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Abstract

Biedermann introduced the algebra of trilattices as the algebraic counter-
part of the order-theoretic notion of a trilattice, which arose in Wille’s triadic
concept analysis. The author introduced polyadic concept analysis as a general-
ization of triadic concept analysis. There, n-lattices, for arbitrary n, appeared
as a generalization of Wille’s trilattices. In this paper the algebra of n-lattices
is presented as the algebraic counterpart of n-lattices. The theory is a general-
ization of the theory of Biedermann to n dimensions.

1 Introduction

Ganter and Wille [4] introduced formal concept analysis in order to provide the the-
oretical foundations of a rigorous lattice-theoretic data analysis. A formal context
consists of two sets, that of objects and that of attributes, together with a binary
relation between objects and attributes. This relation induces in the standard way
a Galois connection between sets of objects and sets of attributes whose closed sets,
called formal concepts, form a complete lattice, the lattice of formal concepts. Because
it employs a binary relation, a formal context is, roughly speaking, two dimensional.
In [5], triadic concept analysis was introduced as a generalization of formal concept
analysis to three dimensions. Apart from the sets of objects and attributes, a third
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set, called the set of conditions, was introduced and a ternary relation between ob-
jects, attributes and conditions took the place of the binary relation of formal con-
texts. Complete trilattices were the lattice-theoretic structures that arose in place
of complete lattices out of this generalization. They are triordered sets in which six
operations of arbitrary arity, called the ik-joins exist. Biedermann [1] studies trilat-
tices in which finitary ik-joins exist from the algebraic rather than the order-theoretic
viewpoint. He shows that six operations of small arities are enough to algebraically
represent trilattices and provides an equational basis for their theory. Inspired by the
work of Wille, the author introduced in [6] polyadic concept analysis, which general-
izes triadic contexts and concepts to n dimensions for arbitrary n. A generalization of
Wille’s Basic Theorem of Triadic Concept Analysis to arbitrary dimensions was also
provided. The question naturally arises of whether there exists an algebraic theory for
n-lattices, arising in polyadic concept analysis, generalizing the theory of Biedermann
for trilattices. This question is the one that the present paper answers. It is shown
that, in the general n-adic case, there are n! operations of small arity that suffice to
represent n-lattices. An equational basis for their theory, generalizing the theory of
Biedermann is also provided.

[2] and [3] provide the basic notions and notation pertaining to ordered sets.
Formal Concept Analysis and related notions are introduced in [4]. Triadic Concept
Analysis is presented in [5], where one finds the definitions of triordered sets, ik-
joins and complete trilattices. The equational theory of trilattices is introduced in
[1]. Finally, [6] proposes the generalizations of triordered sets, ik-joins and complete
trilattices to n-ordered sets, (j,_1,- -, j1)-joins and complete n-lattices, respectively.

2 n-Ordered Sets and Operations

n-ordered sets arise in n-adic concept analysis, for n > 2. They are generalizations of
triordered sets, which, in turn, are generalizations of ordered sets.

Definition 1 An ordinal structure (P, <1, So, ..., <,) is a relational structure whose

n relations are quasiorders. Let ~;=<; N 2;, fori = 1,2,... ,n. An n-ordered set
(P, <q1,...,Sy) is an ordinal structure, such that, for all x,y € P and all {iy,1is,. ..,

? ~oT

in} =41,2,...,n},
1.z~ Yy, o x e~y y imply @ =y (Uniqueness Condition)

2.0 S0 Yy S,y imply x 2,0y (Antiordinal Dependency)

Each quasiorder <; induces in the standard way an order <; on the set of equivalence
classes P/~; = {[z]; :x € P},i=1,2,...,n, where [z]; = {y € P: 2z ~; y}.
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Triadic diagrams have been employed (see, for instance, [5] and [1]) in representing
3-ordered (triordered) structures and a direct generalization of these has also been
used in [6] for 4-ordered structures. However, the visual representations become
increasingly cumbersome and less and less illuminating as the dimension increases.

In trilattices, one takes ik-bounds, ik-limits and ik-joins, for {i,j,k} = {1,2,3},
to define the triadic operations [5]. These were generalized in [6] to (ji,. .., Jn—1)-
bounds, (ji, ..., jn_1)-limits and (ji,...,jn_1)-joins, respectively, for {ji,...,jn} =
{1,...,n}. This process is, roughly speaking, the analog of the two-step process of
taking least elements of sets of upper bounds and greatest elements of sets of lower
bounds to compute suprema and infima, respectively, in lattices, but it requires three
instead of two steps.

We follow [1] in establishing the following terminology and notation:

Definition 2 Let (P, <1, Sa,...,<,) be a triordered set, j1,j2, ..., jn-1 € {1,2,...,n}
be distinct and X1, Xo, ..., X,_1 subsets of P.

1. An element b € P is called a (jn_1,-..,j1)-bound of (X1, Xn o,...,X1) if
x; S b, forallz; € Xy and all i =1,...,n — 1. The set of all (jp-1,...,71)-
bounds of (X,_1,...,X1) is denoted by (X,_q,..., X )0n—1rd1),

2. A (ju-t1,...,51)-bound | € (Xp_1,...,X1)Un-1030) of (X,_1,...,X1) is called
a (Jn—1, .-, 1)-imit of (X—1,...,Xq) if L 25, b, for all (jn—1,...,j1)-bounds

be (Xn_i1,..., X )0n-101), The set of all (Jn—t,---,71)-limits of (Xpn_1,...,
X,) is denoted by (X,_1, ..., X1)Un-1nd0),

Obviously,
(anlg e ,X1>(jn_1’“"jl) - (Xa'(n—l)7 . e ’Xo.(l))(jo-(”fl)""’jf’(1>)
and - -
(anl, e 7X1)(j"71""’j1) = (Xa(n—l)a e ’Xo_(l)>(jcr(n—1):-~~7jg(1))7

for {j1, jo, .-, Jn} = {1,2,...,n} and every permutation o of {1,...,n—1}. Note also
that if (Xn—la . ,Xl)(jn_l""’jl) 7& @ and ll, l2 € (Xn—b c. ,Xl)(j"_l""’jl) then ll ~in lg
since (Jn_1,--.,j1)-limits are also (j,_1, ..., j1)-bounds.

Proposition 3 is generalizing Proposition 2.4 of [1] in n dimensions.
Proposition 3 Let (P, <1, ..., Sn) be an n-ordered set, Xy, ..., X, 1 C P and {ji,

v int =A{1,...,n}. Then, there exists at most one (jn—1, ..., j1)-limitl of (X,—1, ...,
X1) satisfying
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(C) 1 is the largest in
largest limits in <;

~Nin—1

among the largest limits in <Sj, among ... among the

among the largest limits in S, or, equivalently,

N]2

(C°) 1 is the smallest in <
largest limits in <;

~Nin—1

among the largest limits in <,, among ... among the

~J1 ~J3

among the largest limits in S;

Proof:

Suppose [,1" both satisfy (C). Since they are (j,_1, = ,jl) limits, in partlcular
(jn 1, -+, J1)-bounds, of (X, 1,...,X;) we must have [ S, 7l’ and l: [, ie.,
iy ', whence, again by (C), [ ~; _, [/, and SO on,

I ~;, I'. But then, by (C), [ ~
down to l_N I'. Thus | ~;, ', for i = 2,...,n, which, together with _, ~;,= Ap,
gives [ =1, [

Definition 4 If it exists, a (jn_1, - - -, j1)-limit satisfying the statement in Proposition
8 is called the (Jp—1,...,71)-join of (Xn_1,...,X1) and denoted by V;,_, . (X1,
5 Xq).

Definition 5 A complete n-lattice (L, <q,..., <) s an n-ordered set in which all
(Jn=1s-- -, J1)-joins Vo iy (Xno1, ..., Xq) exist, for all Xq,...,X,-1 C L and all
{71,-- . dn} = {1,...,n}. A complete trilattice is bounded by 0;, := V;,_, (L,
L,..., L), where {j1,...,jn} ={1,...,n}.

Proposition 6 In any n-ordered set (P, <1,...,<,) the idempotent laws

V(jn—17~--7j1)({x}7 R {[L’}) =T (1)

hold for all x € P and all {j1,...,jn} ={1,...,n}. Conversely, if the (jn—1,-.., j1)-
join of ({z}, ..., {x}) exists in the ordinal structure (P, <y, ..., <,) and satisfies (1),

for allx € P and all {j1,...,5n} ={1,...,n}, then (P, <1,...,<,) is an n-ordered
set.

Proof:
Clearly, = is a (jn—1,...,j1)-bound of ({z},...,{z}). Suppose that [ is another
such bound, i.e., z S, [, foralli = 1,...,n—1. Thus, by the antiordinal property, we

have | <, =, Whence risa (fo1,- - ,]1) hmlt of ({x} ., {z}). Finally, given such a
limit [, i.e., such that = <;, [, we get x <, [, for all i 7& n—1, whence [ <;, , . And,
in a similar fashion, assuming that [ is among the largest limits in Spiq,..., Sjns
we may sunllarly conclude that [ <;, w, for all k = n — 2,...,2. This proves that
2=V sy Lo 2.

Conversely, to show the antiordinal property, Suppose S Y Sy Y

whence, since x = V(;,_, _iy({z},...,{z}), we get y <, «, as desired. Similarly, for
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the uniqueness property, suppose « ~;, y,...,x ~;. _, y. Then, as above, we get y <,
x, and, reasoning symmetrically, using y = Vi, in({y}, .- {y}), we get = S, v,

whence ~in Y- Thus z = v(jn—1,-~-7j1)({x}’ SR {ZE}) = v(jn—17~-~7j1)<{y}’ ceey {y}) =Y.

[
Definition 7 For a (jn—1,...,71)-join
Vijmrri {11 s Tty fo o {11, 21, })
which exists in an n-ordered set (P, <q,. .., S,) with P # 0, we define the operation
;;;jj},jl)(fn,l, T =V i) @, F) =

V(jn71 77777 j1)<{'rn71,17 .. ,xn,l,inil}, ceey {.73171, ce ,.%171'1}),

which will also be called the (jn—1,...,71)-join of ({Tn—11s-- s Tn-14, 1 }s--- {11,
ooy ®1gy }). This (Ju—1,- .., j1)-joins will be called (i,,—1,...,11)-ary operations, in the
sense that they are functions

Yin-teit L pinet e P P

(.jn—lv"'zjl)

It is not difficult to see that the following commutative laws hold:

z;;j.l.’..l.ll,jl)(fnfl, ... ,fl) = z;;j.l.il.,jl)(fnil? o 7f’€+17 O'(fk), a‘c’k,l, ce ,fl),
for all 1 <k <n —1 and all permutations o of {1,... 4y}, where o(Z}) = (k1)
e ,xkya(ik)).

3 Reduction Theorem and n-Lattices

From this point on in the paper we make the following global notational conven-
tion to simplify cumbersome notation:

e Given nonnegative integers k < [ we write zy_; = (og,Tgy1,...,2;) and
xl,...,k = (ZL’l, Ti—1y.-- ,{L‘k).
e Given nonnegative integers k < | we write Xy ; = (Xg, Xgt1,...,X;) and

X=X, Xiq, ., X).

We also use freely the natural isomorphisms between different direct products without
explicit mention, for instance, if &k < m < [, zx, ;= (T m,Tm+1..1) has the obvious
meaning.
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Existence of joins of arity (2,...,2) clearly implies existence of all joins of arities
(€1,...,€n1), forall ¢, € {1,2},i=1,...,n— 1.

To prove the Reduction of Arity Theorem, the analog of Theorem 2.9 of [1], we
need to be able to construct arbitrary joins from joins of arity (2,...,2). Thus, we
need a way to go “upwards” in arities. The following two lemmas will serve this
purpose.

Lemma 8 Suppose that the (jn—1,...,J1)-joins of arities (in—1,  g+1,% — 1, ik—1..1),
(n—1,bt1s Ly ik—1,.1) and (in—1,. g+1, 2, ik—1,..1) exist, for 2 <k <n—1. Then

t =V @ttt (Vi) @t o 1 ATk 1s - o5 Thyig—1 1 Thm1,.01)
v(jn,l,.“,jl)(fnfl,...,kdrla Thip, Th-1,..1)), Th=1,..1) € (Zn_1,... ,fl)(j”_l’""jl)-
Proof:

We have x,, <; t,foralll1<p<n—1,p#k,1<q<i, and
Pa ~ip P

Lk,q §jk V(jnq ----- j1)<‘rn—1,~~,k+17 {xk,lv s 7'Ik’ik_1}7 xk_lw“al) rijk L

1<qg<ip—1,and

—

Tie Sin Vnorrd) (Tt kel Thiig, Tho1,1) Sj

whence t € (Z,_1, ..., & )01, [ |

Lemma 9 Suppose that the (jn-1,...,71)-joins of arities (in—1. _k+1,%% — 1,ik-1,.1),
(tn-1,. k+1, 1, 06-1,1) and (in—1, g+1,2,0k-1,.1) exist, for 2 <k <mn—1. Then

t =V 1) @t b1 (Vi) @t 1 {8k 15 - o Thig—1F The1,.1)5
YV Gntrod) Tt ety Thesies Thim1,.01) ) Thie1,1) € (o1, - @7y ) Un=trdt)
Proof:

By Lemma 8, t € (Zn_1,...,% )19 So it suffices to show that, if b €
(Zo_t, ..., 2)n191) then b Sjo o Let b€ (Z,_q,..., @) Un—101) £ () by Lemma
8. Then b € (f@—1,...,k+1, Tty oy Thip—1)s To1,1) =19 and b € (T1. gr1, Thiys
Tyq...1)Un=191) Thus

b Sin Vi) (@netkrts (Tr1s - oo Thgig—1), Tre1,..1)  and

b ,Sjn v(jn_l,...,jl)(fn—l ..... k+17$k7z‘k7fk—1,...,1)- (2)
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Now consider the term

V Gt reoios 1o —treegt) T 1, k15 0y Tho1, 1),

which exists by assumption. We have by (2), that both V; . iy(Zn-1,. k41, (k1
e k1) Trmt,0)s A0 V(G (T, et 1 T Tho,1) are in (T, ke, {0}

fk_17...71)(jnfl"~'7jk+l7jn»jk717"'7j1)’ Whence
v(jnfh...,jl)(mn—l,...,k—i-la (iUk,l, .. >xk,ik—1)7 $k—1,...,1) §jk
V Gt imdi—trmdt) (Tn—1,. k415 0, Tro1, 1)
and

—

V Gnetvodt) Tttt Thoig s Tho1,1) Sie Vnr, irtidngoot,. ) (T, k41,0, T, 1)

Therefore

— —

V Gntoesdiosrsingstsedt) (Tn=tpekr 1, 0, Tre1,1) € (Tt bt 1> AV G rsin) (Trm1, b1

(Th1s s Thig=1)s Th1,1)s Y Gt oit) (Tt 1> Thig s Thi1,.01) } fk—1,...,1)(j"’l"“’jl)-
(3)

Thus b 5]77« V(jn—17"‘7jk+l7j7l7jk717"'7j1)($n_17"'7k+1’ b’ :L‘k_1771) 53" t’ Whencet 6 (’In_l’ Tt
fl)(jn—lr"vjl)' [ |

Lemma 10 Suppose that the (j,—1, ..., j1)-joins of arities (in—1,. k+1, 0 — L, ik—1..1),
(in—1,. k+1, L, 01, 1) and (Gn—1, k11,2, %%-1,..1) exist, for 2 <k <n—1. Then

t:= V(jn,l,...,jl)(fn—l,...,k+17 (V(jn,l,...,jl)(fn—1,...,k+1, {ﬂck,h S ,xk,ik—1}, fk—1,...,1),

v(jn—l,...,j1) (fn—1,...,k+1, Tk iy, » f/c—l,...,1)), fk—l,...,ﬂ

is the (Jn—1,...,71)-join of (Zn_1,...,T1).

Proof:

By Lemma 9, (Z,,_1, ..., &1 )Ur-190) £ (. Assume | € (Z,_1, ..., &1 )Un—191), The
difficult inequality is the one that assures that [ <;, ¢, where [ ~; ¢,...,1 ~;  t.
Sincel € (Z,_1,...,7)Un—1-71) we have, exactly as in the derivation of (3) in Lemma
9,

—

it red) (Tt b Tho1,1) € (Tnetgea 1y AV Gorgn) (@1, k1

Vi

(Thty s Thig—1) The1,1)5 YV (Gnrojt) (@1, 15 Thigs Tho1,..1) } fkfl,...,l)(j"’l"”’jl)~

(4)
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—

But we also have I S;, Vi, 1kt nsdietoeit) (@n1,. k41, b Te—1,...,1), whence
Y Gntoedisidndntrmdt) (Tnet et b T 1) € (Tt kit AV Goorgn) (Tt k1,

(Qik,h cee 7l’k,¢kf1), fkq,...,l)’ V(jnfl,..l,jl)(fkfl,...,la Thig» fkq,...@)}, fkfl,...,1)(j"_1""’jl)~

Since alSO l - (fn—l,...,k—i-h {l}7 fk_l’m’l)(jn—lw--ajlc-&-lyjnajlc—lr--»jl)7 i‘e_j

—

! fSJk V (Gn—1y k4 1:n:dk—15-- 7]1)(1’ 1,k+15 l7 1’]4—1,...,1)7

we have that

l fi]k V (Jrn—1reeosdht 15dnsdk—15e 7]1)(‘f 1,...k+1, lafk—l,m,l) Sjk 2
That among all these [, we also have [ <;, , ¢, and so on, all the way down to js, i.e.,
that ¢ is the (j,_1,...,j1)-join of (¥,_1,...,Z), now follows by the assumption on [
and the join properties of ¢. [

Lemma 11 Suppose the joins of arity (in—2.. 1,in—1) and (in,—2. 1,1) exist. Then the
joins of arity (in—1,..1) also exist and

Viimirit) @n=1,1) = Voo iviin) @n=2,.1, Viinsriim) (@n—2,..1, Tn-1)).

Proof:
Let t =V, 5. i) (@n-2,.1s Viiaorii o 1) (Tn-2,.1, Tn-1)). We have

‘ o 5 o o ' o — = (Jn—2,--:71,Jn)
V(in-zririn-) (Tn=2,1, Tn=1) € (Fn-2,..15 V(G_gyciji 1) (Tn—2,..15 Tno1)) " e

whence Vi, . i) (@n-g 1, Tac1) Sju th e, t € (Tpoi, ..., @)Un—t31). This
also yields t <j. Vi orjriin1)(@n—2,..1, Tn_1). But we also have, by t’s definition,
that ¢t 2;, V(Jn%_,_ﬂmnfl)(xn_Q,m,l, Tpo1), whencet ~; Vi o oo (Tnoa, 1, Tno1)
and, therefore, t € (Z,_1, ..., )Un-1r91),

Now suppose that | € (Z,_1, ..., 7)1 Then [ ~; o Vnorjrijn) (@nza, .1,
Tpo1), whencel € (Zn_2_.1, Vi o jijn1)(Zn-2,.1,Tn_ 1))(]" 2ed0dn) Thus | < t.
Similarly, if | € (F,_1...1)Y» 19 such that for all other limit I',I’ <, _, I, we have
that [ ~; | t, Whence [ <; ,t, by the join property of t. The same applies all the

rv]n 2

way down to j2 and, hence, t =V ;| i(Zn_1..3, T2, Z1). [ |

In—1

Theorem 12 (Reduction of Arity Theorem) If in an n-ordered set P = (P, <4
e Sy all (o1, - -+, J1)-joins of arity (2,2, ...,2) exist, then all finitary (jn_1,-- -,

J1)-joins Vl(”n_lh”ijl) exist.
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Proof:

We use the technique of [1] by first reducing the rank of the first n — 2 arguments,
using Lemma 10, then reducing the rank of the n — 1-st argument by possibly in-
creasing the rank of the first n — 2 arguments again, using Lemma 11, and, finally,
reducing the rank of the first n — 2 arguments once more, using again Lemma 10.

If all arguments of the join are at most binary, then the join exists by hypothesis.
If there exists at least one argument with arity at least 3, then we follow the following
steps:

Step 1: If any of the first n — 2 arguments has arity at least 3, then use Lemma 10 to
write the join as a join of joins of lower arities until the arities of the first n — 2
arguments are at most 2.

Step 2: Now, if the (n—1)-st argument has arity at least 3, use Lemma 11 with 4,1 < 2,
to reduce the arity of the (n — 1)-st argument to less than or equal to 2 by
increasing the arity of the (n — 2)-nd argument.

Step 3: Finally, if step 2 was performed, use Lemma 10 once more to reduce once more
the arity of the (n — 2)-nd argument that was increased in step 2.

[
In a complete n-lattice (L, <q,...,<,) the following identities hold:

Vi) (X1, Xe U Y5, Xp 1) =

VGt (X1, b1 AV G tit) (Km 1o Xy Xiom1,01),
Vi) (X1, bty Yo, Xi—1,01) }s Xeo1,.1)

-----

and

v(jn_l,...,jl) (Xn—l,...71) = V(jn_g,...,jl,jn_l) (Xn—2,...,1a v(jn_g,...,jl,jn_l (Xn—Q,...,lv Xn—l))>

forall Xp,...,X,, Yy C L alll<k<n-—1 and all {j;,...,7,} ={1,...,n}.
For n-ordered sets (P, <q,...,<,) in which all (2,2,...,2)-ary (j,—1,...,J1)-joins

exist, we may use the first identity above to write

V(jn,l,...,jl)(56n71,...,k+1,il?k,llfkf1,...,1) = V(jn,l,...,jl)(xnfl,...,kJrl’

— —

(V(jn,l,...,jl)(fnfl,...,kJrla u, $k71,...,1), V(jn,l,...,jl)($nf1,...,k+1, v, $k71,...,1))7 Tp—1, 51)7
where 7; € L', 4 = (uy,...,u,) € LP and ¥ = (vq,...,v,) € L9, with {zy1,...,

Thip b = {w1, .., Up, U1, .., 0}
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Definition 13 An n-lattice is an n-ordered set (L, <q,...,<,) in which all the (2,

2)-ary (Jn_1,---,71)-joins exist. The following notation will be used for these
joins:

V(jn—l,--.,ﬁ)(xn—la s 7371) = v(jn_l,...,jl)(xn—l,la Tn-12,---,T1,1, m1,2) =

Viin-tin) (@n-11, Tn-12), - -, (21,1, T12)),
where T; = (i1, i2), i1, Tio € Lyi =1,...,n— 1. The derived operations of arities
(€n_1,...,€1), where e; € {1,2}, i =1,...,n—1, are all the operations defined by the
joins above by taking the argument corresponding to &; to be T; = (x;1,%;2), if € = 2,
andaﬁ"} = (ZEi,.TZ'), ZfEZ = 1, 1= 1,...,7’L— 1.

4 Equational Base for n-Lattices

The following theorem generalizes Theorem 3.1 of Biedermann [1] to n-lattices. It is
very interesting to point out that the equational theory consists of the nine axioms
(T1)-(T9) of Biedermann, appropriately generalized to the context of n-lattices.

Theorem 14 In an n-lattice (L, <q,...,<,) the following equations hold for all

)y ~on

{1, ant =41 a0 =1{1,....,n} and for all ¥; = (z;1,2;2),i=1,...,n,
1. (Idempotent Law) V(;, ., iy(z,z,...,2) =2

2. (k-th Component Commutativity) Vi, i) (Zn—1,. k1, Ths Tro1,.1) =
Viinotrit) @1, o1y (Th2s Tr1)s Tom1,0), k= 2,0, — 1,

3. (Bound Laws) v(j;b_l,...,j{)(gn—l,...,k—l-l?(xllav(jn 1o ,gl)(fn—l,...,l))7?jk-l,...,ﬂ =
V(j;H,...,jg)(gn—1,...,k+1,V(jn_l,...gl)(fn—l, ) Yk—1,.., ), where ]'1/9 =,2 <k <
n — 1.

4. (Limit Laws) (Jn— 17---7jk+17jn7jk—17---7j1)(v(jn—17---7]1)(fn 1,.. ,1) V(Jn 1yeeesd1) (f ,,,,,
),

(V(jn—ly--~7]1 (f 1,. 71)’ V(]'n—ly--wjkle:jlvjkfl7~~~7j27jk) (fn 1,.,k+1; xl? xk 1,..,25 xk)
V(jnfly--w]l)(x —1,.. ,1)7 ceey v(jnq 1)(3771—1,-..,1)) = V(]nfly---,]l)(xn 1, ) 2<k<
n—1.

~~~~~

5' (Antlordlnal LaWS) V(j'fl—17"'7jk+lzjn7jk717"'9j1)(v(jn—la"'mjl)(xn_lv"?k‘—"_l’ xkv:l’ xk_1771)’ ctt

Vlnotedn) Tttt Ty Timt,1)s (Vi) (Tt ot Tty Tt

V(jn,l,...,jl)(fnq,...,l)) V(]n 1,...,31)(5% 1,.. ,k+1,37k 17$k 1,... ) V(]n Tyeens jl)(fnfl,...

Thts Th1,1) = V(notoit) (@1, 15 Thts Thm1,1)), 2 <k <m— 1

6. (Commutative Laws) Vi) (@p1,...,21) =
v(jn—%---vjlvjn)(m”_% REREOE v(j’ﬂ*Z?"wjlvjnfl)(‘/L‘n_27 s T, xn—l))

,k+17
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7. (Separation Laws) V; iy (@n1,1) = V1) (@1, k1,
(VGnri) (@t et 1 Tht, T, )7vgn i) (Tt et 1 Th2, Th1,.1) )5
Tp1,.1)), Th-1,.1), 2<k<n-—1

8. (Absorption Laws) V., i (@n-1,.. .. T1) = V1) (@1, - Thgr,

Grotoog)) @ty oo T1), ety -, @1), 2 <k <n—1,

<

9. (Associative Laws) v(jnil,“."jl)(fnflrn’kulrl, (V(jnilj.“’jl)(fnfljn.’k+1’ (.T}kJ, ;Ck’2>,
xk—1,...,1),V(jn,l,...,jl)(fn,...,k+1;Ik,?,,fk—1,...,1)),fk—1,...,1) = V(jn,l,...,jl)(fn—l,...,kﬂ,

VGt (et ot s T Thm,1)s V(G i) (T o1 (T2, Thg) s Trot,1))s
Th1,..1) 2<k<n-—1.

Proof:

Proposition 6 takes care of the idempotent law. The commutative law was the
content of Lemma 11. The absorption, the associative laws, and the separation laws
follow from Lemma 10. The k-th component commutative laws are reflecting the
set theoretic origin of the arguments. So the laws whose validity remains to be
demonstrated are the bound, the limit and the antiordinal laws.

For the bound laws, observe that z;1 <j, Vj,_,...j1)(Zn-1,..1), Whence

(37n71,...,k+1, {1’1,17 v(jn,l,“.,jl)(fnfl,...,ﬁ}; 271@71,...,1)%‘1”""ji) =

(gn—l,...,k—l-la V(jn,l,...,jl) (fn—l,...,1), gk—1,...,1)(j;”‘1""’ji)

and the laws follow.
For the limit laws, set

t = v(jn—l ,,,,, k+1oJnsJk—1,..., 1)(V(Jn 1 Jl)(xn 1,. 1) "'7V(jn—17---7j1)(f —1,. 1)
(v(jn,l,...,j1)<xn71 ,1) ]n,l,...,j;ﬁq,]l,jk,l,...,jg,jk)(ajnfl,..‘,kJrlax Tk—1,. ,27:6]{))
V(jn,l ..... jl)(an,.. ,1)7 < V(jn,l,...,jl)($n71,...,1))-

Observe, first, that V;,_, i) (Zn-1..1) ~jn Vn_1roidestige o 7]27]k)(fn 1, k15 L1,
Th-1,.2,Tx). The bound property of ¢ yields V; .  i)(Zno1,.1) Sji thd 3& k. This
yields, by the antiordinal property, t <; Vi, 1.0 (@n-1,.1). But we also have
Vimorri)@n1,..1) Sj, t, by the limit property of t. Hencet ~j, Vi, iy (Zho1,.1).
The equality now follows.

For the antiordinal laws, let

t = v(jnfly---7]k+l Jnsdk— 1,---731)( ]n 1,---7J1)(fn—1,...,k+17xk,hfk—l,...,1>a R
V Gty @t o1 Tt The1,1) s (V Gnti) (Tt o 15 T 15 Thmt,1) 5
V(jn_l,...,jl)(%—1,...,1)), V(gn_l,...,gl)(fn—1,...,k+1, Tk,1, fk—1,...,1), cee
V(jn,l,“.,jl)(fn—l,...,k-i-la-Tk,lafk:—l,...,l))
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By the bound property for t we get Vi, i) (@n1, kt1, Thts Too1,..1) Sy, ¢, for
i # k. Thus, by the antiordinal property, ¢ <;, V1,0 (Tn—1,.. k15 Th1 The1,.1)-
But the limit property of ¢ yields V;, . i)(Zn-1,. k+1, Th,1, The1,..1) Sj, t, whence
t~j V(jn_l’“.’jl)(fn_17__.7k+1, Tk, Tk—1,.1). Now the bound properties, combined with

this equivalence yield the required equality. [ |

Lemma 15 In an n-lattice (L, <y,...,<,), the following equivalences hold, for all
{1, int =A{L,...,n} = {41, .., 4.}, where j. = j|, and all x1,x9 € L,

:El S]k :L‘2 — :EQ = V(j'fl—l7""]'16717jk:7jk717""j1)(x27 e 71'2’ (:El’ x2)7 Jj27 e ’xz)
= 22 = Vgt yendd) (T2 Ty (81, 22), Ta, - T2)

where in the above equations, (x1,x2) appears in the jp = j, position.

Proof:
Suppose, first that z; <, 2. Then

({$2}7 R {xQ}’ {xlv :132}, {:132}, R {x2})(jn711---7j1) = ({ﬁg}, R {x2}>(jn717m’j1)’

whence V(;, . (22, ..., %2, (T1,%2), T2, ..., T2) = Vi, _\,.i0(@2, ..., 22) = X2, by
Proposition 6.

Conversely, if xo = V. (@2, ..., T2, (X1, 22), X2, ..., x2), then 1 S, x5 fol-
lows from the fact that joins are bounds. [

The following lemmata will be used in the proof of the main theorem, showing
that the equations in Theorem 14 form in fact an equational basis for the theory of
n-lattices.

The following are common assumptions for Lemmata 16-20:

(Ly AV Goetroj) Hitrjn}={1,...n}) 18 @ nonempty set equipped with n! (2,2,...,2)-
ary operations, which satisfy the equations in Theorem 14. {ji,...,j,} = {1,...,n}

={j1,-.-,J.} All variables denote elements or vectors of elements of L.
Lemma 16 (Last Component Commutativity) V., i (Zp_1,...,71) =
V(jn_l,...,jl)(fn—la ceos Do, (T12,21))

Proof:

Vnorg) (@Tn1,1) =

—

= Vincarwigiin) (Tn-2,25 (01,2, 011), Viao,eggn—) (Tnz,..2, (T12, 211), Tn1))

= Vit (@n-1,.2, (T12,711))
the first and third equalities follow by the commutative laws and the second follows
by (n — 2)-component commutativity. |

= Vi oriign) @n-2,..1 Vijn_aririn-) (Tn-2,..1, Tn_1))
2
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Lemma 17 IfV;, | (%2, ..., 22, (T1,22), 22, ..., %2) = Xo, where (21, 22) appears
in the ji position, 2 < k <n —1, then

v(jil_l,..‘,jl/Jrl,jl’,jl/il,...,ji)($n—1,..4,l+17 (iUh xz), $1—1,...,1) =

—

= V(1 pitardidt i) EFn-tid1, T2, Tio1,1),

where jp =7, l=1,...,n—1.

Proof:
For 2 <[ <n—1, we have

Vit idtinsdtdt gt @115 (T1, T2), Tior, 1) =

= VUhndtyptitoged) @ttt (@1, Vi, (@2, 22, (21, 22),
Tg,...,T2)),T1—1,..1)

- v(jéflv---vjzl+1vjz/7jz/—17--.7j{)(fn—l,.,.,H—lv V(J'n—l,u-,jl)(xz’ e X2 (.731, $2)’
o, ... 71?2), fl—l,...,l)

= NV itsrdidt i) (Tne1,041, T2, Tiot,0),
where the first equality holds by hypothesis, the second by the bound laws and the
last again by hypothesis. Now for [ =1,

V(j;kl,...,jg,jg)(fnfl,...,m (1’17352)) =

v(j;_Q,...,ji,jg)(fnf reer2s (561, 332)7 V(j;_27...,j;,j;_l)(fnfz..,z? (1’17 952)7 fnq))
= V(j;ﬁ,...,jg,j;l)(fn— ,...,2axZ,V(j;72,...,j{,jjl71)(fn—2,...,27x27fn—1))
= Vit (Tn1,2,T2),

where, the first equality holds by commutativity, the second by the first case presented
above and the last one again by commutativity. [ |

Lemma 18 Suppose V;, . . i)(22,..., %2, (T1,%2),T2,...,22) = T2 and
V(jnq,m,jl)(xl’ EEEES Y ($2:x1)>x17 e 7*%1) = 1,
where (x1,x2) and (x9,x1) appear in the jy position. Then

Vs idbodidtyrodt) (T, g1s (T1, ), Tt 1) =

= V(1 itardidt i) @ttt (T2, ), Troa,1),

where j = j;, for 1 <k <mn—1.
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Proof:
We have for 2 <[ <n—1,

v(j;l_l,...,jl’+1,jl/,jl’71,.,.,ji)(xn—l,...,l—i-l; (xla $)7 Il—l,...,1) =

Vit rredtordingt i) @t ts (Vg gttt yed?) (@it T1, Tim1,00)
Vit rmibyadidt i) (Tt 1, Ty T1m1,01))s Timt, 1) =
Vit rdtodiit i) @t ts (Vg t bt edt) @net,eit1, (T2, 21),

—

T11,01)s VG it yodiodt g (Bt 15 Ty Tim1,0

S~—
S—
S
|
—
=

v(j;171,~~~7jl/+1,jl/,jll717--~,j1) (xn_:l?vl_'_l’ (v(j»;,fl""7jl/+1’jl,)jl/,17“'7.7‘1) (wn_17vl+17

—

T11001)s VG it ndiodt g (Bt 15 Ty Bim1,01)) Timt,1

<

V(j;kl,...,jgﬂ,j;,jgfl,...,jg)(%—1,...,1+17( (j;H,...,j;H,jl',jlgl,...,j;)(xn—1,...,l+1>$2;

—

Iz—l,...,l), V(jgl_l,...,jgﬂ,j;,jl’fl,...,j;)(%-1,.‘.,14—1, 95@1—1,..‘,1)), $1—1,...,1) =

v(]%_177jl/+17]ll7.7l/,17’]1) (xn_lyyl""l’ (x27 x)’ xl_17’1)7

where the first equality holds by separation, the second by Lemma 17, the third by
k-th component commutativity, the fourth by Lemma 17 and the last by separation.
For [ =1,

Vi ini)(@nt,2, (11, 7)) =
Vi goidtit) @nez, 2, (21,2), Vg i (Tnea 2, (21,0), 1)) =
Vgt (Tn=2,.20 (22,2), Vg1 gy ) (Tnma, 2, (22, 2), Taa)) =
Vi ini)(@n1, 2, (T2, 7)),

where the first equality holds by commutativity, the second by the first part above
and the last one again by commutativity. [ |

Lemma 19 (Last Component Antiordinal Laws)
Vi tri)(@n-1,.2,T11) =

v(jn,l,...,jk+1,jn,jk,l,“.,jl)(v(jn,l,...,jl)(fnfl,...,% 1’1,1), cee 7V(jn,l,...,jl)(fnfl,...,Z: 351,1),
(V(jn,l,u.,jl)(fnfl,”.,za 51)7 V(jn,l,...,jl)(fn71,...,2, 171,1))7 v(jn,l,...,jl)(fnfl,...,% 131,1)7 SR

V(jn,l,...,jl) (fn—l,...,z, 1U1,1), V(jn,l,...,jl) (fn—l,...,% $1,1))
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Proof:

V(jnfl,...,ml,jn,jk_l,...,jl)(V(jnfl,...,jl)(l‘nfl,...,m T11);- - 7V(jnfl,...,jl)(ﬂfnfl,...,za T11),

(V(jn,l,...,jl)(fnfl,...,l)y V(jn,l,...,jl)(fnfl,...,% $1,1)), v(jn,l,...,jl)(fnfl,...,% 371,1), )
V(ntrein) (Tn-1,..2: T11)) =
V(jn_l,...7jk+1,jmjk_l,...,jl)(v(jn_l,...,jl)(fn—l,...,%xl,l);-~ ]n 1y ,31)( n— 1,...,2,$1,1),
(V(jn_l,...,jk+1,j1,jk,l,...,jg,jk)(fn—l k1> L1, Th 1,.,2, % Tr),
V(jn,l,...,ij,jl,jk,l,...,jg,jk)(fn—l b1 P11, Thot, 2, Th)

Y

)
V(jn,l,,..,jl)(fnf1,‘..,2, 531,1), ceey V(jn,l,.,.,jl)(l’n 1,...,2, L1 1))

V Gt inittrendt) (Y Gntomdt) (Fne,020 T10)5 -5 Vi gn) (Eni,2, 210),
v(jn,l,...,jk+1,jl,jk_l,...,jg,jk)(fn—l JE T11, T, )7
V(jn_l,...,jl)(fn—1,...,2, $1,1), ) v(jn_l,...,jl)(xn 1,.,2, L1 1))
V(jn_l,...,jk+1,jn,jk,l,...,jl)(v(jn_l,...,]j)(fn—17...,2793'1,1)7~- Vijn_i,. ,31)( n— 1,_..,2,$1,1),
V(jn,l,...,jl)(fnfl,...,Qaxl,l)aV(jn,l,...,jl)(fnfl,...,Qa-Tl,l)y-' _]n 1yesd1) ( n— 1,...,27531,1)) =

V(jn,l,...,jl) (fnfl,.‘.,% 1’1,1)7

where the first equality holds by the limit laws and Lemma 18, the second by the
antiordinal laws and Lemma 17, the third by the limit laws and Lemma 18 once more
and the last by the idempotent laws. [ |

Lemma 20 (Additional Bound Laws)
V(j;bfl,,..,jgﬂ,jgfl,.,.,jg,jl')(ﬁn—l,...,l+1, gl—l,...,la (9%1, V(jn_l,,..,jl)(fn—1,...,1))) =

Vit sttt yesdiodt) Tttt Yimt1s VGt gn) (En=1,.01))

and
V(jn_l,...,jl)(yn—l,...,k+1, (951,1, v(j;hl,...,jl’H,jl’il,...,ji,jl’)(xn—17...,l+1; Ti-1,..1, lEl)), %-1,...,1) =

Y Gnteiit) Uttt Vit ity it gt ) Tttty T1,20 1), Peo1,0),

where jp = 7,,2 <k <n—1.
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Proof:
For the first equation we have

—

v(j':y,fl1"')jl/+1ajl,71r~~7jivjl,) (yn_17---7l+17 ?jl_lw-wl’ (xk717 V(jn_l,.‘.,jj)(fn—l,...,l))) =

—

V(j;ﬁ,...,jgﬂ,j;_l,...,jg,j;,j;)(?Jn—Q,...,lH, ?jl—l,...,l, (ﬂik,l, V(jn,l,...,jl)(fn—l,...,l)),
Vs gdtorsidtosrdtdbd ) Tn=2, it Tt (Th1s Vi) (Tne1,01))s Gne1))) =
gty 1t 1 romdtodtodts) Tn=2, it 1 U115 V G gei) (Tn=1,.01).
Vit it didbdt ) Un=2, ittt Gi=1,015 V Gy egt) (Bn1,.1) Unm1))) =

v(j;l_l,...,jl’+1,jl’71,...,j{,jl’) (yn—1,...,l+1, Yi—1,..,1, V(jn,l,...,jl) (In—1,...,1)),

where the first equality holds by commutativity, the second from the bound laws and
the third again by commutativity.

For the second equation:

Vi) =ttty (@1, Vgt it @t D115 T))s Yh-1,1) =

—

V Gneteeit) U=ttt (00 VGt gttt (T2,

Ve

L1, Ti—1,...15 L1,
it redtodtsdy 1) En=2, 15 Bi=1,015 Tt Tno1), Yoot,1) =
v(jn_l,...,jl) (yn—l,...,k—l—h V(j;biz,“.,jlgrl,jl’il,.“,ji,jl’,j;l) (xn—Q,...,H—lv Ti-1,..1, 21,

Vi

j;kQ,...,jl’_H,jl’_l,...,ji,jl’,j,’lfl)(xan,...,lJrlaxlfl,...,lyxlaxnfl))aykfl,...,l) =

V(jn,l,...,jl) (yn—l,...,k—l-la V(j;l_l,...,jl’Jrl,lel,‘..,ji,jl/)(xn—l,...,l—i-l; Tp—1,.,1, 1’1)7 yk—l,...,1>>

where the first equality holds by commutativity, the second by the bound laws and
the last also by commutativity. |

Theorem 21 Let (L, {V (., ..i0)}ji,in}={1,..n}) e a nonempty set equipped with
n! (2,2,...,2)-ary operations, which satisfy the equations in Theorem 14. Then, for
all {j1,- - gnt =A{1,...,n} = {41, .., 4L}, with jx = j|, x1, 9 € L, we have

L2 = v(jnfl7~~~:jk+1’jk)jk—17-~~7j1)<x27 <y L2, (xla x2)7 Xy ,1'2) —
T2 = v(j;_lv"'ajll_’,l7jl/7jll_17"'7ji)<x27 et 7x27 <x17 x2>7 ‘%‘27 st 73:2)

Moreover, (L, <1,...,<,) is an n-lattice, where

1 Sj, To & 1y = v(jn_l,...,jk+1,jk,jk,l,...,ﬁ)(3727 co T, (21, 2), X, . .., T2),

where (x1,x2) appears in the ji position. In particular, the n! operations are the
(Jn-1y---571)-joins in (L, <q1,...,<,) as defined previously order-theoretically.
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Proof:

We first show that
T2 = v(jn—l,---,jk+17jk7jk—1,---7j1)<x27 cees X2, (1?1, l‘g), Loy ... a$2) <~
l‘Q = v(j;1717"'7jl/+1»jl/7jll,17“'7‘7{)(mQ’ ctt 7'T27 (ml’ :L‘Q), x27 A 7x2)7

where 2 < k,1 < n—1. Sosuppose that xo = V(;,_, (T2, .., 22, (T1,22), T2, ..., 22),
where (x1,z5) appears in the ji = jj position. Then we have

Vi i@y w2, (21, 22), 02, .., T2) = Vi (X2, .., Tg) = X,

where the first equality follows from Lemma 17 and the second from the idempo-
tent law. The reverse implication holds by symmetry. Next, show the same equiv-
alence for the case where exactly one of K = 1 or [ = 1 holds. Assume, with-
out loss of generality due to symmetry, that [ = 1. Then the implication left to
right follows in the same way as before. For the reverse implication suppose that
wy = Vg ..(T2,. .., %2, (21,22)), where (21, 29) appears in the j; = j; position.
Then we have

Vi) @2y o T, (21, 22), @2, ., X)) =
YV Gnoronin) (@5 oo w2, (21, Vg (@, T, (21, 72))), T2, -, 2) =
YV Gnorvg) @2y 02, Vg (@2, X, (01, 02)), X2, ..., Ta) =
Viinorri) (T2, oo T2, T, oy L T2) = T,

where the first equality follows by hypothesis, the second by Lemma 20, the third by
the hypothesis and the last by the idempotent law.

Having established these equivalences, we may now define x <, v if and only if
Y=V i)W,y (x,9),y,...,y), where (z,y) appears in the ji-th position.
This is independent of the choice of j;,2 =1,...,n — 1, and of their order because of
the equivalences proved above.

The idempotent law yields immediately the reflexivity of <, .

For the transitivity, let  <;, vy and y <, 2. Then, by definition,

~Jk

Y= V(jn—17-~~,j1)<y7 - Y, (xay)a Y, .- 7y> and z = v(jnfl,.“,jl)(zy 2 (y, Z), Zyow ,Z).

Thus, we get

Vimoriin) (@2, (2,2),2,...,2) =
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= v(jn—ly ,j1)(Z’ R (v(jn—l,---,j1)(z7 S
Viinoryin) (2, - ,z,z,z,...,z)),z,...

- v(jn—l, ,j1)(za ) (v(]n—l, ,jl)(

= v(jnfh :jl)(27' %5 (V(Jnflz 7J1)( ’
v(jnfly---vjl)(z7 X2 (y,Z),Z,. 72))

= v(jn—ly ,j1)(Zﬂ 2 (V(Jn—1,---,J1)( )
Viinoryin) (2, - ,Z,z,z,...,z)),z,...

= v(jn—l, ,j1)(za ceey Ry (v(jn_l,...,jl)(z7
Vilimrri) (2, 2,2,000,2))5 2, - -

= v(jnflr--vjl)(’z? D (%Z)?Za 7Z>

= Z,

18

where the first equality holds by the separation laws, the second by the idempotent
laws, the third by the hypothesis, the fourth by associativity, the fifth by Lemma 17,
the sixth by separation once more and the last by the hypothesis.

We have thus shown that <

N]k’

as defined above, is a quasiordering on L.

To complete the first part of the theorem, it now remains to show the uniqueness

condition and the antiordinal dependency.

For the uniqueness, suppose that « ~;, y, for all 1 <k <n — 1. Then

T = Vi@ ..., 7)
v(jn—17"'7j1)(y7 Zy... ,ZE)
v(jn—17"')jl)(y7y7x 71:)

= Vi)
= Y

where the first and the last equalities hold by the idempotent law and all intermediate
ones by Lemma 17. This proves uniqueness. For the antiordinal dependency suppose

S YT y. Then

N.jn 1

y = V(j,,L717,,_

,jl)((xay)a Yy v
V(jn,l,,,,,j1)<<flf, y)7 (LC, y)> Yy v

= Vi ((@,9), (x

)

z, (2,y))

Sjn v(jn—h.--,jl)(x? (l‘, y)7 ceey
~jn v(jnflw--»jl)(x? €, (33, y)a ceey
Sin -

Sin Viinoteein (@50

~in v(jn—17---,j1)(x7 s 7x)

,Y)

Y (2,)
(z,9))
(z,9))
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where the first equality follows by the hypothesis, the series of subsequent equalities
follow by Lemma 17, the series of the inequalities by the antiordinal laws, the last
inequality by Lemma 19 and the last equality by the idempotent laws. This completes

the part of the theorem asserting that (L, <y, <o,...,<,) is an n-ordered set.
Finally, we need to show that it is an n-lattice, where V(;, | iy, {j1,---, jn} =
{1,...,n} are the order-theoretically defined (j,_1,...,71)-joins in (L, <1, ..., <Sp)-

By Lemma 20, setting all y’s equal to

=V it pediodd) (Tt 1 Timt,0, L),
we get
v(jn—l _____ j1)<t, Ce 7t, (l’l’l, t), t, e ,t) = v(jn—17---7j1)(t? e 7t, t, t, C.e ,t),

whence z;; <, t. This establishes the bound property of the joins for the last compo-
nent. The other components may be treated similarly using the bound laws instead
of Lemma 20. Thus we have that V;, | . (Zn-1,.1) is the (jn—1,...,71)-bound of
(Zpt, ..., ).

Next, we show that Vi (Zn-1,..1) is & (Jn—1,. .., j1)-limit of (Z,—q,..., 7).
So suppose that x;1, 2,2 S, b, for all 1 <i <mn — 1. Then we have

b= Viuan(l-0)
= Vi, ~7j1)((xn71,1, b),b,...,b)
= Vi (Vi @11, by o 5, Vi (0,0, D)), b, . D)
- v(jn—lv 7j1)((v(jn—17--~,j1)<xn—171, b, R ,b),
Vnorsi) (Tno1,2,0),b, ..., b)), b, ..., b)
- V(J'nfl,- ~J1)((V(Jn 1 ,]1)<:Un 1) b,... ,b), V(jn717,,.7j1)(b, b,... ,b)), b,... ,b)
Sin Vi VGt (@n—1,0,...,0),b, ..., b)
- v(jnflr"vjl)(fn—l? b,...,b)
= S
- v(jn—1,~~~,j1)(fn—l,...,Q, b)
~in v(j17j7l—17--~7j2)(b7 fn—l,,..,Q)

. N]n PR
= v(jl,jnfl ..... jz)(551713n—1,...,2)
~in v(jn—la---,jl)(‘T'ﬂ—l,-..,l))

where the first equality holds by the idempotent law, the second by Lemma 17, the
third by separation, the fourth again by Lemma 17, the fifth by associativity, the
inequality by the antiordinal law, the sixth equality by the absorption law and the
=...5,, ... signify repetition of the initial series of equalities and the inequality for

another of the argument positions. This completes the proof that V;, | .\ (Zn-1,..1)
is the (jn_1,...,71)-limit of (Z,_1,..., ).
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Finally, it remains to show that V(| i) (Zp-1,.1) is the (jn_1,...,j1)-join of
(Zn_1,...,71). To this end, suppose that [ is a (j,_1,...,j1)-limit of (Z,_1,...,77).
By the limit property of both [ and V;, | . ) (Zn-1,.1), we get that

40

—

l Njn v(jn_l,...,jl)(fn—l7...71)'
Hence, by the limit laws,
U Vinargign—) (Tn—2,..1, Tn1). (5)

Now we have

I = v(jn—Q,...,jl:jn)(lv l? s 7l)
- N1 e
= v(jnfmm,jl,jn)(fn*l---,la l)
= v(jn727---,j1,jn) (fn—lm,l’ v(jnf%---ajlvjnfl)(fn_2:~~717 fﬂ—l))
= v(jn—17~--,j1)(fn—1 ----- 1),
where the first equality follows by the idempotent law, the = ... <; | ... signify

the same work that was done in the preceding part of the proof based on the fact
that [ is a (ju_2,.-.,J1,jn)-bound of (¥, _o,...,Z1,1), the next equality holds by (5)
and the last equality by the commutative laws. One works similarly to get that
U Sins Vi) (@n-1,..1) and so on down to | <Sj, Vi, i) (@n-1,..1), and this
finishes the proof that V;, | ) (@n-1,..1) is the (ju_1,...,71)-join of (Zp—1,...,21).

|

5 Discussion and Directions

The remarks on trilattices made by Biedermann in [1] are valid in this generalized
context as well. We mention the appropriately generalized versions here and suggest
them as topics for future research.

e Are there any structures lying between n-ordered sets (where (1,1,...,1)-joins
exist) and n-lattices (where (2,2,...,2)-joins exist)? Le., does postulating
the existence of some but not all of the (a,_1,...,a;)-joins, oy € {1,2},i =
1,...,n — 1, lead to structures strictly between n-ordered sets and n-lattices?

e [s our equational basis for n-lattices an irredundant basis?

e n-lattices, as presented here, form a universal algebraic variety. Thus, the ex-
ploration of this variety’s universal algebraic properties and of its subvarieties
is an interesting open direction of investigation.
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