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Abstract

This paper deals with the algebraization of multi-signature equational logic in the context of the
modern theory of categorical abstract algebraic logic. Two are the novelties compared to traditional
treatments: First, interpretations between different algebraic types are handled in the object language
rather than the metalanguage. Second, rather than constructing the type of the algebraizing class
of algebras explicitly in an ad-hoc universal algebraic way, the whole clone is naturally constructed
using categorical algebraic techniques.

Keywords: algebraic logic, equivalent deductive systems, algebraizable logics, institutions, equivalent
institutions, algebraizable institutions, algebraic theories, monads, triples, adjunctions, equational
logic, clone algebras, substitution algebras

1991 AMS Subject Classification: Primary: 03Gxx,18Cxx, Secondary: 08Bxx,08Cxx,68N05.

1 Introduction

Equational logic has been one of the most popular and best studied logics in both
mathematics and computer science. [26] and [23] provide an overview of equational
logic and of results pertaining to both some of its logical and some of its computational
aspects. In [1] classical results from the model theory of algebras and some results from
the theory of partial algebras and relational structures were generalized to categories
satisfying a variety of conditions simulating conditions holding in model categories.
These results were further unified to one general axiomatizability result in [24].

Recent work in computer science, especially the areas of logic-based specifications
and logic programming, has focused on different versions of equational logic and other
equational based logics. In [6, 7], for instance, weak inclusion systems were introduced
as a way of lifting the notion of inclusion from the category of sets to arbitrary cate-
gories. Inclusion systems are similar to the classical factorization systems. However,
when inclusion systems are used, the factorizations obtained are literally unique and
not unique only up to isomorphisms. Roşu, inspired by [1] and [24], used inclusion
systems, a strengthening of weak inclusion systems, in [25] to provide a categorical
framework for equational logic together with versions of Birkhoff-style axiomatizabil-
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ity results in the spirit of Andréka, Németi and Sain. A different abstraction of
equational logic, category-based equational logic, was given in [13] and [18] with a
view towards applications to the theory and the methods of logic programming. Both
[25] and [18] include formalizations of the equational systems studied as institutions.

Besides formalizing a logical system as an institution, some work has been focused
on connecting different institutions together via institution morphisms. Institution
morphisms are involved in a substantial way in relating institutions with their alge-
braic counterparts in the context of categorical abstract algebraic logic. A survey of
the most popular kinds of institution morphisms that have been introduced in the
institution literature is given in [19]. [8] presents a nice account of how components
of one logical system, formalized as an institution-like structure, may be borrowed by
another system when a morphism that connects parts of the two systems exists.

As is common with many other popular logics, equational logic has also been ex-
tensively discussed and studied in the context of algebraic logic. [14] presents an
algebraization of equational logic, which is further pursued and refined in the context
of first-order logic in [9]. In the main framework of [14], variables play the role of term
operations and the actual operations are the coordinate-wise projections and the sub-
stitutions of one operation for a variable in another. As a consequence, it is assumed
that the algebraic type is countably infinite, fixed but arbitrary, and all operations are
infinitary. The substitution operators are chosen in an ad-hoc way and satisfy several
axioms that reflect the properties of the metamathematical substitution operators of
algebra.

In [4], Blok and Pigozzi, following work of Czelakowski [10] and their own previous
work [3], made for the first time precise the notion of an algebraizable logic. Their
effort spearheaded the development of a bulk of work that came to be known under
the name of abstract algebraic logic. Instead of considering the algebraization of
individual specific logics one at a time in an ad-hoc fashion, classes of sentential
logics or deductive systems are handled collectively in a systematic way and their
properties both with respect to algebraizability and as related to the properties of
their algebraizing classes of algebras are studied. A comprehensive overview of the
main results of this field is presented in [11]. In this new context, the effort to devise
a more satisfactory algebraization of equational logic has been renewed. In [12] the
work of [14] is exploited to develop a system of equational logic that is amenable to
the general algebraization techniques of [4]. This system is called hyperequational
logic. The fact that the algebraization of equational logic of [14] is used to form a
system of equational logic that is amenable to the algebraization techniques of [4] is
an indication of the inadequacy of the theory of [4] to deal with multi-signature logics
in a satisfactory way. Instead of dealing directly with a ”natural” deductive system
representing equational logic, a modification of the system, based on the knowledge
of a previous algebraization, has to take place. This problem also appears when one
deals with first-order logic, as is shown by considering the system in Appendix C of
[4] in comparison with the algebraization of first-order logic using cylindric algebras
[20]. Pigozzi had been aware of this problem very soon after the publication of [4] and
this led to his directing the author’s doctoral dissertation [27] that set out to address
this and other similar problems and restrictions of the algebraization framework of
[4].

The new categorical algebraization framework, developed in [27], has been presented
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in [28, 29]. A strengthening of one of the main results of [28] has been recently
given in [30]. Among the main examples of this modern categorical treatment of
algebraizability, presented in [29], was the algebraization of multi-signature equational
logic. The main two distinctive features of this algebraization, as compared to the
ones presented in [14] and [12], are, first, the treatment of substitution operations in
the object language rather than the metalanguage and, second, the use of categorical
algebraic techniques rather than universal algebraic methods to construct, in a natural
way, the whole clone of operations of the algebraizing class of algebras rather than
choosing basic operations and axioms in an ad-hoc way, as is done in the traditional
treatment. In [29], it was promised that the details of the constructions and the proofs
on this novel algebraization of equational logic were relegated to a forthcoming paper.
This paper fulfills that promise with a slight twist. As the basic category in which
equational logic and its signatures are developed is taken here the category of chain
sets rather than the category of ω-sets as was done in [29]. The development and the
details otherwise are completely parallel. In [31], a follow-up to the present work, the
connections of the algebraic theory that is used in the categorical algebraization of
equational logic in the present paper with varieties of algebras that have been used
in the traditional algebraizations of equational logic is explored in more detail. In a
similar vein, in [32] the categorical algebraization process is applied to a system of
first-order logic without terms and an algebraic theory is obtained. That theory is
then used to algebraize the system. Connections of the theory with the variety of
cylindric algebras, which have been used to algebraize equational logic without terms
in the traditional way have been explored in some detail in [33].

Next, a summary is given of the background needed to understand the modern al-
gebraization process. For categorical prerequisites and notation the reader is referred
to any of [2, 5, 21]. More specifically, for background information on the theory of
algebraic theories (or monads or triples) and how it relates to universal algebra, [22]
and Volume 2 of [5] are excellent references.

Replacing deductive systems in the categorical framework are the notions of an
institution, introduced by Goguen and Burstall [16, 17], and of a π-institution, a
modification of institution, introduced by Fiadeiro and Sernadas [15].

An institution I = 〈Sign, SEN, MOD, |=〉 is a quadruple consisting of

(i) a category Sign whose objects are called signatures and whose morphisms are
called assignments,

(ii) a functor SEN : Sign → Set from the category of signatures to the category
of small sets, giving, for each Σ ∈ |Sign|, the set of Σ-sentences SEN(Σ) and
mapping an assignment f : Σ1 → Σ2 to a substitution SEN(f) : SEN(Σ1) →
SEN(Σ2),

(iii) a functor MOD : Sign → CATop from the category of signatures to the opposite
of the category of categories giving, for each signature Σ, the category of Σ-models
MOD(Σ),

(iv) for each signature Σ, a satisfaction relation |=Σ⊆ |MOD(Σ)| × SEN(Σ), such
that, for all f : Σ1 → Σ2 ∈ Mor(Sign), φ ∈ SEN(Σ1) and m ∈ |MOD(Σ2)|, the
following satisfaction condition holds

MOD(f)(m) |=Σ1 φ iff m |=Σ2 SEN(f)(φ).
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Pictorially, this condition may be illustrated as follows:

m SEN(f)(φ)|=Σ2

MOD(f)(m) φ
|=Σ1

6MOD(f)
?
SEN(f)

A π-institution I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉, on the other hand, is a triple with
its first two components exactly the same as the first two components of an institution
and, for every Σ ∈ |Sign|, a closure operator CΣ : P(SEN(Σ)) → P(SEN(Σ)), such
that, for every f : Σ1 → Σ2 ∈ Mor(Sign),

SEN(f)(CΣ1(Γ)) ⊆ CΣ2(SEN(f)(Γ)), for all Γ ⊆ SEN(Σ1).

Given an institution I = 〈Sign, SEN, MOD, |=〉, define, for all Σ ∈ |Sign|, Γ ⊆
SEN(Σ), M ⊆ |MOD(Σ)|,

Γ∗ = {m ∈ |MOD(Σ)| : m |=Σ Γ} and M∗ = {φ ∈ SEN(Σ) : M |=Σ φ}

and set CΣ(Γ) = Γ∗∗, for all Σ ∈ |Sign|, Γ ⊆ SEN(Σ). Then π(I) = 〈Sign,SEN,
{CΣ}Σ∈|Sign|〉 is a π-institution, called the π-institution associated with the insti-
tution I and denoted by π(I), or, sometimes, also by I, for simplicity. In the sequel,
instead of CΣ(Γ) to denote the closure of a set Γ of Σ-sentences of an institution or
of a π-institution, the simplifying notation Γc will be used. Since the signature Σ is
usually clear from context, this notation will not cause any confusion.

Let C be a category, T = 〈T, η, µ〉 an algebraic theory in monoid form in C, L a
full subcategory of CT, Ξ : C → Set a functor and Q a subcategory of CT. Define
the 〈L, Ξ,Q〉-algebraic institution I〈L,Ξ,Q〉 = 〈L, EQ, ALG, |=〉 as follows

(i) EQ : L → Set is given by EQ = ((Ξ ◦ UT) ¹L)2, i.e.,

EQ(L) = Ξ(T (L))2, for every L ∈ |L|,

and, given f : L ⇀ K ∈ Mor(L),

EQ(f)(〈s, t〉) = (Ξ(µKT (f))(s), Ξ(µKT (f))(t)), for all 〈s, t〉 ∈ Ξ(T (L))2.

Ξ(T (L)) Ξ(T (T (K)))-
Ξ(T (f))

Ξ(T (K))-
Ξ(µK)

(ii) ALG : L → CATop is the functor that sends an object L ∈ |L| to the category
ALG(L) with objects triples of the form 〈〈X, ξ〉, f〉, 〈X, ξ〉 ∈ |Q|, f : L ⇀ X ∈
Mor(CT), and morphisms h : 〈〈X, ξ〉, f〉 → 〈〈Y, ζ〉, g〉 Q-morphisms h : 〈X, ξ〉 →
〈Y, ζ〉, such that g = T (h)f.

T (X) T (Y )-
T (h)

L

f
¡

¡
¡

¡ª

g
@

@
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Moreover, given k : L ⇀ K ∈ Mor(L), ALG(k) : ALG(K) → ALG(L) is the
functor that sends 〈〈X, ξ〉, f〉 ∈ |ALG(K)| to 〈〈X, ξ〉, f ◦ k〉 ∈ |ALG(L)| and h :
〈〈X, ξ〉, f〉 → 〈〈Y, ζ〉, g〉 ∈ Mor(ALG(K)) to

ALG(k)(h) = h : 〈〈X, ξ〉, f ◦ k〉 → 〈〈Y, ζ〉, g ◦ k〉 ∈ Mor(ALG(L)).

(iii) |=L⊆ |ALG(L)| × EQ(L) is defined by

〈〈X, ξ〉, f〉 |=L 〈s, t〉 iff Ξ(ξµXT (f))(s) = Ξ(ξµXT (f))(t),

T (L) T (T (X))-
T (f)

T (X)-
µX

X-
ξ

for all 〈〈X, ξ〉, f〉 ∈ |ALG(L)|, 〈s, t〉 ∈ EQ(L).

By the 〈L, Ξ,Q〉-algebraic π-institution, we will understand the π-institution (also
denoted by I〈L,Ξ,Q〉) associated with the institution I〈L,Ξ,Q〉

Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉, I2 = 〈Sign2, SEN2, {CΣ}Σ∈|Sign2|〉 be two
π-institutions. A translation of I1 in I2 is a pair 〈F, α〉 : I1 → I2 consisting of a
functor F : Sign1 → Sign2 and a natural transformation α : SEN1 → PSEN2F.

A translation is called an interpretation if, in addition, for all Σ1 ∈ |Sign1|, Φ ∪
{φ} ⊆ SEN1(Σ1),

φ ∈ CΣ1(Φ) if and only if αΣ1(φ) ⊆ CF (Σ1)(αΣ1(Φ)).

I1 and I2 are called deductively equivalent if there exist interpretations 〈F, α〉 : I1 →
I2 and 〈G, β〉 : I2 → I1, such that

1. 〈F,G, η, ε〉 : Sign1 → Sign2 is an adjoint equivalence
2. for all Σ1 ∈ |Sign1|,Σ2 ∈ |Sign2|, φ ∈ SEN1(Σ1), ψ ∈ SEN2(Σ2),

CG(F (Σ1))(SEN1(ηΣ1)(φ)) = CG(F (Σ1))(βF (Σ1)(αΣ1(φ)))

CΣ2(SEN2(εΣ2)(αG(Σ2)(βΣ2(ψ)))) = CΣ2(ψ).

A π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 is algebraizable if it is deductively
equivalent to an 〈L, Ξ,Q〉-algebraic π-institution. Similarly, an institution I is alge-
braizable if it is deductively equivalent to an 〈L,Ξ,Q〉-algebraic institution.

In Section 2, the institution of equational logic is defined in detail. This differs from
the institution of Goguen and Burstall in several ways. First, it is restricted to single
sorted algebras rather than handling the general case of multiple sorts. On the other
hand, the institution of Section 2 allows for the substitution of term operations of one
signature for basic operations of another whereas the one presented in [16] is restricted
to substitutions of basic operations for basic operations. The added generality, in this
respect, is crucial for our algebraization framework. The presentation is split to
syntax, semantics and the interaction between them via the Tarski-style satisfaction
relations. In Section 3, the algebraic institution of equational algebras, corresponding
to the substitution algebras of Feldman, is constructed. The adjunction that gives
rise to the algebraic theory is developed first. The theory is then described as it is
naturally extracted from the adjunction in the usual way. They both form the basis
of the algebraic institution of equational algebra. Finally, in Section 4, the actual
algebraization process is given. The functors and the natural transformations are
first constructed and, then, the conditions that show that the ensuing translations
are inverse interpretations are proven in detail, concluding the presentation.
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2 Equational Logic

The Underlying Category

Definition 2.1
By an ascending chain of sets or, simply, a chain set A, we mean a family of sets
A = {Ak : k ∈ ω}, such that Ak ⊆ Ak+1, for every k ∈ ω. By a chain set morphism
f : A → B, we mean a family of set maps f = {fk : Ak → Bk : k ∈ ω}, such that the
following diagram commutes, for every k ∈ ω,

Ak Bk
-

fk

Ak+1 Bk+1
-fk+1

6
i

6
i

where by i : Ak → Ak+1 and i : Bk → Bk+1 we denote the inclusion maps.

Given two chain set morphisms f : A → B and g : B → C we define their
composite gf : A → C to be the collection of maps gf = {gkfk : Ak → Ck : k ∈ ω}.
With this composition the collection of chain sets with chain set morphisms between
them forms a category. It is called the category of chain sets and denoted by
CSet.

The Signatures

To faithfully represent algebraic systems, any formalization of equational logic must
handle in a satisfactory way types of algebraic structures and the possible interpre-
tations of one type in another. Use of the institution structure as the underlying
formalism encourages viewing algebraic signatures as objects in a category and the
interpretations between them as morphisms in this category. This category, called
Sign, will now be defined.

A countable set V = {v0, v1, . . .}, called set of variables, is fixed in advance and
well-ordered and by Set is denoted the category of small sets.

Definition 2.2
Let X ∈ |CSet|. The chain set of X-terms

TmX(V ) = {TmX(V )k : k ∈ ω} ∈ |CSet|
is defined by letting TmX(V )k be the smallest set with

• vi ∈ TmX(V )k, i < k,

• x(t0, . . . , tn−1) ∈ TmX(V )k, for all n ∈ ω, x ∈ Xn−Xn−1, t0, . . . , tn−1 ∈ TmX(V )k.

Definition 2.3
Let X ∈ |CSet|. Define a doubly indexed collection of functions

RXk,l
: TmX(V )k × TmX(V )k

l → TmX(V )l

by recursion on the structure of X-terms as follows:
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• RXk,l
(vi, ~s) = si, for all i < k,~s ∈ TmX(V )k

l ,

• RXk,l
(x(t0, . . . , tn−1), ~s) = x(RXk,l

(t0, ~s), . . . , RXk,l
(tn−1, ~s)), for all n ∈ ω, x ∈

Xn −Xn−1, t0, . . . , tn−1 ∈ TmX(V )k, ~s ∈ TmX(V )k
l .

It can be shown by an easy induction on the structure of X-terms that, for all
k, l ∈ ω, t ∈ TmX(V )k, ~s ∈ TmX(V )k

l ,

RXk,l
(t, ~s) = RXk,l+1(t, ~s) and RXk,l

(t, ~s) = RXk+1,l
(t, ~s). (2.1)

This fact will be used repeatedly in the sequel without being explicitly mentioned.
It is also not very difficult to see, by induction on the structure of X-terms, that,

for all k ∈ ω, t ∈ TmX(V )k,

RXk,k
(t, 〈v0, v1, . . . , vk−1〉) = t. (2.2)

Given two chain sets X and Y, any chain set morphism f from X into the chain set
TmY (V ) may be extended to a chain set morphism f∗ from TmX(V ) into TmY (V ).
The definition of this extension is given next.

Definition 2.4
Let X,Y ∈ |CSet|, f : X → TmY (V ) ∈ Mor(CSet). Define f∗ : TmX(V ) →
TmY (V ), with f∗k : TmX(V )k → TmY (V )k, for every k ∈ ω, by recursion on the
structure of X-terms as follows:

• f∗k (vi) = vi, i < k,

• f∗k (x(t0, . . . , tn−1)) = RYn,k
(fn(x), 〈f∗k (t0), . . . , f∗k (tn−1)〉), for all n ∈ ω, x ∈ Xn −

Xn−1, t0, . . . , tn−1 ∈ TmX(V )k.

It is not hard to check that f∗ : TmX(V ) → TmY (V ), as defined in 2.4, is a chain
set morphism. In the sequel, we write f : X ⇁ Y to denote a CSet-map f : X →
TmY (V ). Given two such maps f : X ⇁ Y and g : Y ⇁ Z, their composition
g ◦ f : X ⇁ Z is defined to be the CSet-map

g ◦ f = g∗f.

We now proceed to show that the composition ◦ is associative, i.e., that given three
morphisms f : X ⇁ Y, g : Y ⇁ Z and h : Z ⇁ W we have (h ◦ g) ◦ f = h ◦ (g ◦ f).
Some technical lemmas are needed first that will also be of use later. The proofs can
be carried out by a routine induction on the structure of X-terms and are therefore
omitted.

Lemma 2.5
Let k, l,m ∈ ω, t ∈ TmX(V )k, ~u ∈ TmX(V )k

l and ~s ∈ TmX(V )l
m. Then

RXl,m
(RXk,l

(t, ~u), ~s) = RXk,m
(t, 〈RXl,m

(u0, ~s), . . . , RXl,m
(uk−1, ~s)〉).

Using Lemma 2.5 the following may be shown:

Lemma 2.6
Let f : X ⇁ Y, k, l ∈ ω, t ∈ TmX(V )k, ~s ∈ TmX(V )k

l . Then

f∗l (RXk,l
(t, ~s)) = RYk,l

(f∗k (t), f∗l (~s)).
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With the help of Lemma 2.6 the following may now be easily proved:

Lemma 2.7
Let f : X ⇁ Y, g : Y ⇁ Z. Then (g ◦ f)∗ = g∗f∗.

Proof:
It suffices to show that, for every k ∈ ω, t ∈ TmX(V )k, (g ◦ f)∗k(t) = g∗k(f∗k (t)). We

use induction on the structure of the X-term t.
If t = vj , j < k, (g ◦ f)∗k(vj) = vj = g∗k(f∗k (vj)).
Next, if n ∈ ω, x ∈ Xn −Xn−1, t0, . . . , tn−1 ∈ TmX(V )k,

(g ◦ f)∗k(x(t0, . . . , tn−1)) =

= RZn,k
(g∗n(fn(x)), 〈(g ◦ f)∗k(t0), . . . , (g ◦ f)∗k(tn−1)〉)

= RZn,k
(g∗n(fn(x)), 〈g∗k(f∗k (t0)), . . . , g∗k(f∗k (tn−1))〉)

= g∗k(RYn,k
(fn(x), 〈f∗k (t0), . . . , f∗k (tn−1)〉))

= g∗k(f∗k (x(t0, . . . , tn−1))).

¥
If f : X ⇁ Y, g : Y ⇁ Z and h : Z ⇁ W we have

h ◦ (g ◦ f) = h∗(g ◦ f)
= h∗(g∗f)
= (h∗g∗)f
= (h ◦ g)∗f (by Lemma 2.7)
= (h ◦ g) ◦ f,

whence ◦ is associative as claimed.
Now define jX : X ⇁ X, given by jXk

: Xk → TmX(V )k, with

jXk
(x) = x(v0, . . . , vk−1), for all x ∈ Xk −Xk−1.

Note, that, for all k ∈ ω, t ∈ TmX(V )k,

j∗Xk
(t) = t. (2.3)

It is not hard to prove, using (2.2) and (2.3), that, given f : X ⇁ Y and g : Z ⇁ X
we have f ◦ jX = f and jX ◦ g = g.

The discussion above shows that Sign, having collection of objects |CSet| and
collections of morphisms

Sign(X, Y ) = {f : X ⇁ Y : f ∈ CSet(X, TmY (V )},

for all X, Y ∈ |CSet|, with composition ◦ and X-identity jX , is a category.

The Syntax

In formalizing a logical system one has first to define its syntactic component. In
classical deductive systems this consists of defining the well-formed formulas and the
substitutions of formulas for individual variables. In a multi-signature system, like
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equational logic, a set of well-formed formulas for each type has to be defined and the
effect of the different possible interpretations of one type into another on formulas
specified. The use of the institution structure as the underlying formalism in this
context makes it possible to unify the setting by considering a functor SEN : Sign →
Set, whose object part gives the X-formulas, for each chosen type X, and whose
morphism part specifies the effect of type interpretations on formulas.

At the object level, for every X ∈ |Sign|, we define

SEN(X) = (
∞⋃

k=0

TmX(V )k)2.

We call an s ≈ t ∈ SEN(X) an X-equation. At the morphism level, given f :
X ⇁ Y ∈ Mor(Sign), we define SEN(f) : SEN(X) → SEN(Y ) by letting, for all
s, t ∈ ⋃∞

k=0 TmX(V )k,

SEN(f)(s ≈ t) = f∗k (s) ≈ f∗k (t), if s, t ∈ TmX(V )k.

SEN(f) is well-defined, because, if s ∈ TmX(V )k∩TmX(V )l, then f∗k (s) = f∗l (s) and
the same holds for t, by the definition of a CSet-morphism. It therefore remains to
show that SEN is indeed a functor. If f : X ⇁ Y, g : Y ⇁ Z ∈ Mor(Sign), we have

SEN(g ◦ f) = [(g ◦ f)∗]2

= [g∗f∗]2 (by Lemma 2.7)
= SEN(g)SEN(f).

The Semantics

The second component that has to be specified in the description of a logic is its
semantics. For the case of a multi-signature logical system a collection of models has
to be specified for each of the different types. Moreover, the effect of interpreting one
type into another on models has to be described. The use of the institution formalism
imposes a certain uniformity on the collections of models. A functor MOD : Sign →
CATop has to be defined. Its object part determines, for each given type X, a
category MOD(X) whose objects are the X-models and whose morphisms represent
the possible transformations of one model into another that “preserve the structure”
of the models that is of interest. Its morphism part is the one that specifies how the
admissible interpretations of types, i.e., morphisms in Sign, affect the models.

We start by describing first the functor MOD : Sign → CATop at the object
level. Let A be a set. By Cl(A) ∈ |CSet| we denote the chain set whose k-th
level Clk(A) consists of all functions f : Aω → A that depend only on the first
k variables. Let X ∈ |CSet|. By an X-algebra A = 〈A,XA〉 we mean a pair
consisting of a set A and a CSet-morphism XA : X → Cl(A). Given two X-algebras
A = 〈A,XA〉,B = 〈B,XB〉, by an X-algebra homomorphism h : A → B we
mean a Set-map h : A → B, such that, for all n ∈ ω, x ∈ Xn,~a ∈ Aω,

h(xA(~a)) = xB(h(~a)).

X-algebras with X-algebra homomorphisms between them form a category, denoted
by MOD(X).
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Given an X-algebra A = 〈A,XA〉, one defines a CSet-map A : TmX(V ) → Cl(A)
by induction on the structure of X-terms as follows:

• vA
i = pi, with pi(~a) = ai, for all ~a ∈ Aω, i < k.

• [x(t0, . . . , tn−1)]A(~a) = xA(tA0 (~a), . . . , tAn−1(~a)), for all ~a ∈ Aω, n ∈ ω, x ∈ Xn −
Xn−1, t0, . . . , tn−1 ∈ TmX(V )k.

The following lemma may now be proved by an easy induction on the structure of
X-terms.
Lemma 2.8
Let A = 〈A,XA〉,B = 〈B, XB〉 ∈ |MOD(X)|, and h : A → B ∈ Mor(MOD(X)) and
t ∈ TmX(V )k. Then

h(tA(~a)) = tB(h(~a)).

Next, we define MOD at the morphism level. Let f : X ⇁ Y ∈ Mor(Sign).
MOD(f) : MOD(Y ) → MOD(X) is the functor defined as follows: Given A =
〈A, Y A〉 ∈ |MOD(Y )|,

MOD(f)(A) = 〈A,XMOD(f)(A)〉, with

xMOD(f)(A)(~a) = f(x)A(~a), for all x ∈ X,~a ∈ Aω.

Moreover, given a morphism h : 〈A, Y A〉 → 〈B, Y B〉 ∈ Mor(MOD(Y )), MOD(f)(h) :
〈A,XMOD(f)(A)〉 → 〈B,XMOD(f)(B)〉 is given by

MOD(f)(h) = h.

Lemma 2.8 may be used to show that MOD(f) is well defined at the morphism level.
It is then immediate that MOD : Sign → CATop, as defined above, is a functor.

Syntax, Semantics and Satisfaction

The syntax and the semantics components of equational logic having been defined , it
remains to see how these two interact. This is the most important feature of the logic,
since it allows the specification of a deductive apparatus in the case of a semantically
defined logic. This interaction takes the form of a satisfaction relation between models
and sentences. Following Tarski, one has to specify when a sentence of the logic is
satisfied by a given model. Since a multi-signature system is under consideration, a
collection of such satisfaction relations has to be defined. More precisely, for each
type X, one has to define what it means for an X-algebra A to satisfy an X-equation
s ≈ t. Using the institution framework we proceed by completing the definition of the
appropriate institution.

Define EQ = 〈Sign,SEN, MOD, |=〉 by letting Sign be the category defined in “The
Signatures” subsection, SEN : Sign → Set be the functor defined in “The Syntax”
subsection, MOD be the functor defined in “The Semantics” subsection and, for every
X ∈ |Sign|, |=X ⊆ |MOD(X)| × SEN(X) be defined by

〈A,XA〉 |=X s ≈ t iff sA(~a) = tA(~a) for every ~a ∈ Aω,

for all A = 〈A,XA〉 ∈ |MOD(X)|, s ≈ t ∈ SEN(X).
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The institution formalism requires showing that ”truth is invariant under change
of notation”. This means that, if one type gets interpreted into another, the induced
transformations on the sentences and the models will be such that satisfaction will
not be affected. Formally, if f : X ⇁ Y ∈ Mor(Sign), s ≈ t ∈ SEN(X) and A =
〈A, Y A〉 ∈ |MOD(Y )|, we must have

〈A,XMOD(f)(A)〉 |=X s ≈ t iff 〈A, Y A〉 |=Y SEN(f)(s ≈ t). (2.4)

To show that this equivalence holds in the present context, two technical lemmas
are needed first. They may again be proved by simple induction on the structure of
X-terms, so their proofs will be omitted.

Lemma 2.9
Let X ∈ |Sign|, k, l ∈ ω, t ∈ TmX(V )k, ~s ∈ TmX(V )k

l ,A = 〈A,XA〉 ∈ |MOD(X)|,
~a ∈ Aω. Then

RXk,l
(t, ~s)A(~a) = tA(sA

0 (~a), . . . , sA
k−1(~a)).

With the help of Lemma 2.9, the following may now be proved.

Lemma 2.10
Let X,Y ∈ |Sign|, f : X ⇁ Y ∈ Mor(Sign), k ∈ ω, t ∈ TmX(V )k,A = 〈A, Y A〉 ∈
|MOD(Y )|. Then

tMOD(f)(A)(~a) = f∗k (t)A(~a), for every ~a ∈ Aω.

Lemma 2.10 may now be used to prove that the satisfaction relation (2.4) holds.
We have

〈A,XMOD(f)(A)〉 |=X s ≈ t iff sMOD(f)(A)(~a) = tMOD(f)(A)(~a), ~a ∈ Aω,
iff f∗k (s)A(~a) = f∗k (t)A(~a), for all ~a ∈ Aω,
iff 〈A, Y A〉 |=Y f∗(s) ≈ f∗(t)
iff 〈A, Y A〉 |=Y SEN(f)(s ≈ t),

as claimed. EQ is called the equational institution.

3 Equational Algebra

Roughly speaking, the aim of this paper is to show how one can construct in a very
natural way an algebraic theory whose algebras may be used to “simulate” algebras of
arbitrary types. In the equational institution, to each chosen type X, there are associ-
ated X-equations and X-algebras that are related to each other via the X-satisfaction
relation. Each type is related to the remaining types via the signature interpretations,
i.e., mappings in Sign, which also affect the equations and the algebras accordingly.
This relations between the types impose a certain uniformity. This makes it possible
to “unite” the different algebra types in one, by exploiting the common features in
the construction. Surveying the types individually, one may notice that all the equa-
tions, regardless of type, use common variables in V and substitution operations of
terms of one type for basic operations of another are performed uniformly. The most
important difference between types is the number and arity of operation symbols used
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to construct the terms of each type. Grouping the common features together, an al-
gebraic theory in Sign, representing “algebras of a single type” will be obtained, such
that, the sets of variables, used to construct this single type terms, will correspond to
algebraic types of the equational institution. Moreover, substitution of a term for a
variable in this single type context will correspond to interpreting a type into another
type in the equational institution context.

The Adjunction

It is well-known from categorical algebra that to each algebraic theory T = 〈T, η, µ〉 in
monoid form in a category C, there correspond two very important adjunctions. One
is the Kleisli adjunction between C and the Kleisli category CT, with objects the free
algebras of the theory T, and the other is the Eilenberg-Moore adjunction between
C and the Eilenberg-Moore category CT, with objects all T-algebras. Conversely,
one of the most natural ways in which an algebraic theory may arise, is through
the construction of an adjunction 〈F, G, η, ε〉 : C → D, between a category C and
a category D. Such an adjunction gives rise to an algebraic theory T = 〈T, η, µ〉 in
C, by setting T = UF and µ = UεF . The fact that an algebraic theory is obtained
in such a natural way via an adjunction is, besides generality, the main feature that
makes the modern, categorical treatment of algebraic logic so much more successful
in dealing with multi-signature logical systems, like equational logic, than the old,
traditional one. In this context, algebraic counterparts are constructed naturally
without artificial, ad-hoc manipulation of the logical system.

In this subsection, we show how to naturally extract an adjunction out of the
construction of the signature category Sign of the equational institution.

First, define a functor F : CSet → Sign by

F (X) = X, for every X ∈ |CSet|,
and, given f : X → Y ∈ Mor(CSet),

F (f) = jY f : X ⇁ Y.

If f : X → Y, g : Y → Z ∈ Mor(CSet), then, for all k ∈ ω, x ∈ Xk, with fk(x) ∈
Yl − Yl−1

F (gf)k(x) = jZk
((gf)k(x))

= jZk
((gkfk)(x))

= (jZk
gk)(fk(x))

= (jZg)l(fk(x))
= RZl,k

((jZg)l(fk(x)), 〈(jZg)∗k(v0), . . . , (jZg)∗k(vl−1)〉)
= (jZg)∗k(fk(x)(v0, . . . , vl−1))
= (jZg)∗k((jY f)k(x))
= F (g)∗k(F (f)∗k(x))
= (F (g)k ◦ F (f)k)(x),

i.e., F is indeed a functor.
Next define a functor U : Sign → CSet by

U(X) = TmX(V ), for every X ∈ |Sign|,
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and, given f : X ⇁ Y ∈ Mor(Sign),

U(f) = f∗ : TmX(V ) → TmY (V ).

Then, if f : X ⇁ Y, g : Y ⇁ Z ∈ Mor(Sign), we have

U(g ◦ f) = (g ◦ f)∗

= g∗f∗ (by Lemma 2.7)
= U(g)U(f),

i.e., U is indeed a functor, as claimed.
Finally, define natural transformations η : ICSet → UF by ηX : X → TmX(V ),

with
ηX = jX , for every X ∈ |CSet|,

and ε : FU → ISign by εX : TmX(V ) ⇁ X, with

εX = iTmX(V ), for every X ∈ |Sign|.
We show that η and ε are in fact natural transformations. To this end, let f : X →
Y ∈ Mor(CSet). We need to show that the following diagram commutes

Y TmY (V )-
ηY

X TmX(V )-ηX

?

f

?

(jY f)∗

We have, for all x ∈ Xk −Xk−1,

(jY f)∗k(ηXk
(x)) = (jY f)∗k(x(v0, . . . , vk−1))

= RYk,k
((jY f)k(x), 〈(jY f)∗k(v0), . . . , (jY f)∗k(vk−1)〉)

= RYk,k
((jY f)k(x), 〈v0, . . . , vk−1〉)

= (jY f)k(x) by (2.2).

For ε, let f : X ⇁ Y ∈ Mor(Sign). We have to show that the following diagram
commutes

TmY (V ) Y-
εY

TmX(V ) X-εX

?

jTmY (V )f
∗

?

f

We have
f ◦ εX = f∗εX

= f∗

= εY f∗

= ε∗Y jTmY (V )f
∗

= εY ◦ F (U(f)).
The next theorem may now be proved, that shows that the functors F : CSet → Sign
and U : Sign → CSet are adjoints with unit η and counit ε. This will conclude the
first stage of the algebraization, i.e., the construction of the adjunction that will help
create the algebraic theory used to algebraize equational logic.
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Theorem 3.1
〈F,U, η, ε〉 : CSet → Sign is an adjunction.

Proof:
The proof boils down in showing that the following diagrams commute, for all

X ∈ |CSet|, Y ∈ |Sign|,

TmX(V ) TmTmX(V )(V )-ηTmX(V )

iTmX(V )

@
@

@
@

@
@

@
@R
TmX(V )

?

i∗TmX(V )

Y TmY (V )-ηTmY (V )ηY

ηY

@
@

@
@

@
@

@
@R

Y
?

iTmY (V )

Commutativity of the first triangle follows directly from the fact that the morphism
jTmX(V ) is the identity morphism of ◦. For the second diagram, we have

iTmY (V ) ◦ (jTmY (V )jY ) = i∗TmY (V )(jTmY (V )jY )
= (i∗TmY (V )jTmY (V ))jY

= iTmY (V )jY

= jY ,

as required. ¥

The Algebraic Theory

In this subsection, we review in some detail how the adjunction 〈F, U, η, ε〉 : CSet →
Sign gives rise to an algebraic theory T = 〈T, η, µ〉 in monoid form in CSet. As
already mentioned, this process of extracting the algebraic theory T out of the ad-
junction relating the signature category of the multi-signature logic with its ”under-
lying category” is the gist of the modern, categorical theory of algebraizability. It
is the process of natural, automatic abstraction of the common features present in
the different syntax components of the logical system that are, however, interrelated
via the Sign-morphisms, which may be viewed as uniformly applicable substitution
operations. Once this is done, to complete the algebraization, it only remains to in-
vestigate whether the semantical deduction of the logical system can be simulated via
the semantical deduction induced by some class of T-algebras.

To create the algebraic theory, we set T = UF and µ = UεF . T : CSet → CSet
is a functor, since it is the composite of two functors, and µ : TT → T is a natu-
ral transformation, since ε is a natural transformation. Furthermore, the triangular
identities of the adjunction induce the commutativity of the following diagrams, that
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are the prerequisites for T = 〈T, η, µ〉 to be an algebraic theory in CSet.

T

iT

@
@

@
@
@R

T TT-ηT
T¾T (η)

?

µ iT

¡
¡

¡
¡

¡ª
TT T-

µ

TTT TT-T (µ)

?

µT

?

µ

Moreover there exists a unique functor K : CSetT → Sign from the Kleisli category
of the theory T to Sign, called the Kleisli comparison functor of the adjunction, that
makes the F - and U -paths of the following diagrams commute.

CSetT Sign-K

CSet

FT

@
@

@
@I

F

¡
¡

¡
¡µ

CSetT Sign-K

CSet

UT

@
@

@
@R

U
¡

¡
¡

¡ª

Since the Kleisli category of an algebraic theory has, by definition, as objects the same
objects with the underlying category of the theory and as morphisms from an object
X to an object Y all the morphisms in the underlying category from X to T (Y ), with
composition ◦K given by g ◦K f = µY T (g)f, for all f : X → T (Y ), g : Y → T (Z) ∈
Mor(CSet), it is easy to see that in this case CSetT = Sign and K = ISign. In fact

g ◦K f = µZT (g)f
= U(εF (Z))U(F (g))f
= U(εF (Z) ◦ F (g))f
= U(i∗TmF (Z)(V )jZg)f
= U(g)f
= g∗f
= g ◦ f.

Therefore Sign is the category of all free algebras of the algebraic theory T over
CSet.

A T-algebra X = 〈X, ξ〉 in CSet is now a pair consisting of a chain set X together
with a CSet-morphism ξ : TmX(V ) → X, such that the following diagrams commute

X TmX(V )-jX

iX

@
@

@
@
@R

X
?

ξ

TmX(V ) X-
ξ

TmTmX(V )(V ) TmX(V )-(jXξ)∗

?

i∗TmX(V )

?

ξ

The chain set X is called the carrier of X and the morphism ξ is called the structure
map of X. Moreover, given two T-algebras X = 〈X, ξ〉 and Y = 〈Y, ζ〉, a T-algebra
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homomorphism h : X → Y is a CSet-morphism h : X → Y, such that the following
diagram commutes.

X Y-
h

TmX(V ) TmY (V )-(jY h)∗

?

ξ

?

ζ

The category with collection of objects the collection of all T-algebras and with
morphisms all T-algebra homomorphisms between them is known as the Eilenberg-
Moore category of T-algebras in CSet and is denoted by CSetT.

The Clone Algebras

In this subsection, it is shown how, given a set A, a T-algebra A∗ may be associated
with it. This association is very important for several reasons. First, it gives a
concrete example of what a T-algebra looks like. Intuitively speaking, A∗ will have
as universe the clone of all finitary functions on A and its structure map will show how
these operations behave under composition of functions. Second, it will be shown that,
roughly speaking, any X-algebra A, with universe A, satisfies the same X-equations
in the equational institution as A∗ will satisfy in an algebraic institution based on the
algebraic theory T, once we ”make fundamental operations in A∗ agree with those
of A”. We call A∗ the clone algebra of A. This process will allow the construction
of a class of clone algebras, whose semantical equational entailment will then be used
to algebraize equational logic.

Recall that, given a set A, Cl(A) denotes the chain set whose k-th level Clk(A)
consists of all functions f : Aω → A that depend only on the first k variables.
Given such a set A, we define A∗ = 〈Cl(A), ξA〉, where ξA : TmCl(A)(V ) → Cl(A) ∈
Mor(CSet) is determined by ξAk

: TmCl(A)(V )k → Clk(A), defined by recursion on
the structure of Cl(A)-terms over V as follows.

• ξAk
(vi) = pi, for every i < k, where pi : Aω → A is the i-th projection map.

• ξAk
(f(t0, . . . , tn−1)) = f(ξAk

(t0), . . . , ξAk
(tn−1)), for all n ∈ ω, f ∈ Cln(A) −

Cln−1(A), t0, . . . , tn−1 ∈ TmCl(A)(V )k.

It will be shown next that A∗ is a T-algebra. A technical lemma is needed first, whose
proof is by an easy induction on the structure of Cl(A)-terms and will therefore be
omitted.

Lemma 3.2
Let A be a set, k, l ∈ ω, t ∈ TmCl(A)(V )k, ~s ∈ TmCl(A)(V )k

l . Then

ξAl
(RCl(A)k,l

(t, ~s)) = ξAk
(t)(ξAl

(s0), . . . , ξAl
(sk−1)).

With the help of Lemma 3.2 it is now easy to show

Theorem 3.3
A∗ = 〈Cl(A), ξA〉 is a T-algebra.
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Proof:
By the definition of a T-algebra, we need to check the commutativity of the follow-

ing diagrams

Cl(A) TmCl(A)(V )-ηCl(A)

iCl(A)

@
@

@
@

@
@R
Cl(A)

?

ξA

TmCl(A)(V ) Cl(A)-
ξA

TmTmCl(A)(V )(V ) TmCl(A)(V )-(ηCl(A)ξA)∗

?

i∗TmCl(A)(V )

?

ξA

For the triangle, let k ∈ ω, f ∈ Clk(A)− Clk−1(A). Then

ξAk
(ηCl(A)k

(f)) = ξAk
(f(v0, . . . , vk−1))

= f(ξAk
(v0), . . . , ξAk

(vk−1))
= f(p0, . . . , pk−1)
= f.

For the rectangle, we work by induction on the structure of a TmCl(A)(V )-term t.
For t = vi, i < k, ξAk

((ηCl(A)ξA)∗k(vi)) = ξAk
(vi) = ξAk

(i∗TmCl(A)(V )k
(vi)).

Next, if n ∈ ω, t ∈ TmCl(A)(V )n − TmCl(A)(V )n−1, ~s ∈ TmTmCl(A)(V )(V )n
k , such

that, for all i < n, ξAk
((ηCl(A)ξA)∗k(si)) = ξAk

(i∗TmCl(A)(V )k
(si)), then

ξAk
((ηCl(A)ξA)∗k(t(s0, . . . , sn−1))) =

= ξAk
(RCl(A)n,k

(ηCl(A)n
(ξAn(t)), 〈(ηCl(A)ξA)∗k(s0), . . . , (ηCl(A)ξA)∗k(sn−1)〉))

= ξAn(ηCl(A)n
(ξAn(t)))(ξAk

((ηCl(A)ξA)∗k(s0)), . . . , ξAk
((ηCl(A)ξA)∗k(sn−1)))

= ξAn(t)(ξAk
(i∗TmCl(A)(V )k

(s0)), . . . , ξAk
(i∗TmCl(A)(V )k

(sn−1)))
= ξAk

(RCl(A)n,k
(t, 〈i∗TmCl(A)(V )k

(s0), . . . , i∗TmCl(A)(V )k
(sn−1)〉))

= ξAk
(i∗TmCl(A)(V )k

(t(s0, . . . , sn−1))).

¥

4 Algebraization of Equational Logic

Roughly speaking, algebraizing a logical system means associating with it an alge-
braic system in such a way that, first, each system may be syntactically interpreted
in the other and, second, the entailment of each system may be simulated by the
entailment of the other under the chosen syntactical interpretation. More specifically,
the algebraization process of a multi-signature logic consists of two main components.
A type of algebras has to be chosen that abstracts the syntactical features of the logic
common to all its signature components. This choice makes possible the syntactical
interpretation of the logic into the algebraic system and vice-versa. Once the type
has been chosen, a class of algebras of that type has to be selected in such a way that
the semantical consequence relation induced by it may simulate and be simulated by
the consequence relation of the logical system under the previously chosen syntactical
interpretations.
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In the institution context, given an institution I = 〈Sign, SEN,MOD, |=〉, that
represents the multi-signature logical system to be algebraized, the following steps
have to be carried out. An algebraic theory T in a category C has to be chosen, that
corresponds to the choice of a single type of algebras. A full subcategory L of the
Kleisli category CT and a subcategory Q of the Eilenberg-Moore category CT of T-
algebras have to be selected in such a way that an institution IL

Q = 〈L, EQ, ALG, |=〉
may be constructed, that is deductively equivalent to I. This means that there exist
functors F : Sign → L, G : L → Sign, that are components of a natural equiv-
alence 〈F, G, η, ε〉 : Sign → L modeling the syntactic interpretations, and natural
transformations α : SEN → PEQF, β : EQ → PSENG, such that, for every choice
of Σ ∈ |Sign|, L ∈ |L|, Φ ∪ {φ} ⊆ SEN(Σ),Ψ ∪ {ψ} ⊆ EQ(L), the following relations
hold

φ ∈ Φc iff αΣ(φ) ⊆ αΣ(Φ)c, (4.1)

ψ ∈ Ψc iff βL(ψ) ⊆ βL(Ψ)c (4.2)

SEN(ηΣ)(φ)c = βF (Σ)(αΣ(φ))c and EQ(εL)(αG(L)(βL(ψ)))c = {ψ}c (4.3)

Roughly speaking, α and β simulate the deduction mechanism of I into that of IL
Q

and vice-versa and are inverses of each other.
For the special case of the equational institution EQ = 〈Sign, SEN,MOD, |=〉 we

choose the algebraic theory T = 〈T, η, µ〉 in CSet, that was constructed in the previ-
ous section. We set L = Sign = CSetT and let Q be the full subcategory of CSetT

with collection of objects

{A∗ = 〈Cl(A), ξA〉 : A ∈ |Set|}.

Construct the institution IQ = 〈Sign, EQ, ALG, |=〉 as follows:

(i) EQ = SEN.

(ii) For every X ∈ |Sign|, ALG(X) is the category with objects pairs 〈A∗, f〉,A∗ ∈
|Q|, f : X ⇁ Cl(A) ∈ Mor(Sign), and morphisms h : 〈A∗, f〉 → 〈B∗, g〉, T-
algebra homomorphisms h : A∗ → B∗, such that g = h ◦ f. Moreover, given
k : X ⇁ Y ∈ Mor(Sign), ALG(k) : ALG(Y ) → ALG(X) is the functor that
maps an object 〈A∗, f〉 ∈ |ALG(Y )| to 〈A∗, f ◦ k〉 ∈ |ALG(X)| and a morphism
h : 〈A∗, f〉 → 〈B∗, g〉 to the morphism ALG(k)(h) : 〈A∗, f ◦k〉 → 〈B∗, g ◦k〉, with
ALG(k)(h) = h.

(iii) Finally, satisfaction in IQ is defined, for every X ∈ |Sign|, by

〈A∗, f〉 |=X s ≈ t iff ξA(f∗(s)) = ξA(f∗(t)),

for all 〈A∗, f〉 ∈ |ALG(X)|, s ≈ t ∈ EQ(X).

Before stating and proving the main result of the paper on the deductive equivalence
of EQ and IQ, the satisfaction of an equation by an X-algebra in the equational insti-
tution EQ and the satisfaction of the same equation by a clone algebra in the algebraic
institution IQ have to be related. Some preliminary work is done in the following two
lemmas. The proofs are, once more, by routine induction on the structure of terms
and therefore omitted.
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Lemma 4.1
Let X ∈ |Sign|, k ∈ ω, t ∈ TmX(V )k and A = 〈A, XA〉 ∈ |MOD(X)|. Then

tA = ξAk
((ηCl(A)X

A)∗k(t)).

Lemma 4.2
Let X ∈ |Sign|, k ∈ ω, t ∈ TmX(V )k and 〈〈Cl(A), ξA〉, f〉 ∈ |ALG(X)|. Then, if
A = 〈A, ξAf〉,

tA = ξAk
(f∗k (t)).

With the help of Lemmas 4.1 and 4.2, the following theorem may now be proved

Theorem 4.3
EQ = 〈Sign, SEN, MOD, |=〉 and IQ = 〈Sign,EQ, ALG, |=〉 are deductively equiva-
lent institutions.

Proof:
We take F = G = ISign as the signature functors and define the natural transfor-

mations α : SEN → PEQ and β : EQ → PSEN, by αX : SEN(X) → P(EQ(X)),
with

αX(s ≈ t) = {s ≈ t}, for every s ≈ t ∈ SEN(X),

and βX : EQ(X) → P(SEN(X)), with

βX(s ≈ t) = {s ≈ t}, for every s ≈ t ∈ EQ(X).

It is straightforward to check that α and β are indeed natural transformations. We
now need to show that (4.1),(4.2) and (4.3) hold.

For (4.1) and (4.2), let X ∈ |Sign|, E ∪ {s ≈ t} ⊆ SEN(X). We need to show that

s ≈ t ∈ EcEQ iff s ≈ t ∈ EcIQ .

We first show that, if s ≈ t ∈ EcEQ , then s ≈ t ∈ EcIQ . Suppose that s ≈ t ∈ EcEQ .
Then, for every A = 〈A,XA〉 ∈ |MOD(X)|,

eA
0 (~a) = eA

1 (~a), for every e0 ≈ e1 ∈ E,~a ∈ Aω, implies sA(~a) = tA(~a). (4.4)

Now assume that 〈A∗, f〉 ∈ |ALG(X)|, such that 〈A∗, f〉 |=X e0 ≈ e1, for all e0 ≈
e1 ∈ E. Then ξA(f∗(e0)) = ξA(f∗(e1)), for all e0 ≈ e1 ∈ E. Thus, by Lemma 4.2,
eA
0 = eA

1 , for all e0 ≈ e1 ∈ E, whence, by (4.4), sA = tA and, by reversing the steps
in the deduction above, 〈A∗, f〉 |=X s ≈ t. Hence s ≈ t ∈ EcIQ , as was to be shown.

Suppose, conversely, that s ≈ t ∈ EcIQ . Then, for every 〈A∗, f〉 ∈ |ALG(X)|,
〈A∗, f〉 |=X e0 ≈ e1, for all e0 ≈ e1 ∈ E, implies 〈A∗, f〉 |=X s ≈ t. (4.5)

Now assume that 〈A, XA〉 ∈ |MOD(X)|, such that eA
0 (~a) = eA

1 (~a), for all e0 ≈ e1 ∈
E,~a ∈ Aω. Then, by Lemma 4.1, ξA((ηCl(A)X

A)∗(e0)) = ξA((ηCl(A)X
A)∗(e1)), for

all e0 ≈ e1 ∈ E, i.e., 〈A∗, ηCl(A)X
A〉 |=X e0 ≈ e1, for every e0 ≈ e1 ∈ E. Thus,

by (4.5), 〈A∗, ηCl(A)X
A〉 |=X s ≈ t and reversing the steps in the deduction above

sA(~a) = tA(~a), for all ~a ∈ Aω. Therefore s ≈ t ∈ EcEQ , as required.
Since βX(αX(s ≈ t)) = {s ≈ t} and αX(βX(s ≈ t)) = {s ≈ t}, (4.3) obviously

holds. ¥



20 CAAL: Categorical Algebraization of Equational Logic

Acknowledgements

The author wishes to express his gratitude for their support to Don Pigozzi of Iowa
State and to Charles Wells of Case Western Reserve. Many thanks to an anonymous
referee who made useful suggestions in terms of both the content and the bibliography.

This work would not have been possible if it had not been for the pioneering work
of Wim Blok and Don Pigozzi, the founders of abstract algebraic logic. Wim Blok
passed away untimely in November of 2003. This work is dedicated to his memory.

References
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