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Abstract

Inspired by work of Fernández and Coniglio, we study a framework
for combining, by fibring, logics formalized as π-institutions. Fibring
of deductive systems, i.e., finitary and structural consequence relations
over sets of formulas, as presented by Fernández and Coniglio, becomes
a special case of fibring of π-institutions. Moreover, we show how their
study of preservation of algebraic properties, such as protoalgebraicity,
may be lifted to this more general context. Finally, with an eye towards
more applied logics, we illustrate how, using our framework, one may
obtain richer extensions of basic description logics by fibring simpler
extensions with various features that have been studied independently.

1 Introduction

In [14] Gabbay introduced the method of fibring as a way of combining modal
logics by associating with possible worlds of one logic Kripke models of the
other (see, also, [15]). Subsequent work by Sernadas, Sernadas and Caleiro
[23], which was also motivated by their own previous work [21] (see also [22]),
generalized the method of fibring, using category theoretic tools, and applied
it to a variety of logical systems without terms. This work culminated in
Caleiro’s Ph.D. Thesis [6], where an extensive study of the method and an
analysis of various properties that are preserved when combining logics by
fibring are presented (see, also, [7]).
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It is self-evident that, when logics are combined to obtain richer logical
systems, it is of great interest to study preservation of properties. These,
so-called, transfer theorems assert that properties that hold for the logical
systems to be combined using general constructions, such as fibring, also
hold in the resulting logical system. Various properties have been studied
in this context, most notably, soundness [23], completeness [30] and inter-
polation [8].

Taking after this line of work, Fernández and Coniglio [10] specialize
the categorical framework of [23] to provide a platform over which one may
study fibring of sentential logics or deductive systems. In the abstract al-
gebraic logic (AAL) sense [4, 12, 9, 13], these are finitary and structural
consequence relations on sets of propositional formulas. In AAL, sentential
logics are classified in a hierarchy, called the Leibniz hierarchy, which reflects
the extent to which a logic is amenable to study via algebraic methods and
tools. More precisely, in AAL a canonical way exists for associating with a
sentential logic a class of universal algebras, perceived as its algebraic coun-
terpart. The level in the Leibniz hierarchy into which the logic is classified,
corresponds in a precise technical sense to the strength of the ties between
the consequence relation of the logic and the equational consequence of its
algebraic counterpart. When the tie is strongest, i.e., in the case when the
logic is algebraizable, the study of various metalogical properties may be
replaced by the study of corresponding algebraic properties of the algebraic
counterpart.

As this analysis indicates, it is very beneficial, when one combines log-
ics by fibring, to be able to ensure that, whenever the component logical
systems belong to a certain level of the Leibniz hierarchy, so does their com-
bination. In fact, the main interest of [10] lies in being able to perform
fibring inside the various classes of the Leibniz hierarchy. Work along these
lines was pioneered by Jánossy, Kurucz, and Eiben [18], who considered
fibring inside the class of algebraizable logics. The work of Fernández and
Coniglio [10] extends some features of their work by considering fibring in
several of the levels of the Leibniz hierarchy, namely in the classes of pro-
toalgebraic, equivalential and algebraizable logics. They define a category of
consequence relations Cons over a category Sig of algebraic or logical sig-
natures. Morphisms in the category Cons are, roughly speaking, signature
morphisms which preserve consequence. They are able to show that the sub-
categories of this category consisting of the protoalgebraic, the equivalential
and the algebraizable logics are all full subcategories. As a consequence,
they are able to conclude that fibring can be carried out inside the realm
of each subcategory, i.e., that fibring of protoalgebraic, equivalential or al-
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gebraizable logics results, respectively, in a combined logic within the same
class.

One of the limitations of the framework of [23], as specialized in [10], is
that it can cope only with sentential logics. The framework of π-institutions,
introduced by Fiadeiro and Sernadas [11], on the other hand, as an abstract
version of the model theoretic notion of institution [16, 17], has been shown
by the author (e.g., [24, 25, 26, 27]) to provide within AAL a platform over
which the relation between metalogical and algebraic properties of more gen-
eral logical systems may be studied. Thus, in [10], a call is made for an ex-
tension of the sentential framework to accommodate fibring of π-institutions
and, therefore, to open the way for studying some transfer results in a more
general context. This would make them available in case fibring of more
complex logical systems is called for. We view the present work as a first
attempt towards fulfilling this program. More precisely, using the basic cat-
egorical framework of Sernadas et al. [23], we provide a platform over which
one may apply fibring to π-institutions. We then show that this framework
properly includes that of [10] by explicitly providing the details of how this
inclusion may be accomplished. To initiate the study of preservation of alge-
braic properties, we lift some of the results on protoalgebraic logics of [10] to
logics formalized as π-institutions. We only accomplish this for what we call
poly-term π-institutions, a restricted class of π-institutions, that contains,
however, all sentential logics. Finally, we illustrate the theory with an exam-
ple drawn from the realm of description logics [1]. Informally speaking, we
set up the special framework needed for fibring two description logics that
are extensions of the basic description logic ALC, each potentially consisting
of additional logical connectives.

A short overview of the structure of the paper is now provided. In
Section 2 the category Ins of π-institutions is introduced. Because we are
interested in fibring logical systems that refer to the same semantic entities,
we require that all π-institutions consist of signature categories with identical
collections of objects. For example, when propositional logics are to be
fibred, they will all be assumed to have the same propositional variables and
when description logics are to be fibred, they will all be assumed to refer
to the same collections of concept and role names. This seems consistent
with the idea that fibring is supposed to produce a richer logic for reasoning
about the same semantical entities, i.e., increase our reasoning capability
about a fixed collection of objects and relations between them. In Section 3,
the unconstrained fibring of π-institutions is discussed. Since unconstrained
fibring corresponds to coproducts, the existence of the unconstrained fibring
of π-institutions follows from the existence of colimits in Ins. In section



CAAL: Fibring of π-Institutions 4

4, constrained fibring is introduced. It is defined in the category Ins in
the same way as constrained fibring was defined in [10] in the category
Cons of consequence relations, representing deductive systems. Apart from
the existence of coproducts, the existence of coequalizers, as well as the
fact that the forgetful functor from the category of π-institutions to the
underlying category of logical connectives is a cofibration, play a crucial
role in this construction. In Section 5, we revisit the framework of [10] and
show how their general constructions can be obtained as special cases of the
ones introduced here. Moreover, in Section 6, we extend their results on
the class of protoalgebraic deductive systems to the class of protoalgebraic
poly-term π-institutions. These form a subcategory of the category Ins of
π-institutions, which is rich enough to include all protoalgebraic deductive
systems in the sense of AAL [3, 9] and, also, many of the protoalgebraic term
π-institutions in the sense of [25]. It is shown that it is a full subcategory of
the category of all π-institutions (on the same poly-term system of sentence
functors) and this fact is used to show that it admits both unconstrained
and constrained fibring. Finally, in Section 7, an additional example is
provided of constrained fibring. Namely, we adjust the general framework
so as to be able to fibre two π-institutions I ′ and I ′′, corresponding to
extensions of the well-known basic description logic ALC over a π-institution
IALC , corresponding to ALC itself. The resulting logical system corresponds
to a description logic that extends ALC with features of both extensions
I ′ and I ′′. This example illustrates the potential for the applicability of
fibring to the realm of description logics to obtain richer description logics
by combining various logics in which different features have already been
introduced and studied. Of course, a very interesting problem in this domain
would be to study under which conditions fibring preserves decidability or
membership of the satisfiability problem of the corresponding description
logics inside specific complexity classes. These studies are beyond the scope
of this work.

For standard categorical notation that will mostly remain unexplained,
the reader is advised to consult any of the standard references [2, 5, 19].

2 The Category of π-Institutions

The basic building blocks for our treatment of logical systems will be π-
institutions. Our goal, therefore, in this section is to develop the category
of π-institutions Ins. Since focus will be on constructing unconstrained and
constrained fibring of π-institutions, the category will be specifically tai-
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lored to this task. The objects of this category will be built over objects
of more basic categories. The first will be the category of “logical connec-
tives”, denoted by Con. Its objects will be perceived as the logical types or
sets of logical connectives and morphisms between them will be perceived as
substitutions of basic connectives for basic connectives preserving the cor-
responding arities. Given an object L in the category Con, there will be a
category SignL of “variables”. These may be either propositional variables,
in case we are dealing with a propositional language, or relations and func-
tion symbols, in case we are dealing with a first-order language. Since, in the
context of fibring, we will be making the basic hypothesis that all our logical
systems refer to the same semantic entities, we assume that, for every L,L′

in the category Con, |SignL| = |SignL′ |. Of course, given objects Σ and Σ′

that are contained in |SignL|, we allow that SignL(Σ,Σ′) 6= SignL′(Σ,Σ′)
in accordance with the fact that morphisms are perceived as substitutions
of L-terms or L′-terms, respectively, for variables and the sets of these sub-
stitutions are different when the two logical languages are different.

In the sequel, and throughout the paper, we fix the following framework,
which makes the intuitions above precise:

• A category Con, which we perceive as the category of logical con-
nectives and arity preserving mappings between them;

• For every L ∈ |Con|, a category SignL, such that for every L,L′ ∈
|Con|, |SignL| = |SignL′ |. We call the objects of these categories
signatures and let Sign denote the discrete category with objects all
signatures;

• For every L ∈ |Con|, a functor SENL : SignL → Set, giving, for all
L ∈ |Con| and all Σ ∈ |SignL|, the set SENL(Σ) of sentences with
connectives in L and variables in Σ;

• For every α ∈ Con(L,L′), a functor Fα : SignL → SignL′ , which
is the identity on objects, and a natural transformation (also denoted
by) α : SENL → SENL′ ◦ Fα.

SENL(Σ′) SENL′(Σ′)-
αΣ′

SENL(Σ) SENL′(Σ)-αΣ

?

SENL(f)

?

SENL′(Fα(f))

Given a substitution f ∈ SignL(Σ,Σ′) of L-terms over Σ′ for variables
in Σ, and a mapping α : L → L′ of connectives in L to connectives
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in L′, the morphism Fα(f) ∈ SignL′(Σ,Σ′) is supposed to represent
the substitution of L′-terms over Σ′ for variables in Σ that results by
composing f with the appropriate extension of α on L-terms over Σ′.

Moreover, for all α ∈ Con(L,L′) and all β ∈ Con(L′,L′′), F βα =
F β ◦ Fα and the natural transformation corresponding to β ◦ α is the
composite of the one corresponding to α and the one corresponding to
β.

SENL(Σ′) SENL′(Σ′)-
αΣ′

SENL(Σ) SENL′(Σ)-αΣ

?

SENL(f)

?

SENL′(Fα(f))

SENL′′(Σ′)-
βΣ′

SENL′′(Σ)-βΣ

? ?

SENL′′(F β(Fα(f)))

Definition 1 Given L ∈ |Con|, a consequence system over L is a col-
lection ⊢ = {⊢Σ}Σ∈|Sign| of relations ⊢Σ ⊆ P(SENL(Σ)) × SENL(Σ), such
that, for all Σ,Σ′ ∈ |Sign|, f ∈ SignL(Σ,Σ′) and Γ ∪ ∆ ∪ {φ} ⊆ SENL(Σ),

• Γ ⊢Σ φ, for all φ ∈ Γ; [Reflexivity]

• Γ ⊢Σ φ and ∆ ⊢Σ Γ imply ∆ ⊢Σ φ; [Transitivity]

• Γ ⊢Σ φ implies SENL(f)(Γ) ⊢Σ′ SENL(f)(φ). [Structurality]

If ⊢ is a consequence system over L, then we also have

Γ ⊢Σ φ implies ∆ ⊢Σ φ, if Γ ⊆ ∆, [Monotonicity]

for all Σ ∈ |Sign| and all Γ ∪ ∆ ∪ {φ} ⊆ SENL(Σ).

Definition 2 A π-institution is a pair I = 〈L,⊢〉, where L ∈ |Con| and
⊢ is a consequence system over L.

Given L ∈ |Con|, by ConsL will be denoted the collection of all con-
sequence systems over L. Given two closure systems ⊢1 = {⊢1

Σ}Σ∈|Sign|

and ⊢2 = {⊢2
Σ}Σ∈|Sign| over L, we define ⊢1 ≤L ⊢2 to mean that, for all

Σ ∈ |Sign|, ⊢1
Σ ⊆ ⊢2

Σ. We call ≤L signature-wise inclusion. The following
proposition is well-known in the context of categorical abstract algebraic
logic.

Proposition 3 The pair ConsL = 〈ConsL,≤L〉 forms a complete lattice.
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Definition 4 introduces the notion of morphism of π-institutions that we
will adopt in the category of π-institutions.

Definition 4 Let I = 〈L,⊢〉 and I ′ = 〈L′,⊢′〉 be two π-institutions. A
semi-interpretation from I to I ′ is a morphism α ∈ Con(L,L′), such
that, for all Σ ∈ |Sign| and all Γ ∪ {φ} ⊆ SENL(Σ),

Γ ⊢Σ φ implies αΣ(Γ) ⊢′
Σ αΣ(φ).

Theory families of π-institutions enable us to provide an alternative char-
acterization of semi-interpretations. Since these results are well-known in
the theory of categorical abstract algebraic logic, we omit the proofs.

Definition 5 Let I = 〈L,⊢〉 be a π-institution. A theory family of I
is a collection T = {TΣ}Σ∈|Sign|, such that, for all Σ ∈ |Sign| and all
φ ∈ SENL(Σ),

TΣ ⊢Σ φ implies φ ∈ TΣ.

Let ThFam(I) denote the collection of all theory families of a π-insti-
tution I = 〈L,⊢〉. Given T 1, T 2 ∈ ThFam(I), we define T 1 ≤ T 2 iff, for all
Σ ∈ |SignL|, T

1
Σ ⊆ T 2

Σ. We call ≤ signature-wise inclusion.

Proposition 6 (1) The pair ThFam(I) = 〈ThFam(I),≤〉 is a complete
lattice, for every π-institution I.

(2) Let I = 〈L,⊢〉, I ′ = 〈L′,⊢′〉 be two π-institutions and α ∈ Con(L,L′)
a morphism. Then α : I → I ′ is a semi-interpretation iff, for every
T ′ ∈ ThFam(I ′), α−1(T ′) := {α−1

Σ (T ′
Σ)}Σ∈|Sign| ∈ ThFam(I).

Definition 7 Let us denote by Ins the category that is defined as follows:

(a) Objects: π-institutions;

(b) Morphisms: An Ins-morphism α : 〈L,⊢〉 → 〈L′,⊢′〉 is a Con-mor-
phism α ∈ Con(L,L′), that is also a semi-interpretation;

(c) Composition and Identities: As in Con.
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3 Unconstrained Fibring in Ins

The goal of this section is to define the unconstrained fibring of two π-
institutions and to show that it always exists in the category Ins, provided
that the category of connectives Con has all small colimits. We start with
a technical lemma, showing that, given a morphism α in Con between a
language L and a language L′, a consequence system may be constructed
over L, whenever one is given over L′, by pulling back along α.

Definition 8 Let L,L′ ∈ |Con|, α ∈ Con(L,L′) and ⊢′ a consequence
system over L′. Define ⊢′α = {⊢′α

Σ }Σ∈|Sign| by letting, for all Σ ∈ |Sign|,
⊢′α

Σ ⊆ P(SENL(Σ)) × SENL(Σ) be defined, for all Γ ∪ {φ} ⊆ SENL(Σ), by

Γ ⊢′α
Σ φ iff αΣ(Γ) ⊢′

Σ αΣ(φ).

Lemma 9 Let L,L′ ∈ |Con|, α ∈ Con(L,L′) and ⊢′ a consequence system
over L′. Then ⊢′α = {⊢′α

Σ }Σ∈|Sign| is a consequence system over L.

Proof:
Reflexivity is straightforward. We just show transitivity and structural-

ity. Let Σ ∈ |Sign|, Γ ∪ ∆ ∪ {φ} ⊆ SENL(Σ), such that Γ ⊢′α
Σ φ and

∆ ⊢′α
Σ Γ. Thus, we have αΣ(Γ) ⊢′

Σ αΣ(φ) and αΣ(∆) ⊢′
Σ αΣ(Γ). Hence,

since ⊢′ is a closure system over L′, we get that αΣ(∆) ⊢′
Σ αΣ(φ), which

yields that ∆ ⊢′α
Σ φ. Thus, ⊢′α is transitive. To show structurality, as-

sume that Σ,Σ′ ∈ |Sign|, f ∈ SignL(Σ,Σ′) and Γ ∪ {φ} ⊆ SENL(Σ), such
that Γ ⊢′α

Σ φ. Thus, αΣ(Γ) ⊢′
Σ αΣ(φ). But, then, since ⊢′ is structural,

we obtain that SENL′(Fα(f))(αΣ(Γ)) ⊢′
Σ′ SENL′(Fα(f))(αΣ(φ)). This is

equivalent to αΣ′(SENL(f)(Γ)) ⊢′
Σ′ αΣ′(SENL(f)(φ)), which yields that

SENL(f)(Γ) ⊢′α
Σ′ SENL(f)(φ). Therefore, ⊢′α is also structural. �

A key component in being able to fibre π-institutions is the existence
of coproducts in the category Ins. We show that Ins is small cocomplete
provided the underlying category Con of our languages is small cocomplete.

Proposition 10 If Con is small cocmplete, then the category Ins is small
cocomplete.

Proof:
Let D : I → Ins be a small diagram in Ins with index graph I. We

use the notation 〈Li,⊢i〉 = D(i) and αe = D(e), for i
e
→ j in I. Thus, we
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have 〈Li,⊢i〉
αe

→ 〈Lj ,⊢j〉 is a morphism in Ins, if i
e
→ j is an edge in I. If

U : Ins → Con is the forgetful functor, forgetting the consequence system,
then U ◦ D : I → Con is a small diagram in Con. Since Con is small
cocomplete, U ◦D has a colimit. Let L be its colimit in Con, with colimit

morphisms Li
λi

→L. Let also ⊢ = {⊢Σ}Σ∈|Sign| be the least closure system
over L, such that, for all i ∈ I, all Σ ∈ |Sign| and all Γ ∪ {φ} ⊆ SENLi(Σ),

Γ ⊢iΣ φ implies λiΣ(Γ) ⊢Σ λiΣ(φ).

By definition of ⊢, 〈〈L,⊢〉, {λi}i∈I〉 forms a coconone over D in Ins, i.e., for
all i

e
→ j in I, the following triangle commutes:

〈Li,⊢i〉 〈Lj,⊢j〉-
αe

〈L,⊢〉

λi

�
�

�
��

λj

@
@

@
@I

It suffices, now, to show that this is a colimiting cocone. To this end, consider
a cocone 〈〈L′,⊢′〉, κi〉 over D in Ins.

〈Li,⊢i〉 〈Lj,⊢j〉-
αe

〈L′,⊢′〉

κi

�
�

�
��

κj

@
@

@
@I

By applying U , we obtain a cocone in Con. Since L is the colimit of U ◦D
in Con, we get a unique morphism µ : L → L′ in Con, that makes the
following diagram commute, for all i ∈ I,

Li L-
λi

L′

κi

�
�

�
��

µ

@
@

@
@I

Since κi : 〈Li,⊢i〉 → 〈L′,⊢′〉 is in Ins, we get that, for all i ∈ I, all Σ ∈ |Sign|
and all Γ ∪ {φ} ⊆ SENLi(Σ),

Γ ⊢iΣ φ implies κiΣ(Γ) ⊢′
Σ κiΣ(φ).

Since µ ◦ λi = κi, we get that, for all i ∈ I, all Σ ∈ |Sign| and all Γ∪ {φ} ⊆
SENLi(Σ),

Γ ⊢iΣ φ implies µΣ(λiΣ(Γ)) ⊢′
Σ µΣ(λiΣ(φ)).
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Thus, by Lemma 9, for all i ∈ I, all Σ ∈ |Sign| and all Γ∪{φ} ⊆ SENLi(Σ),

Γ ⊢iΣ φ implies λiΣ(Γ) ⊢′µ
Σ λiΣ(φ).

But, by definition, ⊢ is the least closure system over L having this property,
whence ⊢ ≤L ⊢′µ. This shows that, for all Σ ∈ |Sign| and all Γ ∪ {φ} ⊆
SENL(Σ),

Γ ⊢Σ φ implies µΣ(Γ) ⊢′
Σ µΣ(φ).

Since, uniqueness of µ is inherited to Ins from Con, this concludes the proof
that 〈〈L,⊢〉, {λi}i∈I〉 is a colimit of D in Ins. �

The notion of unconstrained fibring of two π-institutions is defined next.
It is one of the key definitions in our work.

Definition 11 The (unconstrained) fibring in Ins of two π-institutions
I = 〈L,⊢〉 and I ′ = 〈L′,⊢′〉 is given by their coproduct I ∐ I ′ computed in
Ins.

As a consequence of Definition 11 and Proposition 10, we immediately
obtain the main theorem of this section.

Theorem 12 If Con is small cocomplete, then the category Ins has uncon-
strained fibring.

4 Constrained Fibring in Ins

In this section we study constraint fibring in the category Ins of π-insti-
tutions. We adopt the definition introduced in [23] and used in the case of
deductive systems also in [10]. First, we need to remind the reader of the
definition of a co-structured morphism over a functor and of a cocartesian
lifting, which will form the categorical basis for the definition of constrained
fibring (see also [2] and [10]).

Definition 13 Let C and D be two categories and F : C → D be a functor.
An F -co-structured morphism with codomain d ∈ D is a pair

〈c, f〉, such that c ∈ |C| and f : F (c) → d ∈ Mor(D).
A cocartesian lifting of an F -co-structured morphism 〈c, f〉 is a C-

morphism f∗ : c → c′, such that F (f∗) = f and it satisfies the following
universal property: For all C-morphisms g : c → c′′ and all D-morphisms
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h : d → F (c′′), such that h ◦ f = F (g), there exists a unique C-morphism
h∗ : c′ → c′′, with F (h∗) = h and h∗ ◦ f∗ = g.

c c′-f∗

c′′
?

g h∗

�
�

�
�

��	

F (c) F (c′) = d-F (f∗)

F (c′′)
?

F (g) h

�
�

�
�

��	

The functor F is called a cofibration if every F -co-structured morphism
admits a cocartesian lifting.

We show next that the forgetful functor U : Ins → Con, given by

〈L,⊢〉
U
7→ L and 〈L,⊢〉

α
→ 〈L′,⊢′〉

U
7→ L

α
→L′, is a cofibration.

Proposition 14 The forgetful functor U : Ins → Con is a cofibration.

Proof:
Consider the U -co-structured morphism 〈〈L,⊢〉, α〉, with codomain L′.

Let ⊢′= {⊢′
Σ}Σ∈|Sign| be the least closure system over L′, such that, for all

Σ ∈ |Sign| and all Γ ∪ {φ} ⊆ SENL(Σ),

Γ ⊢Σ φ implies αΣ(Γ) ⊢′
Σ αΣ(φ).

Clearly, α : 〈L,⊢〉 → 〈L′,⊢′〉 is in Ins. We claim that it is a cocartesian
lifting of the U -co-structured morphism 〈〈L,⊢〉, α〉. To see this, it suffices
to prove the associated universal property. Let β : 〈L,⊢〉 → 〈L′′,⊢′′〉 be in
Ins, γ : L′ → L′′ in Con, such that γ ◦ α = β.

〈L,⊢〉 〈L′,⊢′〉-α

〈L′′,⊢′′〉
?

β γ

�
�

�
�

��	

L L′-α

L′′
?

β γ

�
�

�
�

��	

It suffices to show that γ : 〈L′,⊢′〉 → 〈L′′,⊢′′〉 is a morphism in Ins or,
equivalently, that ⊢′ ≤L′ ⊢′′γ . This is true because, for all Σ ∈ |Sign| and
all Γ ∪ {φ} ⊆ SENL(Σ),

Γ ⊢Σ φ implies βΣ(Γ) ⊢′′
Σ βΣ(φ)

iff γΣ(αΣ(Γ)) ⊢′′
Σ γΣ(αΣ(φ))

implies αΣ(Γ) ⊢′′γ
Σ αΣ(φ)
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and ⊢′ is the least closure system on L′ satisfying this property. �

Following [10], let us illustrate now the idea behind constrained fibring.
Suppose I ′ = 〈L′,⊢′〉 and I ′′ = 〈L′′,⊢′′〉 are two π-institutions and η′ : L− →
L′ and η′′ : L− → L′′ two injections in Con. Intuitively, these represent the
syntax that is to be shared through fibring. Let I ′ ∐ I ′′ = 〈L,⊢〉 be the
coproduct in Ins of I ′ and I ′′ with canonical injections ι′ : I ′ → I ′∐I ′′ and
ι′′ : I ′′ → I ′ ∐ I ′′.

η′′
@

@
@R

R

L′

L−

η′

�
�

��

�

L′′

ι′′

�
�

��

I ′ ∐ I ′′ = 〈L,⊢〉

ι′
@

@
@R

I ′ = 〈L′,⊢′〉

I ′′ = 〈L′′,⊢′′〉

Consider now the coequalizer ν : L → L⊲ of the following diagram in Con:

η′′
@

@
@R

R

L′

L−

η′

�
�

��

�

L′′

ι′′

�
�

��
L

ι′
@

@
@R

L⊲-ν

Since L = U(I ′ ∐ I ′′), there exists a cocartesian lifting ν : I ′ ∐ I ′′ → I⊲ of
the U -co-structured morphism 〈I ′ ∐ I ′′, ν〉. The resulting π-institution I⊲

is defined to be the fibring of I ′ and I ′′ constrained by the sharing diagram

L′ L−� η′

L′′-η′′

This process is formalized in the following definition of the constrained
fibring of two π-institutions in Ins over a given sharing diagram.

Definition 15 Let I ′ = 〈L′,⊢′〉 and I ′′ = 〈L′′,⊢′′〉 be two π-institutions and
D a sharing diagram formed by two injective translations η′ : L− → U(I ′)
and η′′ : L− → U(I ′′) in Con. The fibring of I ′ and I ′′ constrained by
the sharing D is the codomain I ′ ∐D I ′′ of the cocartesian lifting of the
coequalizer ν : U(I ′ ∐ I ′′) → L⊲ in Con of

L− U(I ′ ∐ I ′′)
-ι′ ◦ η′

-
ι′′ ◦ η′′

(1)
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where ι′ : I ′ → I ′ ∐ I ′′ and ι′′ : I ′′ → I ′ ∐ I ′′ are the canonical injections of
the coproduct I ′ ∐ I ′′ in Ins of I ′ and I ′′.

Theorem 16 If Con is small cocomplete, then the category Ins has con-
strained fibring.

Proof:
By Proposition 10, the coproduct I ′

∐
I ′′ exists. By hypothesis, the co-

equalizer ν : U(I ′∐I ′′) → L⊲ of Diagram (1) exists. Finally, by Proposition
14, the cocartesian lifting of the U -co-structured morphism ν exists. By
definition, its codomain I ′ ∐D I ′′ is the constrained fibring of I ′ and I ′′ by
the sharing D. �

5 Fibring Propositional Deductive Systems

In this section we show how the framework of Fernández and Coniglio [10]
can be accommodated inside the general framework that was developed in
the previous sections. To this end, a denumerable set V of propositional
variables p0, p1, . . . is fixed. A signature is a family C = {Ck}k∈N of sets,
such that Ck∩Cn = ∅ = Ck∩V, for all k 6= n. Ck consists of the connectives
of arity k. The propositional language L(C) is the universe of the free
algebra generated by applying the operations in C (respecting arities) to the
propositional variables in V in the ordinary recursive way.

Given a signature C, a function σ : V → L(C) is called a substitution
in C. It can be extended to an endomorphism σ̂ : L(C) → L(C) due to the
freeness of L(C) over V.

Let Con be the category with objetcs all signatures and morphisms
f : C → C ′ families f = {fk}k∈N, such that fk : Ck → C ′

k a function, for all
k ∈ N. Composition is defined pointwise, g ◦ f = {gkfk}k∈N, and identities
are the pointwise identities.

Note that, given C,C ′ ∈ |Con| and f : C → C ′, f defines a unique map
f̂ : L(C) → L(C ′), which is the identity on the variables. More precisely,
we have

• f̂(p) = p, for all p ∈ V;

• f̂(ck(t0, . . . , tk−1)) = fk(ck)(f̂(t0), . . . , f̂(tk−1)), for all ck ∈ Ck and all
t0, . . . , tk−1 ∈ L(C).

For every C ∈ |Con|, SignC consists of the single object V with mor-
phisms all substitutions σ : V → L(C) in C. Composition is defined by
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τ ◦ σ = τ̂σ (the latter being ordinary composition of functions) and the
identity is the insertion-of-variables map.

Let SENC(V) = L(C) and, for all σ ∈ SignC(V,V), SENC(σ) = σ̂. Fur-
thermore, associate with f : C → C ′ the functor F f : SignC → SignC′ ,
sending σ : V → L(C) to F f (σ) = f̂σ : V → L(C ′) and the natural transfor-

mation αf = {αfV}, with αfV = f̂ . We check that we have, in fact, a functor
and a natural transformation, respectively. We have, for all σ : V → L(C)
and all τ : V → L(C),

V V-
F f (σ)

V V-σ

V-
F f (τ)

V-τ

F f (τ) ◦ F f (σ) = (f̂ τ) ◦ (f̂σ)

=
̂̂
fτ(f̂σ)

= (
̂̂
fτ f̂)σ

= f̂ τ̂σ

= f̂(τ ◦ σ)
= F f (τ ◦ σ).

Moreover, for all σ ∈ V → L(C),

SENL(V) SENL′(V)-
α
f
V

SENL(V) SENL′(V)-α
f
V

?

σ̂

?

F̂ f (σ)

F̂ f (σ) αfV =
̂̂
fσf̂

= f̂ σ̂

= α
f
V σ̂.

Finally, for all f : C → C ′, all g : C ′ → C ′′ and all σ : V → L(C), we get
that

L(C) L(C ′)-
f̂

L(C ′′)-
ĝ

V

σ

�
�

�
�

��	 ?

F f (σ) F g(F f (σ))

@
@

@
@

@@R
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F g◦f (σ) = ĝ ◦ fσ

= ĝf̂σ

= ĝF f (σ)
= F g(F f (σ)).

The category of π-institutions Ins over the category Con and the cat-
egories SignL,L ∈ |Con|, of this section, coincides with the category of
structural closure operators of [10]. In Proposition 2.5 of [10], it is asserted
that Con (which is actually called Sig in [10]) is small cocomplete. Thus,
combining the general results developed in the previous sections with the
special framework of this section, we obtain the following corollary of The-
orems 12 and 16:

Corollary 17 (Theorem 3.6 of [10]) The category Cons of structural
consequence relations, as presented in [10], has both unconstrained and con-
strained fibring.

Thus, the general results obtained on deductive systems in [10] can be
viewed as corollaries of the general results that were presented in Sections 3
and 4.

6 Fibring N-Protoalgebraic π-Institutions

The goal of this section is to use the general framework of Sections 2, 3
and 4 to obtain some results on unconstrained and constrained fibring of
protoalgebraic π-institutions. Although we narrow the general context con-
sidered in previous sections, we still aim at producing a framework general
enough to capture both fibring of protoalgebraic deductive systems (see [3]
and [9] for protoalgebraic logics and [10] for fibring inside the class of pro-
toalgebraic logics) and fibring of protoalgebraic term π-institutions (see [25]
for term π-institutions). More precisely, in this section we make some addi-
tional assumptions on the general framework of Section 2, that was used to
obtain the unconstrained and constrained fibring of π-institutions. Namely,
we assume that there exists a V ∈ |Sign| and p, q ∈ SENL(V ), for all
L ∈ |Con| (not depending on L; existential quantification comes first), such
that, for all L ∈ |Con|, all Σ ∈ |Sign| and all φ,ψ ∈ SENL(Σ), there exists
fL〈Σ,φ,ψ〉 ∈ SignL(V,Σ), such that

• SENL(fL〈Σ,φ,ψ〉)(p) = φ, SENL(fL〈Σ,φ,ψ〉)(q) = ψ;

• g ◦ fL〈Σ,φ,ψ〉 = fL〈Σ′,SENL(g)(φ),SENL(g)(ψ)〉, for all g ∈ SignL(Σ,Σ′);
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• αV (p) = p, αV (q) = q and Fα(fL〈Σ,φ,ψ〉) = fL
′

〈Σ,αΣ(φ),αΣ(ψ)〉, for every

α ∈ Con(L,L′).

The system {SENL : SignL → Set}L∈|Con| satisfying the additional as-
sumptions listed above will be called a polyterm system. A π-institution
I = 〈L,⊢L〉, based on the L-th component SENL of a polyterm system is
called a polyterm π-institution.

Given a set ∆ ⊆ SENL(V ), Σ ∈ |Sign| and φ,ψ ∈ SENL(Σ), define

∆Σ(φ,ψ) := SENL(fL〈Σ,φ,ψ〉)(∆).

Definition 18, that follows, makes precise the notion of a protoalgebraic
polyterm π-institution, which, intuitively, is intended to capture the no-
tion of a protoalgebraic deductive system in the context of polyterm π-
institutions. Note that the polyterm property allows us to use a collection
of V -sentences ∆ as an “internalization” in the set of sentences of the col-
lection of natural transformations over SEN, that plays a similar role in
the treatment of (syntactic) N -protoalgebraic π-institutions, as presented
in [29, 28].

Definition 18 A polyterm π-institution I = 〈L,⊢〉 is said to be protoal-
gebraic if there exists a (possibly infinite) set ∆ ⊆ SENL(V ), such that

(R) ⊢V ∆V (p, p);

(MP) p,∆V (p, q) ⊢V q.

Note that, because of structurality and the polyterm property, a poly-
term π-institution I = 〈L,⊢〉 is protoalgebraic iff, there exists a set ∆ ⊆
SENL(V ), such that, for all Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

(R’) ⊢Σ ∆Σ(φ,ψ);

(MP’) φ,∆Σ(φ,ψ) ⊢Σ ψ.

Following [10], we call the collection ∆ ⊆ SENL(V ) a protoalgebra-
izator of I. This definition allows us to define the category of all protoal-
gebraic polyterm π-institutions inside which fibring is to be considered.

Definition 19 The category Prot is defined as follows:

(a) Objects: Protoalgebraic π-institutions;
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(b) Morphisms: A morphism α : I → I ′ from I = 〈L,⊢〉 to I ′ =
〈L′,⊢′〉 is an Ins-morphism, such that, for every protoalgebraizator
∆ ⊆ SENL(V ) of I, the collection αV (∆) ⊆ SENL′(V ) is a protoalge-
braizator of I ′.

(c) Composition and Identities: As in Ins.

Proposition 20 abstracts Proposition 4.3 of [10]. It asserts that the cate-
gory of protoalgebraic π-institutions over a polyterm system {SENL}L∈|Con|

is a full subcategory of the category of all π-institutions over the same sys-
tem.

Proposition 20 Prot is a full subcategory of Ins.

Proof:
Assume that α : 〈L,⊢〉 → 〈L′,⊢′〉 is a morphism in Ins and that ∆ ⊆

SENL(V ) is a protoalgebraizator of 〈L,⊢〉. Let ∆′ = αV (∆).

• Since ∆ is a protoalgebraizator of 〈L,⊢〉, we have

⊢V SENL(fL〈V,p,p〉)(∆).

Thus, since α is in Ins, we get ⊢′
V αΣ(SENL(fL〈V,p,p〉)(∆)). This holds

iff ⊢′
V SENL′(Fα(fL〈V,p,p〉))(αV (∆)) iff ⊢′

V SENL′(fL
′

〈V,p,p〉)(∆
′). There-

fore ∆′ satisfies reflexivity.

• Since ∆ is a protoalgebraizator of 〈L,⊢〉, we also have

p,SENL(fL〈V,p,q〉)(∆) ⊢V q

Thus, since α is in Ins, we get

αV (p), αV (SENL(fL〈V,p,q〉)(∆)) ⊢′
V αV (q).

Therefore, we obtain p,SENL′(Fα(fL〈V,p,q〉))(αV (∆)) ⊢′
V q, i.e.,

p,SENL′(fL
′

〈V,p,q〉)(∆
′) ⊢′

V q,

showing that ∆′ satisfies modus ponens.
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Thus ∆′ is a protoalgebraizator of 〈L′,⊢′〉, showing that α is in Prot. �

Since, by the proof of Proposition 20, every morphism in Ins with domain
in Prot is itself a morphism in Prot and since, by Theorems 12 and 16, Ins
has both unconstrained and constrained fibring provided that Con is small
cocomplete, we obtain the following result to the effect that the same holds
for the category Prot.

Theorem 21 If Con is small cocomplete, then the category Prot has both
unconstrained and constrained fibring.

It is not difficult to see that the system introduced in Section 5 in order to
perform fibring over propositional deductive systems is a polyterm system.
Therefore, the definition of a protoalgebraic π-institution applies to that
system as well, giving us as corollaries the results obtained in [10] on fibring
inside the class of protoalgebraic deductive systems (but without restricting
to finitary ones).

7 Fibring Description Logics over ALC

In this final section of the paper we provide an additional example of the
applicability of the general framework by illustrating how it can be used to
produce the constrained fibring of two description logics [1] over the well-
known basic description logic ALC [20]. For simplicity, we will include role
names as part of the constructors for concept expressions rather than in-
cluding them in the set of signatures and we will not consider role name
substitutions. In other words, we will assign to existential role quantifi-
cations the role of cylindrifications and delegate then to the set of unary
connectives over concept expressions. This will allow us to restrict attention
to a single-sorted logic and to avoid complications that would obscure the
essence of the example.

To this end, a denumerable set C of concept names A0, A1, . . . and a
disjoint denumerable set R of role names are fixed. As in Section 5, a
signature is a family C = {Ck}k∈N of sets, such that, for all k 6= n,
Ck ∩ Cn = ∅ and, for all k, Ck ∩ C = ∅ = Ck ∩ R. The set Ck consists
of the connectives of arity k. The propositional language L(C) is
the universe of the free algebra generated by applying the operations in C

to the concept names in C in the ordinary recursive way. For instance, if
C0 = {⊤}, C1 = {∃hasChild} and C2 = {⊓} and Female ∈ C, then the
concept expression, whose extension is supposed to captures the elements of
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the universe corresponding to “mothers” is the concept expression Female⊓
∃hasChild(⊤) ∈ L(C).

Given a signature C, a function σ : C → L(C) is called a substitution
in C. It can be extended to an endomorphism σ̂ : L(C) → L(C) in the
usual way, due to the freeness of L(C) over C.

Let Con be the category with objetcs all signatures and morphisms
f : C → C ′ families f = {fk}k∈N, such that fk : Ck → C ′

k is a function, for
all k ∈ N. Composition is defined pointwise and identities are the pointwise
identities, just as in the case of the category Con of Section 5.

For every C ∈ |Con|, SignC consists of the single object C with mor-
phisms all substitutions σ : C → L(C). Composition is defined by τ ◦σ = τ̂σ

and the identity is the insertion-of-concept-names map.
Let SENC(C) = L(C)2, perceived as the set of all subsumptions E ⊑ F ,

with E,F ∈ L(C), and associate with f : C → C ′ the functor F f : SignC →
SignC′ , sending σ : C → L(C) to F f (σ) = f̂σ : C → L(C ′) and the natural

transformation αf = {αfC}, with α
f
C = f̂2. It can be checked, in a similar

way as in Section 5, that F f is a functor and αf is a natural transformation
and that all necessary conditions of the general framework for fibring are
satisfied.

Let us fix the signature CALC over which the description logic ALC [20]
may be built. It consists of one binary connective ⊓, one unary connective ¬
and an additional denumerable collection ∃R,R ∈ R, of unary connectives.
Consider, now, signatures C ′ and C ′′, that include (pointwise) the signature
CALC and form in Con the following sharing diagram:

C ′ CALC� η′

C ′′-η′′

where η′ and η′′ are the corresponding injections in Con.
Consider, next, the π-institution IALC = 〈CALC,⊢ALC〉, that results by

taking, for all S ∪ {E ⊑ F} ⊆ L(CALC)2,

S ⊢ALC E ⊑ F iff for every model M = 〈∆M, ·M〉 of CALC

M |= S implies M |= E ⊑ F.

Moreover, assume that we have also a π-institution I ′ = 〈C ′,⊢′〉 over C ′,
whose entailment relation contains that of IALC. The relation ⊢′ could
potentially be the semantical entailment relation induced by a Tarski-style
semantics, as long as it respects structurality. This is not always the case,
but, in general, a fragment of first-order logic may be transformed to a
structural counterpart as in Appendix C of [4]. Let I ′′ = 〈C ′′,⊢′′〉 be another
π-institution over C ′′, whose entailment relation also includes ⊢ALC . Let D
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denote the sharing diagram formed by the two injective morphisms η′ :
CALC → U(I ′) and η′′ : CALC → U(I ′′) in Con. The fibring of I ′ and I ′′

constrained by D is, by definition, the codomain I ′∐D I ′′ of the cocartesian
lifting of the coequalizer ν : U(I ′ ∐ I ′′) → C⊲ in Con of

CALC U(I ′ ∐ I ′′)
-ι′ ◦ η′

-
ι′′ ◦ η′′

where ι′ : I ′ → I ′ ∐ I ′′ and ι′′ : I ′′ → I ′ ∐ I ′′ are the canonical injections of
the coproduct I ′ ∐ I ′′ in Ins of I ′ and I ′′.

By the general construction of Section 4, C⊲ will consist of a binary
operation ⊓, unary operations ¬ and ∃R,R ∈ R, which are inherited by both
C ′ and C ′′ under the identification through D, and additional operations
induced by the corresponding ones in C ′ and C ′′. Moreover, the consequence
system ⊢⊲ of I ′∐D I ′′ will be the least closure system on L(C⊲)2, such that,
for all S ∪ {E ⊑ F} ⊆ L(C ′)2,

S ⊢′
C E ⊑ F implies S ⊢⊲C E ⊑ F

and, for all S ∪ {E ⊑ F} ⊆ L(C ′′)2,

S ⊢′′
C E ⊑ F implies S ⊢⊲C E ⊑ F.

References

[1] Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-
Schneider, P.F., The Description Logic Handbook: Theory, Implemen-
tation and Applications, Cambridge University Press, 2003

[2] Barr, M., and Wells, C., Category Theory for Computing Science, Third
Edition, Les Publications CRM, Montréal 1999
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