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Abstract

In their famous “Memoirs” monograph, Blok and Pigozzi defined alge-

braizable deductive systems as those whose consequence relation is equiv-

alent to the algebraic consequence relation associated with a quasivariety

of universal algebras. In characterizing this property, they showed that

it is equivalent with the existence of an isomorphism between the lat-

tices of theories of the two consequence relations that commutes with

inverse substitutions. Thus emerged the prototypical and paradigmatic

result relating an equivalence between two consequence relations estab-

lished by means of syntactic translations and the isomorphism between

corresponding lattices of theories. This result was subsequently general-

ized in various directions. Blok and Pigozzi themselves extended it to

cover equivalences between k-deductive systems. Rebagliato and Verdú

and, later, also Pynko and Raftery, considered equivalences between con-

sequence relations on associative sequents. The author showed that it

holds for equivalences between two term π-institutions. Blok and Jónsson

considered equivalences between structural closure operations on regu-

lar M -sets. Gil-Férez lifted the author’s results to the case of multi-term

π-institutions. Finally, Galatos and Tsinakis considered the case of equiv-

alences between closure operators on A-modules and provided an exact

characterization of those that are induced by syntactic translations. In

this paper, we contribute to this line of research by further abstracting

the results of Galatos and Tsinakis to the case of consequence systems on

Sign-module systems, which are set-valued functors SEN : Sign → Set

on complete residuated categories Sign.

1 Introduction

In this paper the order-theoretic and categorical framework developed by Galatos
and Tsinakis [10], based on previous work of Blok and Jónsson [3, 4], to study
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logical consequence relations on modules over complete residuated lattices is
generalized to encompass consequence systems on Sign-module systems, which
are set-valued functors SEN : Sign → Set, where Sign is an arbitrary complete
residuated category. This extension deals, apart with the equivalence of conse-
quence relations on various systems based on propositional languages, also with
equivalences of logics formalized as π-institutions. In particular, it encompasses
previous results obtained by the author [20] and later extended by Gil-Férez
[11].

Blok and Pigozzi in [5] made, for the first time, precise the notion of an
algebraizable deductive system. Let L be a language type, thought of as a set
of logical connectives or as a set of algebraic operation symbols of finite arities,
depending on the context. A deductive system S = 〈L,⊢S〉 over L is com-
posed of a finitary and structural consequence relation on the set FmL(V ) of
all formulas constructed in the ordinary recursive way starting from variables
in a fixed denumerable set V and using the connectives in L. Blok and Pigozzi
called S algebraizable if there exist mutually inverse interpretations between the
consequence ⊢S and the equational consequence relation |=K associated with a
quasivariety K of L-algebras. They provided a characterization of algebraizabil-
ity by showing that S is algebraizable iff there exists an isomorphism between
the lattices Th(⊢S) and Th(|=K) of the theories of ⊢S and |=K, that com-
mutes with inverse substitutions. In an effort to capture the symmetry in the
definition of algebraizability, Blok and Pigozzi generalized this framework by
defining equivalence between k-deductive systems [6, 7]. Given a positive inte-
ger k, a k-deductive system over a language type L consists of a finitary and
structural consequence relation on the set Fmk

L(V ), i.e., the set of all k-tuples
of L-formulas. Deductive systems are captured by 1-deductive systems, in this
sense, and equational consequence relations are captured by 2-deductive sys-
tems, where a 2-formula 〈φ, ψ〉 ∈ Fm2

L(V ) is perceived as an L-equation φ ≈ ψ.
In this context, a 1-deductive system is algebraizable in the original sense of
[5] iff it is equivalent to the 2-deductive system corresponding to the equational
consequence associated with a quasivariety K of L-algebras. Blok and Pigozzi
show in [7] that, in this context as well, equivalence of a k-deductive system
with an l-deductive system is tantamount to the existence of an isomorphism
between their lattices of theories that commutes with inverse substitutions.

The next development, chronologically almost parallel to [6], occurred in
Barcelona in the context of studies pertaining to the algebraizability of Gentzen
systems. Rebagliato and Verdú [17] defined the algebraizability of a Gentzen
system, following the lead of [5], and in subsequent work [18] established a
characterization of algebraizability in terms of the existence of an isomorphism
between the theories of the algebraizable Gentzen system and that of an equa-
tional deductive system associated with a class of algebras.

In the mid 90’s, under the supervision of Don Pigozzi, the author initiated his
studies in the categorical side of abstract algebraic logic. The goal was to widen
the scope of definitions, methods and results pertaining to the algebraization
of deductive systems and make them available to logical systems that are not
defined necessarily as consequence relations on sets of propositional formulas.
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Using the structure of π-institution [9], which derives from that of an institution
[12, 13], as the underlying framework, the author defined the notion of deductive
equivalence between two π-institutions [19, 20]. This concept is inspired by,
and abstracts, the equivalence between k-deductive systems. It is based, in
essence, on mutually inverse transformations between the sets of sentences of
the π-institutions involved that can be perceived as analogs of the syntactic
mutually inverse translations between a k- and an l-deductive system. Although,
in general, the notion of a π-institution is too general for a characterization
theorem along the lines of the one established in [5, 6] and [18] to hold (contrary
to the erroneous claim in [21], which was rescinded in [22]), the author was
able to obtain a characterization for the special case of term π-institutions.
These are, informally speaking, π-institutions in which a distinguished sentence
that behaves like an ordinary variable in relation to substitutions, is singled
out. Again informally speaking, it is shown in the main result, Theorem 10.5,
of [20] that two term π-institutions are deductively equivalent iff there is an
isomorphism between their categories of theories, which abstract the theory
lattices in the categorical context, that commutes with substitutions.

Also taking after the work of [5, 6], Blok and Jónsson, in a joint presentation
at the 23rd Holiday Mathematics Symposium at New Mexico State University
in 1999 [3] (later published by Jónsson after Wim Blok’s death [4]), revisited
the equivalence underlying the algebraizability of a deductive system. They re-
cast the notion as that of an equivalence between two (structural) consequence
operations on M -sets, where M is a monoid acting on the sets. This action
is intended to abstract the action of the monoid of substitutions on the set of
formulas of a sentential logic. It is also not the case that every equivalence
between closure operations on M -sets is induced by syntactic transformations
between the corresponding sets of formulas. Blok and Jónsson were able, how-
ever, similarly with the case in [20], to obtain a characterization theorem to that
effect in the case of regular M -sets. These are M -sets having a base, i.e., a set
of elements that behave, roughly speaking, as ordinary variables with respect
to substitutions. In their main theorem, Theorem 5.5 of [4], they were able to
characterize the equivalence between two structural closure operations on reg-
ular M -sets as one induced by appropriate syntactic translations between the
two underlying M -sets.

Next came two almost parallel developments in the line of research on the
equivalence between consequence relations. On the more classical side, Raftery
undertook the study of correspondences between Hilbert-style and Gentzen-style
deductive systems [16]. In it, inspired by both the work of Blok and Jónsson on
the equivalence of closure operators on M -sets and by the work of Rebagliato
and Verdú on the algebraization of Gentzen systems (which was also developed
further by Pynko [15]), he establidhed a general result on the equivalence of
Gentzen systems (Theorem 6.8 of [16]). Raftery defined two Gentzen systems
to be equivalent if two mutually inverse syntactic interpretations exist between
their consequence relations. He was able to show that two Gentzen systems
are equivalent iff there exists a lattice isomorphism between their lattices of
theories which commutes with substitutions. This result encompasses, but is
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more general than, the characterization of algebraizability of Gentzen systems,
previously proven by Rebagliato and Verdú in [18]. On the other hand, at
around the same time, on the categorical side, Gil-Férez [11], inspired by [20]
and noticing the error in [22], as well as the fact that, despite their generality,
term π-institutions were unable to capture Gentzen-style systems, introduced
the notion of a multi-term π-institution. This notion generalizes that of a term
π-institution and, moreover, is wide enough to encompass Gentzen systems in
appropriate equivalent reformulations. In the main theorem of [11], Theorem
8.9, the characterization theorem of deductive equivalence of [20] is extended to
cover deductive equivalence between two multi-term π-institutions.

The latest development on the studies of equivalences between consequence
relations was in the form of a further abstraction of the work of Blok and
Jónsson [3, 4]. Namely, Galatos and Tsinakis [10] studied the equivalence of
two structural consequence relations between A-modules. Roughly speaking,
given a complete residuated lattice A, an A-module P is a complete lattice,
together with a residuated action ⋆ of the monoid reduct of A on the complete
lattice P. In Theorem 5.1 of [10], it is shown that the equivalences of structural
closure operations on two A-modules may be characterized as being induced by
mutually inverse syntactic translations between the underlying A-modules iff
the A-modules involved are projective objects in the category of A-modules. In
Theorem 5.7, they are able to exactly pinpoint conditions that characterize the
projective cyclic A-modules, i.e., those that are generated by a single element.
This characterization enables them to obtain as a corollary the characterization
of algebraizability of deductive systems, since both a consequence relation on a
set of formulas, as well as that on a set of equations, can be naturally viewed as
consequence relations on modules. Taking a further step, Galatos and Tsinakis
show in Lemma 5.12 of [10] that the coproduct in the category of A-modules
of projective objects is also projective. This enables them to also cover the
case of consequence relations based on sequents, which cannot be viewed as
consequences based on cylcic modules but can be captured as consequences on
coproducts of projective cyclic modules which are, as a result, also projective.
Thus, the work in [10] captures all known results concerning the equivalence
of consequence relations that have appeared on classical studies in abstract
algebraic logic.

A review of all aforementioned developments concerning equivalences be-
tween consequence relations studied previously in the literature, including fur-
ther details, as well as formal relevant definitions and all main theorems, will
be presented in Section 2.

In this paper, inspired by the framework of Galatos and Tsinakis, we provide
a slightly more general platform in which, not only the study of the classical
results can be carried out, but also all of the known categorical analogs may
be obtained. Namely, instead of using A-modules over complete residuated
lattices, we study consequence systems over Sign-module systems, where Sign
is an arbitrary complete residuated category. A complete residuated category
Sign is a category each of whose sets of morphisms Sign(Σ,Σ′) is endowed
with the structure of a complete lattice and whose composition operations are
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bi-residuated functions. Clearly, complete residuated lattices in the sense of [10]
are special complete residuated categories having one object and collection of
morphisms corresponding to the elements of the residuated lattice. Moreover,
the ordering of the morphisms is inherited by the ordering of the lattice elements
and composition is exactly the monoid operation of the residuated lattice. Given
such a complete residuated category Sign, a Sign-module system is a set-valued
functor SEN : Sign → set, such that, every set SEN(Σ) has the structure of
a complete lattice, that is endowed with the natural action of morphisms on
sentences, i.e., f ⋆Σ,Σ′

φ = SEN(f)(φ), for every Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)
and φ ∈ SEN(Σ), that is postulated to be bi-residuated. Note that this action
automatically satisfies the properties of a monoid action, i.e., that iΣ ⋆

Σ,Σφ = φ
and that g ⋆Σ′,Σ′′

(f ⋆Σ,Σ′

φ) = (g ◦ f) ⋆Σ,Σ′′

φ, for all Σ,Σ′,Σ′′ ∈ |Sign|, f ∈
Sign(Σ,Σ′), g ∈ Sign(Σ′,Σ′′) and φ ∈ SEN(Σ). We use the notation M to
refer to the category with objects all Sign-module systems, for some complete
residuated category Sign, and morphisms all residuated maps 〈F, α〉 : SEN →
SEN′ between them that preserve the corresponding sentence actions. If the
complete residuated category Sign is a 1-object category, corresponding to a
complete residuated lattice A, as above, then the notion of a Sign-module
system degenerates to the notion of an A-module of [10].

All results of Galatos and Tsinakis may be abstracted to the level of Sign-
module systems. In fact most of the results of [10] that refer to complete lattices
and closure operators, or consequence relations, without taking into account
structurality, can be lifted to the case of complete lattice families and closure,
or consequence, families on them in a straightforward signature-wise fashion.
Many of these are presented here without proofs, referring to the corresponding
results of [10] from which the proofs can be directly obtained. The difference
occurs when instead of the complete residuated lattice A and an A-module P,
a complete residuated category Sign and a Sign-module system SEN : Sign →
Set are under consideration. Even then, the results, albeit more general, follow
closely the proofs of the corresponding results in [10].

The category M forms the basis for abstracting the results obtained in the
category AM of A-modules. For example, it is the case in M also, that the
consequence systems on an object SEN, i.e., the π-institutions, with sentence
functor SEN, correspond to epimorphic images of SEN. Thus, closure systems
of π-institutions may be identified with objects of the category M. Two such
closure systems are termed equivalent if there exists an equivalence between the
module systems corresponding to them in a formal sense. Moreover, equivalence
of closure systems may also be defined, as in [10], by stipulating the existence of
a pair of mutually inverse structural residuated maps between the two sentence
functors that preserve consequence in an appropriate sense. These definitions,
not only generalize the ones given in [10], but they are also able to capture the
notion of deductive equivalence of π-institutions of [20].

Roughly speaking, if two consequence systems on two module systems are
equivalent via an equivalence defined by mutually inverse module system mor-
phisms on the underlying module systems, then it is always the case that the
module systems corresponding to these consequence systems are naturally equiv-
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alent. A categorical characterization is obtained of the module systems for which
these two notions of equivalence coincide: they are precisely the projective ob-
jects (in a sense defined precisely in Subsection 6.1) in M.

Let us now sketch how this result subsumes the one characterizing equiv-
alence between two term π-institutions I = 〈Sign, SEN, C〉 and I ′ = 〈Sign,
SEN′, C′〉, assuming, for simplicity, that their sentence functors are over the
same signature category and the two signature categories are related by the
identity functor between them. We define a category SignP , with the same
objects as Sign, whose morphisms are sets of morphisms of Sign between the
corresponding objects. Then, we define PSEN and PSEN′ as the powerset func-
tors corresponding to SEN and SEN′, respectively, where action of a morphism
fP in SignP on a subset X of sentences is defined by applying all morphisms
in fP to all elements in X . It is shown that, defined in this way, PSEN and
PSEN′ are projective SignP -module systems. They are in fact cyclic, i.e., gen-
erated by a source signature-variable pair in the sense of [20]. All projective
cyclic Sign-module systems are characterized in Theorem 32, which abstracts
a corresponding characterization of projective cyclic A-modules for a complete
residuated lattice A obtained in Theorem 5.7 of [10].

On the other hand, if the π-institutions I = 〈Sign, SEN, C〉 and I ′ =
〈Sign, SEN′, C′〉 are multi-term [11] but not term, then, the corresponding
SignP -module systems PSEN and PSEN′ are not cyclic. But they are shown to
be coproducts of cyclic projective Sign-module systems and, therefore, based
on a result abstracted from [10], they are also projective. Gil-Férez [11] has
shown that these π-institutions encompass various Gentzen-style consequence
systems over sequents (see, also, [18, 16]).

Following [10], we close our presentation by an exploration of conditions
that ensure that the interpretations that define an equivalence of two finitary
consequence systems over finitary module systems are also finitary, i.e., they
send compact elements to compact elements.

Many of the proofs in this work as either direct adaptations of corresponding
proofs in [10] or are easily generalized versions. Therefore, our intellectual debt
to the work of [10] is considerable. Moreover, both the original work of [20], as
well as its subsequence generalization in [11], have influenced the presentation of
the systems studied here. Finally, for various basic standard categorical notions
and notation, that will be left undefined, the reader is referred to any of the
introductory references [14, 8, 1].

2 Equivalence of Various Logical Systems

In this section, we review some of the historic developments that paved the way
for the general study of equivalences between consequence relations of various
logical systems. We start by looking at the original framework of Blok and
Pigozzi [5]. Then, we introduce equivalence between k-deductive systems [6],
which is also due to Blok and Pigozzi [7]. Next, we revisit equivalence between
consequence relations on sets of sequents [18, 15, 16]. Finally, switching to the
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categorical side of the theory, we review equivalence between π-institutions [20],
in general, and, in particular, the characterization theorems of the equivalence
between term π-institutions [20] and multi-term π-institutions [11]. All these
cases form special examples for various aspects of the general theory that will
be developed in later sections.

2.1 Algberaizability of Deductive Systems

Let L be a language type and V a fixed denumerable set of propositional vari-
ables. Denote by FmL(V ) the collection of all formulas (or terms) over the lan-
guage L that are constructed in the usual recursive way using the variables in V .
The associated absolutely free formula algebra will be denoted by FmL(V ). A
substitution is a mapping σ : V → FmL(V ), which can be extended to an endo-
morphism, also denoted by σ, on the formula algebra FmL(V ). A consequence
relation ⊢ over FmL(V ) is a subset ⊢ ⊆ P(FmL(V )) × FmL(V ), satisfying, for
all Φ ∪ Ψ ∪ {φ, ψ, χ} ⊆ FmL(V ),

1. Φ ⊢ φ, for all φ ∈ Φ;

2. Φ ⊢ ψ, for all ψ ∈ Ψ, and Ψ ⊢ χ imply Φ ⊢ χ.

A consequence relation ⊢ is called finitary, if for all Φ ∪ {φ} ⊆ FmL(V ), Φ ⊢ φ
implies that there exists finite Ψ ⊆ Φ, such that Ψ ⊢ φ. It is called substitution
invariant or structural, if for every substitution σ, Φ ⊢ φ implies σ(Φ) ⊢ σ(φ),
for all Φ ∪ {φ} ⊆ FmL(V ).

By analogy with this case, one may also define substitution invariant and
finitary consequence relations on EqL(V ) = Fm2

L(V ), the set of pairs of L-
formulas, also called L-equations, and often written as φ ≈ ψ instead of 〈φ, ψ〉.
In this case, an application of a substitution to an equation is performed point-
wise, i.e., σ(φ ≈ ψ) = σ(φ) ≈ σ(ψ). Given a class K of L-algebras (in the
usual universal algebraic sense), we denote by |=K ⊆ P(EqL(V )) × EqL(V ) the
substitution invariant consequence relation on the set of L-equations associated
with K. This relation is finitary iff K is closed under ultraproducts, which is the
case when K is a quasi-variety of L-algebras.

A deductive system in the sense of Blok and Pigozzi [5] is a pair S = 〈L,⊢S〉,
where L is a language type and ⊢S is a substitution invariant, finitary conse-
quence relation over FmL(V ). It is called algebraizable if there exist a class of
L–algebras K, a finite set of equations δ(p) ≈ ǫ(p) = {δi(p) ≈ ǫi(p) : i ∈ I} on a
single variable p and a finite set of formulas ∆(p, q) = {∆j(p, q) : j ∈ J} in two
variables p, q, such that for every Φ ∪ {φ} ⊆ FmL(V ) and all φ ≈ ψ ∈ EqL(V ),

1. Φ ⊢S φ iff δ(Φ) ≈ ǫ(Φ) |=K δ(φ) ≈ ǫ(φ);

2. φ ≈ ψ =||=K δ(∆(φ, ψ)) ≈ ǫ(∆(φ, ψ)).

Natural conventions have been used here, e.g., δ(∆(φ, ψ)) ≈ ǫ(∆(φ, ψ)) =
{δi(∆j(φ, ψ)) ≈ ǫi(∆j(φ, ψ)) : i ∈ I, j ∈ J}. The class K is called an equi-
valent algebraic semantics for S, the set δ ≈ ǫ a set of defining equations and
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the set ∆ a set of equivalence formulas. The two conditions that define alge-
braizability are shown in [5] to be equivalent to the following two “symmetric”
conditions: for all E ∪ {φ ≈ ψ} ⊆ EqL(V ) and all φ ∈ FmL(V ),

3. E |=K φ ≈ ψ iff {∆(e1, e2) : e1 ≈ e2 ∈ E} ⊢S ∆(φ, ψ);

4. φ ⊣⊢S ∆(δ(φ), ǫ(φ)).

A theory of S, or of ⊢S , or an S-theory, is a subset T ⊆ FmL(V ), such that,
for all φ ∈ FmL(V ), T ⊢S φ implies φ ∈ T , i.e., T is closed under consequence.
The set of S-theories forms a lattice Th(⊢S) = 〈Th(⊢S),⊆〉 under inclusion.
Similarly, the lattice of theories Th(|=K) of the equational consequence |=K

may be defined. The main result of [5], which has given impetus to all results
discussed in this paper, characterizes algebraizability in terms of an isomorphism
between these lattices.

Theorem 1 (Blok and Pigozzi [5]) A deductive system S = 〈L,⊢S〉 is alge-
braizable with equivalent algebraic semantics a quasivariety K iff there exists an
isomorphism between Th(⊢S) and Th(|=K) that commutes with inverse substi-
tutions.

2.2 Equivalence Between k-Deductive Systems

The next step in the study of equivalence of consequence relations was equiv-
alence of k-deductive systems. Let k be a positive integer. A k-formula is
an element of Fmk

L(V ), the k-th direct power of FmL(V ). A finitary conse-
quence relation ⊢ over Fmk

L(V ) is defined by analogy to the consequence over
FmL(V ) and Fm2

L(V ) of the previous subsection. It is called substitution in-
variant or structural, if for every substitution σ, Φ ⊢ φ implies σ(Φ) ⊢ σ(φ),
for all Φ ∪ {φ} ⊆ Fmk

L(V ), where an application of a substitution to a k-tuple
is performed point-wise. A k-deductive system in the sense of Blok and Pigozzi
[6] is a pair S = 〈L,⊢S〉, where L is a language type and ⊢S is a substitution
invariant, finitary consequence relation over Fmk

L(V ).
Given two positive integers k and l, a (k, l)-translation is a finite collection

τ = {τ i(p) : i ∈ I} of l-formulas in k variables p = 〈p0, . . . , pk−1〉. A k-
deductive system S = 〈L,⊢S〉 and an l-deductive system S′ = 〈L,⊢S′〉 over the
same language type L, are called equivalent if there exist a a (k, l)-translation
τ and an (l, k)-translation ρ, such that for every Φ ∪ {φ} ⊆ Fmk

L(V ) and all
ψ ∈ Fml

L(V ),

1. Φ ⊢S φ iff τ (Φ) ⊢S′ τ (φ);

2. ψ ⊣⊢S′ τ (ρ(ψ)).

These two conditions defining equivalence turn out to be equivalent to the follow-
ing two “symmetric” conditions: for all Ψ∪{ψ} ⊆ Fml

L(V ) and all φ ∈ Fmk
L(V ),

3. Ψ ⊢S′ ψ iff ρ(Ψ) ⊢S ρ(ψ);
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4. φ ⊣⊢S ρ(τ (φ)).

A theory of a k-deductive system S, or of ⊢S , or an S-theory, is a subset
T ⊆ Fmk

L(V ), that is closed under consequence. The set of S-theories forms a
lattice Th(⊢S) = 〈Th(⊢S),⊆〉 under inclusion. In Theorem 4.11 of [7], which
generalizes Theorem 1, the following characterization of equivalence in terms of
an isomorphism between the corresponding theory lattices is provided.

Theorem 2 (Blok and Pigozzi [7]) Let S = 〈L,⊢S〉 be a k-deductive system
and S′ = 〈L,⊢S′〉 be an l-deductive system. Then S and S′ are equivalent iff
there exists an isomorphism between Th(⊢S) and Th(⊢S′) that commutes with
substitutions.

2.3 Equivalence Between Term π-Institutions

A further step in the study of equivalence of consequence relations was the
equivalence of two π-institutions. Recall that a closure operator C on a set X
is a function C : P(X) → P(X), such that

1. y ∈ C(Y ), for all y ∈ Y ⊆ X ;

2. Y ⊆ Z implies C(Y ) ⊆ C(Z), for all Y, Z ⊆ X ;

3. C(C(Y )) = C(Y ), for all Y ⊆ X .

A π-institution I = 〈Sign, SEN, C〉 [9] consists of a category Sign of signa-
tures, a set-valued functor SEN : Sign → Set, which gives for a given sig-
nature Σ ∈ |Sign|, the set SEN(Σ) of all Σ-sentences and a closure system
C = {CΣ}Σ∈|Sign|, where CΣ : P(SEN(Σ)) → P(SEN(Σ)) is a closure op-
erator on SEN(Σ), for all Σ ∈ |Sign|, such that, for all Σ,Σ′ ∈ |Sign|, all
f ∈ Sign(Σ,Σ′) and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies SEN(f)(φ) ∈ CΣ′(SEN(f)(Φ)).

Recall that, given a consequence relation ⊢ ⊆ P(X) ×X on a set X , one may
define a closure operator C⊢ : P(X) → P(X) on X by C⊢(Y ) = {x ∈ X : Y ⊢
x}, for all Y ⊆ X , and, given a closure operator C : P(X) → P(X) on X ,
one may define a consequence relation ⊢C ⊆ P(X) × X on X , by Y ⊢C x iff
x ∈ C(Y ), for all Y ∪ {x} ⊆ X . Moreover, we have ⊢C⊢

= ⊢ and C⊢C
= C,

for every consequence relation ⊢ on X and every closure operator C on X .
Therefore consequence relations and closure operators are interchangeable.

As a consequence of this observation, a π-institution may also be presented as
a tuple I = 〈Sign, SEN,⊢〉 where ⊢ is a consequence system ⊢ = {⊢Σ}Σ∈|Sign|,
where ⊢Σ ⊆ P(SEN(Σ)) × SEN(Σ) is a consequence relation on SEN(Σ), for
all Σ ∈ |Sign|, such that, for all Σ,Σ′ ∈ |Sign|, all f ∈ Sign(Σ,Σ′) and all
Φ ∪ {φ} ⊆ SEN(Σ),

Φ ⊢Σ φ implies SEN(f)(Φ) ⊢Σ′ SEN(f)(φ).



CAAL: Equivalence of Closure Systems 10

A sentence functor SEN : Sign → Set is called term if there exists a pair
〈V, v〉, with V ∈ |Sign| and v ∈ SEN(V ), such that, for all Σ ∈ |Sign| and all
φ ∈ SEN(Σ), there exists f〈Σ,φ〉 ∈ Sign(V,Σ), with SEN(f〈Σ,φ〉)(v) = φ, and
such that, for all Σ′ ∈ |Sign| and f ∈ Sign(Σ,Σ′), f ◦ f〈Σ,φ〉 = f〈Σ′,SEN(f)(φ)〉.
A π-institution I = 〈Sign, SEN,⊢〉 is term if its sentence functor SEN is term.

Let Sign and Sign′ be two categories and SEN : Sign → Set and SEN′ :
Sign′ → Set two set-valued functors. A translation from SEN to SEN′ is a pair
〈F, α〉 : SEN → SEN′ consisting of a functor F : Sign → Sign′ and a natural
transformation α : SEN → PSEN′ ◦ F . Two π-institutions I = 〈Sign, SEN,⊢〉
and I ′ = 〈Sign′, SEN′,⊢′′〉 are called equivalent if there exist a translation
〈F, α〉 : SEN → SEN′, a translation 〈G, β〉 : SEN′ → SEN and an adjoint
equivalence 〈F,G, η, ǫ〉 : Sign → Sign′, such that, for all Σ ∈ |Sign|, Σ′ ∈
|Sign′|, Φ ∪ {φ} ⊆ SEN(Σ) and ψ ∈ SEN′(Σ′),

1. Φ ⊢Σ φ iff αΣ(Φ) ⊢′
F (Σ) αΣ(φ);

2. ψ ⊣⊢′
Σ′ SEN′(ǫΣ′)(αG(Σ′)(βΣ′ (ψ))).

These two conditions defining equivalence turn out to be equivalent to the follow-
ing two “symmetric” conditions: for all Σ ∈ |Sign|, Σ′ ∈ |Sign′|, φ ∈ SEN(Σ)
and Ψ ∪ {ψ} ⊆ SEN′(Σ′),

3. Ψ ⊢′
Σ′ ψ iff βΣ′(Ψ) ⊢G(Σ′) βΣ′(ψ);

4. SEN(ηΣ)(φ) ⊣⊢G(F (Σ)) βF (Σ)(αΣ(φ)).

Let I = 〈Sign, SEN,⊢〉 be a π-institution. Given Σ ∈ |Sign|, a Σ-theory of I is
a closed subset of SEN(Σ). The set of all Σ-theories is denoted by ThΣ(I). The
category of theories Th(I) of I has as objects all pairs 〈Σ, T 〉, with Σ ∈ |Sign|
and T ∈ ThΣ(I) and morphisms f : 〈Σ, T 〉 → 〈Σ′, T ′〉 all f ∈ Sign(Σ,Σ′), such
that SEN(f)(T ) ⊆ T ′. The theory functor of I is the functor SEN⊢ : Sign →
Set, defined, for all Σ ∈ |Sign|, by

SEN⊢(Σ) = ThΣ(I),

and for all Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and all T ∈ SEN⊢(Σ), by

SEN⊢(f)(T ) = {φ′ ∈ SEN(Σ′) : SEN(f)(T ) ⊢Σ′ φ},

or, using closure operators, SEN⊢(f)(T ) = CΣ′(SEN(f)(T )).
Let I and I ′ be two π-institutions. A functor F : Th(I1) → Th(I2) is

called signature-respecting if there exists a functor F † : Sign1 → Sign2, such
that the following rectangle commutes

Sign1 Sign2
-

F †

Th(I1) Th(I2)-F

?

SIG1

?

SIG2
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where SIG1, SIG2 denote, respectively, the forgetful functors of I1 and I2 that
map into the signature component. If this is the case, it is easy to verify that
F † is necessarily unique. A signature-respecting functor F : Th(I1) → Th(I2)
is said to commute with substitutions if, for every f : Σ1 → Σ′

1 ∈ Mor(Sign1),

SEN′⊢′

(F †(f))(F (〈Σ1, T1〉)) = F (SEN⊢(f)(〈Σ1, T1〉)), (1)

for every 〈Σ1, T1〉 ∈ |Th(I1)|.
In the main theorem, Theorem 10.5 of [20], which generalizes Theorem 2, a

characterization of the equivalence of two term π-institution in terms of an ad-
joint equivalence between their corresponding categories of theories is provided.

Theorem 3 (Voutsadakis [20]) Let I = 〈Sign, SEN,⊢〉 and I ′ = 〈Sign′,
SEN′,⊢′〉 be two term π-institutions. Then I and I ′ are equivalent iff there
exists a signature-respecting adjoint equivalence 〈F,G, η, ǫ〉 : Th(I) → Th(I ′),
which commutes with substitutions.

As an illustration of the concept of a π-institution and an aid to those read-
ers that are more familiar with the universal algebraic side of the subject, let
us briefly depict how a k-deductive system may be recast in the form of a
π-institution. Let L = 〈Λ, ρ〉 be a propositional language, i.e., Λ a set of con-
nectives of finite arities and ρ : Λ → ω the associated arity function, and V
a countable set of variables. FmL(V ) denotes the set of formulas constructed
by recursion using variables in V and connectives in L in the usual way. An
assignment of formulas to variables is a mapping f : V → FmL(V ). It will be
denoted by f : V ⇁ V. Such an assignment can be extended uniquely to a
substitution, i.e., an endomorphism of the formula algebra FmL(V ), denoted
by f∗ : FmL(V ) → FmL(V ).

Let S = 〈L,⊢S〉 be a k-deductive system over L in the sense of [6]. We
construct the π-institution IS = 〈SignS , SENS , {CΣ}Σ∈|Sign

S
|〉 as follows:

(i) SignS is the one-object category with object V and morphisms all as-
signments f : V ⇁ V. The identity morphism is the inclusion iV : V →
FmL(V ). Composition g ◦ f of two assignments f and g is defined by
g ◦ f = g∗f.

(ii) SENS : SignS → Set maps V to Fmk
L(V ) and f : V ⇁ V to (f∗)k :

Fmk
L(V ) → Fmk

L(V ). It is easy to see that SENS is a functor.

(iii) Finally, CV : P(Fmk
L(V )) → P(Fmk

L(V )) is the standard closure operator
CS : P(Fmk

L(V )) → P(Fmk
L(V )) associated with the k-deductive system

S, i.e.,

CV (Φ) = {φ ∈ Fmk
L(V ) : Φ ⊢S φ}, for all Φ ⊆ Fmk

L(V ).

CV , defined in this way, satisfies all properties required in the definition of
a closure system of a π-institution. Therefore, the tuple IS constitutes a π-
institution. It will be called the π-institution associated with the k-deductive
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system S. Note that IS is a term π-institution for any k-deductive system S.
Indeed, the pair 〈V,p〉, where p = 〈p0, . . . , pk−1〉 is a k-variable, is a source
signature-variable pair for IS .

2.4 Consequence Relations on Sets of Sequents

In this subsection, we review equivalence of consequence relations on sets of
sequents.

Given two nonnegative integers m and n, an (m,n)-sequent is an expression
of the form φ0, . . . , φm−1 ⊲ ψ0, . . . , ψn−1, where φi, ψj ∈ FmL(V ), i < m, j < n.

Sometimes it is abbreviated as ~φ ⊲ ~ψ. A substitution σ may be applied to an
(m,n)-sequent point-wise. A trace is a nonempty subset tr of the Cartesian
product ω × ω. A sequent φ0, . . . , φm−1 ⊲ ψ0, . . . , ψn−1 is called a tr-sequent if
(m,n) ∈ tr. The set of all tr-sequents is denoted by tr-SeqL(V ).

Given a trace tr, a finitary consequence relation ⊢ over tr-SeqL(V ) is defined
by analogy to the consequence over FmL(V ). It is called substitution invariant

or structural, if for every substitution σ, P ⊢ ~φ ⊲ ~ψ implies σ(P) ⊢ σ(~φ ⊲ ~ψ),

for all P ∪ {~φ ⊲ ~ψ} ⊆ tr-SeqL(V ). A Gentzen system with trace tr is a pair
G = 〈L,⊢G〉, where L is a language type and ⊢G is a substitution invariant
consequence relation over tr-SeqL(V ).

Let tr and tr′ be two traces. A (tr, tr′)-translation is a tr-indexed family

{τm,n : (m,n) ∈ tr}, where τm,n is a set of tr′-sequents ~δ(~p, ~q) ⊲ ~ǫ(~p, ~q) in the
variables ~p = p0, . . . , pm−1, ~q = q0, . . . , qn−1, for all (m,n) ∈ tr. Given such

a (tr, tr′)-translation and an (m,n)-sequent ~φ ⊲ ~ψ, τ (~φ ⊲ ~ψ) := τm,n(~φ ⊲ ~ψ)
denotes the set of tr′-sequents resulting from substituting φi for pi and ψj for

qj , i < m, j < n, in every tr′-sequent ~δ(~p, ~q) ⊲ ~ǫ(~p, ~q) ∈ τm,n.
Let G = 〈L,⊢G〉 and G′ = 〈L,⊢G′〉 be two Gentzen systems. G and

G′ are called equivalent if there exist a (tr, tr′)-translation τ and a (tr′, tr)-

translation ρ, such that such that for every P ∪ {~φ ⊲ ~ψ} ⊆ tr-SeqL(V ) and all
~φ′ ⊲ ~ψ′ ∈ tr′-SeqL(V ),

1. P ⊢G
~φ ⊲ ~ψ iff τ (P) ⊢G′ τ (~φ ⊲ ~ψ);

2. ~φ′ ⊲ ~ψ′ ⊣⊢G′ τ (ρ(~φ′ ⊲ ~ψ′)).

These two conditions defining equivalence turn out to be equivalent to the fol-
lowing two “symmetric” conditions: for all P′ ∪ {~φ′ ⊲ ~ψ′} ⊆ tr′-SeqL(V ) and all
~φ ⊲ ~ψ ∈ tr-SeqL(V ),

3. P′ ⊢G′
~φ′ ⊲ ~ψ′ iff ρ(P′) ⊢G ρ(~φ′ ⊲ ~ψ′);

4. ~φ ⊲ ~ψ ⊣⊢G ρ(τ (~φ ⊲ ~ψ)).

Let G = 〈L,⊢G〉 be a Gentzen system and let T be a set of tr-sequents. The
set T is a theory of G, or a G-theory if it is closed under the consequence of
G. The set of all G-theories is denoted by Th(G) and it becomes a complete
lattice, Th(G) = 〈Th(G),⊆〉, when ordered by inclusion.
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A Gentzen system G = 〈L,⊢G〉 is said to be standard provided that it
is over a trace not containing (0, 0) or L contains some constant symbols. In
Theorem 6.8 of [16], which generalizes Theorem 2, the following characterization
of equivalence of two standard Gentzen systems in terms of an isomorphism
between the corresponding theory lattices is provided.

Theorem 4 (Raftery [16]) Two standard Gentzen systems G and G′ are
equivalent iff there is a lattice isomorphism between Th(G) and Th(G′) that
commutes with substitutions.

Theorem 3 does not subsume Theorem 4 because a Gentzen system recast
in a natural way as a π-institution (similar to the way used for a k-deductive
system in the previous subsection), results, in general, in a π-institution that is
not term. That is one of the reasons why Gil-Férez introduced in [11] the notion
of a multi-term π-institution, that generalizes term π-institutions and is able to
accommodate those π-institutions that naturally arise from Gentzen systems.
These will be reviewed in the next subsection.

2.5 Equivalence Between Multi-Term π-Institutions

Since the class of term π-institutions does not encompass π-institutions that nat-
urally arise from Gentzen systems, Gil-Férez [11] introduced a new wider class
of π-institutions, called multi-term, that include these π-institutions. He then
extended Theorem 3 to characterize the equivalence of multi-term π-institutions.

Let Sign be a category and SEN : Sign → Set be a functor. The cate-
gory of elements of SEN, denoted Elt(SEN) has as its objects all pairs 〈Σ, φ〉,
where Σ ∈ |Sign| and φ ∈ SEN(Σ) and as morphisms f : 〈Σ, φ〉 → 〈Σ′, φ′〉
all morphisms f ∈ Sign(Σ,Σ′), such that SEN(f)(φ) = φ′. In [11], a sentence
functor SEN : Sign → Set is called multi-term if there exists an endomor-
phism Y : Elt(SEN) → Elt(SEN), called a multi-source signature-variable pair,
satisfying

• Y (〈Σ, φ〉) = Y (〈Σ′, φ′〉) and Y (g) = iY (〈Σ,φ〉), for all g : 〈Σ, φ〉 → 〈Σ′, φ′〉
in Elt(SEN);

and a natural transformation f : Y → IElt(SEN), where IElt(SEN) : Elt(SEN) →
Elt(SEN) denotes the identity functor.

Thus, for all g : 〈Σ, φ〉 → 〈Σ′, φ′〉 in Elt(SEN), the following triangle com-
mutes

〈Σ, φ〉 〈Σ′, φ′〉-
g

Y (〈Σ, φ〉)

f〈Σ,φ〉
�

�
�

�	

f〈Σ′,φ′〉

@
@

@
@R

A π-institution I = 〈Sign, SEN, C〉 is called multi-term if SEN is a multi-term
functor.
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Note, first, that a term sentence functor SEN : Sign → Set is multi-term.
For this, it suffices to set Y : Elt(SEN) → Elt(SEN) to be the constant endo-
functor with Y (〈Σ, φ〉) = 〈V, v〉, where 〈V, v〉 is a source signature-variable pair
for SEN. Thus, every term π-institution is also multi-term.

Next, let us illustrate how a standard Gentzen system may be recast as a π-
institution and show that, although the resulting π-institution is not in general
term, it is multi-term.

Let tr be a trace and G = 〈L,⊢G〉 be a standard Gentzen system with trace
tr. We construct the π-institution IG = 〈SignL, SENL, CG〉 as follows:

(i) SignL is the one-object category with object V and morphisms σ : V →
V all substitutions i.e., all endomorphisms σ : FmL(V ) → FmL(V ).
Composition and identities are exactly as in the endomorphism monoid of
FmL(V ).

(ii) SENL : SignL → Set maps V to SENL(V ) = tr-SeqL(V ) and σ ∈
SignL(V, V ) to SENL(σ) : SENL(V ) → SENL(V ), defined by SENL(σ) =
σ : tr-SeqL(V ) → tr-SeqL(V ), the latter denoting the point-wise applica-
tion of σ to every tr-sequent. It is easy to see that SENL is a functor.

(iii) Finally, CG : P(tr-SeqL(V )) → P(tr-SeqL(V )) is the standard closure op-
erator associated with the consequence system ⊢G of the Gentzen system
G, i.e., defined, for all P ∪ {~φ ⊲ ~ψ} ⊆ tr-SeqL(V ), by

~φ ⊲ ~ψ ∈ CG(P) iff P ⊢G
~φ ⊲ ~ψ.

The triple IG determines a π-institution. It will be called the π-institution
associated with the Gentzen system G.

Unless tr is a singleton, SENL is not term, whence IG is not a term π-
institution. But, regardless of the form of tr, SENL is multi-term. In fact, define
the endofunctor Y : Elt(SENL) → Elt(SENL) by setting, for all 〈V, φ0, . . . ,
φm−1 ⊲ ψ0, . . . , ψn−1〉 ∈ |Elt(SENL)|,

Y (〈V, φ0, . . . , φm−1 ⊲ ψ0, . . . , ψn−1〉) = 〈V, p0, . . . , pm−1 ⊲ q0, . . . , qn−1〉,

where pi, qj are distinct variables in V , i < m, j < n. Moreover, let f :
Y → IElt(SENL) be given by setting, for all 〈V, φ0, . . . , φm−1 ⊲ ψ0, . . . , ψn−1〉 ∈

|Elt(SENL)|, f〈V,~φ⊲~ψ〉 : 〈V, ~p ⊲ ~q〉 → 〈V, ~φ ⊲ ~ψ〉 be the substitution sending pi to

φi and qj to ψj , for all i < m and j < n, and sending every other variable to φ0

(or ψ0 if ~φ happens to be empty). With these definitions, Y becomes a multi-
source signature-variable pair and f a natural transformation. Thus SENL is
multi-term and, as a consequence IG is a multi-term π-institution.

Gil-Férez, in the main theorem, Theorem 8.9, of [11] proves the follow-
ing extension of Theorem 3, characterizing equivalence of two multi-term π-
institutions, which by what has just been shown, includes also Theorem 4 as a
special case.



CAAL: Equivalence of Closure Systems 15

Theorem 5 (Gil-Férez [11]) If I and I ′ are two multi-term π-institutions,
then I and I ′ are equivalent if and only if there exists an adjoint equivalence
〈F,G, η, ǫ〉 : Th(I) → Th(I ′) that commutes with substitutions.

3 Consequence Systems over Power Sets

In this section, we show in more detail how one may define consequence systems
over powersets of sentences associated with a given sentence functor. This is the
main case that we are interested in and will motivate the introduction in the
following sections of consequence families and consequence systems on arbitrary
lattice families and module systems.

Let Sign be a category and SEN : Sign → Set be a set-valued functor. An
asymmetric consequence family over SEN is a a collection of consequence
relations ⊢ = {⊢Σ}Σ∈|Sign|, where ⊢Σ⊆ P(SEN(Σ)) × SEN(Σ) is such that, for
all X ∪ Y ∪ {x, y, z} ⊆ SEN(Σ),

(1) if x ∈ X , then X ⊢Σ x;

(2) if X ⊢Σ y, for all y ∈ Y , and Y ⊢Σ z, then X ⊢Σ z.

The asymmetric consequence family ⊢ is said to be Sign-invariant or an
asymmetric consequence system over SEN if, for all Σ,Σ′ ∈ |Sign|, f ∈
Sign(Σ,Σ′) and all X ∪ {x} ⊆ SEN(Σ),

(3) if X ⊢Σ x, then SEN(f)(X) ⊢Σ′ SEN(f)(x).

The consequence family ⊢ is said to be finitary if, for all Σ ∈ |Sign|, ⊢Σ is
finitary in the ordinary sense, i.e., for all X ∪ {x} ⊆ SEN(Σ), if X ⊢Σ x, then,
there exists a finite X0 ⊆ X , such that X0 ⊢Σ x.

These definitions clearly generalize that of an asymmetric (finitary) conse-
quence relation over a set S given in Section 2.3 of [10], by considering the case
when Sign is the trivial one object category with single object ⋆, in which
SEN : ⋆ → Set reduces to a single set S := SEN(⋆). Note, also, that the
present framework includes the notion of an action ⋆ : Σ × S → S of a monoid
Σ = 〈Σ, ·, e〉 on a set S, as follows: Consider the category Σ representing the
monoid Σ in the well-known way, i.e., Σ has a single object Σ, its arrows cor-
respond to the elements of the monoid, composition is the monoid composition
and the identity arrow corresponds to the monoid identity. Let SEN(Σ) = S
and SEN(m)(s) = m ⋆ s, for all m ∈ Σ and all s ∈ S. It is easy to see that this
setup exactly corresponds to a monoid action of Σ on S (see both [4] and [10]).
The notion of a consequence system over SEN, given an action ⋆, corresponds
exactly to a Σ-invariant consequence relation on a set S.

Let Sign be a category and SEN : Sign → Set a set-valued functor. A
symmetric consequence family on SEN is a family ⊢ = {⊢Σ}Σ∈|Sign|, where
⊢Σ⊆ P(SEN(Σ)) × P(SEN(Σ)), for all Σ ∈ |Sign|, that satisfies, for all Σ ∈
|Sign|, X,Y, Z ⊆ SEN(Σ),

(1) if Y ⊆ X , then X ⊢Σ Y ;
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(2) if X ⊢Σ Y and Y ⊢Σ Z, then X ⊢Σ Z;

(3) X ⊢Σ

⋃

X⊢ΣY
Y ;

The symmetric consequence family ⊢ is called Sign-invariant or a symmetric
consequence system on SEN if, for all Σ,Σ′ ∈ |Sign|, X,Y ⊆ SEN(Σ) and
f ∈ Sign(Σ,Σ′),

(4) X ⊢Σ Y implies SEN(f)(X) ⊢Σ′ SEN(f)(Y ).

A symmetric consequence family ⊢ on SEN is called finitary if, for all Σ ∈
|Sign| and all X,Y ⊆ SEN(Σ), if X ⊢Σ Y and Y is finite, then, there exists
finite X0 ⊆ X , such that X0 ⊢Σ Y .

Let ⊢ be an asymmetric consequence family on SEN. Its symmetric coun-
terpart ⊢s may be defined by setting, for all Σ ∈ |Sign| and all X,Y ⊆ SEN(Σ),

X ⊢sΣ Y iff X ⊢Σ y, for all y ∈ Y.

Conversely, if ⊢ is a symmetric consequence family on SEN, its asymmetric
counterpart ⊢a may be defined, for all Σ ∈ |Sign| and all X ∪ {x} ⊆ SEN(Σ),
by

X ⊢aΣ x iff X ⊢Σ {x}.

Lemma 6 Symmetric consequence families on SEN are in bijective correspon-
dence with asymmetric consequence families on SEN via the correspondence
⊢7→⊢a and ⊢7→⊢s. Moreover, finitarity and Sign-invariance are preserved un-
der these maps.

In Section 4.2, starting from the prototypical example of symmetric conse-
quence families, as defined here, we will define the encompassing notion of a
consequence family on an arbitrary complete lattice family.

Given a category Sign, let us define, for all Σ,Σ′,Σ′′ ∈ |Sign| and all A1 ⊆
Sign(Σ,Σ′), A2 ⊆ Sign(Σ′,Σ′′),

A2 ◦
Σ,Σ′

Σ′,Σ′′ A1 = {a2 ◦ a1 : a1 ∈ A1, a2 ∈ A2}.

Then, for all Σ,Σ′,Σ′′ ∈ |Sign|, all A1 ⊆ Sign(Σ,Σ′), A2 ⊆ Sign(Σ′,Σ′′) and
B ⊆ Sign(Σ,Σ′′), we have that

A2 ◦
Σ,Σ′

Σ′,Σ′′ A1 ⊆ B iff A2 ⊆ B/Σ,Σ′

Σ′,Σ′′A1 iff A1 ⊆ A2\
Σ,Σ′

Σ′,Σ′′B,

where

B/Σ,Σ′

Σ′,Σ′′A1 = {a ∈ Sign(Σ′,Σ′′) : {a} ◦Σ,Σ′

Σ′,Σ′′ A1 ⊆ B};

A2\
Σ,Σ′

Σ′,Σ′′B = {a ∈ Sign(Σ,Σ′) : A2 ◦
Σ,Σ′

Σ′,Σ′′ {a} ⊆ B}.

Note, also, the following facts: Given a category Sign and a functor SEN :
Sign → Set, there exists, for every Σ,Σ′ ∈ |Sign|, a mapping

⋆Σ,Σ′

: P(Sign(Σ,Σ′)) × P(SEN(Σ)) → P(SEN(Σ′)),
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defined, for all A ⊆ Sign(Σ,Σ′) and all X ⊆ SEN(Σ), by

A ⋆Σ,Σ′

X = {SEN(a)(x) : a ∈ A, x ∈ X}.

This family of mappings satisfies, for all Σ,Σ′,Σ′′ ∈ |Sign|, all X ⊆ SEN(Σ),
all A2 ⊆ Sign(Σ,Σ′) and all A1 ⊆ Sign(Σ′,Σ′′),

(1) (A1 ◦
Σ,Σ′

Σ′,Σ′′ A2) ⋆
Σ,Σ′′

X = A1 ⋆
Σ′,Σ′′

(A2 ⋆
Σ,Σ′

X);

(2) {idΣ} ⋆
Σ,Σ X = X .

Moreover, for all A ⊆ Sign(Σ,Σ′), X ⊆ SEN(Σ) and Y ⊆ SEN(Σ′), we have
that

A ⋆Σ,Σ′

X ⊆ Y iff A ⊆ Y/Σ,Σ′

X iff X ⊆ A\Σ,Σ′

Y,

where
Y/Σ,Σ′

X = {a ∈ Sign(Σ,Σ′) : {a} ⋆Σ,Σ′

X ⊆ Y }

A\Σ,Σ′

Y = {x ∈ SEN(Σ) : A ⋆Σ,Σ′

{x} ⊆ Y }.

If all conditions above are fulfilled, we say that PSEN is a SignP -module
system, where the superscript P is intended to suggest the use of sets of
morphisms, rather than single morphisms, acting on sets of sentences of the
sentence functor SEN.

Let PSEN1 : Sign1 → Set be a SignP
1 -module system and PSEN2 :

Sign2 → Set be a SignP
2 -module system. A pair 〈F, α〉 : PSEN1 → PSEN2,

such that F : Sign1 → Sign2 is a functor and α = {αΣ}Σ∈|Sign1|
is a collec-

tion of mappings (not necessarily constituting a natural transformation) αΣ :
P(SEN1(Σ)) → P(SEN2(F (Σ))) is said to be (SignP

1 ,SignP
2 )-invariant or

structural if, for all Σ,Σ′ ∈ |Sign1|, all A ⊆ Sign1(Σ,Σ
′) and all X ⊆

SEN1(Σ),

αΣ′(A ⋆Σ,Σ′

X) = F (A) ⋆F (Σ),F (Σ′) αΣ(X).

A (SignP ,SignP)-invariant collection of mappings

αΣ : P(SEN1(Σ)) → P(SEN2(F (Σ))),

with SEN1, SEN2 : Sign → Set will simply be called SignP -invariant.
Note that αΣ : P(SEN1(Σ)) → P(SEN2(F (Σ))) is (SignP

1 ,SignP
2 )-inva-

riant, then, for all Σ,Σ′ ∈ |Sign1|, all a ∈ Sign1(Σ,Σ
′) and all x ∈ SEN1(Σ),

αΣ′(a ⋆Σ,Σ′

x) = F (a) ⋆F (Σ),F (Σ′) αΣ(x),

which, taking into account the definitions of ⋆Σ,Σ′

and ⋆F (Σ),F (Σ′), is equivalent
to the naturality of α : PSEN → PSEN′ ◦ F .

The pair 〈F, α〉, as above, is said to preserve unions if, for all Σ ∈ |Sign1|
and all X ⊆ P(SEN1(Σ)),

αΣ(
⋃

X ) =
⋃

X∈X

αΣ(X).
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Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set and SEN2 : Sign2 →
Set be set-valued functors and ⊢1,⊢2 consequence systems over SEN1, SEN2,
respectively. If there exists an adjoint equivalence 〈F,G, η, ǫ〉 : Sign1 → Sign2,
〈F, α〉 : PSEN1 → PSEN2 and 〈G, β〉 : PSEN2 → PSEN1 preserve unions
and are structural and, for all Σ ∈ |Sign1|, all X ∪ {x} ⊆ SEN1(Σ) and all
Σ′ ∈ |Sign2|, y ∈ SEN2(Σ

′) we have

(1) X ⊢1
Σ x iff αΣ(X) ⊢2

F (Σ) αΣ(x)

(2) y ⊣⊢2
Σ′ ǫΣ′ ⋆F (G(Σ′)),Σ′

αG(Σ′)(βΣ′ (y))

then ⊢1 and ⊢2 will be called equivalent via 〈F, α〉, 〈G, β〉 and 〈F,G, η, ǫ〉.
This framework generalizes the corresponding one presented in [10] and, in

addition, captures the deductive equivalence of π-institutions as presented in
[20].

4 Module Systems and Consequence Systems

4.1 Module Systems

Let Sign be a category and SEN : Sign → Set a set-valued functor. The
functor SEN is said to be a complete lattice family if, for all Σ ∈ |Sign|,
SEN(Σ) has the structure of a complete lattice, with the order relation denoted
by ≤Σ. We will use a superscript to keep track of the signature when referring
to the order ≤Σ, e.g., to the meet ∧Σ, the join ∨Σ, etc., of the complete lattice
SEN(Σ).

Let A,B and C be complete lattices (in the universal algebraic sense). A
map ⋆ : A × B → C is called residuated if there exist maps \⋆ : A × C → B
and /⋆ : C × B → A, called the residuals of ⋆, such that, for all x ∈ A, y ∈ B
and z ∈ C,

x ⋆ y ≤ z iff x ≤ z/⋆y iff y ≤ x\⋆z.

A category Sign will be said to be a complete residuated category if, for all
Σ,Σ′ ∈ |Sign|, Sign(Σ,Σ′) has the structure of a complete lattice, with order,
meet and join denoted, respectively, by ≤Σ,Σ′

, ∧Σ,Σ′

and ∨Σ,Σ′

, and, for every
Σ,Σ′,Σ′′ ∈ |Sign|, the composition operation

◦Σ,Σ′

Σ′,Σ′′ : Sign(Σ′,Σ′′) × Sign(Σ,Σ′) → Sign(Σ,Σ′′)

is residuated, with residuals \Σ,Σ′

Σ′,Σ′′ : Sign(Σ′,Σ′′)×Sign(Σ,Σ′′) → Sign(Σ,Σ′)

and /Σ,Σ′

Σ′,Σ′′ : Sign(Σ,Σ′′) × Sign(Σ,Σ′) → Sign(Σ′,Σ′′).

Consider an arbitrary category Sign. Define the complexification SignP

of Sign as follows:

• |SignP | = |Sign|;

• SignP(Σ,Σ′) = P(Sign(Σ,Σ′)), for all Σ,Σ′ ∈ |Sign|;



CAAL: Equivalence of Closure Systems 19

• gP ◦Σ,Σ′

Σ′,Σ′′ fP = {g ◦ f : g ∈ gP , f ∈ fP}, for all fP ∈ SignP(Σ,Σ′),

gP ∈ SignP(Σ′,Σ′′);

• iPΣ = {iΣ}.

Proposition 7 For every category Sign, SignP is a complete residuated cate-
gory, where fP ≤Σ,Σ′

gP iff fP ⊆ gP , for all Σ,Σ′ ∈ |Sign| and all fP , gP ∈
SignP(Σ,Σ′).

Proof:
For all Σ,Σ′,Σ′′ ∈ |Sign|, all fP ∈ SignP(Σ,Σ′), gP ∈ SignP(Σ′,Σ′′) and

all hP ∈ SignP(Σ,Σ′′), define the following operations:

hP/Σ,Σ′

Σ′,Σ′′fP = {g ∈ Sign(Σ′,Σ′′) : {g} ◦Σ,Σ′

Σ′,Σ′′ fP ⊆ hP}

gP\Σ,Σ′

Σ′,Σ′′hP = {f ∈ Sign(Σ,Σ′) : gP ◦Σ,Σ′

Σ′,Σ′′ {f} ⊆ hP}.

It is then easy to see that

gP ◦Σ,Σ′

Σ′,Σ′′ fP ≤Σ,Σ′′

hP iff gP ≤Σ′,Σ′′

hP/Σ,Σ′

Σ′,Σ′′fP

iff fP ≤Σ,Σ′

gP\Σ,Σ′

Σ′,Σ′′hP .

�

Let Sign be a complete residuated category and SEN : Sign → Set a
complete lattice family. The family SEN will be said to be a complete lattice
system or (by analogy with [10]) a Sign-module system if the operation
⋆Σ,Σ′

: Sign(Σ,Σ′) × SEN(Σ) → SEN(Σ′) defined, for all f ∈ Sign(Σ,Σ′)
and all φ ∈ SEN(Σ) by f ⋆Σ,Σ′

φ = SEN(f)(φ) is residuated, with residuals
\Σ,Σ′

: Sign(Σ,Σ′) × SEN(Σ′) → SEN(Σ) and /Σ,Σ′

: SEN(Σ′) × SEN(Σ) →
Sign(Σ,Σ′).

Consider an arbitrary category Sign and an arbitrary functor SEN : Sign →
Set. Define the complexification PSEN : SignP → Set of SEN as follows:

• PSEN(Σ) = P(SEN(Σ)), for all Σ ∈ |Sign|;

• PSEN(fP)(X) = {SEN(f)(x) : f ∈ fP , x ∈ X}, for all Σ,Σ′ ∈ |Sign|, all
fP ∈ SignP(Σ,Σ′) and all X ⊆ SEN(Σ).

This defines a functor, since, for all Σ,Σ′,Σ′′ ∈ |Sign|, all fP ∈ SignP(Σ,Σ′),
all gP ∈ SignP (Σ′,Σ′′) and all X ⊆ SEN(Σ),

PSEN(gP)(PSEN(fP)(X))
= PSEN(gP)({SEN(f)(X) : f ∈ fP , x ∈ X})
= {SEN(g)(SEN(f)(x)) : g ∈ gP , f ∈ fP , x ∈ X}
= {SEN(g ◦ f)(x) : g ∈ gP , f ∈ fP , x ∈ X}

= {SEN(h)(x) : h ∈ gP ◦Σ,Σ′

Σ′,Σ′′ fP , x ∈ X}

= PSEN(gP ◦Σ,Σ′

Σ′,Σ′′ fP)(X).

Moreover, we have:
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Proposition 8 Let Sign be a category and SEN : Sign → Set be a functor.
Then PSEN : SignP → Set is a SignP -module system.

Proof: For all Σ,Σ′ ∈ |Sign|, all fP ∈ SignP(Σ,Σ′), all X ⊆ SEN(Σ) and
all Y ⊆ SEN(Σ′), define the following operations:

Y/Σ,Σ′

X = {f ∈ Sign(Σ,Σ′) : SEN(f)(X) ⊆ Y }

fP\Σ,Σ′

Y = {x ∈ SEN(Σ) : PSEN(fP)({x}) ⊆ Y }.

It is then easy to see that

fP ⋆Σ,Σ′

X ≤Σ′

Y iff fP ≤Σ,Σ′

Y/Σ,Σ′

X iff X ≤Σ fP\Σ,Σ′

Y.

�

In Lemma 9, which is an analog of Lemma 3.7 of [10], we list several proper-
ties of the operations involved in the definitions of Sign-module systems, which
are inherited from corresponding well-known properties from the theory of resid-
uated lattices. We provide, however, a few of the proofs to give a feeling to the
reader not familiar with the lattice-theoretic results.

Lemma 9 Let Sign be a complete residuated category and SEN : Sign → Set
be a Sign-module system. Then the following hold, for all Σ,Σ′ ∈ |Sign|, φ ∈
SEN(Σ), ψ ∈ SEN(Σ′) and a ∈ Sign(Σ,Σ′):

(1) ⋆Σ,Σ′

: Sign(Σ,Σ′)×SEN(Σ) → SEN(Σ′) preserves arbitrary joins in both
coordinates. In particular, it is order-preserving in both coordinates.

(2) The operations \Σ,Σ′

and /Σ,Σ′

preserve arbitrary meets in the numerator
and they convert arbitrary joins in the denominator to arbitrary meets.
In particular, they are both order-preserving in the numerator and order-
reversing in the denominator.

(3) (ψ/Σ,Σ′

φ) ⋆Σ,Σ′

φ ≤Σ′

ψ;

(4) a ⋆Σ,Σ′

(a\Σ,Σ′

ψ) ≤Σ′

ψ;

(5) φ ≤Σ a\Σ,Σ′

(a ⋆Σ,Σ′

φ) and a ≤Σ,Σ′

(a ⋆Σ,Σ′

φ)/Σ,Σ′

φ;

(6) (a\Σ,Σ′

ψ)/Σ,Σ′

φ = a\Σ,Σ′

(ψ/Σ,Σ′

φ);

(7) [(ψ/Σ,Σ′

φ) ⋆Σ,Σ′

φ]/Σ,Σ′

φ = ψ/Σ,Σ′

φ;

(8) iΣ ≤Σ,Σ φ/Σ,Σφ;

(9) (φ/Σ,Σφ) ⋆Σ,Σ φ = φ.

Proof:
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(1) Let A ⊆ Sign(Σ,Σ′) and φ ∈ SEN(Σ). Then, clearly, (
∨Σ,Σ′

A) ⋆Σ,Σ′

φ ≤Σ′

(
∨Σ,Σ′

A)⋆Σ,Σ′

φ, which implies that
∨Σ,Σ′

A ≤Σ,Σ′

((
∨Σ,Σ′

A)⋆Σ,Σ′

φ)/Σ,Σ′

φ. Therefore, for all a ∈ A, a ≤Σ,Σ′

((
∨Σ,Σ′

A)⋆Σ,Σ′

φ)/Σ,Σ′

φ. This

shows that a ⋆Σ,Σ′

φ ≤Σ′

(
∨Σ,Σ′

A) ⋆Σ,Σ′

φ, whence
∨Σ′

a∈A(a ⋆Σ,Σ′

φ) ≤Σ′

(
∨Σ,Σ′

A)⋆Σ,Σ′

φ. For the reverse inequality, we have, for all a ∈ A, a⋆Σ,Σ′

φ ≤Σ′ ∨Σ′

a∈A(a⋆Σ,Σ′

φ), whence a ≤Σ,Σ′ ∨Σ′

a∈A(a⋆Σ,Σ′

φ)/Σ,Σ′

φ. Therefore,
∨Σ,Σ′

A ≤Σ,Σ′ ∨Σ′

a∈A(a ⋆Σ,Σ′

φ)/Σ,Σ′

φ, showing that (
∨Σ,Σ′

A) ⋆Σ,Σ′

φ ≤Σ′

∨Σ′

a∈A(a ⋆Σ,Σ′

φ).

Preservation of joins in the second coordinate may be shown similarly.

(2) Let Ψ ⊆ SEN(Σ′) and φ ∈ SEN(Σ). Then, we have (
∧Σ′

Ψ)/Σ,Σ′

φ ≤Σ,Σ′

(
∧Σ′

Ψ)/Σ,Σ′

φ iff ((
∧Σ′

Ψ)/Σ,Σ′

φ)⋆Σ,Σ′

φ ≤Σ′ ∧Σ′

Ψ ≤Σ′

ψ, for all ψ ∈ Ψ.

Therefore, (
∧Σ′

Ψ)/Σ,Σ′

φ ≤Σ,Σ′

ψ/Σ,Σ′

φ, for all ψ ∈ Ψ, showing that

(
∧Σ′

Ψ)/Σ,Σ′

φ ≤Σ,Σ′ ∧

ψ∈Ψ(ψ/Σ,Σ′

φ). For the converse inequality, for all

ψ ∈ Ψ,
∧Σ,Σ′

ψ∈Ψ(ψ/Σ,Σ′

φ) ≤Σ,Σ′

ψ/Σ,Σ′

φ, whence (
∧Σ,Σ′

ψ∈Ψ(ψ/Σ,Σ′

φ)) ⋆Σ,Σ′

φ ≤Σ′

ψ. Thus, (
∧Σ,Σ′

ψ∈Ψ(ψ/Σ,Σ′

φ)) ⋆Σ,Σ′

φ ≤Σ′ ∧Σ′

Ψ, showing that
∧Σ,Σ′

ψ∈Ψ(ψ/Σ,Σ′

φ) ≤Σ,Σ′

(
∧Σ′

Ψ)/Σ,Σ′

φ.

Conversion of arbitrary joins in the denominator to arbitrary meets may
be shown similarly. Moreover, both parts for \Σ,Σ′

also follow along the
same lines.

(3)-(9) May be proven using similar arguments.
�

4.2 Consequence Systems on Module Systems

Let SEN be a complete lattice family. Motivated by symmetric consequence
families on the power sets of sentence functors, as defined in Section 3, we define
a symmetric consequence family on SEN to be a collection ⊢= {⊢Σ}Σ∈|Sign|

of binary relations ⊢Σ ⊆ SEN(Σ) × SEN(Σ), such that, for all Σ ∈ |Sign| and
all x, y, z ∈ SEN(Σ),

(1) if y ≤Σ x, then x ⊢Σ y;

(2) if x ⊢Σ y and y ⊢Σ z, then x ⊢Σ z;

(3) x ⊢Σ

∨Σ
x⊢Σy

y;

For every Σ ∈ |Sign|, ⊢Σ satisfies conditions (1) and (2), above, iff it is a
pre-order on SEN(Σ) containing the binary relation ≥Σ.

If Sign is a complete residuated category and SEN is a Sign-module system,
then a symmetric consequence family on SEN is called a symmetric conse-
quence system if it is structural, i.e., for all Σ,Σ′ ∈ |Sign|, all x, y ∈ SEN(Σ)
and all a ∈ Sign(Σ,Σ′), we have

x ⊢Σ y implies a ⋆Σ,Σ′

x ⊢Σ′ a ⋆Σ,Σ′

y.
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4.3 Module System Morphisms

In all examples of translations between various syntactic entities that were pre-
sented in Section 2, the translations applied to sets of sentences, as was done
in Section 3, are union-preserving. This notion is captured by the concept of a
residuated map.

Let Sign1,Sign2 be two categories and SEN1 : Sign1 → Set and SEN2 :
Sign2 → Set be two complete lattice families. By a map 〈F, α〉 : SEN1 →
SEN2 we will understand a functor F : Sign1 → Sign2 and a family α =
{αΣ}Σ∈|Sign1|

of mappings αΣ : SEN1(Σ) → SEN2(F (Σ)), Σ ∈ |Sign1|. A
map 〈F, α〉 : SEN1 → SEN2 is called residuated if there exists a collection
α∗ = {α∗

Σ}Σ∈|Sign1|
, called the residual of 〈F, α〉, with α∗

Σ : SEN2(F (Σ)) →
SEN1(Σ), satisfying, for all Σ ∈ |Sign1|, x ∈ SEN1(Σ) and y ∈ SEN2(F (Σ)),

αΣ(x) ≤F (Σ) y iff x ≤Σ α∗
Σ(y).

It turns out that the residual of a residuated map 〈F, α〉 : SEN1 → SEN2 is
uniquely determined by setting, for all Σ ∈ |Sign1| and all y ∈ SEN2(F (Σ)),

α∗
Σ(y) = max {x ∈ SEN1(Σ) : αΣ(x) ≤F (Σ) y}.

The following lemma adapts well-known results on residuated maps to the cur-
rent context. It is an analog of Lemma 3.1 of [10].

Lemma 10 Let Sign1,Sign2 and Sign3 be categories, SEN1 : Sign1 → Set,
SEN2 : Sign2 → Set and SEN3 : Sign3 → Set complete lattice families and
〈F, α〉 : SEN1 → SEN2 and 〈G, β〉 : SEN2 → SEN3 residuated maps.

(1) The map 〈F, α〉 preserves arbitrary joins and the map α∗ preserves arbi-
trary meets;

(2) For every Σ ∈ |Sign1|, all φ ∈ SEN1(Σ) and all ψ ∈ SEN2(F (Σ)), we
have x ≤Σ α∗

Σ(αΣ(x)) and αΣ(α∗
Σ(y))) ≤F (Σ) y;

(3) 〈G, β〉 ◦ 〈F, α〉 : SEN1 → SEN3 is residuated with residual (βα)∗ = α∗β∗.

Let Sign1,Sign2 be complete residuated categories and SEN1 : Sign1 →
Set, SEN2 : Sign2 → Set be module systems. A map 〈F, α〉 : SEN1 → SEN2 is
called structural if, for all Σ,Σ′ ∈ |Sign1|, a ∈ Sign1(Σ,Σ

′) and x ∈ SEN1(Σ),

αΣ′(a ⋆Σ,Σ′

x) = F (a) ⋆F (Σ),F (Σ′) αΣ(x). (2)

In Equation (2), as elsewhere in the paper, ⋆ has been used to refer to both the
action of Sign1 on SEN1 and the action of Sign2 on SEN2. This overloading of
notation will sometimes be used in what follows to avoid multiple superscripts
and/or subscripts. Hopefully it will not cause any confusion, since the meaning
can be disambiguated from the context. As noted in Section 3, 〈F, α〉 : SEN1 →
SEN2 is structural iff α : SEN1 → SEN2 ◦ F is a natural transformation.

A module system morphism 〈F, α〉 : SEN1 → SEN2 is a structural resid-
uated map. Module system morphisms will be referred to also as translations
by analogy with [10]. We use M to denote the category of all module systems
and module system morphisms between them.
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4.4 Closure Families over Complete Lattice Families

A closure family γ : SEN → SEN on a complete lattice family SEN : Sign →
Set is a map 〈ISign, γ〉 : SEN → SEN that satisfies, for all Σ ∈ |Sign| and all
x, y ∈ SEN(Σ),

Expanding: x ≤Σ γΣ(x);

Monotone: x ≤Σ y implies γΣ(x) ≤Σ γΣ(y);

Idempotent: γΣ(γΣ(x)) = γΣ(x);

An interior family γ : SEN → SEN on a complete lattice family SEN : Sign →
Set, on the other hand, is a map 〈ISign, γ〉 : SEN → SEN that satisfies, for all
Σ ∈ |Sign| and all x, y ∈ SEN(Σ), monotonicity and idempotency together with

Contracting: γΣ(x) ≤Σ x.

If γ : SEN → SEN is a closure family on a complete lattice family SEN :
Sign → Set, we denote, for all Σ ∈ |Sign|, by SENγ(Σ) the image of SEN(Σ)
under γΣ, i.e.,

SENγ(Σ) = γΣ(SEN(Σ)), for all Σ ∈ |Sign|.

This defines a functor SENγ : Sign → Set from the discretization Sign of Sign
into Set, which forms a complete lattice family with the order of SENγ(Σ)
inherited from SEN(Σ), for all Σ ∈ |Sign|.

Let Sign be a category and SEN : Sign → Set a complete lattice family. A
simple subfunctor (i.e., one with the same domain) SEN′ : Sign → Set of the
discretized functor SEN : Sign → Set is called completely meet closed if,
for all Σ ∈ |Sign| and all X ⊆ SEN′(Σ),

∧ΣX ∈ SEN′(Σ). Given a completely
meet closed subfunctor SEN′ : Sign → Set of the discretized functor SEN :
Sign → Set, we define the map γSEN′

: SEN → SEN by setting, for all Σ ∈
|Sign| and all x ∈ SEN(Σ), γSEN′

Σ (x) =
∧Σ

(↑ x ∩ SEN′(Σ)), where the meet is
the one of the complete lattice SEN(Σ). The following lemma adapts Lemma 3.3
of [10], which is a standard lattice theoretic result [2], to the context of closure
families over complete lattice families. It can be proven by applying Lemma 3.3
of [10] to the present context signature-wise.

Lemma 11 Let SEN : Sign → Set be a complete lattice family, γ : SEN →
SEN a closure family on SEN and SEN′ : Sign → Set a completely meet closed
subfunctor of the discretized functor SEN : Sign → Set.

1. SENγ : Sign → Set is a completely meet closed subfunctor of SEN;

2. γSEN′

is a closure family on SEN;

3. γSENγ

= γ and SENγSEN
′

= SEN′;
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4. SENγ : Sign → Set is a complete lattice family, such that, for all Σ ∈
|Sign|, 〈SENγ(Σ),≤Σ

γ 〉 is a complete meet sub-semilattice of SEN(Σ) with

join
∨Σ
γ γΣ(X) = γΣ(

∨Σ γΣ(X)) = γΣ(
∨ΣX) and meet

∧Σ
γ γΣ(X) =

∧Σ
γΣ(X).

It is not difficult to see that γ : SEN → SEN is a closure family on the
complete lattice family SEN iff the map 〈ISign, γ

′〉 : SEN → SENγ , given, for
all Σ ∈ |Sign| and all x ∈ SEN(Σ), by γ′Σ(x) = γΣ(x) is residuated and the
“inclusion” family {ιγ} = {ιγΣ}Σ∈|Sign|, with ιγΣ(x) = x, for all Σ ∈ |Sign|, x ∈
SENγ(Σ), is its residual. Sometimes, abusing notation slightly, we will write
simply γ for the map 〈ISign, γ

′〉 : SEN → SENγ .
The following lemma is a version of Lemma 3.4 of [10] applicable to resid-

uated maps between complete lattice families. It can be proven by applying
Lemma 3.4 of [10] signature-wise to the relevant mappings.

Lemma 12 Let Sign1, Sign2 be categories, SEN1 : Sign1 → Set and SEN2 :
Sign2 → Set be complete lattice families and 〈F, α〉 : SEN1 → SEN2 a residu-
ated map.

(1) α∗α is a closure family on SEN1 and, for all Σ ∈ |Sign1|, αΣα
∗
Σ :

SEN2(F (Σ)) → SEN2(F (Σ)) is contracting, monotone and idempotent;

(2) αα∗α = α and, for all Σ ∈ |Sign1|, α
∗
ΣαΣα

∗
Σ = α∗

Σ;

(2) For all Σ ∈ |Sign1|, α
∗
Σ(αΣ(SEN1(Σ))) and αΣ(α∗

Σ(SEN2(F (Σ)))) are
isomorphic ordered sets.

Let Sign be a complete residuated category and SEN : Sign → Set a
Sign-module system. A closure family γ : SEN → SEN is called structural
or a closure system if, for all Σ,Σ′ ∈ |Sign|, all a ∈ Sign(Σ,Σ′) and all
x ∈ SEN(Σ),

a ⋆Σ,Σ′

γΣ(x) ≤Σ′

γΣ′(a ⋆Σ,Σ′

x).

Note that, if γ is structural, then SENγ can be extended to morphisms by
defining SENγ(f)(x) = γΣ′(SEN(f)(x)), for all Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)
and all x ∈ SEN(Σ), in such a way that SENγ : Sign → Set becomes a functor,
i.e., it is a complete lattice family (see also Lemma 16). The overloading of
notation (using SENγ : Sign → Set and SENγ : Sign → Set) is unambiguous
on objects and we will use it in the latter sense only when γ is structural.

Given a consequence family ⊢ on a complete lattice family SEN : Sign →
Set, define the map γ⊢ : SEN → SEN by setting, for all Σ ∈ |Sign| and all

x ∈ SEN(Σ), γ⊢Σ(x) =
∨Σ
x⊢Σy

y. On the other hand, given a closure family
γ : SEN → SEN, define the consequence family ⊢γ on SEN by setting, for all
Σ ∈ |Sign| and all x, y ∈ SEN(Σ), x ⊢γΣ y iff y ≤Σ γΣ(x). Then, we get the
following (see Lemma 3.5 of [10])
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Lemma 13 Consequence families on a complete lattice family SEN : Sign →
Set are in bijective correspondence with closure families on SEN via the maps
⊢7→ γ⊢ and γ 7→⊢γ . If Sign is a complete residuated category and SEN is a
Sign-module system, then ⊢ is structural, i.e., a consequence system, iff γ⊢ is
structural, i.e., a closure system.

We start the study of closure systems on module systems in earnest in Sub-
section 4.6.

4.5 Theories

Let Sign be a category, SEN : Sign → Set a complete lattice family and ⊢ a
consequence family on SEN. For Σ ∈ |Sign|, a Σ-theory of ⊢ is an element
t ∈ SEN(Σ), such that, for all x ∈ SEN(Σ),

t ⊢Σ x implies x ≤Σ t.

If t is a Σ-theory of ⊢, then x ≤Σ t and x ⊢Σ y imply y ≤Σ t, for all x, y ∈
SEN(Σ). We use ThΣ(⊢) to denote the collection of all Σ-theories of ⊢.

The following result, which characterizes the collection ThΣ(⊢) in terms of
the closure family γ⊢ is well-known. The proof is also presented as the proof of
Lemma 3.6 of [10]. The proof of Lemma 14 uses the same arguments signature-
wise and is, therefore, omitted.

Lemma 14 If ⊢ is a consequence family on the complete lattice family SEN :

Sign → Set, then ThΣ(⊢) = SENγ
⊢

(Σ), for all Σ ∈ |Sign|.

Based on Lemma 14, we let Th(⊢) = SENγ⊢

: Sign → Set be the complete
lattice family of theories of ⊢.

4.6 Closure Systems over Module Systems

The following lemma provides alternative characterizations for closure systems
over Sign-module systems, abstracting the ones given for structural closure
operators in Lemma 3.8 of [10].

Lemma 15 Let Sign be a complete residuated category, SEN : Sign → Set a
Sign-module system and γ : SEN → SEN a closure family on SEN. Then the
following statements are equivalent:

(1) γ is structural;

(2) γΣ′(a ⋆Σ,Σ′

γΣ(x)) = γΣ′(a ⋆Σ,Σ′

x), for all Σ,Σ′ ∈ |Sign|, x ∈ SEN(Σ)
and a ∈ Sign(Σ,Σ′);

(3) γΣ′(y)/Σ,Σ′

x = γΣ′(y)/Σ,Σ′

γΣ(x), for all Σ,Σ′ ∈ |Sign|, x ∈ SEN(Σ) and
y ∈ SEN(Σ′);
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(4) γΣ(a\Σ,Σ′

y) ≤Σ a\Σ,Σ′

γΣ′(y), for all Σ,Σ′ ∈ |Sign|, y ∈ SEN(Σ′) and
a ∈ Sign(Σ,Σ′);

(5) a\Σ,Σ′

γΣ′(y) ∈ SENγ(Σ), for all Σ,Σ′ ∈ |Sign|, y ∈ SEN(Σ′) and a ∈
Sign(Σ,Σ′).

Proof:

(1)↔(2) The right-to-left direction is obvious and for the left-to-right, we have, for
all Σ,Σ′ ∈ |Sign|, all a ∈ Sign(Σ,Σ′) and all x ∈ SEN(Σ),

γΣ′(a ⋆Σ,Σ′

x) ≤Σ′

γΣ′(a ⋆Σ,Σ′

γΣ(x))

≤Σ′

γΣ′(γΣ′(a ⋆Σ,Σ′

x))

= γΣ′(a ⋆Σ,Σ′

x).

(1)→(3) Since x ≤Σ γΣ(x), by Lemma 9, γΣ′(y)/Σ,Σ′

γΣ(x) ≤Σ,Σ′

γΣ′(y)/Σ,Σ′

x.

For the reverse inequality, we have

[γΣ′(y)/Σ,Σ′

x] ⋆Σ,Σ′

γΣ(x) ≤Σ′

γΣ′([γΣ′(y)/Σ,Σ′

x] ⋆Σ,Σ′

x)

≤Σ′

γΣ′(γΣ′(y)) (by Lemma 9)
= γΣ′(y),

whence γΣ′(y)/Σ,Σ′

x ≤Σ,Σ′

γΣ′(y)/Σ,Σ′

γΣ(x).

(3)→(1) Since a⋆Σ,Σ′

x ≤Σ′

γΣ′(a⋆Σ,Σ′

x), we get that a ≤Σ,Σ′

γΣ′(a⋆Σ,Σ′

x)/Σ,Σ′

x =
γΣ′(a ⋆Σ,Σ′

x)/Σ,Σ′

γΣ(x), showing that a ⋆Σ,Σ′

γΣ(x) ≤Σ′

γΣ′(a ⋆Σ,Σ′

x).

(1)↔(4) We have a⋆Σ,Σ′

γΣ(a\Σ,Σ′

y) ≤Σ′

γΣ′(a⋆Σ,Σ′

(a\Σ,Σ′

y)) ≤Σ′

γΣ′(y), whence
γΣ(a\Σ,Σ′

y) ≤Σ a\Σ,Σ′

γΣ′(y). Conversely,

a ⋆Σ,Σ′

γΣ(x) ≤Σ′

a ⋆Σ,Σ′

γΣ(a\Σ,Σ′

(a ⋆Σ,Σ′

x))

≤Σ′

a ⋆Σ,Σ′

[a\Σ,Σ′

γΣ′(a ⋆Σ,Σ′

x)]

≤Σ′

γΣ′(a ⋆Σ,Σ′

x).

(1)→(5) We have

a ⋆Σ,Σ′

γΣ(a\Σ,Σ′

γΣ′(y)) ≤Σ′

γΣ′(a ⋆Σ,Σ′

(a\Σ,Σ′

γΣ′(y)))

≤Σ′

γΣ′(γΣ′ (y))
= γΣ′(y),

whence γΣ(a\Σ,Σ′

γΣ′(y)) ≤Σ a\Σ,Σ′

γΣ′(y). This is enough to show that
a\Σ,Σ′

γΣ′(y) ∈ SENγ(Σ).

(5)→(1) Since a ⋆Σ,Σ′

x ≤Σ,Σ′

γΣ′(a ⋆Σ,Σ′

x), we get x ≤Σ a\Σ,Σ′

γΣ′(a ⋆Σ,Σ′

x).
Therefore, γΣ(x) ≤Σ a\Σ,Σ′

γΣ′(a ⋆Σ,Σ′

x), yielding a ⋆Σ,Σ′

γΣ(x) ≤Σ,Σ′

γΣ′(a ⋆Σ,Σ′

x).
�
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Lemma 16 Let Sign be a complete residuated category and SEN : Sign → Set
a Sign-module system. If γ : SEN → SEN is a closure system on SEN, then
SENγ : Sign → Set is a Sign-module system, where, for all Σ,Σ′ ∈ |Sign|,
⋆Σ,Σ′

γ : Sign(Σ,Σ′) × SENγ(Σ) → SENγ(Σ′) is defined, for all a ∈ Sign(Σ,Σ′)

and all x ∈ SENγ(Σ), by a⋆Σ,Σ′

γ x = γΣ′(a⋆Σ,Σ′

x). Moreover, γ : SEN → SENγ

is a Sign-module system morphism.

Proof:
Although this has been pointed out before, we will prove, first, that SENγ :

Sign → Set is a functor. In fact, if Σ,Σ′,Σ′′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),
g ∈ Sign(Σ′,Σ′′) and x ∈ SENγ(Σ), we get, using the structurality of γ,

SENγ(g)(SENγ(f)(x)) = SENγ(g)(γΣ′(SEN(f)(x)))
= γΣ′′(SEN(g)(γΣ′(SEN(f)(x))))
= γΣ′′(SEN(g)(SEN(f)(x)))
= γΣ′′(SEN(gf)(x))
= SENγ(x).

It is clear that SENγ(Σ) has the structure of a complete lattice, as a sublattice
of SEN(Σ), for all Σ ∈ |Sign|. Thus, for the first statement of the lemma, it
suffices to show that ⋆γ is residuated. Let Σ,Σ′ ∈ |Sign|, a ∈ Sign(Σ,Σ′),
x ∈ SENγ(Σ) and y ∈ SENγ(Σ′). Then

a ⋆Σ,Σ′

γ x ≤Σ′

y iff γΣ′(a ⋆Σ,Σ′

x) ≤Σ′

y

iff a ⋆Σ,Σ′

x ≤Σ′

y

iff x ≤Σ a\Σ,Σ′

y.

Since, by Lemma 15, a\Σ,Σ′

y ∈ SENγ(Σ), this string of equivalences proves
that ⋆Σ,Σ′

γ is left residuated with residual \Σ,Σ′

γ , the restriction of \Σ,Σ′

to
Sign(Σ,Σ′) × SENγ(Σ′). Similarly, we get

a ⋆Σ,Σ′

γ x ≤Σ′

y iff γΣ′(a ⋆Σ,Σ′

x) ≤Σ′

y

iff a ⋆Σ,Σ′

x ≤Σ′

y

iff a ≤Σ,Σ′

y/Σ,Σ′

x,

showing that ⋆Σ,Σ′

γ is also right residuated with residual /Σ,Σ′

γ , the restriction of

/Σ,Σ′

to SENγ(Σ′) × SENγ(Σ).
The last statement is easy to see, since γ : SEN → SENγ is residuated with

residual ιγ : SENγ → SEN and is structural by Lemma 15. �

5 Representation and Equivalence

5.1 Representation

Let Sign1, Sign2 be categories. SEN1 : Sign1 → Set, SEN2 : Sign2 → Set
be two complete lattice families and γ : SEN1 → SEN1, δ : SEN2 → SEN2
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closure families on SEN1, SEN2, respectively. A representation of γ in δ is a
residuated map 〈F, f〉 : SENγ

1 → SENδ
2, such that, for all Σ ∈ |Sign1| and all

x, y ∈ SENγ
1 (Σ),

x ≤Σ
γ y iff fΣ(x) ≤

F (Σ)
δ fΣ(y).

A representation 〈F, f〉 : SENγ1 → SENδ
2 of γ in δ is induced by a residuated

map 〈F, α〉 : SEN1 → SEN2 if, for all Σ ∈ |Sign| and all x ∈ SEN(Σ),

SENγ(Σ) SEN′δ(F (Σ))-
fΣ

SEN(Σ) SEN′(F (Σ))-αΣ

?

γΣ

?

δF (Σ)

fΣ(γΣ(x)) = δF (Σ)(αΣ(x)).

Denote by ⊢γ an arbitrary consequence family on a complete lattice family
SEN1 : Sign1 → Set to underscore the fact that γ : SEN1 → SEN1 is the
canonically associated closure family. Then, a consequence family ⊢γ on SEN1

is represented in the consequence family ⊢δ on SEN2 if the closure family
γ is represented in δ. Similarly, a representation of ⊢γ in ⊢δ is induced by
a residuated map 〈F, α〉 : SEN1 → SEN2 if the representation of the closure
family γ in the closure family δ is induced by 〈F, α〉. Corollary 20 shows that
⊢γ is represented in ⊢δ via 〈F, α〉 iff, for all Σ ∈ |Sign1| and all x, y ∈ SEN1(Σ),

x ⊢γΣ y iff αΣ(x) ⊢δF (Σ) αΣ(y).

The following lemma is an analog of Lemma 4.1 of [10]. Informally speaking,
given a residuated map between two complete lattice families and a closure
family on the codomain of the residuated map, it provides a way of endowing
the domain of the residuated map with a closure family. More precisely, the
given closure family is pulled back using the residuated map and its residual.

Lemma 17 Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set be complete lattice families and 〈F, α〉 : SEN1 → SEN2 a residu-
ated map.

(1) If δ : SEN2 → SEN2 is a closure family on SEN2, then the map δα =
α∗δα : SEN1 → SEN1 is a closure family on SEN1.

(2) If Sign1,Sign2 are complete residuated categories, SEN1, SEN2 are mod-
ule systems, 〈F, α〉 is a module system morphism and δ is structural, then
δα is also structural.

Proof:
The proof of Part (1) will be omitted, since it follows by applying signature-

wise the proof of the statement of Lemma 4.1.1 of [10]. Suppose that Sign1,
Sign2 are complete residuated categories, SEN1 : Sign1 → Set and SEN2 :
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Sign2 → Set are module systems, 〈F, α〉 : SEN1 → SEN2 is a module system
morphism and δ : SEN2 → SEN2 is structural. To show that δα is structural,
we have, for all Σ,Σ′ ∈ |Sign1|, all a ∈ Sign1(Σ,Σ

′) and all x ∈ SEN1(Σ),

αΣ(a ⋆Σ,Σ′

δαΣ(x)) = αΣ(a ⋆Σ,Σ′

α∗
Σ(δF (Σ)(αΣ(x))))

= F (a) ⋆F (Σ),F (Σ′) αΣ(α∗
Σ(δF (Σ)(αΣ(x))))

≤F (Σ′) F (a) ⋆F (Σ),F (Σ′) δF (Σ)(αΣ(x))

≤F (Σ′) δF (Σ′)(F (a) ⋆F (Σ),F (Σ′) αΣ(x))

= δF (Σ′)(αΣ′(a ⋆Σ,Σ′

x)).

Therefore, we obtain a ⋆Σ,Σ′

δαΣ(x) ≤Σ′

α∗
Σ′(δF (Σ′)(αΣ′ (a ⋆Σ,Σ′

x))), i.e., a ⋆Σ,Σ′

δαΣ(x) ≤Σ′

δαΣ′(a ⋆Σ,Σ′

x), showing that δα is also structural. �

The closure family δα : SEN1 → SEN1 is called the 〈F, α〉-transform of
the closure family δ : SEN2 → SEN2. Similarly, the 〈F, α〉-transform of a
consequence family ⊢ on SEN2 is the consequence family ⊢α on SEN defined,
for all Σ ∈ |Sign1| and all x, y ∈ SEN(Σ), by

x ⊢αΣ y iff αΣ(x) ⊢F (Σ) αΣ(y).

Finally, given a completely meet closed subfunctor SEN•
2 : Sign2 → Set of

SEN2 : Sign2 → Set, define the 〈F, α〉-transform of SEN•
2 as the subfunctor

SEN•,α
1 : Sign1 → Set of SEN1 : Sign1 → Set, given by

SEN•,α
1 (Σ) = α∗

Σ(SEN•
2(F (Σ))), for all Σ ∈ |Sign1|.

The following analog of Lemma 4.2 of [10] details the relations between these
notions of τ -transforms.

Lemma 18 Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set be complete lattice families, 〈F, α〉 : SEN1 → SEN2 a residuated
map and δ : SEN2 → SEN2 a closure family on SEN2. Then, the following are
equivalent:

(1) γ = δα;

(2) x ⊢γΣ y iff αΣ(x) ⊢δF (Σ) αΣ(y), for all Σ ∈ |Sign1| and all x, y ∈ SEN(Σ);

(3) SENγ
1 = SENδ,α

2 .

Proof:

(1)→(2) Let Σ ∈ |Sign1| and x, y ∈ SEN1(Σ). Then x ⊢δ
α

Σ y iff y ≤Σ δαΣ(x) iff y ≤Σ

α∗
Σ(δF (Σ)(αΣ(x))) iff αΣ(y) ≤F (Σ) δF (Σ)(αΣ(x)) iff αΣ(x) ⊢δF (Σ) αΣ(y).

(2)→(1) Again, let Σ ∈ |Sign1| and x, y ∈ SEN1(Σ). We have y ≤Σ γΣ(x) iff
x ⊢γΣ y iff αΣ(x) ⊢δF (Σ) αΣ(y) iff αΣ(y) ≤F (Σ) δF (Σ)(αΣ(x)) iff y ≤Σ

α∗
Σ(δF (Σ)(αΣ(x))) iff y ≤Σ δαΣ(x). Thus, γ = δα.
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(1)↔(3) We have that SENγ1 = SENδ,α
2 iff, for all Σ ∈ |Sign1| and all x ∈

SEN1(Σ), x = γΣ(x) iff x = α∗
Σ(δF (Σ)(z)), for some z ∈ SEN2(F (Σ)).

The latter holds iff δαΣ(x) = x. (Right-to-left: Take z = αΣ(x); Left-
to-right: δαΣ(x) = δαΣ(α∗

Σ(δF (Σ)(z))) = α∗
Σ(δF (Σ)(αΣ(α∗

Σ(δF (Σ)(z))))) ≤Σ

α∗
Σ(δF (Σ)(δF (Σ)(z))) = α∗

Σ(δF (Σ)(z)) = x.) Hence, SENγ
1 = SENδ,α

2 iff γ
and δα have exactly the same fixed points iff γ = δα.

�

Lemma 19, which is an analog of Lemma 4.3 of [10], asserts that, given a
residuated map 〈F, α〉 between two complete lattice families SEN1 and SEN2

and a closure family δ on SEN2, the closure family δα on SEN1, that is induced
by δ and 〈F, α〉, as in Lemma 17, admits a natural representation 〈F, f〉 into
δ. Moreover, this representation is induced by 〈F, α〉 and δα is shown to be
the only closure family on SEN1 that admits a representation in δ induced by
〈F, α〉.

Lemma 19 Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set be complete lattice families, 〈F, α〉 : SEN1 → SEN2 a residuated
map and δ : SEN2 → SEN2 a closure family on SEN2.

(1) 〈F, f〉 : SENδα

1 → SENδ2, with f = δα ↾SENδα is residuated with residual

the map f∗ = α∗ ↾SENδ
2

= δαα∗ ↾SENδ
2

: SENδ
2 → SENδα

1 .

(2) 〈F, f〉 is a representation of δα in δ induced by 〈F, α〉.

(3) δα : SEN1 → SEN1 is the only closure family on SEN1 that is represented
in δ : SEN2 → SEN2 under a representation induced by 〈F, α〉 : SEN1 →
SEN2.

(4) If Sign1,Sign2 are complete residuated categories, SEN1, SEN2 are mod-
ule systems, 〈F, α〉 : SEN1 → SEN2 is a module system morphism and δ
is structural, then 〈F, f〉 is also structural.

Proof:
Parts (1) and (2) are proven using the same techniques as the ones used in

the proofs of the corresponding statements of Lemma 4.3.1-2 of [10]. We present
only the proof of Parts (3) and (4).

(3) Let γ : SEN1 → SEN1 be a closure family on SEN1, represented in δ by
a representation 〈F, f〉 induced by 〈F, α〉. We must show that γ = δα.
Note, first, that, for all Σ ∈ |Sign1| and all x, y ∈ SEN1(Σ),

x ≤Σ (fγ)∗Σ(fΣ(γΣ(y))) iff fΣ(γΣ(x)) ≤F (Σ) fΣ(γΣ(y))
iff γΣ(x) ≤Σ γΣ(y)
iff x ≤Σ γ∗Σ(γΣ(y)).

(3)
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Now we have:
δα = α∗δα

= α∗ιδδα
= α∗δ∗δα
= (δα)∗δα
= (fγ)∗fγ
= γ∗γ (by (3))
= ιγγ
= γ.

(4) Let Σ,Σ′ ∈ |Sign1|, a ∈ Sign1(Σ,Σ
′), x ∈ SENδα

1 (Σ). We have

fΣ′(a ⋆Σ,Σ′

δα x) = fΣ′(δαΣ′(a ⋆Σ,Σ′

x))

= δF (Σ′)(αΣ′(a ⋆Σ,Σ′

x))

= δF (Σ′)(F (a) ⋆F (Σ),F (Σ′) αΣ(x))

= δF (Σ′)(F (a) ⋆F (Σ),F (Σ′) δF (Σ)(αΣ(x)))

= F (a) ⋆
F (Σ),F (Σ′)
δ δF (Σ)(αΣ(x))

= F (a) ⋆
F (Σ),F (Σ′)
δ fΣ(x).

�

Corollary 20 Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set two complete lattice families and ⊢γ and ⊢δ be consequence fami-
lies on SEN1 and SEN2, respectively. Then ⊢γ is represented in ⊢δ via a residu-
ated map 〈F, α〉 : SEN1 → SEN2 iff, for all Σ ∈ |Sign1| and all x, y ∈ SEN1(Σ),
x ⊢γΣ y iff αΣ(x) ⊢δF (Σ) αΣ(y).

The consequence family ⊢γ being represented in the consequence family ⊢δ

by 〈F, f〉 : SENγ
1 → SENδ

2 means that 〈F, f〉 is residuated and, for all Σ ∈
|Sign1| and all x, y ∈ SEN1(Σ),

x ⊢γΣ y iff fΣ(γΣ(x)) ⊢δF (Σ) fΣ(γΣ(y)).

Indeed, if ⊢γ is represented in ⊢δ by 〈F, f〉, then

x ⊢γΣ y iff y ≤Σ γΣ(x)
iff γΣ(y) ≤Σ

γ γΣ(x)

iff fΣ(γΣ(y)) ≤
F (Σ)
δ fΣ(γΣ(x))

iff fΣ(γΣ(y)) ≤F (Σ) δΣ(fΣ(γΣ(x)))
iff fΣ(γΣ(x)) ⊢δF (Σ) fΣ(γΣ(y)).

On the other hand, if fΣ(γΣ(y)) ≤
F (Σ)
δ fΣ(γΣ(x)), we have fΣ(γΣ(y)) ≤F (Σ)

δΣ(fΣ(γΣ(x))), whence fΣ(γΣ(x)) ⊢δF (Σ) fΣ(γΣ(y)), i.e., x ⊢γΣ y, showing that

γΣ(y) ≤Σ
γ γΣ(x).
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5.2 Equivalence

Let Sign1,Sign2 be complete residuated categories, SEN1 : Sign1 → Set,
SEN2 : Sign2 → Set be two module systems and γ : SEN1 → SEN1 and
δ : SEN2 → SEN2 closure systems on SEN1 and SEN2, respectively. An
equivalence between γ and δ consists of a pair of module system morphisms
〈F, f〉 : SENγ

1 → SENδ2 and 〈G, g〉 : SENδ
2 → SENγ

1 , together with an adjoint
equivalence 〈F,G, η, ǫ〉 : Sign1 → Sign2 with the property that

• η−1
Σ1

⋆
G(F (Σ1)),Σ1

γ gF (Σ1)fΣ1
= iSENγ

1
(Σ1), for all Σ1 ∈ |Sign1|, and

• ǫΣ2
⋆
F (G(Σ2)),Σ2

δ fG(Σ2)gΣ2
= iSENδ

2
(Σ2), for all Σ2 ∈ |Sign2|.

The closure systems γ and δ are said to be equivalent if there exists an equiv-
alence between γ and δ.

An equivalence consisting of 〈F, f〉, 〈G, g〉 and 〈F,G, η, ǫ〉 between γ and δ
is induced by the module morphisms 〈F, α〉 : SEN1 → SEN2 and 〈G, β〉 :
SEN2 → SEN1 and the adjoint equivalence 〈F,G, η, ǫ〉 : Sign1 → Sign2 if,

SENγ
1 SENδ

2
-

〈F, f〉

SEN1 SEN2
-〈F, α〉

?

γ

?
δ

SENγ
1 SENδ2

�
〈G, g〉

SEN1 SEN2
� 〈G, β〉

?

γ

?
δ

〈F, f〉 ◦ γ = δ ◦ 〈F, α〉 and 〈G, g〉 ◦ δ = γ ◦ 〈G, β〉. If this is the case, γ and δ are
said to be equivalent via 〈F, α〉, 〈G, β〉 and 〈F,G, η, ǫ〉.

For consequence systems, we say that ⊢γ is equivalent to ⊢δ via 〈F, α〉,
〈G, β〉 and 〈F,G, η, ǫ〉, if γ is equivalent to δ via 〈F, α〉, 〈G, β〉 and 〈F,G, η, ǫ〉.

Lemma 21 is an analog of Theorem 4.7 of [10] and provides a characterization
of the equivalence between two closure systems that is induced by given module
system morphisms and a given natural equivalence.

Theorem 21 Let Sign1 and Sign2 be complete residuated categories, SEN1 :
Sign1 → Set, SEN2 : Sign2 → Set two module systems, γ : SEN1 → SEN1, δ :
SEN2 → SEN2 closure systems on SEN1, SEN2, respectively, and 〈F,G, η, ǫ〉 :
Sign1 → Sign2 an adjoint equivalence. Then, the following statements are
equivalent:

(1) γ and δ are equivalent via 〈F, α〉 : SEN1 → SEN2, 〈G, β〉 : SEN2 → SEN1

and the adjoint equivalence 〈F,G, η, ǫ〉 : Sign1 → Sign2;

(2) γ = δα, ǫ ⋆δ δαβ = δ and ǫ consists of order isomorphisms on SENδ
2;

(3) δ = γβ, η−1 ⋆γ γβα = γ and η consists of order-isomorphisms on SENγ
1 .
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Proof:
(1) implies (2) follows by Lemma 19 and the following:

ǫ ⋆δ δαβ = ǫ ⋆δ fγβ
= ǫ ⋆δ fgδ
= δ.

For the converse, assume that γ = δα, ǫ ⋆δ δαβ = δ and ǫ consists of order-
isomorphisms on SENδ

2. Note that, if Σ ∈ |Sign2| and y ∈ SENδ
2(F (G(Σ))),

then
β∗

Σ(α∗
G(Σ)(y)) = ǫΣ ⋆

F (G(Σ)),Σ
δ δF (G(Σ))(y).

Indeed, we have, for all Σ ∈ |Sign2|, x ∈ SEN2(Σ) and all y ∈ SENδ
2(G(F (Σ))),

αG(Σ)(βΣ(x)) ≤F (G(Σ)) y iff δF (G(Σ))(αG(Σ)(βΣ(x))) ≤F (G(Σ)) y

iff ǫΣ ⋆
F (G(Σ)),Σ
δ δF (G(Σ))(αG(Σ)(βΣ(x)))

≤Σ ǫΣ ⋆
F (G(Σ)),Σ
δ y

iff δΣ(x) ≤Σ ǫΣ ⋆
F (G(Σ)),Σ
δ y

iff x ≤Σ ǫΣ ⋆
F (G(Σ)),Σ
δ y.

This allows us to conclude that δ = β∗γβ. In fact, for all Σ ∈ |Sign2| and all
y ∈ SEN2(Σ), we have

β∗
Σ(γG(Σ)(βΣ(y))) = β∗

Σ(α∗
G(Σ)(δF (G(Σ))(αG(Σ)(βΣ(y)))))

= ǫΣ ⋆
F (G(Σ)),Σ
δ δF (G(Σ))(αG(Σ)(βΣ(y)))

= δΣ(y).

Moreover, we have, for all Σ ∈ |Sign1| and all x ∈ SEN1(Σ),

η−1
Σ ⋆

G(F (Σ)),Σ
γ γG(F (Σ))(βF (Σ)(αΣ(x)))

= γΣ(η−1
Σ ⋆G(F (Σ)),Σ γG(F (Σ))(βF (Σ)(αΣ(x))))

= γΣ(η−1
Σ ⋆G(F (Σ)),Σ βF (Σ)(αΣ(x)))

= α∗
Σ(δF (Σ)(αΣ(η−1

Σ ⋆G(F (Σ)),Σ βF (Σ)(αΣ(x)))))

= α∗
Σ(δF (Σ)(F (η−1

Σ ) ⋆F (G(F (Σ))),F (Σ) αG(F (Σ))(βF (Σ)(αΣ(x)))))
= α∗

Σ(δF (Σ)(ǫF (Σ) ⋆
F (G(F (Σ))),F (Σ) αG(F (Σ))(βF (Σ)(αΣ(x)))))

= α∗
Σ(ǫF (Σ) ⋆

F (G(F (Σ))),F (Σ)
δ δF (G(F (Σ)))(αG(F (Σ))(βF (Σ)(αΣ(x)))))

= α∗
Σ(δF (Σ)(αΣ(x)))

= γΣ(x).

Thus, all conditions in (3) hold. We use the conditions included in (2) and
(3) to prove (1): Let 〈F, f〉 : SENγ

1 → SENδ
2 and 〈G, g〉 : SENδ

2 → SENγ1 be
the representations of γ = δα in δ and of δ = γβ in γ, as given in Lemma 19.
Then 〈F, f〉 ◦ γ = δ ◦ 〈F, α〉 and 〈G, g〉 ◦ δ = γ ◦ 〈G, β〉 It suffices, thus, to show
that the adjoint equivalence satisfies the additional properties stipulated in the
definition of an equivalence and that both 〈F, f〉 and 〈G, g〉 are structural. Let
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Σ ∈ |Sign1| and x ∈ SENγ
1(Σ). Then

η−1
Σ ⋆

G(F (Σ)),Σ
γ gF (Σ)(fΣ(x))

= η−1
Σ ⋆

G(F (Σ)),Σ
γ γG(F (Σ))(βF (Σ)(δF (Σ)(αΣ(x))))

= η−1
Σ ⋆

G(F (Σ)),Σ
γ gF (Σ)(δF (Σ)(δF (Σ)(αΣ(x))))

= η−1
Σ ⋆

G(F (Σ)),Σ
γ gF (Σ)(δF (Σ)(αΣ(x)))

= η−1
Σ ⋆

G(F (Σ)),Σ
γ γG(F (Σ))(βF (Σ)(αΣ(x)))

= γΣ(x)
= x.

That ǫΣ ⋆
F (G(Σ)),Σ
δ fG(Σ)(gΣ(x)) = x, for all Σ ∈ |Sign2| and all x ∈ SENδ

2(Σ),

may be shown similarly. Finally, we must show that 〈F, f〉 : SENγ
1 → SENδ

2 and
〈G, g〉 : SENδ

2 → SENγ
1 are structural. We show that 〈F, f〉 is structural, since

a similar proof applies to 〈G, g〉. For all Σ,Σ′ ∈ |Sign1|, a ∈ Sign1(Σ,Σ
′), and

all x ∈ SENγ
1(Σ), we have

fΣ′(a ⋆Σ,Σ′

γ x) = fΣ′(γΣ′(a ⋆Σ,Σ′

x))

= δΣ′(αΣ′(a ⋆Σ,Σ′

x))

= δΣ′(F (a) ⋆F (Σ),F (Σ′) αΣ(x))

= δΣ′(F (a) ⋆F (Σ),F (Σ′) δΣ(αΣ(x)))

= F (a) ⋆
F (Σ),F (Σ′)
δ δΣ(αΣ(x))

= F (a) ⋆
F (Σ),F (Σ′)
δ fΣ(γΣ(x))

= F (a) ⋆
F (Σ),F (Σ′)
δ fΣ(x) (γΣ(x) = x).

The equivalence of (1) and (3) follows by a symmetric argument. �

As a corollary, we provide a similar characterization of the equivalence be-
tween two consequence families.

Corollary 22 Let Sign1 and Sign2 be complete residuated categories, SEN1 :
Sign1 → Set, SEN2 : Sign2 → Set be two module systems and ⊢γ ,⊢δ conse-
quence systems on SEN1, SEN2, respectively. Then ⊢γ is equivalent to ⊢δ via
the module system morphisms 〈F, α〉 : SEN1 → SEN2, 〈G, β〉 : SEN2 → SEN1

and the adjoint equivalence 〈F,G, η, ǫ〉 : Sign1 → Sign2, where η and ǫ consist
of order-isomorphisms on SENγ

1 and SENδ
2, respectively, iff the following hold:

(1) For all Σ ∈ |Sign1|, x, y ∈ SEN1(Σ), x ⊢γΣ y iff αΣ(x) ⊢δF (Σ) αΣ(y);

(2) For all Σ ∈ |Sign2|, z ∈ SEN2(Σ), z ⊣⊢δΣ SEN2(ǫΣ)(αG(Σ)(βΣ(z))).

Proof:
Since Condition (2) is equivalent to ǫ⋆δδαβ = δ, we get the result by applying

Theorem 21 and Corollary 20. �
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6 Equivalences Induced by Translators

It is well known that not every equivalence of consequence relations in the sense
of [10] is induced by translators. This result extends of course to the case
of consequence systems studied in the present paper. However, Galatos and
Tsinakis show in [10] that this is true for consequence relations on powersets
of formulas, equations and sequents. Moreover, they exactly pinpoint those
modules over complete residuated lattices for which equivalences are induced
by translators. They show that these are exactly the projective modules in
the category of modules. Their results are extended here to cover the case of
consequence systems over module systems. More specifically, it will be shown
that if Sign1,Sign2 are complete residuated categories, SEN1 : Sign1 → Set
is a module system, satisfying certain conditions, SEN2 : Sign2 → Set is also a
module system and γ, δ are closure systems on SEN1, SEN2, respectively, then
every structural representation 〈F, f〉 : SENγ

1 → SENδ
2 of γ in δ is induced by

a translator. Note that, here, since γ and δ are assumed to be closure systems,
SENγ

1 and SENδ
2 are functors on Sign2,Sign2, respectively. Recall, also, that

M denotes the category with objects module systems and morphisms module
system morphisms (translators) between them.

6.1 Projective Objects

Consider complete residuated categories Sign1,Sign2, module systems SEN1 :
Sign1 → Set, SEN2 : Sign2 → Set and closure systems γ and δ on SEN1 and
SEN2, respectively. Let 〈F, f〉 : SENγ

1 → SENδ
2 be a structural representation

of γ in δ. The goal is to find a translator 〈F, α〉 : SEN1 → SEN2 that induces
〈F, f〉, i.e., such that 〈F, f〉 ◦ γ = δ ◦ 〈F, α〉. This is tantamount to finding a
morphism 〈F, α〉 in M that completes the square

SENγ
1 SENδ

2
-

〈F, f〉

SEN1 SEN2
-〈F, α〉

?

γ

?
δ

(4)

As in [10], it will be shown that the objects SEN1 ∈ |M|, for which the square
can be completed are precisely the projective objects of M, where an object
SEN : Sign1 → Set of M is called projective if whenever there exist module
systems SEN2 : Sign2 → Set, SEN′

2 : Sign2 → Set, over the same complete
residuated category Sign2, and module system morphisms g := 〈ISign

2
, g〉 :

SEN2 → SEN′
2 and 〈K, k〉 : SEN1 → SEN′

2, with g surjective, then, there exists
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a module system morphism 〈H,h〉 : SEN1 → SEN2, such that 〈K, k〉 = g◦〈H,h〉.

SEN1 SEN2
-〈H,h〉

〈K, k〉

@
@

@
@
@R
SEN′

2

??

g

(5)

Theorem 23 Let Sign1 be a complete residuated category. The objects SEN1 :
Sign1 → Set of M for which all squares of type (4) can be completed are the
projective objects of M.

Proof:
If SEN1 is projective, then Square (4) can be completed by choosing SEN′

2 =
SENδ

2, 〈K, k〉 = 〈F, f〉 ◦ γ and g = δ in Triangle (5).
Conversely, assume that SEN is such that every Square (4) can be completed

and consider Triangle (5), with 〈K, k〉, g given and 〈H,h〉 to be determined. (To
avoid clattering the diagram below, we omit functor components.)

SEN1 SEN2
-h = α

SEN′
2

k
@

@
@
@R

g
�

�
�

�	

SENk∗k
1 SENg∗g

2
-

f

k′

�
�

�
��

g′

@
@

@
@I

?

k∗k

?

g∗g

By Lemma 12, k∗k : SEN1 → SEN1 is a closure system on SEN1 and SENk∗k
1 is

isomorphic to k(SEN1) via 〈K, k′〉 = 〈K, k ↾SENk∗k
1

〉. Therefore, 〈K, k〉 factors

as 〈K, k〉 = 〈K, k′〉 ◦ (k∗k). Similarly, g = g′ ◦ (g∗g), where g′ = g ↾
SENg∗g

2

.

But 〈K, k′〉 is an embedding and g′ is an isomorphism, whence 〈F, f〉 = (g′)−1 ◦
〈K, k′〉 is an embedding. Let 〈F, α〉 : SEN1 → SEN2 be the completion of the
outer square. Then fk∗k = g∗gh implying g′fk∗k = g′g∗gh, whence k′k∗k = gh.
Thus, k = gh, whence the upper triangle commutes. �

6.2 Cyclic Module Systems

It will now be shown that the module systems on which all term π-institutions,
as introduced in [20], and all multi-term π-institutions, as introduced in [11], are
based are projective. Therefore, Theorem 23 asserts that all equivalences be-
tween consequence systems on such module systems are induced by translators.
These results were established in [20, 11]. Moreover, we generalize the notion
of a cyclic projective module of [10] to obtain the notion of a cyclic projective
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module system. We show that term π-institutions are based on cyclic module
systems, whereas multi-term π-institutions are not based on cyclic module sys-
tems, but they are coproducts of projective cyclic module systems and are, as
a result, also projective.

Let Sign be a complete residuated category. A Sign-module system SEN :
Sign → Set is called cyclic if there exists V ∈ |Sign| and v ∈ SEN(V ), such
that, for all Σ ∈ |Sign|, and all x ∈ SEN(Σ), there exists a〈Σ,x〉 ∈ Sign(V,Σ),
such that a〈Σ,x〉 ⋆

V,Σ v = x. The pair 〈V, v〉 is called a generator for SEN.
Recall, from [20], that, given a category Sign and a set-valued functor SEN :

Sign → Set, SEN is called term if there exists V ∈ |Sign| and v ∈ SEN(V ),
such that, for all Σ,Σ′ ∈ |Sign|, all x ∈ SEN(Σ) and all f ∈ Sign(Σ,Σ′),

• there exists f〈Σ,x〉 ∈ Sign(V,Σ), such that SEN(f〈Σ,x〉)(v) = x;

• f ◦ f〈Σ,x〉 = f〈Σ′,SEN(f)(x)〉.

Proposition 24 Let Sign be a category and SEN : Sign → Set a functor. If
SEN is term, then PSEN : SignP → Set is a cyclic SignP -module system.

Proof:
It has already been shown in Proposition 8 that PSEN : SignP → Set is a

SignP -module system. To show that it is cyclic, it suffices to show that the pair
〈V, {v}〉 is in fact a generator. To see this, let Σ ∈ |Sign| and X ∈ PSEN(Σ).
Then, there exists f〈Σ,X〉 = {f〈Σ,x〉 : x ∈ X} ∈ SignP(V,Σ), such that

PSEN(f〈Σ,X〉)({v}) = {SEN(f〈Σ,x〉)(v) : x ∈ X}
= {x : x ∈ X}
= X.

�

The following lemma provides a characterization of cyclicity similar to the
one provided by Lemma 5.2 of [10] for cyclic modules over complete residuated
lattices.

Lemma 25 Given a complete residuated category Sign, a Sign-module system
SEN is cyclic with generator 〈V, v〉 iff, for all Σ ∈ |Sign|, and all x ∈ SEN(Σ),
(x/V,Σv) ⋆V,Σ v = x.

Proof:
Suppose that the condition in the statement of the lemma holds. Given

Σ ∈ |Sign| and x ∈ SEN(Σ), let a〈Σ,x〉 ∈ Sign(V,Σ) be defined by a〈Σ,x〉 :=
x/V,Σv. Then, the condition in the definition of a cyclic Sign-module system
with generator 〈V, v〉 holds.

Conversely, assume that SEN is cyclic with 〈V, v〉 a generator. Then, given
Σ ∈ |Sign| and x ∈ SEN(Σ), there exists a〈Σ,x〉 ∈ Sign(V,Σ), such that
a〈Σ,x〉 ⋆

V,Σ v = x, whence a〈Σ,x〉 ≤V,Σ x/V,Σv. Thus, by Lemma 9, x =
a〈Σ,x〉 ⋆

V,Σ v ≤Σ (x/V,Σv) ⋆V,Σ v ≤Σ x, yielding (x/V,Σv) ⋆V,Σ v = x. �
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Next, we define a special cyclic module system, that will play an important
role in what follows. First, note that the slice functor Sign(V,−) of any complete
residuated category Sign over a given object V ∈ |Sign| forms a Sign-module
system with Sign-module operation arrow composition.

Lemma 26 Let Sign be a complete residuated category and V ∈ |Sign|. Then
Sign(V,−) : Sign → Set is a Sign-module system, if one defines, for all
Σ,Σ′ ∈ |Sign|, all x ∈ Sign(V,Σ) and all a ∈ Sign(Σ,Σ′),

a ⋆Σ,Σ′

x = a ◦V,ΣΣ,Σ′ x.

The special Sign-module system, that was alluded to above, is the one
associated with a closure system on the slice functor Sign(V,−), for some V ∈
|Sign|. The following lemma parallels Lemma 5.3 of [10].

Lemma 27 Let Sign be a complete residuated category, V ∈ |Sign| and γ :
Sign(V,−) → Sign(V,−) a closure system on Sign(V,−). Then the Sign-
module system Signγ(V,−) is cyclic, with generator 〈V, γV (iV )〉, where, for all

Σ,Σ′ ∈ |Sign|, a ∈ Sign(Σ,Σ′) and x ∈ Sign(V,Σ), a ⋆Σ,Σ′

x = a ◦V,ΣΣ,Σ′ x.

Proof:
Suppose, Σ ∈ |Sign| and γΣ(a) ∈ Signγ(V,Σ), for some a ∈ Sign(V,Σ).

Then, a ⋆V,Σγ γV (iV ) = γΣ(a ◦V,VV,Σ iV ) = γΣ(a). Thus, Signγ(V,−) is cyclic with
generator 〈V, γV (iV )〉. �

Now consider a complete residuated category Sign, SEN : Sign → Set a
Sign-module system, V ∈ |Sign| and v ∈ SEN(V ). Define SENv : Sign → Set
by setting, for all Σ ∈ |Sign|,

SENv(Σ) = {x ∈ SEN(Σ) : (∃f ∈ Sign(V,Σ))(x = SEN(f)(v))},

and, for all f ∈ Sign(Σ,Σ′),

SENv(f) = SEN(f) ↾SENv(Σ) .

The following representation lemma for cyclic Sign-module systems ab-
stracts a similar representation result, Lemma 5.4, in [10].

Lemma 28 Let Sign be a complete residuated category, SEN : Sign → Set a
Sign-module system, V ∈ |Sign|, v ∈ SEN(V ).

(1) SENv : Sign → Set is a Sign-module system in which joins coincide
with those in SEN. The residual operation of ⋆Σ,Σ′

v in SENv is given by
a\Σ,Σ′

v y = [(a\Σ,Σ′

y)/V,Σv] ⋆V,Σ
′

v.

(2) The map γv : Sign(V,−) → Sign(V,−), given, for all Σ ∈ |Sign| and
all a ∈ Sign(V,Σ) by γvΣ(a) = (a ⋆V,Σ v)/V,Σv is a closure system on
Sign(V,−).
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(3) SENv is isomorphic to Signγ
v

(V,−).

Thus, a Sign-module system is cyclic iff it is isomorphic to a Sign-module
system Signγ(V,−), for some closure system γ : Sign(V,−) → Sign(V,−).

Proof:

(1) Let Σ ∈ |Sign|, q ∈ SENv(Σ) and a ∈ Sign(Σ,Σ′). Then q = b ⋆V,Σ v, for
some b ∈ Sign(V,Σ), whence

a ⋆Σ,Σ′

q = a ⋆Σ,Σ′

(b ⋆V,Σ v)

= (a ◦V,ΣΣ,Σ′ b) ⋆V,Σ
′

v

∈ SENv(Σ′).

Furthermore, for r ∈ SENv(Σ), i.e., r = c ⋆V,Σ v, for some c ∈ Sign(V,Σ),
and all q ∈ SENv(Σ′), we get that

a ⋆Σ,Σ′

r ≤Σ′

q iff a ⋆Σ,Σ′

(c ⋆V,Σ v) ≤Σ′

q

iff c ⋆V,Σ v ≤Σ a\Σ,Σ′

q

iff c ≤V,Σ (a\Σ,Σ′

q)/V,Σv

iff c ⋆V,Σ
′

v ≤Σ [(a\Σ,Σ′

q)/V,Σv] ⋆V,Σ
′

v
(by Lemma 9).

Finally, note that, for all Σ ∈ |Sign| and all ai ∈ Sign(V,Σ), i ∈ I,
∨Σ
i∈I(ai ⋆

V,Σ v) = (
∨V,Σ
i∈I ai) ⋆

V,Σ v ∈ SENv(Σ). Thus, SENv is closed
under arbitrary joins in SEN and is therefore a complete lattice system.

(2) Since a ⋆V,Σ v = a ⋆V,Σ v, we get that a ≤V,Σ (a ⋆V,Σ v)/V,Σv = γvΣ(a).
Moreover, if a ≤V,Σ b, then, by Lemma 9, we get that γvΣ(a) ≤V,Σ γvΣ(b)
and, also by Lemma 9, γvΣ(γvΣ(a)) = γvΣ(a). Finally, to establish struc-
turality, suppose that Σ,Σ′ ∈ |Sign| and a ∈ Sign(Σ,Σ′), b ∈ Sign(V,Σ).
Then

(a ◦V,ΣΣ,Σ′ γvΣ(b)) ⋆V,Σ
′

v = (a ◦V,ΣΣ,Σ′ [(b ⋆V,Σ v)/V,Σv]) ⋆V,Σ
′

v

≤Σ′

(a ◦V,ΣΣ,Σ′ b) ⋆V,Σ
′

v,

whence a ◦V,ΣΣ,Σ′ γvΣ(b) ≤V,Σ
′

γvΣ′(a ◦
V,Σ
Σ,Σ′ b).

(3) Define f : Signγ
v

(V,−) → SENv by fΣ(a) = a ⋆V,Σ v, for all Σ ∈ |Sign|

and all a ∈ Signγ
v

(V,Σ), and g : SENv → Signγ
v

(V,−) by gΣ(x) =
x/V,Σv, for all Σ ∈ |Sign| and x ∈ SENv(Σ). Note that both f and g are
well-defined maps. Moreover, by Lemma 25,

fΣ(gΣ(x)) = (x/V,Σv) ⋆V,Σ v = x,

and
gΣ(fΣ(a)) = (a ⋆V,Σ v)/V,Σv = γvΣ(a) = a.

Finally, it is easy to see that both f and g are order-preserving and,
therefore, also order-reflecting.
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�

Corollary 29 Let Sign be a complete residuated category and SEN : Sign →
Set a cyclic Sign-module system, with generator 〈V, v〉. Then SEN is isomor-

phic to Signγ
v

(V,−).

Lemma 28, Part (3) yields the following corollary, if we take as SEN : Sign →
Set the functor Sign(V,−) : Sign → Set and as v ∈ V a fixed morphism
u ∈ Sign(V, V ).

Corollary 30 Let Sign be a complete residuated category, V ∈ |Sign| and
u ∈ Sign(V, V ). Then the Sign-module system Signu(V,−) is isomorphic to

Signγ
u

(V,−).

Note that the isomorphisms involved in Corollary 30 are given by a 7→
a/V,VV,Σu, for all a ∈ Signu(V,Σ), and a 7→ a ◦V,VV,Σ u, for all a ∈ Signγ

u

(V,Σ).

Lemma 31 Let Sign be a complete residuated category, V ∈ |Sign|, u ∈
Sign(V, V ) and and γ : Sign(V,−) → Sign(V,−) a closure system on the
complete lattice system Sign(V,−). Then, the following are equivalent:

(1) γV (u) = γV (iV ) and γΣ(a) ◦V,VV,Σ u = a ◦V,VV,Σ u, for all a ∈ Sign(V,Σ);

(2) γ = γu and u ◦V,VV,V u = u.

Proof:

(2)→(1) We have
γV (u) = γuV (u)

= (u ◦V,VV,V u)/
V,V
V,V u

= u/V,VV,V u

= (iV ◦V,VV,V u)/
V,V
V,V u

= γuV (iV )
= γV (iV )

and, also,

γΣ(a) ◦V,VV,Σ u = γuΣ(a) ◦V,VV,Σ u

= [(a ◦V,VV,Σ u)/V,VV,Σu] ◦
V,V
V,Σ u

= a ◦V,VV,Σ u.

(1)→(2) For all a ∈ Sign(V,Σ), γΣ(a) ◦V,VV,Σ u = a ◦V,VV,Σ u implies γΣ(a) ≤V,Σ (a ◦V,VV,Σ
u)/V,VV,Σu = γuΣ(a). To show the reverse inequality, note that γV (u) =
γV (iV ) implies, for all b ∈ Sign(V,Σ),

γΣ(b ◦V,VV,Σ u) = b ◦V,VV,Σ γV (u)

= b ◦V,VV,Σ γV (iV )

= γΣ(b ◦V,VV,Σ iV )

= γΣ(b),
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whence, for all a ∈ Sign(V,Σ),

γuΣ(a) ◦V,VV,Σ u ≤V,Σ a ◦V,VV,Σ u

implies γΣ(γuΣ(a) ◦V,VV,Σ u) ≤V,Σ γΣ(a ◦V,VV,Σ u)

implies γΣ(γuΣ(a)) ≤V,Σ γΣ(a)
implies γuΣ(a) ≤V,Σ γΣ(a).

To show that u ◦V,VV,V u = u, notice, first, that

u = iV ◦V,VV,V u ≤V,V (u/V,VV,V u) ◦
V,V
V,V u ≤V,V u,

whence (u/V,VV,V u) ◦
V,V
V,V u = u and, also,

u ◦V,VV,V u ≤V,V [(u ◦V,VV,V u)/
V,V
V,V u] ◦

V,V
V,V u ≤V,V u ◦V,VV,V u,

whence [(u ◦V,VV,V u)/
V,V
V,V u] ◦

V,V
V,V u = u ◦V,VV,V u. Taking these two equalities

into account we have the following:

γ = γu implies γuV (u) = γuV (iV )

implies (u ◦V,VV,V u)/
V,V
V,V u = u/V,VV,V u

implies [(u ◦V,VV,V u)/
V,V
V,V u] ◦

V,V
V,V u = (u/V,VV,V u) ◦

V,V
V,V u

implies u ◦V,VV,V u = u.
�

The following theorem provides a characterization of projective cyclic Sign-
module systems, for a complete residuated category Sign. It abstracts in an
obvious way Theorem 5.7 of [10]. We apply this theorem to the specific context
of term π-institutions in Corollary 33, that follows.

Theorem 32 Let Sign be a complete residuated category and SEN : Sign →
Set a Sign-module system. Then, the following conditions are equivalent:

(1) For some V ∈ |Sign|, v ∈ SEN(V ) and u ∈ Sign(V, V ), we have u⋆V,V v =

v, [(a ⋆V,Σ v)/V,Σv] ◦V,VV,Σ u = a ◦V,VV,Σ u, for all Σ ∈ |Sign|, a ∈ Sign(V,Σ),
and SEN = SENv;

(2) For some V ∈ |Sign|, v ∈ SEN(V ) and u ∈ Sign(V, V ), γvΣ(a) ◦V,VV,Σ
u = a ◦V,VV,Σ u, for all Σ ∈ |Sign|, a ∈ Sign(V,Σ), γvV (u) = γvΣ(iV ) and
SEN = SENv;

(3) For some V ∈ |Sign|, v ∈ SEN(V ) and u ∈ Sign(V, V ), we have γu = γv,

u ◦V,VV,V u = u and SEN = SENv;

(4) For some V ∈ |Sign| and u ∈ Sign(V, V ), the module system SEN is

isomorphic to Signu(V,−) and u ◦V,VV,V u = u;

(5) SEN is cyclic and projective.
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Proof:

(1)↔(2) Since γvΣ(a) = (a ⋆V,Σ v)/V,Σv, the equivalence follows from

γvV (u) = γvV (iV ) iff (u ⋆V,V v)/V,V v = v/V,V v iff u ⋆V,V v = v.

(2)→(3) By Lemma 31.

(3)→(4) We have

SEN ∼= Signγ
v

(V,−) (by Lemma 28)
∼= Signγ

u

(V,−) (since γv = γu)
∼= Signu(V,−). (by Corollary 29)

(4)→(1) Take into account the isomorphism identifying v with u and replace in (1)

⋆V,V , ⋆V,Σ and /V,Σ by ◦V,VV,V , ◦V,VV,Σ and /V,VV,Σ , respectively.

(5)→(4) By Corollary 29, every cyclic Sign-module system is of the form Signγ(V,
−) for some closure system γ : Sign(V,−) → Sign(V,−).

Suppose, also, that Signγ(V,−) is projective. By projectivity, there exists
a Sign-module system morphism f : Signγ(V,−) → Sign(V,−), such
that γf = ιSignγ(V,−).

Signγ(V,−) Sign(V,−)-f

ιSignγ(V,−)

@
@

@
@

@
@R

Signγ(V,−)
?

γ

Set u = fV (γV (iV )). Then, for all a ∈ Sign(V,Σ),

γΣ(a) = γΣ(a ◦V,VV,Σ iV )

= γΣ(a ◦V,VV,Σ γV (iV ))

= a(◦V,VV,Σ)γγV (iV ),

whence fΣ(γΣ(a)) = a ◦V,VV,Σ fV (γV (iV )) = a ◦V,VV,Σ u. Hence, the map
f : Signγ(V,−) → Signu(V,−) is surjective. Since f is also injective by
definition, we get that Signγ(V,−) ∼= Signu(V,−). Finally,

u ◦V,VV,V u = fV (γV (iV )) ◦V,VV,V fV (γV (iV ))

= fV (fV (γV (iV ))(◦V,VV,V )γγV (iV ))

= fV (γV (fV (γV (iV ))))
= fV (γV (iV ))
= u.
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(4)→(5) Suppose that SEN is cyclic, such that SEN ∼= Signu(V,−) and u ◦V,VV,V u =

u, for some V ∈ |Sign| and u ∈ Sign(V, V ). Let Sign′ be a complete
residuated category and SEN′, SEN′′ : Sign′ → Set be Sign′-module
systems, g : SEN′ → SEN′′ a surjective module system morphism and
〈K, k〉 : Signu(V,−) → SEN′′ a module system morphism. We must
define a Sign-module system morphism 〈H,h〉 : Signu(V,−) → SEN′

making the following triangle commute:

Signu(V,−) SEN′-h

k

@
@

@
@
@R
SEN′′

??

g

Let H = K, set w = kV (u) and let z ∈ SEN′(K(V )) be such that
gK(V )(z) = w = kV (u). Then define, for all Σ ∈ |Sign| and all a ∈
Sign(V,Σ),

hΣ(a ◦V,VV,Σ u) = K(a) ⋆K(V ),K(Σ) z.

This defines a module system morphism and we have, for all Σ ∈ |Sign|,
a ∈ Sign(V,Σ),

gK(Σ)(hΣ(a ◦V,VV,Σ u)) = gK(Σ)(K(a) ⋆K(V ),K(Σ) z)

= K(a) ⋆K(V ),K(Σ) gK(V )(z)

= K(a) ⋆K(V ),K(Σ) w
= K(a) ⋆K(V ),K(Σ) kV (u)

= kΣ(a ◦V,VV,Σ u).
�

Corollary 33 Let Sign be a category and SEN : Sign → Set a functor. If
SEN is term, then PSEN : SignP → Set is a projective cyclic SignP -module
system.

Proof:
Using Theorem 32, we define u ∈ SignP(V, V ) by u = f〈V,{v}〉. Then we

have f〈V,{v}〉 ⋆
V,V {v} = {v} and, for all Σ ∈ |Sign|, and fP ∈ SignP(V,Σ),

[(fP ⋆V,Σ {v})/V,Σ{v}] ◦V,VV,Σ f〈V,{v}〉 = fP ◦V,VV,Σ f〈V,{v}〉. �

In fact, using Theorem 32, we can see the following:

Corollary 34 Let Sign be a category and SEN : Sign → Set a functor. Then
PSEN : SignP → Set is a projective cyclic SignP -module system iff, there
exists V ∈ |Sign| and v ∈ SEN(V ), such that,

• for all Σ ∈ |Sign| and all x ∈ SEN(Σ), there exists f〈Σ,x〉 ∈ Sign(V,Σ),
such that SEN(f〈Σ,x〉)(v) = x;

• for all Σ ∈ |Sign| and all f, g ∈ Sign(V,Σ), if SEN(f)(v) = SEN(g)(v),
then f ◦ f〈V,v〉 = g ◦ f〈V,v〉.
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6.3 Coproducts

Multi-term sentence functors (see [11]), in general, are not cyclic. The reason
is that they can accommodate all sequent sentence functors and these are not
cyclic, as is shown in Proposition 5.10 of [10]. Thus, the projectivity of these
functors cannot be established using Theorem 32. In this section we study
coproducts of module systems and show, by analogy with coproducts of modules
over complete residuated lattices, that coproducts of projective module systems
are also projective. This result can then be applied to the case of multi-term
sentence functors, which, in fact, turn out to be coproducts of projective cyclic
modules.

Let Sign be a complete residuated category and SENi : Sign → Set, i ∈ I,
a family of Sign-module systems. The coproduct of this family is a Sign-
module system SEN : Sign → Set, denoted by

∐

i∈I SENi, together with a

family of injective module system morphisms σi : SENi → SEN, i ∈ I, such
that, for every Sign′-module system SEN′ : Sign′ → Set, and every family of
module system morhisms 〈F, αi〉 : SENi → SEN′, i ∈ I, there exists a unique
map 〈F, α〉 : SEN → SEN′, such that 〈F, α〉 ◦ σi = 〈F, αi〉.

SENi SEN-σi

〈F, αi〉
@

@
@
@R
SEN′

?

〈F, α〉

Clearly, if
∐

i∈I SENi exists, then it is unique up to isomorphism of Sign-module
systems. The next lemma asserts that the coproduct of a family of Sign-module
systems always exists.

Given a complete residuated category Sign and a family of Sign-module
systems SENi : Sign → Set, i ∈ I, let SEN :=

∏

i∈I SENi denote the Sign-

module system, defined, for all Σ ∈ |Sign|, by SEN(Σ) =
∏

i∈I SENi(Σ) and,

for all Σ,Σ′ ∈ |Sign| and f ∈ Sign(Σ,Σ′), SEN(f)(~φ) = 〈SENi(f)(φi) : i ∈ I〉,

for all ~φ ∈ SEN(Σ).

Lemma 35 Let Sign be a complete residuated category and SENi : Sign →
Set, i ∈ I, be a family of Sign-module systems. Then the Sign-module sys-
tem

∐

i∈I SENi is the direct product
∏

i∈I SENi, with canonical injection Sign-

module system morphisms σi : SENi →
∏

j∈I SENj defined, for all i ∈ I,Σ ∈

|Sign| and p ∈ SENi(Σ), by

σiΣ(p) = 〈xj : j ∈ I〉, where, for all j ∈ I, xj =

{

p, if j = i
0iΣ, if j 6= i

,

0iΣ being the least element in the complete lattice SENi(Σ).

Proof:
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The maps σi : SENi →
∏

j∈I SENj are Sign-module system morphisms.

Suppose that 〈F, αi〉 : SENi → SEN′, i ∈ I, are module system morphisms.
Define 〈F, α〉 :

∏

i∈I SENi → SEN′ by setting, for all Σ ∈ |Sign| and all 〈xi :

i ∈ I〉 ∈
∏

i∈I SENi(Σ), by

αΣ(〈xi : i ∈ I〉) =

Σ
∨

i∈I

αiΣ(xi).

This mapping is residuated with residual α∗ : SEN′ →
∏

i∈I SENi, given, for all
Σ ∈ |Sign| and all y ∈ SEN′(Σ), by

α∗
Σ(y) = 〈(αi)∗Σ(y) : i ∈ I〉.

Since it also preserves the action, it is a module system morphism. �

Our interest in coproducts is the next general result, an adaptation of Lemma
5.12 of [10]. It asserts that the coproduct of projective Sign-module systems is
also a projective Sign-module system.

Lemma 36 Let Sign be a complete residuated category. The coproduct of a
family of projective Sign-module systems is a projective Sign-module system.

Proof:
Let SENi : Sign → Set, i ∈ I, be a family of projective Sign-module

systems, SEN′, SEN′′ : Sign′ → Set two Sign′-module systems, g : SEN′ →
SEN′′ a surjective Sign′-module system morphism and 〈K, k〉 :

∐

i∈I SENi →

SEN′′ a module system morphism. Denote by σi : SENi →
∐

i∈I SENi the
canonical coproduct Sign-module system injections and 〈K, ki〉 := 〈K, k〉 ◦ σi.

ki
@

@
@
@R

SEN′

SENi

αi

�
�

�
��

SEN′′
??

g
∐

i∈I SENi � σi

α

�����������1

k

PPPPPPPPPPPq

Since SENi is projective, there exists a Sign-module system morphism 〈K,αi〉 :
SENi → SEN′, such that 〈K, ki〉 = g ◦ 〈K,αi〉. Hence, by the universal prop-
erty of the coproduct, there exists a Sign-module system morphism 〈K,α〉 :
∐

i∈I SENi → SEN′, such that 〈K,αi〉 = 〈K,α〉 ◦ σi. Thus, 〈K, k〉 ◦ σi =
〈K, ki〉 = g ◦ 〈K,αi〉 = g ◦ 〈K,α〉 ◦ σi, for all i ∈ I. By the uniqueness clause in
the universal property, 〈K, k〉 = g ◦ 〈K,α〉. �

Based on Lemma 36, we will show that multi-term sentence functors give
rise to projective module systems. This will be established by showing that
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these module systems are coproducts of projective cyclic module systems and
using the characterization Theorem 32.

Let SEN : Sign → Set be a multi-term sentence functor, with multi-source
signature-variable pair Y : Elt(SEN) → Elt(SEN) and accompanying natu-
ral transformation f : Y → IElt(SEN). Define an equivalence relation ∼ on
|Elt(SEN)| by setting, for all Σ,Σ′ ∈ |Sign| and all φ ∈ SEN(Σ), ψ ∈ SEN(Σ′),

〈Σ, φ〉 ∼ 〈Σ′, ψ〉 iff Y (〈Σ, φ〉) = Y (〈Σ′, ψ〉).

Let I be an index set for the blocks of the partition corresponding to ∼ and
denote the partition by πY = {Bi : i ∈ I}. Define, next, a collection of sen-
tence functors SENi : Sign → Set indexed by I, as follows: SENi(Σ) = {φ ∈
SEN(Σ) : 〈Σ, φ〉 ∈ Bi} and SENi(f) = SEN(f) ↾SENi(Σ), for all Σ,Σ′ ∈ |Sign|

and all f ∈ Sign(Σ,Σ′). The following lemma shows that PSENi is a projective
cyclic SignP -module system, for all i ∈ I.

Lemma 37 Let Sign be a category and SEN : Sign → Set a multi-term func-
tor. Then, PSENi : SignP → Set is a projective cyclic SignP -module system,
for every i ∈ I.

Proof:
By construction, there exists V ∈ |Sign| and v ∈ SEN(V ), such that, for

all Σ ∈ |Sign| and all φ ∈ SENi(Σ), Y (〈Σ, φ〉) = 〈V, v〉. Moreover, it is clear
from the definition of SENi that PSENi is cyclic with generator 〈V, {v}〉. Let
u = f〈V,{v}〉 ∈ SignP(V, V ). It is shown that V ∈ |Sign|, {v} ∈ PSENi(V ) and

the morphism u ∈ SignP(V, V ) satisfy Condition (1) of Theorem 32. Obviously,

u ⋆V,V {v} = PSENi(u)({v})

= {SENi(f〈V,v〉)(v)}
= {v}.

On the other hand, if Σ ∈ |Sign| and fP ∈ SignP(V,Σ), we get

[(fP ⋆V,Σ {v})/V,Σ{v}] ◦V,VV,Σ f〈V,{v}〉
= {g ∈ Sign(V,Σ) : SEN(g)(v) ⊆ {SEN(f)(v) : f ∈ fP}} ◦ f〈V,{v}〉
= {f〈Σ,SEN(g)(v)〉 : SEN(g)(v) ⊆ {SEN(f)(v) : f ∈ fP}}
= {f〈Σ,SEN(f)(v)〉 : f ∈ fP}
= {ff〈V,v〉 : f ∈ fP}

= fP ◦V,VV,Σ u.

Thus, PSENi is indeed a projective and cyclic SignP -module system. �

The next lemma shows that PSEN is the coproduct of the SignP -module
systems PSENi, i ∈ I.

Lemma 38 Let Sign be a category and SEN : Sign → Set a multi-term func-
tor. Then, the SignP -module system PSEN is the coproduct of the projective
cyclic SignP -module systems PSENi. Consequently, it is itself projective.
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Proof:
This is clear, since, for every Σ ∈ |Sign|, SEN(Σ) is, by construction, the

disjoint union SEN(Σ) =
⋃

i∈I{φ ∈ SEN(Σ) : 〈Σ, φ〉 ∈ Bi} =
⋃

i∈I SENi(Σ).
This is isomorphic to the product expression, postulated to be the coproduct
in Lemma 35. The corresponding injection module system morphisms are the
signature-wise injection functions. �

7 Finitary Translations

Let Sign be a category and SEN : Sign → Set a complete lattice family. A
subsetX of SEN(Σ) is (upward) directed if, for all x, y ∈ SEN(Σ), there exists
z ∈ SEN(Σ), such that both x ≤Σ z and y ≤Σ z. An element x ∈ SEN(Σ) is

compact if, for all directed Y ⊆ SEN(Σ), x ≤Σ
∨Σ

Y implies that x ≤Σ y, for
some y ∈ Y . A property equivalent to the compactness of x ∈ SEN(Σ) is that,

for all Z ⊆ SEN(Σ), x ≤Σ
∨Σ

Z implies the existence of a finite Z0 ⊆ Z, such

that x ≤Σ
∨Σ

Z0. Let us use the notation KΣ(Q) to denote the set of compact
elements of SEN(Σ) that are contained in Q ⊆ SEN(Σ) and KΣ to denote the
set KΣ(SEN(Σ)).

A finitary lattice family is a complete lattice family SEN : Sign → Set,
such that, for all Σ ∈ |Sign| and all x ∈ SEN(Σ), x =

∨

ΣKΣ(↓ x), i.e., for
every Σ ∈ |Sign|, every element of SEN(Σ) is the join of all compact elements
below it.

We say that the consequence family ⊢ on the finitary complete lattice family
SEN : Sign → Set is finitary if, for all Σ ∈ |Sign| and all x, y ∈ SEN(Σ),
if x ⊢Σ y and y is compact in SEN(Σ), then, there exists a compact element
x0 ∈ SEN(Σ), such that x0 ≤Σ x and x0 ⊢Σ y. A closure family γ on a finitary
complete lattice family SEN : Sign → Set is finitary iff ⊢γ is finitary, i.e., if,
for all Σ ∈ |Sign|, x, y ∈ SEN(Σ), if y ≤Σ γΣ(x) and y is compact, there exists
compact x0 ≤Σ x, such that y ≤Σ γΣ(x0).

The next lemma forms an analog in the present context of Lemma 6.1 of [10].
It asserts that all fixed points of finitary closure families over finitary complete
lattice families are generated by compact elements. Since the proof can be easily
obtained by applying signature-wise the same argument as that used to prove
Lemma 6.1 of [10], it will be omitted.

Lemma 39 Let SEN : Sign → Set be a finitary complete lattice family and
γ : SEN → SEN a finitary closure family on SEN. If y is a compact element
of SENγ(Σ), then, there exists a compact element x ∈ SEN(Σ), such that y =
γΣ(x). Thus, for all Σ ∈ |Sign|, Kγ

Σ ⊆ γΣ(KΣ).

We also provide an analog of Lemma 6.2 of [10], whose proof we omit, since
it can be obtained by applying Lemma 6.2 of [10] signature-wise.

Lemma 40 Let Sign be a category, SEN : Sign → Set a finitary complete
lattice family and γ : SEN → SEN a closure family on SEN. Then, the following
are equivalent:



CAAL: Equivalence of Closure Systems 48

(1) γ is finitary;

(2) γ preserves directed joins, i.e., for all Σ ∈ |Sign| and all directed X ⊆

SEN(Σ), γΣ(
∨Σ

X) =
∨Σ

γΣ(X);

(3) Arbitrary joins in SENγ coincide with those in SEN, i.e., for all Σ ∈ |Sign|

and all Y ⊆ SENγ(Σ),
∨Σ
γ Y =

∨Σ
Y ;

(4) For all Σ ∈ |Sign| and all x ∈ SEN(Σ), γΣ(x) =
∨Σ

γΣ(KΣ(↓ x));

(5) For all Σ ∈ |Sign| and every compact x ∈ SEN(Σ), γΣ(x) is compact in
SENγ(Σ);

(6) For all Σ ∈ |Sign|, Kγ
Σ = γΣ(KΣ);

If (any of) the above statements hold, then SENγ is also finitary.

A residuated map 〈F, α〉 : SEN1 → SEN2 between two finitary complete
lattice families SEN1 : Sign1 → Set, SEN2 : Sign2 → Set is called finitary
if, for every Σ ∈ |Sign| and every compact element x ∈ SEN1(Σ), αΣ(x) is
compact in SEN2(F (Σ)).

The equivalence (1)↔(5) of Lemma 40 yields the following

Corollary 41 Let Sign be a category, SEN : Sign → Set a finitary complete
lattice family and γ : SEN → SEN a closure family on SEN. Then γ is finitary
as a closure family iff γ : SEN → SENγ is finitary as a residuated map.

By applying Lemma 6.4 of [10], we obtain the following analog to the effect
that the composition of a finitary residuated map between two finitary complete
lattice families with its residual generates a finitary closure family.

Lemma 42 Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set be finitary complete lattice families and 〈F, α〉 : SEN1 → SEN2 a
finitary residuated map. Then α∗α : SEN1 → SEN1 is a finitary closure family
on SEN1.

Lemma 43 Let Sign1,Sign2 be categories, SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set be finitary complete lattice families, 〈F, α〉 : SEN1 → SEN2 a
finitary residuated map and δ : SEN2 → SEN2 a finitary closure family on
SEN2.

(1) The closure family δα = α∗δα : SEN1 → SEN1 is finitary.

(2) The residuated map 〈F, f〉 : SENδα

1 → SENδ
2, with f = δα ↾SENδα is

finitary.

Proof:
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(1) Suppose that Σ ∈ |Sign1|, x, y ∈ SEN1(Σ), with y compact, such that
y ≤Σ δαΣ(x). Then we have y ≤Σ α∗

Σ(δF (Σ)(αΣ(x))), which is equivalent to

αΣ(y) ≤F (Σ) δF (Σ)(αΣ(x)). By the finitarity of 〈F, α〉, since y is compact,
αΣ(y) is compact, whence, by the finitarity of δ, there exists a compact
x′ ≤F (Σ) αΣ(x), such that αΣ(y) ≤F (Σ) δF (Σ)(x

′). Since SEN1 is fini-

tary, we have that x =
∨Σ

KΣ(↓ x), whence αΣ(x) =
∨F (Σ)

αΣ(KΣ(↓
x)). Thus, since x′ ≤F (Σ) αΣ(x), there exists a compact x0 ≤Σ x,
such that x′ ≤F (Σ) αΣ(x0). But then αΣ(y) ≤F (Σ) δF (Σ)(αΣ(x0)), i.e.,
y ≤ α∗

Σ(δF (Σ)(αΣ(x0))) = δαΣ(x0), for a compact x0 ≤Σ x, which shows
that δα is indeed finitary.

(2) Suppose that Σ ∈ |Sign1| and x ∈ SENδα

1 (Σ) is compact. By Part
(1), δα is finitary, whence, by Lemma 39, there exists a compact y ∈
SEN1(Σ), such that x = δαΣ(y). By the finitarity of 〈F, α〉 and δ, fΣ(x) =
fΣ(δαΣ(y)) = δΣ(αΣ(y)) is compact. Hence f is finitary.

�

A finitary residuated category Sign is a complete residuated category,
such that

• iΣ : Σ → Σ is compact, for all Σ ∈ |Sign|;

• if a ∈ Sign(Σ,Σ′) and b ∈ Sign(Σ′,Σ′′) are compact, then b ◦Σ,Σ′

Σ′,Σ′′ a ∈
Sign(Σ,Σ′′) is also compact.

A finitary module system is a Sign-module system SEN : Sign → Set,
such that

(i) Sign is a finitary residuated category;

(ii) SEN is a finitary complete lattice system;

(iii) For every compact a ∈ Sign(Σ,Σ′) and every compact v ∈ SEN(Σ),
a ⋆Σ,Σ′

v ∈ SEN(Σ′) is also compact.

A residuated map 〈F, α〉 : SEN1 → SEN2 between two finitary module
systems SEN1 : Sign1 → Set, SEN2 : Sign2 → Set is called finitary if it is
finitary as a map between finitary complete lattice families and, in addition, for
every Σ,Σ′ ∈ |Sign1| and every compact a ∈ Sign1(Σ,Σ

′), F (a) is compact in
Sign2(F (Σ), F (Σ′)).

We denote by FM the category with objects finitary module systems and
morphisms finitary module system morphisms between them.

Next we proceed to formulate an analog of Theorem 6.6 of [10]. This forms
an analog of Theorem 23 for morphisms in the category FM rather than in M.
If we consider again the triangle (4) and the square (5) and take into account
that, by Corollary 41, finitary closure systems on finitary module systems give
rise to morphisms in the category FM, the square (5) may be considered in the
category FM.
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Theorem 44 Let Sign1 be a finitary complete residuated category. The objects
SEN1 : Sign1 → Set of the category FM for which all squares of type (4) can
be completed are exactly the projective objects of FM.

Proof:
We follow the proof of Theorem 23.

SEN1 SEN2
-h = α

SEN′
2

k
@

@
@
@R

g
�

�
�

�	

SENk∗k
1 SENg∗g

2
-

f

k′

�
�

�
��

g′

@
@

@
@I

?

k∗k

?

g∗g

If all given objects and morphisms are finitary, k∗k is finitary, as a closure
operator on SEN1, by Lemma 42, and as a module morphism k∗k : SEN1 →
SENk∗k

1 , by Corollary 41. The module system SENk∗k
1 is finitary by Lemma 40.

The module system morphism 〈K, k〉 : SENk∗k
1 → SEN′

2 is finitary, since, for

every Σ ∈ |Sign1| and all compact x ∈ SENk∗k
1 (Σ), k′Σ(x) = k′Σ(k∗ΣkΣ(x)) =

kΣ(k∗ΣkΣ(x)) = kΣ(x), which is compact in SEN′
2. Similarly, g∗g, g′ and SENg∗g

2

are finitary. Finally, 〈F, f〉 is finitary since it is the composition of two finitary
maps. �

Corollary 45 Suppose that Sign is a finitary complete residuated category,
SEN : Sign → Set an object in FM and γ : SEN → SEN a finitary closure
system on SEN. Then SENγ : Sign → Set is finitary as a Sign-module system.

Proof:
By Corollary 41, SENγ is finitary as a complete lattice system. So it suffices

to show that the signature action preserves compactness. Let Σ,Σ′ ∈ |Sign|,
a ∈ Sign(Σ,Σ′) compact and γΣ(x) ∈ SENγ(Σ) compact. By Lemma 39,
x ∈ SEN(Σ) can be taken to be compact. As SEN is finitary a ⋆Σ,Σ′

x is
compact in SEN(Σ′). Also, since γ is finitary, γΣ′(a ⋆Σ,Σ′

x) = a ⋆Σ,Σ′

γ γΣ(x) is
compact in SENγ(Σ′). �

By Theorem 32, the projective cyclic module systems in M are exactly the
ones of the form Signu(V,−), with u ∈ Sign(V, V ) satisfying u ◦V,VV,V u = u.
Such a module system will be called regular if u ∈ Sign(V, V ) is compact. By
Lemma 28 (1), joins in SENv coincide with those in SEN, whence such a u is
then also compact in Signu(V−).

Lemma 46 Let Sign be a category and SEN : Sign → Set a functor. If
SEN : Sign → Set is term, then the SignP -module system PSEN is regular.
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Proof:
By Corollary 33, we know that PSEN is a projective cyclic SignP -module

system. Note that u = f〈V,{v}〉 = {f〈V,v〉} is finite in Sign(V, V ) and, hence,
compact. �

Lemma 47 Suppose that Sign is a finitary complete residuated category. If
V ∈ |Sign| and u ∈ Sign(V, V ) is compact, then, for all Σ ∈ |Sign|, the

compact elements of Signu(V,Σ) are of the form a ◦V,VV,Σ u, for some compact
a ∈ Sign(V,Σ).

Proof:
If a ∈ Sign(V,Σ) is compact, then, by definition of a finitary complete

residuated category, a ◦V,VV,Σ u ∈ Sign(V,Σ) is compact. Suppose, conversely,

that a ◦V,VV,Σ u ∈ Sign(V,Σ) is compact. By the finitarity of Sign, a =
∨V,Σ

C,
where C is the set of compact elements of Sign(V,Σ) lying below a. Thus, we

have a ◦V,VV,Σ u =
∨V,Σ{c ◦V,VV,Σ u : c ∈ C} =

∨V,Σ
u {c ◦V,VV,Σ u : c ∈ C} and the latter

set is a directed set of compact elements of Signu(V,Σ), by the compactness

of u. Thus, by the compactness of a ◦V,VV,Σ u, there exists c ∈ C, such that

a ◦V,VV,Σ u = c ◦V,VV,Σ u. �

Corollary 48 Let Sign be a finitary complete residuated category. Every reg-
ular Sign-module system Signu(V,−) is finitary.

Proof:
Let Σ ∈ |Sign| and a ∈ Sign(V,Σ). Then a ◦V,VV,Σ u = (

∨V,Σ
KV,Σ(↓ a)) ◦V,VV,Σ

u =
∨V,Σ(KV,Σ(↓ a) ◦V,VV,Σ u). By Lemma 47, KV,Σ(↓ a) ◦V,VV,Σ u consists of

compact elements in Signu(V,Σ), whence, every element of Signu(V,Σ) is a
join of compact elements. �

Next, an analog of Lemma 6.11 of [10] is presented to the effect that cyclic
objects Signu(V,−) with compact u, that are projective in M are also projective
in FM.

Lemma 49 Let Sign be a finitary complete residuated category and SEN :
Sign → Set a regular Sign-module system. Then SEN is projective in FM.

Proof:
Let Sign′ be a finitary complete residuated category, SEN′, SEN′′ : Sign′ →

Set finitary Sign′-module systems, g : SEN′ → SEN′′ a finitary surjective
module system morphism and 〈K, k〉 : SEN → SEN′′ a finitary module system
morphism. We must find a finitary module system morphism 〈K,h〉 : SEN →
SEN′, such that g ◦ 〈K,h〉 = 〈K, k〉.

SEN SEN′-h

k
@

@
@
@R
SEN′′

?

g
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Taking into account Theorem 32 and the definition of a regular module system,
assume that SEN = Signu(V,−), with u ∈ Sign(V, V ) compact, such that

u◦V,VV,V u = u. Let y = kV (u) ∈ SEN′′(K(V )). By the compactness of 〈K, k〉, y is

compact in SEN′′(K(V )). By the surjectivity of g, there exists x ∈ SEN′(K(V )),

such that y = gK(V )(x). Since SEN′ is finitary, x =
∨K(V )

X , for some set
X of compact elements of SEN′(K(V )). This implies that y = gK(V )(x) =
∨K(V )

gK(V )(X). Since y is compact, there exists finite Y ⊆ X , such that

y = gK(V )(x) =
∨K(V )

gK(V )(Y ). Setting w =
∨K(V )

Y , which is compact in

SEN′(K(V )), we get that y = gK(V )(w). Let z = K(u) ⋆K(V ),K(V ) w, which is
compact in SEN′(K(V )). Define 〈K, τz〉 : Signu(V,−) → SEN′, by setting, for
all Σ ∈ |Sign| and all a ∈ Sign(V,Σ),

τzΣ(a ◦V,VV,Σ u) = K(a) ⋆K(V ),K(Σ) z.

We show that 〈K, τz〉 is a finitary module system morphism, such that g ◦
〈K, τz〉 = 〈K, k〉.

• τz is well-defined: Assume that, for Σ ∈ |Sign| and a, b ∈ Sign(V,Σ),

a ◦V,VV,Σ u = b ◦V,VV,Σ u. Then

K(a) ⋆K(V ),K(Σ) z = K(a) ⋆K(V ),K(Σ) (K(u) ⋆K(V ),K(V ) w)

= (K(a) ◦
K(V ),K(V )
K(V ),K(Σ) K(u)) ⋆K(V ),K(Σ) w

= K(a ◦V,VV,Σ u) ⋆K(V ),K(Σ) w

= K(b ◦V,VV,Σ u) ⋆K(V ),K(Σ) w

= (K(b) ◦
K(V ),K(V )
K(V ),K(Σ) K(u)) ⋆K(V ),K(Σ) w

= K(b) ⋆K(V ),K(Σ) (K(u) ⋆K(V ),K(V ) w)
= K(b) ⋆K(V ),K(Σ) z.

• τz is residuated: Let Σ ∈ |Sign|, a ∈ Sign(V,Σ) and x ∈ SEN′(K(Σ)).
We have

τzΣ(a ◦V,VV,Σ u) ≤K(Σ) x

implies K(a) ⋆K(V ),K(Σ) z ≤K(Σ) x

implies K(a) ≤K(V ),K(Σ) x/K(V ),K(Σ)z
implies K(a) ⋆K(V ),K(Σ) kV (u) ≤K(Σ)

(x/K(V ),K(Σ)z) ⋆K(V ),K(Σ) kV (u)

implies kΣ(a ◦V,VV,Σ u) ≤K(Σ) (x/K(V ),K(Σ)z) ⋆K(V ),K(Σ) kV (u)

implies a ◦V,VV,Σ u ≤Σ k∗Σ((x/K(V ),K(Σ)z) ⋆K(V ),K(Σ) kV (u)).

This proves that τz is residuated with τz
∗

defined, for all Σ ∈ |Sign| and
all x ∈ SEN′(Σ), by

τz
∗

Σ (x) = k∗Σ((x/K(V ),K(Σ)z) ⋆K(V ),K(Σ) kV (u)).
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• τz is a Sign-module system morphism: Let Σ,Σ′ ∈ |Sign|, a ∈ Sign(V,Σ)
and b ∈ Sign(Σ,Σ′). Then

K(b) ⋆K(Σ),K(Σ′) τzΣ(a ◦V,VV,Σ u)

= K(b) ⋆K(Σ),K(Σ′) (K(a) ⋆K(V ),K(Σ) z)

= (K(b) ◦V,ΣΣ,Σ′ K(a)) ⋆V,Σ z

= K(b ◦V,ΣΣ,Σ′ a) ⋆V,Σ z

= τzΣ′ ((b ◦
V,Σ
Σ,Σ′ a) ◦

V,V
V,Σ u)

= τzΣ′ (b ◦
V,Σ
Σ,Σ′ (a ◦V,VV,Σ u)).

• τz is finitary: By Lemma 47, given Σ ∈ |Sign| and a ∈ Sign(V,Σ),

such that a ◦V,VV,Σ u is compact in Signu(V,Σ), there exists a compact c ∈

Sign(V,Σ), such that a ◦V,VV,Σ u = c ◦V,VV,Σ u. Thus, if a ◦V,VV,Σ u ∈ Signu(V,Σ)
is compact, we may assume without loss of generality that a ∈ Sign(V,Σ)

is compact. Then τzΣ(a◦V,VV,Σ u) = K(a)⋆K(V ),K(Σ)z is compact in SEN′(Σ),

because z is compact in SEN′(V ), a is compact in Sign(V,Σ), 〈K, k〉 is a
finitary module system morphism and SEN′ is a finitary module system.
Therefore τz is, indeed, finitary.

�

Lemma 49 together with Lemma 46 have the following consequence:

Corollary 50 Let Sign1,Sign2 be categories and SEN1 : Sign1 → Set and
SEN2 : Sign2 → Set two term sentence functors. Then, every finitary struc-
tural representation between finitary consequence systems on the SignP

1 -module
system PSEN1 and the SignP

2 -module system PSEN2 is induced by a finitary
module system morphism.

The next lemma is an analog of Lemma 6.14 of [10] and may be proved by
applying the same proof signature-wise. Its proof is therefore omitted.

Lemma 51 Let Sign be a category and SENi : Sign → Set be finitary lattice
families, for all i ∈ I. Consider the product

∏

i∈I SENi. For all Σ ∈ |Sign|,

〈xi : i ∈ I〉 ∈
∏

i∈I SENi(Σ) is compact iff, there exists finite J ⊆ I, such that

xi = 0iΣ, for all i ∈ I\J and xj is compact in SENj(Σ), for all j ∈ J .

Theorem 52 The coproduct in M of a family of regular module systems is
projective in FM .

Proof:
Let Sign be a finitary complete residuated category and SEN : Sign → Set

the coproduct of a family of regular Sign-module systems SENi : Sign → Set,
i ∈ I. Let, also, Sign′ be a complete residuated category, SEN′ : Sign′ → Set
a module system, γ : SEN → SEN a closure system on SEN, δ : SEN′ →
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SEN′ a finitary closure system on SEN′ and 〈F, f〉 : SENγ → SEN′δ a finitary
representation of γ in δ. It will be shown that 〈F, f〉 is induced by a finitary
module system morphism 〈F, α〉 : SEN → SEN′

Assume that σi : SENi → SEN are the canonical Sign-module system in-
jections associated with the coproduct SEN =

∐

i∈I SENi.

SENγ SEN′δ-
f

SEN SEN′-α

?

γ

?
δ

SENi

?
σi αi

HHHHHHHHj

The morphism 〈F, f〉 ◦ γσi : SENi → SEN′ is finitary, whence, there exists, by
Lemma 49, a finitary 〈F, αi〉 : SENi → SEN′, such that 〈F, f〉◦γσi = δ ◦〈F, αi〉.
By the universal property of the coproduct, there exists 〈F, α〉 : SEN → SEN′,
such that 〈F, α〉 ◦ σi = 〈F, αi〉.

It suffices to show that 〈F, α〉 is finitary. To this end, let Σ ∈ |Sign|, x =
〈xi : i ∈ I〉 ∈ SEN(Σ) compact. By Lemma 51, there exists finite J ⊆ I,
such that xi = 0iΣ, for all i 6∈ J and xj compact in SENj , for all j ∈ J . By

the compactness of 〈F, αi〉, we get that αjΣ(xj) is compact in SEN′(Σ), for all
j ∈ J , and, also, αiΣ(xi) = αiΣ(0iΣ) = 0′Σ, for all i 6∈ J . Thus, by Lemma 35,

αΣ(〈xi : i ∈ I〉) =
∨Σ
i∈I α

i
Σ(xi) =

∨Σ
j∈J α

j
Σ(xj), which is compact as a finite join

of compact elements. �

Corollary 53 Let Sign1 and Sign2 be finitary complete residuated categories,
SEN1 : Sign1 → Set, SEN2 : Sign2 → Set coproducts of regular Sign1- and
Sign2-module systems, respectively, and γ : SEN1 → SEN1 and δ : SEN2 →
SEN2 finitary closure systems on SEN1 and SEN2, respectively. Then, ev-
ery equivalence between γ and δ consisting of the module system morphisms
〈F, f〉 : SENγ

1 → SENδ
2 and 〈G, g〉 : SENδ

2 → SENγ
1 and the adjoint equivalence

〈F,G, η, ǫ〉 : Sign1 → Sign2 is induced by finitary module system morphisms
〈F, α〉 : SEN1 → SEN2 and 〈G, β〉 : SEN2 → SEN1 and the adjoint equivalence
〈F,G, η, ǫ〉.

Taking into account Theorem 38, Corollary 46 and Theorem 52, we also
obtain

Corollary 54 Let Sign1,Sign2 be categories and SEN1 : Sign1 → Set, SEN2 :
Sign2 → Set multi-term sentence functors. Then, every finitary structural rep-
resentation between consequence systems on the SignP

1 -module system PSEN1

and the SignP
2 -module system PSEN2 is induced by a finitary module system

morphism.
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