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1 Introduction

In his work in the 1930’s (see, e.g., [27]) Tarski established the notion of a deduc-
tive system as a finite and structural closure operator on the collection FmL(V ) of
L-formulas over a denumerable set of variables V . In a more general form, used
extensively in modern studies in abstract algebraic logic, a deductive system is a
structural, but not necessarily finitary, consequence operation on FmL(V ). In the
most commonly used form, this structural consequence operation on the set of for-
mulas of a given sentential language is induced by a collection of axioms and rules of
inference that determine the logic under study. In the 1950’s, ÃLoś [23] developed the
method of ultraproducts, which has become a fundamental tool in the study of the
model theory of first-order logic. The general references [9, 22, 13] in model theory
include a detailed treatment and many applications of this method, and the reader
is advised to consult them for additional background and bibliographic information
concerning the method. In 1975, Bloom [7] pioneered the idea of recasting the axioms
and the rules of inference, used to define a sentential logic, in the form of universal
strict basic Horn sentences over a specially built first-order language, having as indi-
vidual variables the variables in V , as function symbols the symbols in the sentential
language L and, finally, one unary relation symbol D, intended to denote truth. In
this translation, a given rule of inference

φ0, . . . , φn−1

φ
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2 CAAL: Bloom’s Theorem

with φ0, . . . , φn−1, φ ∈ FmL(V ), is recast as the sentence

(∀ · · · ∀)(D(φ0) ∧ . . . ∧D(φn−1) ⇒ D(φ)),

where (∀ · · · ∀) denotes the universal closure with respect to all individual variables
appearing in any of φ0, . . . , φn−1, φ. By performing this translation, sentential logics
may be studied inside the framework of universal Horn logic without equality. As a
consequence, the powerful methods of the model theory of first-order logic, such as
the method of ultraproducts, may be used to derive interesting results pertaining to
sentential logics.

In his treatise on protoalgebraic logics [11], Czelakowski revisits Bloom’s idea and
presents some important results obtained by applying this method to deductive sys-
tems. Bloom’s Lemma (Lemma 0.4.1 of [11]) establishes, roughly speaking, that the
class of all matrix models, in the usual matrix semantics sense, of a given sentential
logic, defined via standard rules of inference, coincides with the class of all first-order
models of the translates of these rules. Bloom’s Theorem (Theorem 0.4.2 of [11]) char-
acterizes those structural consequence operations that are induced by a collection of
standard rules of inference. They are exactly those structural consequence operations
that are finitary, or, equivalently, whose model class is axiomatizable by sentences
in the corresponding first-order language, or, what also amounts to the same thing,
whose model class is closed under ultraproducts.

The interest of [11] on Bloom’s results stems from the fact that sentential logics form
the basic structure on which the theory of abstract algebraic logic is developed. The
central notions of the theory, that of a protoalgebraic logic [4], of an equivalential logic
[25, 10] and of an algebraizable logic [5, 6, 19, 20, 21] all refer to classes of sentential
logics.

The author has recently further abstracted the theory of abstract algebraic logic
[28]-[37] to cover, apart from sentential logics, also logics that are formalized as π-
institutions [14]. In the present work, based on the notion of a category of natural
transformations, that has proven key to the development of the theory of categorical
abstract algebraic logic, a syntax is developed for π-institutions. Based on this syntax,
the concept of a rule of inference, paralleling that for sentential logics, is formulated.
If the closure system of a π-institution is induced by a collection of rules of infer-
ence, then the π-institution is said to be rule-based. For rule-based π-institutions, a
translation of their rules into a first-order language, inspired by Bloom’s translation,
is performed. A major difference in the treatment here, is that the models of the
resulting first-order sentences are not the usual first-order models but, rather, matrix
systems, a variant of the usual logical matrices. Using this framework, a result ab-
stracting Bloom’s Lemma in the categorical framework is obtained. Further, using
a reduced product construction on sentence functors and π-institutions, introduced
in [38] and [39, 40], a theorem abstracting Bloom’s Theorem for the framework of
rule-based π-institutions is also established.

It should be mentioned, in closing, that in the framework of abstract model theory,
part of which is based on the concept of an institution [17, 18], there have been sev-
eral suggestions on possible ways of introducing a syntax that abstracts the syntax of
first-order logic, of formulating a notion of ultraproduct and, then, studying the in-
teraction between syntax and semantics in the context of ultraproduct constructions.
A few pointers to that literature are the works of Andréka and Németi [1, 2], and
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the paper by Diaconescu [12]. The paper by Tarlecki [26], although not providing
specific information about ultraproducts, is a very useful early reference in the theory
of institutions. Diaconescu’s paper is the closest in spirit to our foundations, but
differs significantly in two aspects: First, models that are available in the institution
framework, but not in the π-institution framework, are used to define the syntax
and, second, the focus is on “internal” ultraproducts in the given institution, rather
than ultraproducts of several related institutions. To the best of the author’s knowl-
edge, both consideration of sentences in π-institutions and construction of “external”
ultraproducts are two novel ideas in the theory of categorical abstract algebraic logic.

For all unexplained categorical terminology and notation the reader is referred to
any of [3, 8, 24]. For the definitions pertaining to institutions see [17, 18], whereas
π-institutions were introduced in [14]. For background on the theory of abstract
algebraic logic and discussion of the classes of the abstract algebraic hierarchy, some
of which were mentioned in this introduction, the reader is referred to the review
article [16], the monograph [15] and the comprehensive treatise [11].

2 A Few Preliminaries

Before embarking on the main developments, we review briefly the concept of a π-
institution, that of a category of natural transformations on a set-valued functor as
well as the notions of an epimorphic translation between two set-valued functors and of
a logical morphism between two π-institutions. This will, hopefully, facilitate reading
the paper by making it more self-contained. Original references to these notions will
be interjected, as needed, so as to enable the reader to find out more details and
results pertaining to the underlying framework.

Recall from [14] that a π-institution I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉, sometimes
abbreviated as I = 〈Sign,SEN, C〉, is a triple consisting of

(i) a category Sign, whose objects are called signatures and whose morphisms are
called assignments,

(ii) a functor SEN : Sign → Set from the category of signatures to the category
of small sets, giving, for each Σ ∈ |Sign|, the set of Σ-sentences SEN(Σ) and
mapping an assignment f : Σ1 → Σ2 to a substitution SEN(f) : SEN(Σ1) →
SEN(Σ2),

(iii) a mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, called Σ-closure,
such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),
(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),
(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),
(d) SEN(f)(CΣ1(A)) ⊆ CΣ2(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2),

A ⊆ SEN(Σ1).

Given a set-valued functor SEN : Sign → Set, as above, recall from, e.g., [34], that
the clone of all natural transformations on SEN is defined to be the locally
small category with collection of objects {SENα : α an ordinal} and collection of
morphisms τ : SENα → SENβ β-sequences of natural transformations τi : SENα →
SEN. Composition
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SENα SENβ-〈τi : i < β〉
SENγ-〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.
A subcategory N of this category containing all objects of the form SENk for k <
ω, and all projection morphisms pk,i : SENk → SEN, i < k, k < ω, with pk,i

Σ :
SEN(Σ)k → SEN(Σ) given by

pk,i
Σ (~φ) = φi, for all ~φ ∈ SEN(Σ)k,

and such that, for every family {τi : SENk → SEN : i < l} of natural transformations
in N , the sequence 〈τi : i < l〉 : SENk → SENl is also in N , is referred to as a
category of natural transformations on SEN.

Given two set-valued functors SEN : Sign → Set and SEN′ : Sign′ → Set a
translation 〈F, α〉 : SEN → SEN′ consists of a functor F : Sign → Sign′ and a
natural transformation α : SEN → PSEN′ ◦ F , where by P is denoted the powerset
functor. A translation is a singleton translation, denoted 〈F, α〉 : SEN →s SEN′

if, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ), |αΣ(φ)| = 1. In this case αΣ(φ) will be
identified with the single element that it contains. Given two functors SEN,SEN′, as
before, and categories of natural transformations N, N ′ on SEN, SEN′, respectively, a
singleton translation 〈F, α〉 from SEN to SEN′ is said to be an (N, N ′)-epimorphic
translation, denoted 〈F, α〉 : SEN →se SEN′ if there exists a correspondence σ 7→ σ′

between the natural transformations in N and those in N ′, that preserves projections,
such that, for every n-ary natural transformation σ in N , every Σ ∈ |Sign| and all
~φ ∈ SEN(Σ)n,

SEN′(F (Σ))n SEN′(F (Σ))-
σ′F (Σ)

SEN(Σ)n SEN(Σ)-σΣ

?

αn
Σ

?

αΣ

αΣ(σΣ(~φ)) = σ′F (Σ)(α
n
Σ(~φ)).

Finally, recall from [29] that, given two π-institutions I = 〈Sign, SEN, C〉 and I ′ =
〈Sign′, SEN′, C ′〉, with categories of natural transformations N, N ′ on SEN, SEN′,
respectively, an (N, N ′)-epimorphic translation 〈F, α〉 : SEN →se SEN′ is said to be
an (N, N ′)-logical morphism from I to I ′, denoted 〈F, α〉 : I〉−seI ′, if, for every
Σ ∈ |Sign| and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies αΣ(φ) ∈ C ′F (Σ)(αΣ(Φ)).

This is equivalent to saying that, for every Σ ∈ |Sign| and every Φ ⊆ SEN(Σ),
αΣ(CΣ(Φ)) ⊆ C ′F (Σ)(αΣ(Φ)).

As far as set-theoretic notation goes, by ω will be denoted the first infinite cardinal
and the corresponding ordinal. Moreover, given a cardinal κ, by κ+ will be denoted
the least cardinal greater than κ. Therefore, given a set X, by |X|+ will be denoted
the least cardinal that exceeds the cardinality of the set X.
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3 Syntax, Rules of Inference and Proofs

In this section a fixed but arbitrary functor SEN : Sign → Set is considered and N
is a fixed but arbitrary category of natural transformations on SEN. The aim is to
develop a syntactical framework in which to be able to study the deductive mechanism
of a π-institution based on SEN in a way similar to the one used for deductive systems
represented by axioms and rules of inference.

The collection TeN (SEN) of N -formulas over SEN or, in accordance with the
theory of sentential logics, N -terms over SEN is defined, in the present context, to
be the collection of all natural transformations in N of the form σ : SENk → SEN,
for some k ∈ ω.

By an N -rule of inference, or, simply, an N -rule, of SEN it is understood a
member r of the cartesian product P(TeN (SEN))×TeN (SEN). Such a rule is denoted
by r = 〈X, σ〉, where X ⊆ TeN (SEN) and σ ∈ TeN (SEN). The length of the N -rule
r = 〈X,σ〉 is the cardinal number |r| = |X|+. The N -rule r is axiomatic if its length
is equal to 1. Otherwise, it is said to be a proper N -rule of inference. This means
that, if an N -rule r = 〈X, σ〉 is axiomatic, then X = ∅. Finally, the N -rule r = 〈X,σ〉
is finitary if |r| < ω.

An N -rule r = 〈X, σ〉 will be usually given, using a variant of a well-known notation
from sentential logics, in the form X/σ or X

σ . An axiomatic N -rule r = 〈∅, σ〉 has a
representation /σ or σ or, sometimes, simply σ.

As an illustration, if SEN is the sentence functor of the π-institution representing
propositional logic, with N the category of natural transformations representing the
whole clone of propositional operations, then the rule of Modus Ponens may be ex-
pressed by {p2,0,→}/p2,1, where p2,0 and p2,1 denote the first and second projections,
respectively, in 2 arguments and → denotes the implication operation, and if I is a
π-institution representing some modal logic, with N the category of natural trans-
formations representing the whole clone of operations, then the rule of Necessitation
may be expressed by {ι}/¤, where, by analogy, ι = p1,0 denotes the identity natural
transformation in N .

An axiom family T = {TΣ}Σ∈|Sign| on SEN, i.e., a collection such that TΣ ⊆
SEN(Σ), for all Σ ∈ |Sign|, is said to be closed under the N -rule r = 〈X, σ〉 if, for
all Σ ∈ |Sign|, and all ~φ ∈ SEN(Σ)ω, if XΣ(~φ) ⊆ TΣ, then σΣ(~φ) ∈ TΣ. If T is closed
under the rule r, then, we also say that r preserves the axiom family T . An N -rule
r = 〈X,σ〉 of SEN is an N -rule of the π-institution I = 〈Sign, SEN, C〉 or of the
closure system C on SEN if σΣ(~φ) ⊆ CΣ(XΣ(~φ)), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω.
If this is the case, then r is said to be sound for I or for C.

Proposition 3.1
Let SEN : Sign → Set be a functor, with N a category of natural transformations
on SEN. An N -rule r = 〈X, σ〉 of SEN is a rule of a π-institution I = 〈Sign, SEN, C〉
iff it preserves all theory families of I.

Proof:
Suppose that r = 〈X, σ〉 is a rule of I, i.e., for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω,

σΣ(~φ) ⊆ CΣ(XΣ(~φ)).

Then, if T ∈ ThFam(I), we have, for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω, such that XΣ(~φ) ⊆
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TΣ, σΣ(~φ) ∈ CΣ(XΣ(~φ)) ⊆ CΣ(TΣ) = TΣ. Thus r preserves T .
Suppose, conversely, that r = 〈X,σ〉 preserves T , for all T ∈ ThFam(I). Then we

have, for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω,

CΣ(XΣ(~φ)) =
⋂{TΣ : T ∈ ThFam(I) and XΣ(~φ) ⊆ TΣ}

⊇ ⋂{TΣ : T ∈ ThFam(I) and σΣ(~φ) ∈ TΣ}
= CΣ(σΣ(~φ))
3 σΣ(~φ).

¥
For a given set R of N -rules of SEN, there exists a smallest closure system C on

SEN, such that every N -rule in R is a rule of C.

Proposition 3.2
Let SEN : Sign → Set be a functor, N a category of natural transformations on SEN
and R a collection of N -rules of SEN. Then there exists a smallest closure system C
on SEN, such that, for every r ∈ R, r is an N -rule of C.

Proof:
It is clear that, for every r ∈ R, r is an N -rule of the largest closure system

on SEN. So it suffices to show that any given collection {Ci : i ∈ I} of closure
systems Ci, i ∈ I, on SEN, such that r is an N -rule of Ci, for all r ∈ R and all
i ∈ I, is closed under intersections. This is, however, easy to see. Since, for all
r = 〈X, σ〉, Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω, we have σΣ(~φ) ∈ Ci

Σ(XΣ(~φ)), for all i ∈ I, we
obtain σΣ(~φ) ∈ ⋂

i∈I Ci
Σ(XΣ(~φ)) = (

⋂
i∈I Ci)Σ(XΣ(~φ)), and, therefore r is also an

N -rule of
⋂

i∈I Ci. ¥
The closure system of Proposition 3.2 is denoted by CR. Based on this notion, the

key concept of a rule-based π-institution is now introduced. It abstracts a property
possessed by default by all sentential logics.

Given a functor SEN : Sign → Set, with N a category of natural transformations
on SEN, and an N -rule r = 〈X, σ〉 of SEN, a Σ-sentence φ is said to follow from
a set of Σ-sentences Φ by an application of the rule r, if, for some ~ψ ∈ SEN(Σ)ω,

XΣ(~ψ) ⊆ Φ and σΣ(~ψ) = φ.

Definition 3.3
Let SEN : Sign → Set be a functor and N a category of natural transformations
on SEN. A closure system C on SEN and the corresponding π-institution I =
〈Sign,SEN, C〉 are said to be N -rule-based if, for all Σ ∈ |Sign|,Φ∪{φ} ⊆ SEN(Σ),
such that φ ∈ CΣ(Φ), there exists an N -rule 〈X, σ〉 of C of length at most |Φ|+, and
~ψ ∈ SEN(Σ)ω, such that XΣ(~ψ) ⊆ Φ and σΣ(~ψ) = φ, i.e., such that φ follows from Φ
by an application of 〈X,σ〉.

Let R be a set of N -rules, Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ). An R-proof of φ from
Φ is a finite sequence φ0, . . . , φn of Σ-sentences, such that

• for all i = 0, . . . , n, φi ∈ Φ or φi follows from previous sentences in the sequence
by an application of a rule of R and

• φn = φ.
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Proposition 3.4
Let R be a set of finitary N -rules. Then, for all Σ ∈ |Sign|, Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CR
Σ (Φ) iff there exists an R-proof of φ from Φ.

Proof:
Suppose, first, that φ0, φ1, . . . , φn = φ is an R-proof of φ from Φ. It will be shown

by induction on k = 0, 1, . . . , n that φi ∈ CR
Σ (Φ).

For k = 0, either φ0 ∈ Φ, whence φ0 ∈ Φ ⊆ CR
Σ (Φ), or there exists an axiomatic

rule /σ, and ~ψ ⊆ SEN(Σ)ω, such that σΣ(~ψ) = φ0. But then φ0 = σΣ(~ψ) ∈ CR
Σ (∅) ⊆

CR
Σ (Φ).
Suppose, now, as the induction hypothesis, that φi ∈ CR

Σ (Φ), for all i < k. Then
either φk ∈ Φ, in which case φk ∈ Φ ⊆ CR

Σ (Φ), or φk follows from φ0, . . . , φk−1 by
an application of an R-rule r = 〈X, σ〉. Thus, there exists ~ψ ∈ SEN(Σ)ω, such that
XΣ(~ψ) ⊆ {φ0, . . . , φk−1} and σΣ(~ψ) = φk. Hence, we obtain

φk = σΣ(~ψ)
∈ CR

Σ (XΣ(~ψ)) (since 〈X, σ〉 is an R-rule)
⊆ CR

Σ ({φ0, . . . , φk−1}) (since XΣ(~ψ) ⊆ {φ0, . . . , φk−1})
⊆ CR

Σ (CR
Σ (Φ)) (by the induction hypothesis)

= CR
Σ (Φ).

Therefore φk ∈ CR
Σ (Φ), for all k = 0, . . . , n, which shows that φ = φn ∈ CR

Σ (Φ).
Suppose, conversely, that φ ∈ CR

Σ (Φ). To see that there exists an R-proof of φ
from Φ, it will be shown that the collection C = {CΣ}Σ∈|Sign|, of operators CΣ :
P(SEN(Σ)) → P(SEN(Σ)), defined, for all Σ ∈ |Sign|, Ψ ∪ {ψ} ⊆ SEN(Σ), by

ψ ∈ CΣ(Ψ) iff there exists an R-proof of ψ from Ψ

forms a closure system on SEN, such that every r ∈ R is a rule of C. Then, by the
minimality of CR, it will follow that CR ≤ C, whence, since φ ∈ CR

Σ (Φ), we will also
have φ ∈ CΣ(Φ), i.e., there exists an R-proof of φ from Φ.

For reflexivity, if Σ ∈ |Sign|, Φ ⊆ SEN(Σ) and φ ∈ Φ, then φ is an R-proof of φ
from Φ, whence φ ∈ CΣ(Φ).

For monotonicity, suppose that Σ ∈ |Sign|, Φ ⊆ Ψ ⊆ SEN(Σ). If φ ∈ CΣ(Φ),
then, there exists an R-proof of φ from Φ, which is also an R-proof of φ from Ψ, and,
therefore, φ ∈ CΣ(Ψ). Hence CΣ(Φ) ⊆ CΣ(Ψ).

For idempotency, suppose that Σ ∈ |Sign|, Φ ∪ {φ} ⊆ SEN(Σ), such that φ ∈
CΣ(CΣ(Φ)). Then, there exists an R-proof φ0, φ1, . . . , φn = φ of φ from CΣ(Φ).
Thus, for those φi’s, i = 0, . . . , n, such that φ ∈ CΣ(Φ), there exists an R-proof
ψi

0, . . . , ψ
i
ni

= φi of φi from Φ. If one interjects this proof in the main proof φ0, . . . , φn,
at the place of φi, for all i, such that φi ∈ CΣ(Φ), then an R-proof of φn = φ is obtained
from Φ, whence φ ∈ CΣ(Φ) and C is idempotent.

Finally, for structurality, if Σ, Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),Φ∪{φ} ⊆ SEN(Σ), such
that φ ∈ CΣ(Φ), then, there exists an R-proof φ0, φ1, . . . , φn = φ of φ from Φ. Now it
is not difficult to verify that SEN(f)(φ0), SEN(f)(φ1), . . . , SEN(f)(φn) = SEN(f)(φ)
is an R-proof of SEN(f)(φ) from SEN(f)(Φ), whence we get that SEN(f)(φ) ∈
CΣ′(SEN(f)(Φ)) and C is indeed structural.
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It has now been shown that C is a closure operator on SEN. To complete the
proof, it suffices to show that every r ∈ R is a rule of C. To see this, suppose that
r = 〈X,σ〉 ∈ R, with X = {τ0, . . . , τm−1} and let Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω. Then
τ0
Σ(~φ), . . . , τm−1

Σ (~φ), σΣ(~φ) is an R-proof of σΣ(~φ) from XΣ(~φ) and, therefore, we get
that σΣ(~φ) ∈ CΣ(XΣ(~φ)), i.e., r is a rule of C. ¥

Recall that, given a π institution I = 〈Sign, SEN, C〉, C is finitary, written |C| = ω,
if, for all Σ ∈ |Sign|, Φ∪{φ} ⊆ SEN(Σ), φ ∈ CΣ(Φ) implies that there exists Ψ ⊆ω Φ,
such that φ ∈ CΣ(Ψ), where ⊆ω denotes the finite subset relation.

Theorem 3.5
Suppose that I = 〈Sign, SEN, C〉, with N a category of natural transformations on
SEN, is an N -rule-based π-institution. Then C is finitary iff C = CR for some set R
of finitary N -rules.

Proof:
Suppose, first, that I is finitary. Let R be the set of all finitary N -rules 〈X,σ〉

of I, i.e., such that, for all Σ ∈ |Sign|, ~φ ⊆ SEN(Σ)ω, σΣ(~φ) ⊆ CΣ(XΣ(~φ)). Then,
obviously, CR ≤ C, by the minimality of CR. If, conversely, Σ ∈ |Sign|, Φ ∪ {φ} ⊆
SEN(Σ), such that φ ∈ CΣ(Φ), then, by finitarity, there exists Ψ ⊆ω Φ, such that
φ ∈ CΣ(Ψ). Since C is N -rule-based, there exists a finitary N -rule 〈X, σ〉 of C, and
~ψ ∈ SEN(Σ)ω, such that XΣ(~ψ) ⊆ Ψ and σΣ(~ψ) = φ. Therefore φ ∈ CR

Σ (Ψ) ⊆ CR
Σ (Φ),

which yields that C ≤ CR. Thus, we obtain C = CR.
Suppose, conversely, that C = CR, for some set R of finitary N -rules. Then

Proposition 3.4 shows that I is finitary in this case. ¥

4 Matrix Systems and Filtered Products

Suppose that SEN : Sign → Set is a functor, with N a category of natural transforma-
tions on SEN. A matrix system for SEN consists of a functor SEN′ : Sign′ → Set,
with N ′ a category of natural transformations on SEN′, an (N,N ′)-epimorphic trans-
lation 〈F, α〉 : SEN →se SEN′ and an axiom family T ′ = {T ′Σ}Σ∈|Sign′| of SEN′. Such
a matrix system will be denoted by 〈〈SEN′, 〈F, α〉〉, T ′〉.

Given a family SENi : Signi → Set, i ∈ I, of sentence functors, with N i a cat-
egory of natural transformations on SENi, i ∈ I, the N i, i ∈ I, will be said to be
compatible if there exists a functor SEN : Sign → Set and a category of natural
transformations N on SEN, such that, for all i ∈ I, N i is a homomorphic image of
N via a surjective functor F i : N → N i that preserves all projections. This implies
that F i also preserves the arities of all natural transformations involved. In this case,
we will tacitly assume that, given σ : SENi → SEN in N , by σi : (SENi)n → SENi

in N i is denoted the image of σ under F i. It was shown in [38] how, given such a
family of functors with compatible categories of natural transformations, the prod-
uct functor

∏
i∈I SENi may be constructed and endowed with a compatible category

of natural transformations, denoted by
∏

i∈I N i. Moreover, it has been shown that
given (N, N i)-epimorphic translations 〈F i, αi〉 : SEN →se SENi, i ∈ I, there exists an
(N,

∏
i∈I N i)-epimorphic translation

∏
i∈I〈F i, αi〉 : SEN →se

∏
i∈I SENi, such that



CAAL: Bloom’s Theorem 9

the following triangle commutes:∏
i∈I SENi SENi-〈P i, πi〉

SEN

6
∏

i∈I〈F i, αi〉 〈F i, αi〉

¡
¡

¡
¡

¡
¡µ

If 〈〈SENi, 〈F i, αi〉〉, T i〉, i ∈ I, are matrix systems for SEN, with 〈F i, αi〉 : SEN →se

SENi, i ∈ I, then the product matrix system of the 〈〈SENi, 〈F i, αi〉〉, T i〉, i ∈ I, is
the matrix system 〈〈∏i∈I SENi,

∏
i∈I〈F i, αi〉〉,∏i∈I T i〉, where, for all Σi ∈ |Signi|,

i ∈ I, ∏

i∈I

T iQ
i∈I Σi

=
∏

i∈I

T i
Σi

.

If, in addition to the functors SENi, i ∈ I, with compatible categories of natural
transformations N i, i ∈ I, a proper filter F on I is also given, then one may define the
filtered product

∏F
i∈I SENi, by considering the equivalence system ≡F on

∏
i∈I SENi,

defined, for all Σi ∈ |Signi|, φi, ψi ∈ SENi(Σi), i ∈ I,

~φ ≡FQ
i∈I Σi

~ψ iff {i ∈ I : φi = ψi} ∈ F.

Then
∏F

i∈I SENi :
∏

i∈I Signi → Set is given, for all Σi ∈ |Signi|, i ∈ I, by

F∏

i∈I

SENi(
∏

i∈I

Σi) =
∏

i∈I

SENi(Σi)/≡FQ
i∈I Σi

,

and, given Σi,Σ′i ∈ |Signi|, fi ∈ Signi(Σi,Σ′i), ~φ ∈ ∏
i∈I SENi(Σi),

F∏

i∈I

SENi(
∏

i∈I

fi)(~φ/≡FQ
i∈I Σi

) =
∏

i∈I

SENi(fi)(φi)/≡FQ
i∈I Σ′i

.

This is a well-defined functor
∏F

i∈I SENi :
∏

i∈I Signi → Set. Moreover, given
(N, N i)-epimorphic translations 〈F i, αi〉 : SEN →se SENi, i ∈ I, there exists an (N,

(
∏

i∈I N i)≡
F

)-epimorphic translation
∏F

i∈I〈F i, αi〉 : SEN →se
∏F

i∈I SENi.

SEN

〈F i, αi〉

@
@

@
@

@
@

@
@I

SENi ∏
i∈I SENi¾〈P i, πi〉 ∏F

i∈I SENi-〈I, πF 〉

6

∏
i∈I〈F i, αi〉 ∏F

i∈I〈F i, αi〉

¡
¡

¡
¡

¡
¡

¡
¡µ

Suppose, now, that, 〈〈SENi, 〈F i, αi〉〉, T i〉, i ∈ I, are matrix systems for SEN,
with 〈F i, αi〉 : SEN →se SENi. Then the filtered matrix system product
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〈〈∏F
i∈I SENi,

∏F
i∈I〈F i, αi〉〉,∏F

i∈I T i〉, i ∈ I, is defined by taking
∏F

i∈I T i to be the
axiom family, defined, for all Σi ∈ |Signi|, i ∈ I, by

F∏

i∈I

T iQ
i∈I Σi

= {~φ/≡FQ
i∈I Σi

: {i ∈ I : φi ∈ T i
Σi
} ∈ F}.

It is not difficult to verify that this definition is independent of representatives and,
therefore, the notion of filtered matrix system product is well-defined. It is worth
mentioning here that, in many works in model theory, in lieu of the term filtered
product in constructions on models, similar to the one presented here, the term reduced
product is sometimes applied.

If F happens to be an ultrafilter on I, then the corresponding reduced matrix
system product is termed, as is customary, a matrix system ultraproduct.

We use matrix systems in the model theory of the language that is developed in
the next section and filtered matrix system products in the main theorem of the last
section.

5 Model Theory

Consider again a functor SEN : Sign → Set, with N a category of natural transfor-
mations on SEN. Let LN (SEN) be the first-order language without equality, whose
set of formulas FmN (SEN) is determined as follows:

• The set of LN (SEN)-terms is exactly the collection TeN (SEN) of the N -terms of
SEN.

• LN (SEN) contains only one unary relation symbol D. Thus, its atomic formulas
have the form D(τ), where τ ∈ TeN (SEN).

• For all formulas θ1, θ2 ∈ FmN (SEN), (θ1 ∧ θ2), (¬θ1) ∈ FmN (SEN).
• For all formulas θ ∈ FmN (SEN) and all i ∈ ω, (∀i)θ ∈ FmN (SEN).

Clearly, the remaining connectives ∨,→,↔, etc., may be defined, as usual, based on
the connectives described formally above.

What is fundamentally different here from the usual, Bloom style ([7] and [11]),
first-order treatment of these languages is the model theory.

A model for LN (SEN) is a matrix system 〈〈SEN′, 〈F, α〉〉, T ′〉 for SEN, where
〈F, α〉 : SEN →se SEN′ is an (N, N ′)-epimorphic translation and T ′ an axiom family
on SEN′.

Given such a model for LN (SEN), τ ∈ TeN (SEN), Σ ∈ |Sign| and ~φ ∈ SEN(Σ)ω,

the value of τ at ~φ in SEN′ via 〈F, α〉, denoted by τ
〈F,α〉
Σ (~φ), is defined by

τ
〈F,α〉
Σ (~φ) = τ ′F (Σ)(αΣ(~φ)),

where by σ′ is denoted the natural transformation in N ′ corresponding to σ in N via
the (N,N ′)-epimorphic property.

By the definition of the (N, N ′)-epimorphic property of 〈F, α〉 : SEN →se SEN′, it
follows that, for every τ ∈ TeN (SEN), all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)ω,

τ
〈F,α〉
Σ (~φ) = αΣ(τΣ(~φ)). (5.1)
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Next, the task of defining a Tarskian satisfaction relation is undertaken. The model
theory of first-order logic is guiding the various steps carried out in the present frame-
work.

Satisfaction of a formula θ ∈ FmN (SEN) at a Σ-tuple ~φ ∈ SEN(Σ)ω in a model
〈〈SEN′, 〈F, α〉〉, T ′〉 for LN (SEN), denoted 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ[~φ], is defined
recursively as follows:

• If θ = D(τ) is atomic, 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ D(τ)[~φ] if and only if τ
〈F,α〉
Σ (~φ) ∈

T ′F (Σ).

• If θ = θ1 ∧ θ2, then 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ[~φ] iff 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ1[~φ]
and 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ2[~φ].

• If θ = ¬θ′, then 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ[~φ] iff 〈〈SEN′, 〈F, α〉〉, T ′〉 6|=Σ θ′[~φ].

• If θ = (∀i)θ′, then 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ[~φ] iff 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ′[~ψ],
for all ~ψ ∈ SEN(Σ)ω, such that ψj = φj , for all j 6= i.

The interpretations of the remaining connectives, that are defined in terms of the
basic connectives, also follow from the formal interpretations, given above, in the
usual way.

Extending further this definition, if SEN′ is a functor, with N ′ a category of na-
tural transformations on SEN′, 〈F, α〉 : SEN →se SEN′ is an (N,N ′)-epimorphic
translation, and C ′ is a closure system on SEN′, i.e., I ′ = 〈Sign′,SEN′, C ′〉 is a
π-institution, then satisfaction of a formula θ ∈ FmN (SEN) at a Σ-tuple ~φ ∈
SEN(Σ)ω in 〈〈SEN′, 〈F, α〉〉, C ′〉, denoted 〈〈SEN′, 〈F, α〉〉, C ′〉 |=Σ θ[~φ], is understood
to mean satisfaction of θ at ~φ in 〈〈SEN′, 〈F, α〉〉, T ′〉, for all T ′ ∈ ThFam(I ′). Finally,
〈〈SEN′, 〈F, α〉〉, T ′〉 |= θ means 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ θ[~φ], for all Σ ∈ |Sign| and all
~φ ∈ SEN(Σ)ω, and 〈〈SEN′, 〈F, α〉〉, C ′〉 |= θ means 〈〈SEN′, 〈F, α〉〉, C ′〉 |=Σ θ[~φ], for
all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)ω.

Based on this definition of satisfaction, we may define, given a collection Γ of
LN (SEN)-sentences, the collection of all models of Γ, denoted by M(Γ), and given
a collection M of models for LN (SEN), the collection Γ(M) of all sentences true in
every model 〈〈SEN′, 〈F, α〉〉, T ′〉 ∈ M . The definition extends in a natural way when
models with closure systems instead of axiom systems are considered.

Let r = 〈X, σ〉, with X = {τ0, . . . , τm−1}, be a finitary N -rule of SEN. Then,
denote by (r) the following formula of LN (SEN):

(∀ . . . ∀)(D(τ0) ∧ . . . ∧D(τm−1) → D(σ)), (5.2)

where (∀ . . . ∀) is the universal closure of the formula with respect to all natural
numbers that are less that the maximum arity of the natural transformations in
X ∪ {σ}. Then we have the following analog of Bloom’s Lemma 0.4.1 of [11] for
π-institutions:
Lemma 5.1 (Bloom’s Lemma for π-Institutions)
Let SEN : Sign → Set be a functor and N a category of natural transformations on
SEN. If R is a set of finitary N -rules of SEN, then a π-institution I ′ = 〈Sign′, SEN′,
C ′〉 is a model of the π-institution IR = 〈Sign, SEN, CR〉 via an (N, N ′)-logical mor-
phism 〈F, α〉 : IR〉−seI ′ if and only if 〈〈SEN′, 〈F, α〉〉, C ′〉 is a model of the collection
of rules {(r) : r ∈ R} (in the previously defined model-theoretic sense).
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Proof:
Let 〈F, α〉 : SEN →se SEN′ be an (N,N ′)-epimorphic translation.
Suppose, first, that 〈F, α〉 : IR〉−seI ′ is an (N, N ′)-logical morphism. We need to

show that for all r = 〈X, σ〉 ∈ R, with X = {τ0, . . . , τm−1}, we have that

〈〈SEN′, 〈F, α〉〉, C ′〉 |= (r).

To this end, suppose that Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω and T ′ ∈ ThFam(I ′) are such
that 〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ D(τ i)[~φ], for all i < m. This yields that

τ i〈F,α〉
Σ (~φ) ∈ T ′F (Σ), for all i = 0, . . . ,m− 1. (5.3)

Since 〈X, σ〉 is a rule of CR, by definition, we have that σΣ(~φ) ∈ CR
Σ (XΣ(~φ)),

whence, since 〈F, α〉 is an (N,N ′)-logical morphism by the hypothesis, we get that
αΣ(σΣ(~φ)) ∈ C ′F (Σ)(αΣ(XΣ(~φ))), i.e., by (5.1), that σ

〈F,α〉
Σ (~φ) ∈ C ′F (Σ)(X

〈F,α〉
Σ (~φ)).

Thus, by Condition (5.3), we obtain σ
〈F,α〉
Σ (~φ) ∈ T ′F (Σ) and, hence,

〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ D(σ)[~φ].

Therefore 〈〈SEN′, 〈F, α〉〉, T ′〉 |= (r), for all T ′ ∈ ThFam(I ′), which implies that
〈〈SEN′, 〈F, α〉〉, C ′〉 |= (r), for all r ∈ R.

Suppose, conversely, that 〈〈SEN′, 〈F, α〉〉, C ′〉 |= (r), for all r = 〈X, σ〉 ∈ R, with
X = {τ0, . . . , τm−1}. That is, for all T ′ ∈ ThFam(I ′), all Σ ∈ |Sign| and all ~φ ∈
SEN(Σ)ω,

〈〈SEN′, 〈F, α〉〉, T ′〉 |=Σ D(τ0) ∧ . . . ∧D(τm−1) → D(σ)[~φ].

Suppose that Σ ∈ |Sign|,Φ∪{φ} ⊆ SEN(Σ), such that φ ∈ CR
Σ (Φ). We need to show

that αΣ(φ) ∈ C ′F (Σ)(αΣ(Φ)). Since φ ∈ CR
Σ (Φ), there exists, by Proposition 3.4, an

R-proof φ0, φ1, . . . , φn = φ of φ from Φ. It will be shown by induction on k = 0, . . . , n
that αΣ(φk) ∈ C ′F (Σ)(αΣ(Φ)).

For k = 0, either φ0 ∈ Φ or there exists an axiomatic rule /σ ∈ R and ~ψ ∈ SEN(Σ)ω,

such that σΣ(~ψ) = φ0. In the first case, αΣ(φ0) ∈ αΣ(Φ) ⊆ C ′F (Σ)(αΣ(Φ)). In the
second case, we have that

αΣ(φ0) = αΣ(σΣ(~ψ))
= σ

〈F,α〉
Σ (~ψ) (by (5.1))

⊆ C ′F (Σ)(∅) (since 〈〈SEN′, 〈F, α〉〉, C ′〉 is a model of (R))
⊆ C ′F (Σ)(αΣ(Φ)). (by monotonicity)

Suppose, as the inductive hypothesis, that αΣ(φi) ∈ C ′F (Σ)(αΣ(Φ)), for all i < k.
Then either φk ∈ Φ or φk follows from {φ0, . . . , φk−1} by an application of an R-rule
〈X,σ〉, with X = {τ0, . . . , τm−1}. In the first case αΣ(φk) ∈ αΣ(Φ) ⊆ C ′F (Σ)(αΣ(Φ)).

In the second case, there exists ~ψ ∈ SEN(Σ)ω, such that XΣ(~ψ) ⊆ {φ0, . . . , φk−1} and
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σΣ(~ψ) = φk. Therefore, we obtain

αΣ(φk) = αΣ(σΣ(~ψ))
= σ

〈F,α〉
Σ (~ψ) (by (5.1))

⊆ C ′F (Σ)(τ
0〈F,α〉
Σ (~ψ), . . . , τm−1〈F,α〉

Σ (~ψ)) (since 〈〈SEN′, 〈F, α〉〉, C ′〉
is a model of (R))

= C ′F (Σ)(αΣ(τ0
Σ(~ψ)), . . . , αΣ(τm−1

Σ (~ψ))) (by (5.1))
⊆ C ′F (Σ)(αΣ(φ0), . . . , αΣ(φk−1)) (by hypothesis)
⊆ C ′F (Σ)(C

′
F (Σ)(αΣ(Φ))) (by the induction hypothesis)

= C ′F (Σ)(αΣ(Φ)). (by idempotency)

¥

6 Rule-Based π-Institutions and Bloom’s Theorem

In this last section of the paper, an analog of Bloom’s Theorem, characterizing those
consequence operations that are finitary, is established in the context of rule-based
π-institutions. Again for the original Bloom’s Theorem [7] is the original source and
[11], Section 0.4, contains an exposition in the context of abstract algebraic logic.

Given a π-institution I = 〈Sign, SEN, C〉, by Mod(I) or Mod(C) is denoted the
collection

Mod(C) = {〈〈SEN′, 〈F, α〉〉, T ′〉 : T ′ ∈ ThFam〈F,α〉
I (SEN′)},

where, as is customary, by ThFam〈F,α〉
I (SEN′) is denoted the collection of all theory

families of the 〈F, α〉-min (N,N ′)-model of I on SEN′. The reader should consult
[29] for the definition of min models, their origin in the concept of a basic full model
[15] in the theory of abstract algebraic logic and further information on the role they
play in categorical abstract algebraic logic.

Theorem 6.1 (Bloom’s Theorem for Rule-Based π-Institutions)
Let I = 〈Sign, SEN, C〉, with N a category of natural transformation on SEN, be an
N -rule-based π-institution. Then the following statements are equivalent:

1. Mod(C) is axiomatizable by universal sentences of the form (r).
2. Mod(C) is closed under filtered matrix system products.
3. Mod(C) is closed under matrix system ultraproducts.
4. C is finitary.
5. C = CR, for some set R of finitary rules.

Proof:

1 → 2 Suppose that 〈F i, αi〉 : SEN → SENi is an (N,N i)-epimorphic translation, that
T i ∈ ThFam〈F i,αi〉

I (SENi), for all i ∈ I, and F a proper filter on I. Consider the
matrix system 〈〈∏F

i∈I SENi,
∏F

i∈I〈F i, αi〉〉, ∏F
i∈I T i〉. Consider, also, a finitary N -

rule r = 〈X, σ〉, with X = {τ0, . . . , τm−1}, such that 〈〈SENi, 〈F i, αi〉〉, T i〉 |= (r),
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for all i ∈ I. It will be shown that

〈〈
F∏

i∈I

SENi,

F∏

i∈I

〈F i, αi〉〉,
F∏

i∈I

T i〉 |= (r).

SENi ∏
i∈I SENi¾〈P i, πi〉

SEN

6

〈F i, αi〉 ∏
i∈I〈F i, αi〉

¡
¡

¡
¡

¡
¡µ

∏F
i∈I SENi-〈I, πF 〉

To this end, suppose that Σ ∈ |Sign|, ~φ ∈ SEN(Σ)ω, such that

〈〈
F∏

i∈I

SENi,

F∏

i∈I

〈F i, αi〉〉,
F∏

i∈I

T i〉 |=Σ D(τ1) ∧ . . . ∧D(τm−1)[~φ].

Thus, τ j
QF

i∈I〈F
i,αi〉

Σ (~φ) ⊆ ∏F
i∈I T iQ

i∈I F i(Σ), for all j < m. This yields that {i ∈
I : τ j〈F

i,αi〉

Σ (φi) ⊆ T i
F i(Σi)

} ⊆ F, for all j < m. Therefore, since 〈〈SENi, 〈F i, αi〉〉,
T i〉 |= (r), for all i ∈ I, we obtain that

{i ∈ I : σ
〈F i,αi〉
Σ (φi) ⊆ T i

F i(Σi)
} ⊇

m−1⋂

j=0

{i ∈ I : τ j〈F
i,αi〉

Σ (φi) ⊆ T i
F i(Σi)

} ∈ F,

which yields that {i ∈ I : σ
〈F i,αi〉
Σ (φi) ⊆ T i

F i(Σi)
} ∈ F , and, hence, σ

QF
i∈I〈F i,αi〉

Σ (~φ)

⊆ ∏F
i∈I T iQ

i∈I F i(Σ), i.e.,

〈〈
F∏

i∈I

SENi,

F∏

i∈I

〈F i, αi〉〉,
F∏

i∈I

T i〉 |=Σ D(σ)[~φ],

which shows that 〈〈∏F
i∈I SENi,

∏F
i∈I〈F i, αi〉〉, ∏F

i∈I T i〉 satisfies (r).
2 → 3 Since ultraproducts are special cases of filtered products, this implication is trivial.
3 → 4 Suppose that Σ ∈ |Sign|,Φ∪{φ} ⊆ SEN(Σ), such that φ 6∈ CΣ(Ψ), for all Ψ ⊆ω Φ.

Let I be the family of all finite subsets of Φ and, for all Ψ ∈ I, let Ψ∗ = {X ∈ I :
Ψ ⊆ X}. {Ψ∗ : Ψ ∈ I} has the finite intersection property, whence, there exists
an ultrafilter F that contains {Ψ∗ : Ψ ∈ I}. Now, recalling that Thm denotes the
theorem system of I and following notation introduced in [34], let, for all Ψ ∈ I,

Thm[Ψ] = {Thm[Ψ]
Σ′ }Σ′∈|Sign| be the theory family of I, defined, for all Σ′ ∈ |Sign|,

by

Thm[Ψ]
Σ′ =

{
CΣ(Ψ), if Σ′ = Σ
CΣ′(∅), otherwise.

Consider the ultraproduct 〈〈∏F
Ψ∈I SEN,

∏F
Ψ∈I〈ISign, ι〉〉, ∏F

Ψ∈I Thm[Ψ]〉 of the ma-
trix systems 〈〈SEN, 〈ISign, ι〉,Thm[Ψ]〉,Ψ ∈ I. It is clear that 〈〈SEN, 〈ISign,
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ι〉〉, Thm[Ψ]〉 is a model of C, for all Ψ ∈ I, whence, by the hypothesis, 〈〈∏F
Ψ∈I SEN,∏F

Ψ∈I〈ISign, ι〉〉, ∏F
Ψ∈I Thm[Ψ]〉 is also a model of C. Therefore, to show that

φ 6∈ CΣ(Φ), it suffices now to show that, for all ψ ∈ Φ, {Ψ ∈ I : ψ ∈ Thm[Ψ]
Σ } ∈ F,

whereas {Ψ ∈ I : φ ∈ Thm[Ψ]
Σ } 6∈ F. The second condition is obvious since

{Ψ ∈ I : φ ∈ Thm[Ψ]
Σ } = ∅. For the first condition, note that, for all ψ ∈ Φ,

we have
{ψ}∗ ⊆ {Ψ ∈ I : ψ ∈ CΣ(Ψ)} = {Ψ ∈ I : ψ ∈ Thm[Ψ]

Σ }.
From this and the fact that, by the definition of F , {ψ}∗ ∈ F, it follows that
{Ψ ∈ I : ψ ∈ Thm[Ψ]

Σ } ∈ F .
4 → 5 This is the content of Theorem 3.5.
5 → 1 This is the content of Lemma 5.1. ¥
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[25] Prucnal, T., and Wroński, A., An algebraic characterization of the notion of structural com-
pleteness, Bulletin of the Section of Logic, Vol. 3 (1974), pp. 30-33

[26] Tarlecki, A., Bits and Pieces of the Theory of Institutions, Lecture Notes in Computer Science,
Vol. 240 (1986), pp. 334-360
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