm deduction
detachment property relative to some binary term.

In the next proposition it is shown that, if a π-institution has the N -deduction-detach-
ment property relative to two different binary natural transformations ⇒ and ⇒′, then,
for every signature Σ and all Σ-sentences φ, ψ of I, the Σ-sentences φ ⇒Σ ψ and φ ⇒′

Σ

ψ are interderivable in I, whence, if I happens to be N -selfextensional, they are also
indistinguishable modulo the Tarski N -congruence system Ω̃N (I).

Proposition 4 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, with N a category of
natural transformations on SEN. If ⇒,⇒′ are N -deduction-detachment terms for I, then,
for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), CΣ(φ ⇒Σ ψ) = CΣ(φ ⇒′

Σ ψ). Moreover, if I is
N -selfextensional, then, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), 〈φ ⇒Σ ψ, φ ⇒′

Σ ψ〉 ∈
Ω̃N

Σ (I).

Proof:
Indeed, we obviously have φ ⇒Σ ψ ∈ CΣ(φ ⇒Σ ψ), whence, since ⇒ is an N -deduction-

detachment term for I, we get that ψ ∈ CΣ(φ, φ ⇒Σ ψ) and, therefore, since ⇒′ is also an
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N -deduction-detachment term for I, φ ⇒′
Σ ψ ∈ CΣ(φ ⇒Σ ψ). Now the conclusion follows

by symmetry. The last part of the statement is obvious, since if I is N -selfextensional, then
Ω̃N (I) = Λ(I). ¥

Suppose that SEN : Sign → Set is a set-valued functor and N a category of natural
transformations on SEN. A class K of N -algebraic systems is said to be N -Hilbert-based
relative to the binary term ⇒, if ⇒: SEN2 → SEN is a binary natural transformation
in N , such that the following equations are valid in K:

(H1) x ⇒ x ≈ y ⇒ y
(H2) (x ⇒ x) ⇒ x ≈ x
(H3) x ⇒ (y ⇒ z) ≈ (x ⇒ y) ⇒ (x ⇒ z)
(H4) (x ⇒ y) ⇒ ((y ⇒ x) ⇒ y) ≈ (y ⇒ x) ⇒ ((x ⇒ y) ⇒ x)

This is tantamount to saying that, for all A = 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all Σ′ ∈ |Sign′|, the
ordinary universal algebra 〈SEN′(Σ′),⇒Σ′〉 is a Hilbert algebra. (H1)-(H4) are known as the
Hilbert equations. A class of N -algebraic systems K will be said to be N -Hilbert-based
if it is N -Hilbert-based relative to some binary natural transformation.

Let again SEN : Sign → Set be a functor and N a category of natural transformations
on SEN. A class Q of N -algebraic systems is said to be N -pointed if there exists a natural
transformation σ : SENn → SEN in N , such that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ Q, all Σ′ ∈
|Sign′| and all ~φ, ~ψ ∈ SEN′(Σ′)n,

σ′Σ′(~φ) = σ′Σ′(~ψ),

i.e., if and only if Q |= σ(~x) ≈ σ(~y), for disjoint vectors of variables ~x, ~y of appropriate
length. Such an n-ary natural transformation will be referred to as an N -constant term
since it really behaves like a constant in Q.

It is shown next that every N -Hilbert-based class of N -algebraic systems relative to the
binary term ⇒ is N -pointed with N -constant term the unary term 1(x) := x ⇒ x.

Proposition 5 Let SEN : Sign → Set be a functor, with N a category of natural trans-
formations on SEN, and K an N -Hilbert-based class of N -algebraic systems relative to the
binary term ⇒. Then K is N -pointed relative to 1(x) := x ⇒ x.

Proof:
It suffices to show that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all Σ′ ∈ |Sign′| and all φ, ψ ∈

SEN′(Σ′), φ ⇒′
Σ′ φ = ψ ⇒′

Σ′ ψ. But this holds by the hypothesis that K is N -Hilbert-based
relative to ⇒, since, then, K |= x ⇒ x ≈ y ⇒ y. ¥

The common value 1′Σ′(φ), for all φ ∈ SEN′(Σ′), will be denoted simply by 1′Σ′ . With
this in mind, we may proceed to define the binary relation system ≤′ = {≤′Σ′}Σ′∈|Sign′|.
Under the same hypotheses as above, i.e., given a functor SEN, with a category N of
natural transformations on SEN, an N -Hilbert-based class K of N -algebraic systems and
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〈SEN′, 〈N ′, F ′〉〉 ∈ K, we define the binary relation system ≤′ = {≤′Σ′}Σ′∈|Sign′| on SEN′, for
all Σ′ ∈ |Sign′| and all φ, ψ ∈ SEN′(Σ′), by

φ ≤′Σ′ ψ iff φ ⇒′
Σ′ ψ = 1′Σ′ .

Moreover, given an axiom family F = {FΣ′}Σ′∈|Sign′| on SEN′, F is said to be an ⇒-
implicative filter family on SEN′ if, for all Σ′ ∈ |Sign′|,

1. 1′Σ′ ∈ FΣ′ and

2. for all φ, ψ ∈ SEN′(Σ′), φ ∈ FΣ′ and φ ⇒′
Σ′ ψ ∈ FΣ′ imply that ψ ∈ FΣ′ .

Let I = 〈Sign, SEN, C〉 be a finitary π-institution, with N a category of natural trans-
formations on SEN. I is said to be N -Hilbert-based relative to a binary term ⇒
and a class of N -algebraic systems K, which is N -Hilbert-based relative to ⇒ if, for all
Σ ∈ |Sign| and all φ0, . . . , φn, φ ∈ SEN(Σ),

φ ∈ CΣ(φ0, . . . , φn)

if and only if, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective (N, N ′)-epimorphic translations
〈F, α〉 : SEN →se SEN′, αΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ (φn ⇒Σ φ)) · · ·)) = 1′F (Σ) and

φ ∈ CΣ(∅)
if and only if, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective (N, N ′)-epimorphic translations
〈F, α〉 : SEN →se SEN′, αΣ(φ) = 1′F (Σ).

Note that, if I is N -Hilbert-based relative to⇒ and K, then it is N -Hilbert-based relative
to ⇒ and the class corN (K) of all those N -algebraic systems 〈SEN′, 〈N ′, F ′〉〉 in K for which
there exists at least one surjective (N, N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′.
This class will be called the N -core of K.

In the condition αΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ (φn ⇒Σ φ)) · · ·)) = 1′F (Σ) the order of the
φi’s is not important because permuting them in any way will not change the value of the
resulting expression in SEN(Σ). Also, from now on, when the expression “I is N -Hilbert-
based relative to ⇒ and K” is used, it will always be assumed that K is N -Hilbert-based
relative to ⇒.

Finally, a π-institution I = 〈Sign,SEN, C〉, with N a category of natural transforma-
tions on SEN, is said to be N -Hilbert-based if it is N -Hilbert-based relative to some
binary natural transformation ⇒ and to some N -Hilbert-based class K of N -algebraic sys-
tems relative to ⇒.

The next proposition, an analog of Proposition 5 of [13], shows that, if the π-institution
I is N -Hilbert-based relative to ⇒ and K and also relative to ⇒′ and K′, then the varieties
of N -algebraic systems that are generated by corN (K) and corN (K′) in the sense of [21, 24]
coincide.

Proposition 6 Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN. If I is N -Hilbert-based relative to ⇒ and K and also relative to
⇒′ and K′, then VN (corN (K)) = VN (corN (K′)).
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Proof:
Suppose that σ, τ : SENn → SEN is an N -equation, such that K |= σ ≈ τ . This

means that, for every 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all Σ′ ∈ |Sign′| and all ~φ ∈ SEN′(Σ′)n, we
have that σ′Σ′(~φ) = τ ′Σ′(~φ). Therefore, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K, all surjective 〈F, α〉 :
SEN →se SEN′, all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, σ′F (Σ)(αΣ(~φ)) = τ ′F (Σ)(αΣ(~φ)), which

is equivalent to αΣ(σΣ(~φ)) = αΣ(τΣ(~φ)). Since K is N -Hilbert-based relative to ⇒, this
yields that αΣ(σΣ(~φ) ⇒Σ τΣ(~φ)) = αΣ(τΣ(~φ) ⇒Σ σΣ(~φ)) = 1′F (Σ). Therefore, since I is

N -Hilbert-based relative to ⇒ and K, we obtain that CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)). Reversing
all the steps in the above derivation, but using ⇒′ and K′ in place of ⇒ and K, respectively,
we obtain that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K′, all Σ′ ∈ |Sign′| and all ~φ ∈ SEN′(Σ′)n, we have
that σ′Σ′(~φ) = τ ′Σ′(~φ), i.e., that K′ |= σ ≈ τ .

The converse statement, i.e., that every N -identity of K′ is also an N -identity of K is
obtained by a symmetric reasoning. ¥

Proposition 6 shows that, if I is N -Hilbert-based, then, there exists essentially only
one variety relative to which I is N -Hilbert-based. It is the variety of N -algebraic systems
that is generated by corN (K), for any class K of N -algebraic systems relative to which I is
N -Hilbert based. It will be denoted by VN (I). Moreover, since, if I is N -Hilbert-based
relative to K, we have that, for all σ, τ : SENn → SEN in N , CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)), for
all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)n, if and only if corN (K) |= σ ≈ τ , we also obtain that

CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n, iff VN (I) |= σ ≈ τ. (3)

The following proposition is an analog of Proposition 7 of [13] for π-institutions. More
precisely, Proposition 7 shows that, if I is an N -Hilbert-based π-institution relative to ⇒,
then it is N -selfextensional, ⇒ is an N -deduction-detachment term for I and, also, that
VN (I) = KN

I .

Proposition 7 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be an N -Hilbert-based π-institution relative to ⇒. Then

1. ⇒ is an N -deduction-detachment term for I;
2. I is N -selfextensional;

3. VN (I) = KN
I , showing that I is N -Hilbert-based relative to its intrinsic N -variety

KN
I .

Proof:
Suppose that I is an N -Hilbert-based π-institution relative to ⇒ and the variety K.

1. Let Σ ∈ |Sign| and Γ ∪ {φ, ψ} ⊆ SEN(Σ). If ψ ∈ CΣ(Γ, φ), then, by finitarity, there
exist φ0, . . . , φn−1 ∈ Γ, such that ψ ∈ CΣ(φ0, . . . , φn−1, φ) or ψ ∈ CΣ(φ). Hence, since
I is N -Hilbert-based relative to ⇒ and K, we get that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K
and all surjective 〈F, α〉 : SEN →se SEN′, αΣ(φ0 ⇒Σ (· · · ⇒Σ (φ ⇒Σ ψ) · · ·)) = 1′F (Σ)
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or αΣ(φ ⇒Σ ψ) = 1′F (Σ). Therefore, we obtain that φ ⇒Σ ψ ∈ CΣ(φ0, . . . , φn−1) ⊆
CΣ(Γ) or φ ⇒Σ ψ ∈ CΣ(∅) ⊆ CΣ(Γ).

If, conversely, φ ⇒Σ ψ ∈ CΣ(Γ), then, either φ ⇒Σ ψ ∈ CΣ(∅) or, there exist
φ0, . . . , φn−1 ∈ Γ, such that φ ⇒Σ ψ ∈ CΣ(φ0, . . . , φn−1). Thus, we get that, for all
〈SEN′, 〈N ′, F ′〉〉 ∈ K and all surjective 〈F, α〉 : SEN →se SEN′, αΣ(φ ⇒Σ ψ) = 1′F (Σ)

or αΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ (φ ⇒Σ ψ)) · · ·)) = 1′F (Σ). Therefore ψ ∈ CΣ(φ) ⊆
CΣ(Γ, φ) or ψ ∈ CΣ(φ0, . . . , φn−1, φ) ⊆ CΣ(Γ, φ).

This concludes the proof that ⇒ is an N -deduction-detachment term for I.

2. For this part it suffices to show that Λ(I) is an N -congruence system of I. To this
end, suppose that τ : SENn → SEN is in N , Σ ∈ |Sign| and φi, ψi ∈ SEN(Σ), i < n,
such that 〈φi, ψi〉 ∈ ΛΣ(I), for all i < n. This shows that CΣ(φi) = CΣ(ψi), for
all i < n. Therefore, since I is N -Hilbert-based relative to ⇒, we get, by Part
1, that for all i < n, φi ⇒Σ ψi, ψi ⇒Σ φi ∈ CΣ(∅). Therefore, again by the N -
Hilbert-based property of I, we get that τΣ(φ0, . . . , φn−1) ⇒Σ τΣ(ψ0, . . . , ψn−1) ∈
CΣ({φi ⇒Σ ψi, ψi ⇒Σ φi : i < n}) ⊆ CΣ(∅), whence, again by Part 1, we ob-
tain that τΣ(ψ0, . . . , ψn−1) ∈ CΣ(τΣ(φ0, . . . , φn−1)). Now, by symmetry, we get that
CΣ(τΣ(φ0, . . . , φn−1)) = CΣ(τΣ(ψ0, . . . , ψn−1)), which shows that

〈τΣ(φ0, . . . , φn−1), τΣ(ψ0, . . . , ψn−1)〉 ∈ ΛΣ(I)

and, hence, Λ(I) is an N -congruence system on SEN.

3. This part follows from the fact that, by 2, I is N -selfextensional and by putting
together the Equivalences (2) and the Equivalence (3).

¥

Corollary 8 Suppose that I = 〈Sign,SEN, C〉, with N a category of natural transforma-
tions on SEN, is an N -Hilbert-based π-institution relative to ⇒ and also relative to ⇒′.
Then, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ), CΣ(φ ⇒Σ ψ) = CΣ(φ ⇒′

Σ ψ) and
〈φ ⇒Σ ψ, φ ⇒′

Σ ψ〉 ∈ Ω̃N
Σ (I).

Proof:
By Part 1 of Proposition 7, we have that both ⇒ and ⇒′ are N -deduction-detachment

terms for I, whence we get φ ⇒Σ ψ ∈ CΣ(φ ⇒Σ ψ) implies ψ ∈ CΣ(φ, φ ⇒Σ ψ) and, hence,
φ ⇒′

Σ ψ ∈ CΣ(φ ⇒Σ ψ). Therefore, by symmetry, we obtain that CΣ(φ ⇒Σ ψ) = CΣ(φ ⇒′
Σ

ψ).
The previous part shows that 〈φ ⇒Σ ψ, φ ⇒′

Σ ψ〉 ∈ ΛΣ(I), whence, since, by Part 2 of
Proposition 7, I is N -selfextensional, we obtain that 〈φ ⇒Σ ψ, φ ⇒′

Σ ψ〉 ∈ Ω̃N
Σ (I). ¥

The following theorem, an analog of Theorem 9 of [13], characterizes N -Hilbert-based π-
institutions as those that are at the same time N -selfextensional and possess the N -uniterm
deduction-detachment property.
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Theorem 9 A finitary π-institution I = 〈Sign, SEN, C〉, with N a category of natural
transformations on SEN, is N -selfextensional and has the N -uniterm deduction-detachment
property if and only if it is N -Hilbert-based.

Proof:
If I is N -Hilbert-based, then it is finitary, by definition. Moreover, Proposition 7 shows

that, if I is N -Hilbert-based, then it is N -selfextensional and has the N -uniterm deduction-
detachment property.

Suppose, conversely, that I is a finitary N -selfextensional π-institution, that has the N -
uniterm deduction-detachment property relative to the binary natural transformation ⇒.
Consider the N -algebraic system 〈SENN , 〈N,F 〉〉. It is not difficult to see that {〈SENN ,
〈N, F 〉〉} is N -Hilbert-based relative to⇒. Let Σ ∈ |Sign|, φ0, . . . , φn−1, φ ∈ SEN(Σ). Then
we have

φ ∈ CΣ(φ0, . . . , φn−1) iff φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·) ∈ CΣ(∅)
(by the N -uniterm DDT)

iff CΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·)) = CΣ(φ ⇒Σ φ)
(since φ ⇒Σ φ ∈ ThmΣ)

iff 〈φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·), φ ⇒Σ φ〉 ∈ Ω̃N
Σ (I)

(since Λ(I) = Ω̃N (I) by N -selfextensionality)
iff for all surjective 〈F, α〉 : SEN →se SENN ,

αΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·)) = 1N
F (Σ)

and, also,
φ ∈ CΣ(∅) iff CΣ(φ) = CΣ(φ ⇒Σ φ)

iff 〈φ, φ ⇒Σ φ〉 ∈ Ω̃N
Σ (I)

iff for all surjective 〈F, α〉 : SEN →se SENN ,
αΣ(φ) = 1N

F (Σ).

The above equivalences, together with the finitarity of I, show that I is N -Hilbert-based
relative to ⇒ and the variety KN

I := VN (〈SENN , 〈N, F 〉〉). ¥
Suppose, next, that SEN : Sign → Set is a set-valued functor, with N a category

of natural transformations on SEN. Let K be an N -Hilbert-based variety of N -algebraic
systems relative to ⇒, such that K = VN (corN (K)). The finitary π-institution I⇒,K =
〈Sign,SEN, C⇒,K〉 is defined, for all Σ ∈ |Sign| and all φ0, . . . , φn, φ ∈ SEN(Σ), by

φ ∈ C⇒,K
Σ (φ0, . . . , φn) iff for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K

and surjective 〈F, α〉 : SEN →se SEN′,
αΣ(φ0 ⇒Σ (· · · ⇒Σ (φn ⇒Σ φ) · · ·)) = 1′F (Σ)

and, also,
φ ∈ C⇒,K

Σ (∅) iff for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K
and surjective 〈F, α〉 : SEN →se SEN′,
αΣ(φ) = 1′F (Σ).

It follows directly from the definitions involved:
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Proposition 10 Let SEN : Sign → Set be a functor and N a category of natural transfor-
mations on SEN. Then, for every N -Hilbert-based variety K of N -algebraic systems relative
to ⇒, such that K = VN (corN (K)), the π-institution I⇒,K is N -Hilbert-based relative to ⇒
and K and VN (I⇒,K) = K.

Let, again, SEN : Sign → Set be a set-valued functor, with N a category of natural
transformations on SEN. Fix a binary natural transformation ⇒ in N . From the results
proven so far it will follow that, if SEN is symmetrically N -rule based, then there is a
bijection between the N -Hilbert-based π-institutions on SEN relative to ⇒ and the N -
Hilbert-based varieties K of N -algebraic systems relative to ⇒, such that K = VN (corN (K)).
This bijection, generalizing the corresponding bijection established in [13] between deductive
systems and ordinary universal algebraic varieties, is a dual isomorphism if one takes into
account the extension ordering of the π-institutions on SEN and the subvariety ordering on
the class of varieties of N -algebraic systems.

An N -Hilbert-based π-institution I = 〈Sign, SEN, C〉 is completely determined by its
Frege relation, i.e., by all pairs of Σ-sentences that are Σ-interderivable. Moreover, as the
following proposition shows, the extension relation between N -Hilbert-based π-institutions
on the same functor corresponds to the inclusion relation between the corresponding Frege
relations. This results forms an analog at the present level of Proposition 11 of [13].

Proposition 11 Suppose that I = 〈Sign,SEN, C〉, I ′ = 〈Sign,SEN, C ′〉, with N a cate-
gory of natural transformations on SEN, are two N -Hilbert-based π-institutions. Then

Λ(I) ≤ Λ(I ′) if and only if C ≤ C ′.

as a consequence, if Λ(I) = Λ(I ′), then I = I ′.

Proof:
Suppose, first, that C ≤ C ′. Let Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), such that 〈φ, ψ〉 ∈ ΛΣ(I).

Then CΣ(φ) = CΣ(ψ), whence ψ ∈ CΣ(φ) ⊆ C ′
Σ(φ). Therefore, by symmetry, C ′

Σ(φ) =
C ′

Σ(ψ), which shows that 〈φ, ψ〉 ∈ ΛΣ(I ′). Thus, we get that Λ(I) ≤ Λ(I ′).
Suppose, conversely, that Λ(I) ≤ Λ(I ′). Let Σ ∈ |Sign|, φ0, . . . , φn−1, φ ∈ SEN(Σ). We

have

φ ∈ CΣ(φ0, . . . , φn−1) iff φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·) ∈ CΣ(∅)
iff CΣ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·)) = CΣ(φ ⇒Σ φ)

implies C ′
Σ(φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·)) = C ′

Σ(φ ⇒Σ φ)
iff φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ φ) · · ·) ∈ C ′

Σ(∅)
iff φ ∈ C ′

Σ(φ0, . . . , φn−1),

and, also,
φ ∈ CΣ(∅) iff CΣ(φ) = CΣ(φ ⇒Σ φ)

implies C ′
Σ(φ) = C ′

Σ(φ ⇒Σ φ)
iff φ ∈ C ′

Σ(∅).
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Therefore I ′ is in fact an extension of I. ¥
The following theorem, an analog of Theorem 12 of [13] is one of the main theorems of

the paper. It asserts a dual correspondence between N -Hilbert-based π-institutions on an
underlying functor SEN, that is symmetrically N -rule based, ordered under extension, and
varieties K of N -algebraic systems, such that K = VN (corN (K)), ordered under the subvariety
relation. To formulate the statement of the theorem, given a functor SEN : Sign → Set,
with N a category of natural transformations on SEN, and ⇒: SEN2 → SEN in N , let
us denote by KN⇒ the variety of N -algebraic systems that is axiomatized by the Hilbert
equations (H1)-(H4).

Theorem 12 Let SEN : Sign → Set, with N a category of natural transformations on
SEN, be a symmetrically N -rule based functor and ⇒: SEN2 → SEN a binary natural
transformation in N . Then, there exists a dual isomorphism between the collection of all
N -Hilbert-based π-institutions on SEN relative to⇒, ordered by extension, and the collection
of all subvarieties K of the variety KN⇒, such that K = VN (corN (K)), ordered by inclusion.
The isomorphism sends I to KN

I .

Proof:
Recall from the Equivalences (2) that, for an N -selfextensional π-institution I = 〈Sign,

SEN, C〉, the Frege relation Λ(I) determines exactly the equations that hold in the variety
KN
I , since

KN
I |= σ ≈ τ iff, for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)n, CΣ(σΣ(~φ)) = CΣ(τΣ(~φ)).

This fact, together with the symmetric N -rule basedness of SEN, implies that, if I =
〈Sign,SEN, C〉, I ′ = 〈Sign,SEN, C ′〉 are N -Hilbert-based π-institutions relative to ⇒ and
KN
I = KN

I′ , then Λ(I) = Λ(I ′).
To see this, suppose that Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), such that 〈φ, ψ〉 ∈ ΛΣ(I). Then

CΣ(φ) = CΣ(ψ). Thus, by the symmetric N -rule basedness of I, we get that, there exist
natural transformations σ〈Σ,φ〉, σ〈Σ,ψ〉 : SENk → SEN in N and ~χ ∈ SEN(Σ)k, such that
σ
〈Σ,φ〉
Σ (~χ) = φ, σ

〈Σ,ψ〉
Σ (~χ) = ψ and both 〈{σ〈Σ,φ〉}, σ〈Σ,ψ〉〉 and 〈{σ〈Σ,ψ〉}, σ〈Σ,φ〉〉 are N -rules of

I. This implies, by the displayed condition above, that KN
I |= σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉, whence, since

KN
I = KN

I′ , we get that KN
I′ |= σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉. Now, by reversing the steps in the preceding

deduction, we obtain that C ′
Σ(φ) = C ′

Σ(ψ), i.e., that 〈φ, ψ〉 ∈ ΛΣ(I ′). By symmetry, we
now get that Λ(I) = Λ(I ′).

Thus, by Proposition 11, we now get that I = I ′. Therefore the function I 7→ KN
I is

injective. It is onto, since, by Proposition 10, every N -Hilbert-based variety K of N -algebraic
systems, such that K = VN (corN (K)), defines an N -Hilbert-based π-institution I⇒,K, such
that, by Proposition 7, KN

I⇒,K = VN (I⇒,K) = K. Finally, by Proposition 11, it follows that
I ′ is an extension of I if and only if KN

I is a subvariety of KN
I′ , whence the function I 7→ KN

I
is indeed an order reversing isomorphism. ¥

It will be shown next that, for any N -selfextensional π-institution I with the N -uniterm
deduction-detachment property, the class AlgN (I) of all (I, N)-algebraic systems coincides
with the intrinsic N -variety KN

I of I.
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First, we prove that the closure systems on the min models via surjective logical mor-
phisms of an N -Hilbert-based π-institution that are based on N -algebraic systems in the
intrinsic N -variety of the π-institution consist exactly of the implicative filter families of
these N -algebraic systems.

To do this, the characterization of the closure systems of min models of finitary π-
institutions via surjective logical morphisms that was provided in Lemma 2.1 of [17] will be
used. The reader is encouraged to recall this result before studying the proof of Lemma 13.

Lemma 13 Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transfor-
mations on SEN, is an N -Hilbert-based π-institution relative to ⇒. Then, for all N -
algebraic systems 〈SEN′, 〈N ′, F ′〉〉 ∈ KN

I , all surjective (N,N ′)-epimorphic translations
〈F, α〉 : SEN →se SEN′, and all Σ′ ∈ |Sign′|, the Σ′-theories of the 〈F, α〉-min (N, N ′)-
model of I on SEN′ coincide with the Σ′-components of the ⇒-implicative filter families of
〈SEN′, 〈N ′, F ′〉〉.

Proof:
Suppose that I = 〈Sign, SEN, C〉 is an N -Hilbert-based π-institution relative to ⇒,

〈SEN′, 〈N ′, F ′〉〉 ∈ KN
I and 〈F, α〉 : SEN →se SEN′ a surjective (N,N ′)-epimorphic trans-

lation. In addition, let I ′ = 〈Sign′, SEN′, C ′〉 be the 〈F, α〉-min (N, N ′)-model of I on
SEN′.

Assume, first, that FΣ′ is a Σ′-theory of I ′. Since, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),
φ ⇒Σ φ ∈ CΣ(∅) and ψ ∈ CΣ(φ, φ ⇒Σ ψ), and 〈F, α〉 : I〉−seI ′, we obtain that 1′Σ′ ∈ FΣ′

and that, if φ′, φ′ ⇒′
Σ′ ψ′ ∈ FΣ′ , then ψ′ ∈ FΣ′ . Thus, FΣ is indeed a Σ′-component of an

⇒-implicative filter family of 〈SEN′, 〈N ′, F ′〉〉.
Suppose, conversely, that FΣ′ is the Σ′-component of an ⇒-implicative filter family

of 〈SEN′, 〈N ′, F ′〉〉. It suffices to show that C ′
Σ′(FΣ′) ⊆ FΣ′ . Let φ′ ∈ C ′

Σ′(FΣ′). Then,
there exist φ′0, . . . , φ

′
n−1 ∈ FΣ′ , such that φ′ ∈ C ′

Σ′(φ
′
0, . . . , φ

′
n−1). Thus, there exists Σ ∈

|Sign|, φ0, . . . , φn−1, φ ∈ SEN(Σ), such that F (Σ) = Σ′ and αΣ(φ0) = φ′0, . . . , αΣ(φn−1) =
φ′n−1, αΣ(φ) = φ′. Therefore αΣ(φ) ∈ C ′

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)). Hence, using the
notation of Lemma 2.1 of [17], we get that αΣ(φ) ∈ ⋃

n≥0 Xn
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)). So

to show that αΣ(φ) ∈ FF (Σ), it suffices to show, by induction on n ≥ 0, that

Xn
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) ⊆ FF (Σ).

For n = 0, we have that X0
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) = {αΣ(φ0), . . . , αΣ(φn−1)} ⊆ FF (Σ).

As the induction hypothesis, suppose that Xk
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) ⊆ FF (Σ). For the

induction step, let χ′ ∈ Xk+1
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)). Then, there exist, by definition,

χ0, . . . , χm−1, χ ∈ SEN(Σ), such that αΣ(χ) = χ′, αΣ(χi) ∈ Xk
F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)),

for all i < m, and χ ∈ CΣ(χ0, . . . , χm−1). Now, since I is N -Hilbert-based relative to ⇒
and KN

I , we obtain that αΣ(χ0 ⇒Σ (· · · ⇒Σ (χm−1 ⇒Σ χ) · · ·)) = 1′F (Σ). Thus, since, by the
inductive hypothesis, αΣ(χ0), . . . , αΣ(χm−1) ∈ Xk

F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)) ⊆ FF (Σ), we
get, taking into account that FF (Σ) is the Σ′-component of an ⇒-implicative filter family of
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〈SEN′, 〈N ′, F ′〉〉, that χ′ = αΣ(χ) ∈ FF (Σ). This concludes the inductive step and the proof
that C ′

Σ′(FΣ′) ⊆ FΣ′ . ¥
In the following lemma, an analog of Lemma 15 of [13] for π-institutions, it is shown that

the Frege equivalence system of every min model via a surjective logical morphism of an
N -Hilbert-based π-institution I on an N -algebraic system belonging to KN

I is the identity
equivalence system. It follows, as a consequence, that every such model is reduced and has
the congruence property.

Lemma 14 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on SEN,
be an N -Hilbert-based π-institution. Then for every N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 ∈
KN
I and for every surjective (N, N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′, the

Frege equivalence system of the 〈F, α〉-min (N, N ′)-model I ′ = 〈Sign′,SEN′, C ′〉 of I on
SEN′ is the identity equivalence system ∆SEN′, whence I ′ is N ′-reduced and has the N ′-
congruence property.

Proof:
By the surjectivity of 〈F, α〉, it suffices to show that, for all Σ ∈ |Sign| and all φ, ψ ∈

SEN(Σ), such that αΣ(φ) 6= αΣ(ψ), we have that 〈αΣ(φ), αΣ(ψ)〉 6∈ ΛF (Σ)(I ′). To this end
consider the sets

TαΣ(φ) = {χ ∈ SEN′(F (Σ)) : αΣ(φ) ⇒′
F (Σ) χ = 1′F (Σ)}

and
TαΣ(ψ) = {χ ∈ SEN′(F (Σ)) : αΣ(ψ) ⇒′

F (Σ) χ = 1′F (Σ)}.
Since 〈SEN′, 〈N ′, F ′〉〉 ∈ KN

I and I is N -Hilbert-based, both TαΣ(φ) and TαΣ(ψ) are F (Σ)-
components of ⇒-implicative filter families of 〈SEN′, 〈N ′, F ′〉〉. Therefore, by Lemma 13,
they are both F (Σ)-theories of I ′. If TαΣ(φ) = TαΣ(ψ), then we would have αΣ(φ) ⇒′

F (Σ)

αΣ(ψ) = αΣ(ψ) ⇒′
F (Σ) αΣ(φ) = 1′F (Σ), whence it would follow that αΣ(φ) = αΣ(ψ), con-

trary to the hypothesis. Therefore, we must have αΣ(φ) 6∈ TαΣ(ψ) or αΣ(ψ) 6∈ TαΣ(φ). This
shows that C ′

F (Σ)(αΣ(φ)) 6= C ′
F (Σ)(αΣ(ψ)) and, hence, that 〈αΣ(φ), αΣ(ψ)〉 6∈ ΛF (Σ)(I ′), as

required.
That I ′ is N ′-reduced follows now from the fact that Ω̃N ′

(I ′) ≤ Λ(I ′) = ∆SEN′ , which
also shows that I ′ has the N ′-congruence property. ¥

As another of the significant theorems of the paper, it is proven that, given an N -Hilbert-
based π-institution I, the classes of N -algebraic systems AlgN (I), KN

I and VN (I) coincide,
which shows that AlgN (I) is a variety of N -algebraic systems and that I is N -Hilbert-based
relative to the class AlgN (I). This result forms an analog at the level of π-institutions of
Theorem 16 of [13].

Theorem 15 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be an N -Hilbert-based π-institution. Then



CAAL: Selfextensional π-Institutions with Implication 21

1. AlgN (I) = KN
I = VN (I),

2. AlgN (I) is a variety,

3. I is N -Hilbert-based relative to AlgN (I).

Proof: By Proposition 2, we have that AlgN (I) ⊆ KN
I . By Lemma 14, we get that

KN
I ⊆ AlgN (I). The third equality follows from Part 3 of Proposition 7. Now Part 2 follows

from Part 1 and the fact that KN
I is a variety and Part 3 follows from Part 1 and Part 3 of

Proposition 7. ¥
Combining Theorem 15 with Theorem 12, we obtain the following reformulation of

Theorem 12, an analog of Theorem 13 of [13].

Theorem 16 Let SEN : Sign → Set, with N a category of natural transformations on
SEN, be a symmetrically N -rule based functor and ⇒: SEN2 → SEN a binary natural
transformation in N . Then, the map I 7→ AlgN (I) is a dual isomorphism between the
collection of all N -Hilbert-based π-institutions on SEN relative to ⇒, ordered by extension,
and the collection of all subvarieties K of the variety KN⇒, such that K = VN (corN (K)),
ordered by inclusion.

In closing this section, we show that every N -selfextensional π-institution I with the
N -uniterm deduction-detachment property is fully N -selfextensional. This result was first
established for deductive systems in [9] via the use of Gentzen systems and later proven
in [13] without using Gentzen systems. Our proof, of course, follows that of [13], which
provided the overall inspiration for the present work.

Theorem 17 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be an N -selfextensional π-institution. If I has the N -uniterm deduction-detachment
property, then I is fully N -selfextensional.

Proof:
Suppose that I is N -selfextensional with the N -uniterm deduction-detachment theorem

relative to the binary natural transformation⇒. By Theorem 9 and the discussion following
its proof, we get that I is N -Hilbert-based relative to ⇒ and KN

I . Thus, by Theorem 15,
KN
I = AlgN (I). Thus, by Lemma 14, if 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I) and 〈F, α〉 : SEN →se

SEN′ is a surjective (N, N ′)-epimorphic translation and I ′ = 〈Sign′,SEN′, C ′〉 the 〈F, α〉-
min (N, N ′)-model of I on SEN′, we have that Λ(I ′) = ∆SEN′ is an N ′-congruence system on
SEN′. If I ′′ is an (N, N ′′)-full model of I via a surjective (N, N ′′)-logical morphism 〈G, β〉 :
I〉−seI ′′, then its reduction I ′′N ′′

is the 〈G, πN ′
G β〉-min (N,N ′′)-model of I on SEN′′N

′′
,

whence, by the discussion above I ′′N ′′
has the N ′′-congruence property and, therefore, by

Proposition 3.7 of [17], I ′′ also has the N ′′-congruence property. Therefore I is fully N -
selfextensional. ¥
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5 Fregean and Fully Fregean Protoalgebraic π-Institutions

In this section a few results concerning Fregean and fully Fregean π-institutions will be
provided that abstract to the π-institution level corresponding results that are known to
hold for deductive systems. This study will lead to some additional results on Fregean π-
institutions with implication along the lines of the results on self-extensional π-institutions
with implication that were presented in the previous section. To start with, the reader
is invited to recall from the Introduction the definitions of an N -Fregean and an N -fully
Fregean π-institutions.

In the first result of the section, it will be shown that bilogical morphisms forward
preserve the Fregean property. Moreover, if they have isomorphic functor components,
then they also preserve the Fregean property in the opposite direction.

Lemma 18 Suppose that I = 〈Sign, SEN, C〉, I ′ = 〈Sign′,SEN′, C ′〉, with N, N ′ categories
of natural transformations on SEN,SEN′, respectively, are two π-institutions and 〈F, α〉 :
I `se I ′ an (N, N ′)-bilogical morphism.

1. If I is N -Fregean, then I ′ is N ′-Fregean.

2. If F : Sign → Sign′ is an isomorphism and I ′ is N ′-Fregean, then I is N -Fregean.

Proof:

1. Suppose that I is N -Fregean. Let T be a theory family of I ′, σ : SENn → SEN
in N , Σ ∈ |Sign|, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ), such that 〈αΣ(φi), αΣ(ψi)〉 ∈
ΛI′F (Σ)(T ), for all i < n. Then, we have that, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

C ′
F (Σ′)(TF (Σ′), SEN′(F (f))(αΣ(φi))) = C ′

F (Σ′)(TF (Σ′), SEN′(F (f))(αΣ(ψi))),

for all i < n. This is equivalent to, for all i < n,

C ′
F (Σ′)(TF (Σ′), αΣ(SEN(f)(φi))) = C ′

F (Σ′)(TF (Σ′), αΣ(SEN(f)(ψi))).

Therefore, since 〈F, α〉 is an (N, N ′)-bilogical morphism, we obtain that

CΣ′(α−1
Σ′ (TF (Σ′)), SEN(f)(φi)) = CΣ′(α−1

Σ′ (TF (Σ′)),SEN(f)(ψi)),

for all i < n. Hence 〈φi, ψi〉 ∈ ΛIΣ(α−1(T )). But I is N -Fregean, whence

〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1)〉 ∈ ΛIΣ(α−1(T )).

Thus, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ, Σ′),

CΣ′(α−1
Σ′ (TF (Σ′)), SEN(f)(σΣ(φ0, . . . , φn−1))) =

CΣ′(α−1
Σ′ (TF (Σ′)), SEN(f)(σΣ(ψ0, . . . , ψn−1))).
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And, again, since 〈F, α〉 is an (N, N ′)-bilogical morphism, we get that

C ′
F (Σ′)(TF (Σ′), αΣ′(SEN(f)(σΣ(φ0, . . . , φn−1)))) =

C ′
F (Σ′)(TF (Σ′), αΣ′(SEN(f)(σΣ(ψ0, . . . , ψn−1)))),

i.e., because of the commutativity of the two rectangles,

SEN(Σ′) SEN′(F (Σ′))-
αΣ′

SEN(Σ) SEN′(F (Σ))-αΣ

?

SEN(f)

?

SEN′(F (f))

SEN(Σ) SEN′(F (Σ))-
αΣ

SEN(Σ)n SEN′(F (Σ))n-αn
Σ

?

σΣ

?

σ′F (Σ)

that

C ′
F (Σ′)(TF (Σ′), SEN′(F (f))(σ′F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)))) =

C ′
F (Σ′)(TF (Σ′), SEN′(F (f))(σ′F (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1)))).

Therefore 〈σ′F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)), σ′F (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1))〉 ∈ ΛI′F (Σ)(T ),
showing that I ′ is N ′-Fregean.

2. Suppose that I ′ is N ′-Fregean and let T be a theory family of I, σ : SENn →
SEN in N , Σ ∈ |Sign|, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ), such that 〈φi, ψi〉 ∈
ΛIΣ(T ), for all i < n. Then, we have that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),
CΣ′(TΣ′ , SEN(f)(φi)) = CΣ′(TΣ′ , SEN(f)(ψi)), for all i < n. Therefore, since 〈F, α〉 is
an (N, N ′)-bilogical morphism, we obtain that C ′

F (Σ′)(αΣ′(TΣ′), αΣ′(SEN(f)(φi))) =
C ′

F (Σ′)(αΣ′(TΣ′), αΣ′(SEN(f)(ψi))), for all i < n. This is equivalent to, for all i < n,

C ′
F (Σ′)(αΣ′(TΣ′), SEN′(F (f))(αΣ(φi))) = C ′

F (Σ′)(αΣ′(TΣ′),SEN′(F (f))(αΣ(ψi))).

Hence, 〈αΣ(φi), αΣ(ψi)〉 ∈ ΛI′F (Σ)(α(T )), for all i < n. Thus, since I ′ is N ′-Fregean,
we obtain that

〈σ′F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)), σ′F (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1))〉 ∈ ΛI
′

F (Σ)(α(T )),

i.e., that 〈αΣ(σΣ(φ0, . . . , φn−1)), αΣ(σΣ(ψ0, . . . , ψn−1))〉 ∈ ΛI′F (Σ)(α(T )). This shows
that, for all Σ ∈ |Sign|, f ∈ Sign(Σ, Σ′),

C ′
F (Σ′)(αΣ′(TΣ′), SEN′(F (f))(αΣ(σΣ(φ0, . . . , φn−1)))) =

C ′
F (Σ′)(αΣ′(TΣ′), SEN′(F (f))(αΣ(σΣ(ψ0, . . . , ψn−1)))),

which is equivalent to

C ′
F (Σ′)(αΣ′(TΣ′), αΣ′(SEN(f)(σΣ(φ0, . . . , φn−1)))) =

C ′
F (Σ′)(αΣ′(TΣ′), αΣ′(SEN(f)(σΣ(ψ0, . . . , ψn−1)))).
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This yields, since 〈F, α〉 is an (N, N ′)-bilogical morphism, that

CΣ′(TΣ′ ,SEN(f)(σΣ(φ0, . . . , φn−1))) = CΣ′(TΣ′ , SEN(f)(σΣ(ψ0, . . . , ψn−1))).

Thus, we obtain that 〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1)〉 ∈ ΛIΣ(T ), showing that I
is N -Fregean.

¥
By combining the two Parts of Lemma 18 we immediately obtain the following corollary

to the effect that a π-institution I is N -Fregean if and only if its N -Tarski reduction IN is
N -Fregean.

Corollary 19 Suppose that I = 〈Sign,SEN, C〉, with N a category of natural transforma-
tions on SEN is a π-institution. Then I is N -Fregean if and only if its reduction IN is
N -Fregean.

Next, it is shown that, given a π-institution I = 〈Sign, SEN, C〉, with N a category of
natural transformations on SEN, the π-institution IT = 〈Sign, SEN, CT 〉 is N -Fregean, for
all theory systems T ∈ ThSys(I), provided that I is N -Fregean.

Lemma 20 Suppose that I = 〈Sign,SEN, C〉 is a π-institution, with N a category of
natural transformations on SEN. If I is N -Fregean, then IT = 〈Sign, SEN, CT 〉 is also
N -Fregean, for every theory system T of I.

Proof:
Suppose that I is N -Fregean. Let T ′ be a theory family of IT , σ : SENn → SEN in N ,

Σ ∈ |Sign|, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ), such that 〈φi, ψi〉 ∈ ΛIT

Σ (T ′), for all i < n.
Therefore, for all i < n, we get that CT

Σ′(T
′
Σ′ , SEN(f)(φi)) = CT

Σ′(T
′
Σ′ ,SEN(f)(ψi)), for all

Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′). Thus, since T ≤ T ′, we get that CΣ′(T ′Σ′ ,SEN(f)(φi)) =
CΣ′(T ′Σ′ ,SEN(f)(ψi)), for all i < n, whence, we get that 〈φi, ψi〉 ∈ ΛIΣ(T ′), for all i < n.
But I is, by hypothesis, N -Fregean, whence 〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1)〉 ∈ ΛIΣ(T ′).
Therefore, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

CΣ′(T ′Σ′ , SEN(f)(σΣ(φ0, . . . , φn−1))) = CΣ′(T ′Σ′ ,SEN(f)(σΣ(ψ0, . . . , ψn−1))).

This shows that
〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1)〉 ∈ ΛI

T

Σ (T ′),

whence IT is in fact N -Fregean. ¥
Czelakowski and Pigozzi prove in Corollary 80 of [6] that every protoalgebraic and

Fregean deductive system is fully Fregean. Here, the analog of this result is shown to hold
for finitary, N -rule based and N -protoalgebraic π-institutions. For definitions and results
pertaining to N -protoalgebraic π-institutions see [18, 19]. Here, we will use specifically,
Corollary 4.20 of [18], an analog of the well-known Correspondence Property of protoalge-
braic deductive systems for finitary N -rule based N -protoalgebraic π-institutions.
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Proposition 21 (Corollary 4.20 of [18]) Let I = 〈Sign,SEN, C〉, with N a category of
natural transformations on SEN, be a finitary, N -rule based π-institution. I has the family
N -correspondence property if and only if it is N -protoalgebraic.

Based on this result, it may now be shown that every finitary, N -rule based and N -
protoalgebraic π-institution that is N -Fregean is fully N -Fregean, an analog in the context
of π-institutions of Corollary 80 of [6].

Theorem 22 Let I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, be a finitary, N -rule based, N -protoalgebraic π-institution. If I is N -Fregean, then I
is fully N -Fregean.

Proof:
Assume that I = 〈Sign, SEN, C〉, with N a category of natural transformations on

SEN, is a finitary, N -rule based, N -protoalgebraic π-institution, that is N -Fregean. To
show that it is fully N -Fregean, it suffices, by Corollary 19, to show that, given a surjective
(N,N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′, the 〈F, α〉-min (N,N ′)-model I ′ =
〈Sign′, SEN′, C ′〉 of I on SEN′ is N ′-Fregean. Suppose, to this end, that 〈F, α〉 : SEN →se

SEN′ is a surjective (N, N ′)-epimorphic translation and let I ′ = 〈Sign′, SEN′, C ′〉 be the
〈F, α〉-min (N, N ′)-model of I on SEN′. Then, since I is finitary, N -rule based and N -
protoalgebraic, it has, by Proposition 21, the family N -correspondence property. Therefore,
denoting by Thm′ the theorem system of I ′, 〈F, α〉 : Iα−1(Thm′) `se I ′ is an (N,N ′)-bilogical
morphism. By Lemma 20, we have that Iα−1(Thm′) is N -Fregean, whence, by Part 1 of
Lemma 18, we get that I ′ is N ′-Fregean. Therefore, I is fully N -Fregean. ¥

6 Fregean π-Institutions with the DDT

In this section some of the results that were obtained in the previous section for selfexten-
sional π-institutions with the uniterm deduction-detachment property are adapted to ob-
tain some results relating to Fregean π-institutions with the uniterm deduction-detachment
property. We note that Fregean deductive systems and many of their properties have been
extensively studied by Czelakowski and Pigozzi in [6, 7]. Many of the results obtained in
[6, 7] are adapted by the author to the level of logics formalized as π-institutions in [26, 27].

The first result of this section characterizes those π-institution I with an N -deduction-
detachment term ⇒ that are N -Fregean as those in which the set {x ⇒ y, y ⇒ x} is an
N -equivalence system for S in the sense of [23].

Proposition 23 Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural
transformations on SEN and ⇒ an N -deduction-detachment term for I. Then I is N -
Fregean if and only if the set {x ⇒ y, y ⇒ x} is an N -equivalence system for I.

Proof:
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Suppose, first, that the set E = {x ⇒ y, y ⇒ x} is an N -equivalence system for I.
Given a theory family T of I, recall from [19] that the notation E(T ) = {EΣ(T )}Σ∈|Sign| is
used to denote the relation system on SEN, defined, for all Σ ∈ |Sign| by

EΣ(T ) = {〈φ, ψ〉 : SEN(f)(φ) ⇒Σ′ SEN(f)(ψ), SEN(f)(ψ) ⇒Σ′ SEN(f)(φ) ∈ TΣ′ ,
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′)}.

Then, by Theorem 5 of [23], we have that, for all theory families T of I and all Σ ∈ |Sign|,
EΣ(T ) = ΩN

Σ (T ). Moreover, since ⇒ is an N -deduction-detachment term for I, we have
that

EΣ(T ) = {〈φ, ψ〉 : SEN(f)(φ) ⇒Σ′ SEN(f)(ψ), SEN(f)(ψ) ⇒Σ′ SEN(f)(φ) ∈ TΣ′ ,
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′)}

= {〈φ, ψ〉 : SEN(f)(ψ) ∈ CΣ′(TΣ′ ,SEN(f)(φ)),
SEN(f)(φ) ∈ CΣ′(TΣ′ ,SEN(f)(ψ)), for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′)}

= {〈φ, ψ〉 : CΣ′(TΣ′ , SEN(f)(φ)) = CΣ′(TΣ′ , SEN(f)(ψ)),
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′)}

= ΛIΣ(T ).

This shows that, for every theory family T of I, ΛI(T ) = ΩN (T ) and, therefore I is N -
Fregean.

Suppose, conversely, that ⇒ is an N -deduction-detachment term for I and that I is
N -Fregean. Then, for every theory family T of I, we have, for all Σ ∈ |Sign|,

ΩN
Σ (T ) = ΛIΣ(T ) (by the Fregean Property)

= {〈φ, ψ〉 ∈ SEN(Σ)2 : CΣ′(TΣ′ ,SEN(f)(φ)) = CΣ′(TΣ′ , SEN(f)(ψ)),
for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)} (by definition)

= {〈φ, ψ〉 ∈ SEN(Σ)2 : SEN(f)(φ) ⇒Σ′ SEN(f)(ψ),
SEN(f)(ψ) ⇒Σ′ SEN(f)(φ) ∈ TΣ′

for all Σ′ ∈ Sign|, f ∈ Sign(Σ,Σ′)} (by the DDP)
= EΣ(T ),

which shows that {x ⇒ y, y ⇒ x} defines the Leibniz N -congruence systems of I and,
therefore, by Theorem 5 of [23], it is an N -equivalence system for I. ¥

Given a π-institution I = 〈Sign,SEN, C〉, with N a category of natural transformations
on SEN, if I is N -selfextensional and has an N -deduction-detachment term ⇒, then, for all
Σ ∈ |Sign| and all φ0, . . . , φn, φ ∈ SEN(Σ) and all permutations π of {0, 1, . . . , n} we have
that

CΣ(φ0 ⇒Σ (· · · ⇒Σ (φn ⇒Σ φ) · · ·)) = CΣ(φπ(0) ⇒Σ (· · · ⇒Σ (φπ(n) ⇒Σ φ) · · ·)).

Whenever this is the case, and following [13], it makes sense to introduce, given a sequence
of Σ-sentences ~φ = 〈φ0, . . . , φn−1〉 and a Σ-sentence ψ, the notation ~φ ⇒Σ ψ to denote the
longer Σ-sentence φ0 ⇒Σ (· · · ⇒Σ (φn−1 ⇒Σ ψ) · · ·).
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With this notation in mind, the following partial analog of Proposition 22 of [13] may
be formulated. It provides a sufficient syntactic condition for a finitary, N -rule based
and N -selfextensional π-institution having the N -deduction-detachment property to be N -
Fregean. It is only a partial analog of Proposition 22 of [13] because this condition, in the
deductive system framework, is not only sufficient but actually characterizes completely
Fregean deductive systems among all selfextensional deductive systems with the deduction-
detachment property. We will elaborate more on the reasons why the condition does not
seem to be necessary in the framework of π-institutions after the proof of Proposition 24.

Proposition 24 Suppose that I = 〈Sign,SEN, C〉, with N a category of natural transfor-
mations on SEN, is a finitary, N -rule based and N -selfextensional π-institution with an
N -deduction-detachment term ⇒. If, for all σ : SENn → SEN in N , all k ∈ ω and all
different variables z0, . . . , zk−1, x0, . . . , xn−1, y0, . . . , yn−1, the N -quasi-equations

∧
i<n[~z ⇒ (xi ⇒ yi) ≈ 1] ∧∧

i<n[~z ⇒ (yi ⇒ xi) ≈ 1] −→
[~z ⇒ (σ(x0, . . . , xn−1) ⇒ σ(y0, . . . , yn−1)) ≈ 1]

are N -quasi-identities of AlgN (I), then I is N -Fregean.

Proof:
Let I be a finitary, N -rule based and N -selfextensional π-institution, that has an N -

deduction-detachment term ⇒. Then, by Proposition 3.2 of [19], I is N -protoalgebraic.
Suppose that the displayed N -quasi-equations are indeed N -quasi-identities of AlgN (I).

Let 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I), so that there exists a surjective (N,N ′)-epimorphic transla-
tion 〈F, α〉 : SEN →se SEN′, such that the 〈F, α〉-min (N,N ′)-model I ′ = 〈Sign′,SEN′, C ′〉
of I on SEN′ is N ′-reduced. Let X ′ = {X ′

Σ′}Σ′∈|Sign′| be a finite axiom family of I ′. It
suffices to show that ΛI′(X ′) is an N -congruence system of I ′. To this end, suppose that
σ : SENn → SEN is in N , Σ ∈ |Sign| and φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ), such
that 〈αΣ(φi), αΣ(ψi)〉 ∈ ΛI′F (Σ)(X

′), for all i < n. Then we have that, for all Σ′ ∈ |Sign|,
f ∈ Sign(Σ,Σ′),

C ′
F (Σ′)(X

′
F (Σ′),SEN′(F (f))(αΣ(φi))) = C ′

F (Σ′)(X
′
F (Σ′), SEN′(F (f))(αΣ(ψi))),

for all i < n. Assuming, without loss of generality that, for all Σ′ ∈ |Sign′|, 1′Σ′ ∈ X ′
Σ′ and

that, ~X ′
Σ′ is a sequence of all the elements of X ′

Σ′ of the same length as the cardinality of
X ′

Σ′ , Σ′ ∈ |Sign′|, we get, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),

~X ′
F (Σ′) ⇒′

F (Σ′) (SEN′(F (f))(αΣ(φi)) ⇒′
Σ SEN′(F (f))(αΣ(ψi))) ∈ C ′

F (Σ′)(1
′
F (Σ′))

and

~X ′
F (Σ′) ⇒′

F (Σ′) (SEN′(F (f))(αΣ(ψi)) ⇒′
Σ′ SEN′(F (f))(αΣ(φi))) ∈ C ′

F (Σ′)(1
′
F (Σ′)),

for all i < n. Hence, we obtain that, for every i < n,

~X ′
F (Σ′) ⇒′

F (Σ′) (SEN′(F (f))(αΣ(φi)) ⇒′
Σ′ SEN′(F (f))(αΣ(ψi))) = 1′F (Σ′)
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and
~X ′

F (Σ′) ⇒′
F (Σ′) (SEN′(F (f))(αΣ(ψi)) ⇒′

Σ′ SEN′(F (f))(αΣ(φi))) = 1′F (Σ′).

Therefore, since by the hypothesis, the displayed N -quasi-equations are N -quasi-identities
of AlgN (I), we have that

~X ′
F (Σ′) ⇒F (Σ′) (SEN′(F (f))(σ′F (Σ)(αΣ(φ0), . . . , αΣ(φn−1))) ⇒′

F (Σ′)
SEN′(F (f))(σ′F (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1)))) = 1′F (Σ′)

and, similarly,

~X ′
F (Σ′) ⇒F (Σ′) (SEN′(F (f))(σ′F (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1))) ⇒′

F (Σ′)
SEN′(F (f))(σ′F (Σ)(αΣ(φ0), . . . , αΣ(φn−1)))) = 1′F (Σ′).

Thus, we obtain that, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ, Σ′),

C ′
F (Σ′)(X

′
F (Σ′), SEN′(F (f))(σF (Σ)(αΣ(φ0), . . . , αΣ(φn−1)))) =

C ′
F (Σ′)(X

′
F (Σ′),SEN′(F (f))(σF (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1)))),

i.e., that 〈σF (Σ)(αΣ(φ0), . . . , αΣ(φn−1)), σF (Σ)(αΣ(ψ0), . . . , αΣ(ψn−1))〉 ∈ ΛI′F (Σ)(X
′). ¥

We indicate why the N -Fregean property for I is unlikely to imply that the displayed N -
quasi-equations hold in AlgN (I). Assume that I is a finitary, N -rule based and N -Fregean
π-institution, that has an N -deduction-detachment term ⇒. Since it is N -protoalgebraic,
it is, by Theorem 22, also fully N -Fregean. Let 〈SEN′, 〈N ′, F ′〉〉 ∈ AlgN (I). Then, there
exists a surjective (N,N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′, such that the
〈F, α〉-min (N,N ′)-model I ′ = 〈Sign, SEN′, C ′〉 of I on SEN′ is N ′-Fregean. Assume, for
the sake of attempting to prove that the displayed N -quasi-equations are valid in AlgN (I),
that Σ ∈ |Sign′| and χ0, . . . , χk−1, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN′(Σ), such that ~χ ⇒′

Σ

(φi ⇒′
Σ ψi) = 1′Σ and ~χ ⇒′

Σ (ψi ⇒′
Σ φi) = 1′Σ. Then, to obtain that, for all Σ′ ∈ |Sign′| and

all f ∈ Sign′(Σ, Σ′), C ′
Σ′(XΣ′ ,SEN′(f)(φi)) = C ′

Σ′(XΣ′ , SEN′(f)(ψi)), for all i < n, and, as
a consequence, that 〈φi, ψi〉 ∈ ΛI′Σ (X), with the goal of being able to use the N ′-Fregean
property of I ′, we must set X = {XΣ′}Σ′∈|Sign′|, with

XΣ′ =
⋃
{SEN′(f)(χ0), . . . ,SEN′(f)(χk−1) : f ∈ Sign′(Σ,Σ′)}

and this set may not be finite any more. If we do this, then, we will indeed have

C ′
Σ′(XΣ′ ,SEN′(f)(φi)) = C ′

Σ′(XΣ′ , SEN′(f)(ψi)),

for all i < n, and, as a consequence, that 〈φi, ψi〉 ∈ ΛI′Σ (X). Thus, since I ′ is N ′-Fregean,
we obtain that

〈σ′Σ(φ0, . . . , φn−1), σ′Σ(ψ0, . . . , ψn−1)〉 ∈ ΛI
′

Σ (X),

i.e., that, for all Σ′ ∈ |Sign′| and all f ∈ Sign′(Σ, Σ′),

C ′
Σ′(XΣ′ , SEN′(f)(σ′Σ(φ0, . . . , φn−1))) = C ′

Σ′(XΣ′ , SEN′(f)(σ′Σ(ψ0, . . . , ψn−1))).
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This shows that σ′Σ(ψ0, . . . , ψn−1) ∈ C ′
Σ(XΣ, σ′Σ(φ0, . . . , φn−1)). Now the next key step of

the proof that applies in the case of deductive systems does not necessarily carry over in
this case! The last inclusion does not necessarily imply that ~χ ⇒′

Σ (σ′Σ(φ0, . . . , φn−1) ⇒′
Σ

σ′Σ(ψ0, . . . , ψn−1))) ∈ C ′
Σ(1′Σ), because the collection (or set if Sign is locally small) XΣ

may be much larger than the set {χ0, . . . , χk−1}.

Lemma 25 Suppose that SEN : Sign → Set is a functor, with N a category of natural
transformations on SEN and ⇒ a binary natural transformation in N . Let 〈SEN′, 〈N ′, F ′〉〉
be an N -algebraic system that satisfies the Hilbert equations relative to ⇒. The N -quasi-
equations

∧
i<n[~z ⇒ (xi ⇒ yi) ≈ 1] ∧∧

i<n[~z ⇒ (yi ⇒ xi) ≈ 1] −→
[~z ⇒ (σ(x0, . . . , xn−1) ⇒ σ(y0, . . . , yn−1)) ≈ 1]

(4)

are valid in 〈SEN′, 〈N ′, F ′〉〉 if and only if, for all σ : SENn → SEN in N , and for X any
sequence of all elements in {xi ⇒ yi, yi ⇒ xi : i < n}, the N -equations

~X ⇒ (σ(x0, . . . , xn−1) ⇒ σ(y0, . . . , yn−1)) ≈ 1 (5)

are valid in 〈SEN′, 〈N ′, F ′〉〉.

Proof:
Suppose, first, that 〈SEN′, 〈N ′, F ′〉〉 satisfies the N -quasi-equations (4). Since it also

satisfies all Hilbert equations, by hypothesis, the equations ~X ⇒ (xi ⇒ yi) ≈ 1 and ~X ⇒
(yi ⇒ xi) ≈ 1 are valid in 〈SEN′, 〈N ′, F ′〉〉, for all i < n. Thus, using the N -quasi-
equations (4), we obtain that both ~X ⇒ (σ(x0, . . . , xn−1) ⇒ σ(y0, . . . , yn−1)) ≈ 1 and
~X ⇒ (σ(y0, . . . , yn−1) ⇒ σ(x0, . . . , xn−1)) ≈ 1 are valid in 〈SEN′, 〈N ′, F ′〉〉 and these are
exactly the N -equations in (5).

Suppose, conversely, that the N -equations in (5) are valid in 〈SEN′, 〈N ′, F ′〉〉. Then,
the N -equations ~X ⇒ (σ(y0, . . . , yn−1) ⇒ σ(x0, . . . , xn−1)) ≈ 1 are also valid in 〈SEN′, 〈N ′,
F ′〉〉. Now, if z0, . . . , zk are different from all xi, yi, i < n, and, for all Σ ∈ |Sign′| and
all χ0, . . . , χn−1, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN′(Σ), ~χ ⇒′

Σ (φi ⇒′
Σ ψi) = 1′Σ and ~χ ⇒′

Σ

(ψi ⇒′
Σ φi) = 1′Σ, for all i < n, we get that

~χ ⇒′
Σ (σ′Σ(φ0, . . . , φn−1) ⇒′

Σ σ′Σ(ψ0, . . . , ψn−1)) = 1′Σ.

Therefore, the N -quasi-equations (4) are valid in 〈SEN′, 〈N ′, F ′〉〉. ¥
By combining the dual isomorphism Theorem 12 with Proposition 24 and Lemma 25,

we obtain the following weak version (only one of the two directions) of Theorem 25 of [13]
in the context of π-institutions.

Corollary 26 Let SEN : Sign → Set, with N a category of natural transformations on
SEN, be a symmetrically N -rule based functor and ⇒: SEN2 → SEN a binary natural trans-
formation in N . If an N -Hilbert-based class K of N -algebraic systems relative to ⇒, such
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that K = VN (corN (K)), is a subvariety of the variety axiomatized by the Hilbert equations
and, for all σ : SENn → SEN, the equations

~X ⇒ (σ(x0, . . . , xn−1) ⇒ σ(y0, . . . , yn−1)) ≈ 1 (6)

where X is any sequence of all elements in {xi ⇒ yi, yi ⇒ xi : i < n}, then K is the variety
AlgN (I) of a finitary N -rule based and N -Fregean π-institution I = 〈Sign, SEN, C〉, having
the N -deduction-detachment property relative to ⇒.
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[28] Wójcicki, R., Referential Matrix Semantics for Propositional Calculi, Bulletin of the
Section of Logic, Vol. 8 (1979), pp. 170-176


