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Abstract

Blok and Pigozzi introduced the Leibniz operator, mapping filters
of an algebra to congruences of the algebra, in order to provide a
characterization of algebraizable deductive systems, i.e., those deduc-
tive systems whose entailment relation is very closely connected to the
algebraic consequence operation associated with a quasi-variety of uni-
versal algebras. Font and Jansana generalized the Leibniz operator to
the Tarski operator, that maps closure systems on a given algebra to
congruences of the algebra. In previous work by the author, Tarski
congruence systems were introduced as a generalization of the Tarski
operator in order to cover logical systems formalized as π-institutions.
Tarski congruence systems consist, roughly speaking, of a system of
equivalence relations, one for each set of sentences, of the given π-
institution, that are preserved both by the signature morphisms and
by given collections of natural transformations from tuples of sentences
to sentences. In this paper, Tarski congruence systems are generalized
so as to accommodate also equivalences at the signature level. In the
main result of the paper a characterization of these generalized Tarski
congruence systems is obtained, which abstracts the known character-
ization of Tarski congruence systems.
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1 Introduction

In [3], Blok and Pigozzi introduced the concept of the Leibniz congruence
associated with the theories of a deductive system. Leibniz congruences are,
more generally, associated with filters of logical matrices; the case of theo-
ries, i.e., filters on formula algebras, being a special case. More specifically,
given a logical matrix A = 〈A, F 〉, the Leibniz congruence associated with
A is the largest congruence on the algebra A that is compatible with F, in
the sense that F is the union of equivalence classes of the congruence. Prop-
erties of the Leibniz congruence give rise to the abstract algebraic hierarchy
of logics, consisting of the major classes of protoalgebraic, equivalential and
algebraizable logics [6], [2], [3] (see also [10] for an overview). In subsequent
work, Font and Jansana [9] generalized the work of Blok and Pigozzi by con-
sidering the notion of a Tarski congruence of an abstract logic. An abstract
logic, or generalized matrix, IL = 〈A, C〉 consists of an algebra A together
with a closure operator on A, the universe of A. The Tarski congruence
associated with the abstract logic IL is the largest congruence that is com-
patible with all closed sets of the closure C. Both the Leibniz and the Tarksi
congruence of a logic provide significant tools for the investigation of the
algebraizability of a logic and for the study of the connections between met-
alogical properties of logics and corresponding algebraic properties. Except
for [9] and [10], [7] is another exposition of the rôle that congruences with
compatibility properties play in studying the interaction between logical and
algebraic properties.

In the dissertation [16] and accompanying subsequent work [17, 18] the
author generalized the theory of algebraizability to a categorical, more ab-
stract, level, able to cover the case of institutional logics. The class of logics
formalized as π-institutions includes, besides all sentential logics, logics with
multiple signatures and quantifiers as well as some logics whose syntax is not
string-based like, for instance, the graph-based equational logic presented in
[18]. In recent work [19], the notion of a congruence system, as pertaining to
π-institutions, which allows carrying some of the universal algebraic results
to the level of π-institutions was introduced. Congruence systems are special
kinds of systems of equivalence relations on the sentences of a π-institution.
Roughly speaking, they have the additional feature that they are preserved
by sentence morphisms and they are also preserved by selected collections
of finitary natural transformations from tuples of sentences to sentences.
Based on this notion of a congruence system, the notion of a Tarksi con-
gruence system associated with a given π-institution was defined. Again
roughly speaking, congruence systems are ordered and, thus, endowed with
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the structure of a complete lattice. The Tarski congruence system is the
largest congruence system in this ordering that is compatible with all the-
ories over all signatures, in a way analogous to the Tarski congruences of
Font and Jansana.

In the present paper the notion of the Tarski congruence system, intro-
duced in [19], is generalized to encompass congruences on the category of
signatures which were absent in [19]. The development here follows along
similar lines as that of [19]. First, the notion of a generalized congruence
system is introduced. These generalized congruence systems are ordered and
the ordering proves to be a complete lattice ordering. The logical congruence
systems, i.e., those that are compatible with all theories of the π-institution
I, form a complete lattice under this ordering. The largest one is singled
out and called the (generalized) Tarski congruence system of I. A charac-
terization of the Tarksi congruence systems that generalizes the one given
for the special Tarksi congruence systems of [19] is provided.

The reader is referred to either of [1], [4] or [15] for all unexplained
categorical notation, to [11], [12] for the introduction and the basic concepts
pertaining to institutions and to [8] for those on π-institutions, and, finally,
to [17] for the introduction of translations and interpretations between π-
institutions. In [14], a comparison is given of many of the different notions
of morphisms that have been introduced in the theory of institutions, some
of which are related to the ones used here.

2 Sentential Logics and π-Institutions

In this section, bits of the theory of the Tarski operator of sentential logics,
as introduced by Font and Jansana in [9], that serves as the paradigm for
the categorical theory and may be viewed as the primary motivation for
its development, are presented. Discussing some relevant aspects of the
theory of sentential logics and introducing their analogs in the theory of π-
institutions will facilitate the understanding of the theory developed in later
sections, where references to and comparisons between these two theories
will be frequently made. The primary reference source for the material on
sentential logics is [9], but the reader is also referred to [3] and [7].

Recall that a logical matrix A = 〈A, F 〉 is a pair consisting of an algebra
A = 〈A,LA〉 and a subset F ⊆ A, called the filter of A. A congruence θ of
A is said to be compatible with F if F is a union of θ-equivalence classes,
i.e., if, for all a, b ∈ A, 〈a, b〉 ∈ θ and a ∈ F imply b ∈ F. In this case θ
is called a matrix congruence of A. The collection of all congruences of A
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forms a lattice under inclusion. The collection of all matrix congruences of A
forms a principal ideal of this lattice and its maximum element is called the
Leibniz congruence of A and denoted by Ω(A) or ΩA(F ). Blok and Pigozzi
[3] introduced this congruence and they proved that, for all a, b ∈ A,

〈a, b〉 ∈ ΩA(F ) iff ∀φ(p, ~q) ∈ FmL(V ),∀~c ∈ Ak,
φA(a,~c) ∈ F ⇐⇒ φA(b,~c) ∈ F,

(1)

where, by FmL(V ) is denoted the set of L-formulas in a fixed denumerable
set of variables V and k is the length of ~q. Extensive study of the prop-
erties of ΩA viewed as an operator from the lattice of filters on A to the
lattice of congruences of A has given rise to an algebraic hierarchy of logics,
which constitutes the backbone of the area of abstract algebraic logic. (A
very good reference is [7], where the interested reader may find, apart from
a description of the most important classes of this hierarchy, many more
references to original works.)

Recall from [9] that an abstract logic IL = 〈A, C〉 consists of an algebra
A = 〈A,LA〉 together with a closure operator C on A. In [22], an abstract
logic was called a generalized matrix. A congruence θ of A is said to be a
logical congruence of IL, if, for all a, b ∈ A,

〈a, b〉 ∈ θ implies C(a) = C(b).

This is equivalent to θ being compatible with all C-closed sets of A. As in the
case of a logical matrix, it is also the case here that the lattice of all logical
congruences of IL is a principal ideal of the lattice of all congruences of A
and its largest element is called the Tarski congruence of IL and denoted by
Ω̃(IL) or Ω̃A(C). The Tarski congruence of an abstract logic is the main tool
of the theory developed in [9], where it is noted that the characterization of
the Leibniz congruence (1) immediately yields the following characterization
of the Tarski congruence.

〈a, b〉 ∈ Ω̃A(C) iff
∀φ(p, ~q) ∈ FmL(V ),∀~c ∈ Ak, C(φA(a,~c)) = C(φA(b,~c)).

Finally, before introducing the basic analogs of these notions for logics
formalized as π-institutions, the definition of a π-institution is provided,
which will be the central object of our investigations. For many more details
on institutions the reader is referred to the original sources [11] and [12],
where many examples may also be found. For π-institutions, the work of
Fiadeiro and Sernadas [8] is the original reference. For other examples of
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a logical nature the reader may consult [18] and [17]. A lot of examples
pertaining to theoretical computer science may be found in the literature,
e.g., in [13] and [14].

A π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 consists of

(i) a category Sign whose objects are called signatures,

(ii) a functor SEN : Sign → Set, from the category Sign of signatures
into the category Set of sets, called the sentence functor and giving,
for each signature Σ, a set whose elements are called sentences over

that signature Σ or Σ-sentences and

(iii) a mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, called
Σ-closure, such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1
(A)) ⊆ CΣ2

(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈
Sign(Σ1, Σ2), A ⊆ SEN(Σ1).

Sometimes the focus will be on just the signature category and the
sentence functor. In that case, we will suppress Sign and only speak of
SEN : Sign → Set with the signature category being understood from
context.

The clone of all natural transformations on SEN is the locally small
category with collection of objects {SENα : α an ordinal} and collection
of morphisms τ : SENα → SENβ β-sequences of natural transformations
τ : SENα → SEN. Composition

SENα SENβ-〈τi : i < β〉
SENγ-〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.

A subcategory N of this category with objects all objects of the form
SENk for k < ω, that contains all projection morphisms pk,i : SENk →
SEN, i < k, k < ω, with pk,iΣ : SEN(Σ)k → SEN(Σ) given by

pk,iΣ (~φ) = φi, for all ~φ ∈ SEN(Σ)k,
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and is such that, for every family {τi : SENk → SEN : i < l} of natural
transformations in N , the sequence 〈τi : i < l〉 : SENk → SENl is also in N ,
is referred to as a category of natural transformations on SEN (see,
also, [19, 20, 21]).

In [19] parts of the theory of the Tarski congruences for abstract logics
were generalized to cover the case of π-institutions. We describe briefly
this theory since it forms the basis for the developments in the present
paper and its basic concepts are special cases of the concepts that will be
developed here. Given a category Sign and a functor SEN : Sign → Set,
an equivalence system θ on SEN is a collection θ = {θΣ : Σ ∈ |Sign|},
where θΣ is an equivalence relation on SEN(Σ), such that, for all Σ1,Σ2 ∈
|Sign| and every f ∈ Sign(Σ1,Σ2), SEN(f)

2(θΣ1
) ⊆ θΣ2

. Given a category
N of natural transformations on SEN, an equivalence system θ is an N -
congruence system if, in addition, it satisfies, for all Σ ∈ |Sign|, σ :
SENn → SEN in N and ~φ, ~ψ ∈ SEN(Σ)n,

~φ θnΣ
~ψ implies σΣ(~φ) θΣ σΣ(~ψ).

Congruence systems on SEN may be ordered by signature-wise inclusion.
It is shown in [19] that the collection of all N -congruence systems on SEN,
ordered in this way, forms a complete lattice.

Given a π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉, an N -congruence
system on SEN is called a logical N -congruence system, if, for all Σ ∈
|Sign|,

〈φ,ψ〉 ∈ θΣ implies CΣ(φ) = CΣ(ψ).

Logical N -congruence systems also form a complete lattice under the pre-
viously described ordering. The largest logical N -congruence system of I is
the one termed the Tarski N -congruence system of the π-institution I.
It is denoted by Ω̃N (I). In [19] the following characterization of the Tarski
N -congruence system, inspired by the one given by Font and Jansana for
the Tarski congruence of an abstract logic, is proved: 〈φ,ψ〉 ∈ Ω̃N

Σ (I) if and
only if, for all Σ′ ∈ |Sign|, all f ∈ Sign(Σ,Σ′), all natural transformations
τ : SENk → SEN in N , all ~χ ∈ SEN(Σ′)k−1 and all i = 0, . . . , k − 1,

CΣ′(τΣ′(χ0, . . . , χi−1,SEN(f)(φ), χi, . . . , χk−2)) =
CΣ′(τΣ′(χ0, . . . , χi−1,SEN(f)(ψ), χi, . . . , χk−2)).

(2)
This condition will sometimes be abbreviated by

CΣ′(τΣ′(SEN(f)(φ), ~χ)) = CΣ′(τΣ′(SEN(f)(ψ), ~χ)),
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with the understanding that SEN(f)(φ) or SEN(f)(ψ) may occur in any
of the k positions of τΣ′ , the only restriction being that they occur in the
same position on both sides of Equation (2). Hopefully, this notational
convention, that takes after a similar convention adopted in the theory of
deductive systems, will not cause any confusion. Special care will be taken
if, in some particular context, extra transparency is required on this point.

The reader is invited to notice the absence of a category component from
the equivalence systems and the N -congruence systems described above.
Only identification of sentences over the same signature is allowed. It is
not possible to identify signatures and then to identify sentences over two
different, but identified, signatures. The present paper will be an attempt
to bend this rigidity. A more general notion of a congruence system will be
introduced, where identification of signatures will be allowed. Then a char-
acterization of the resulting generalized Tarski congruence system will be
given along the lines of the characterization (2) for the special case reviewed
above.

3 Category Congruences

Let Sign be a category. A (category) congruence S = 〈S1, S2〉 on Sign

consists of an equivalence relation S1 ⊆ |Sign|2 together with an equivalence
relation S2 ⊆ Mor(Sign)2, such that the following conditions are satisfied:

• If f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′
1,Σ

′
2) are such that f S2 g, then

necessarily Σ1 S1 Σ′
1 and Σ2 S1 Σ′

2,

• If Σ S1 Σ′, then iΣ S2 iΣ′ ,

• If f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ2,Σ3), f
′ ∈ Sign(Σ′

1,Σ
′
2), and g′ ∈

Sign(Σ′
2,Σ

′
3) and f S2 f

′, g S2 g
′, then g ◦ f S2 g

′ ◦ f ′.

The notation Σ and f will be used to denote the equivalence classes of a
Σ ∈ |Sign| and f ∈ Mor(Sign) when the congruence S is clear from context.
Otherwise, to make S explicit, we write ΣS and fS, respectively.

Congruences are exactly kernels of functors. This is the content of the
following proposition.

Proposition 1 Given a category Sign, S = 〈S1, S2〉 is a congruence on

Sign if and only if there exists a category C and a functor F : Sign → C,
such that

• Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|,
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• f S2 g if and only if F (f) = F (g), for all f, g ∈ Mor(Sign).

Proof: (Sketch) First, suppose that F : Sign → C is a functor and that
S = 〈S1, S2〉 is defined by the two given conditions. Then it is clear that
the three conditions defining a congruence are satisfied by S.

Conversely, if S = 〈S1, S2〉 is a congruence on Sign, let C be the digraph
defined by taking as its vertices the collection of S1-equivalence classes of
objects in |Sign| and as its directed arcs from Σ1 to Σ2 the collection of
all equivalence classes of morphisms f ∈ Sign(Σ′

1,Σ
′
2), with Σ′

1 ∈ Σ1 and
Σ′
2 ∈ Σ2. This definition makes sense because of the first condition of the

definition of the congruence S. Let D be the collection of all diagrams of
the form

Σ1 Σ3
-

g ◦ f

Σ2

f
�
�
��

g
@
@
@R

for all f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ2,Σ3). The third condition on S implies
that D is well-defined. Create the free category CD on C that respects the
commutativity of all diagrams in D. For the reader that is familiar with
sketch theory, this is tantamount to creating the theory of the linear sketch
〈C,D〉 with graph C and collection of diagrams D (see, e.g., [1]). Now
define F : Sign → CD, by F (Σ) = Σ, for all Σ ∈ |Sign|, and F (f) = f,
for all f ∈ Mor(Sign). It is easy to check, using the second property of a
congruence and the property of the identities in Sign, on the one hand, and
the commutativity of the diagrams in D, on the other, that F is a functor.
That Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|, and f S2 g
if and only if F (f) = F (g), for all f, g ∈ Mor(Sign) are now straightforward
consequences of the definition of F . �

The category CD will be denoted by Sign/S and referred to as the
quotient category of Sign by the congruence S. Similarly, the functor
F : Sign → Sign/S will be denoted by ΠS : Sign → Sign/S and referred
to as the canonical projection functor associated with the congruence
S.

The reader should be cautioned that, despite its name, this functor is
not necessarily surjective. A simple, but illustrative, example is provided.
Consider the category Sign, all of whose objects and morphisms, except for
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the identity morphisms, are pictured below:

Σ1 Σ2
-f

Σ′
2 Σ3

-
g

Suppose that S = 〈S1, S2〉 is the congruence on Sign, that identifies Σ2 and
Σ′
2 and, also, iΣ2

and iΣ′

2
. Then Sign/S is the category shown below (except

for identities):

Σ1 Σ3
-g ◦ f

Σ2

f
@
@
@
@R

g

�
�
�
��

Clearly, the canonical projection functor ΠS : Sign → Sign/S is not sur-
jective on morphisms, since g ◦ f does not have a preimage in Sign.

Next, a natural partial ordering on the category congruences of a given
category is introduced. Then, it is shown that category congruences form a
complete lattice under this ordering.

Let Sign be a category. For all congruences S = 〈S1, S2〉, R = 〈R1, R2〉
on Sign, define

S ≤ R iff S1 ⊆ R1 and S2 ⊆ R2.

Theorem 2 The collection of all category congruences Con(Sign) on the

category Sign forms a complete lattice under the ordering ≤.

Proof: Since ≤ is obviously a partial ordering, it suffices to show that
Con(Sign) has a largest element and is closed under component-wise in-
tersections. It is easy to check either directly, based on the definition of a
congruence, or indirectly, based on Proposition 1, that ∇ = 〈∇1,∇2〉, where
∇1 = |Sign| × |Sign| and ∇2 = Mor(Sign)×Mor(Sign), is a category con-
gruence on Sign and it is obviously the largest such. On the other hand,
suppose that {Si = 〈Si

1, S
i
2〉 : i ∈ I} is a collection of category congruences

on Sign. Clearly, both
⋂

i∈I S
i
1 and

⋂
i∈I S

i
2 are equivalence relations on

|Sign| and Mor(Sign), respectively. Now, it is not very difficult to see that⋂
i∈I S

i = 〈
⋂

i∈I S
i
1,
⋂

i∈I S
i
2〉 is a category congruence on Sign. In fact, the

three conditions defining a congruence may be verified as follows:
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• If f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′
1,Σ

′
2) are such that f

⋂
i∈I S

i
2 g, then

f Si
2 g, for all i ∈ I, whence, necessarily Σ1 S

i
1 Σ′

1, and Σ2 S
i
1 Σ′

2, for
all i ∈ I, and, therefore, Σ1

⋂
i∈I S

i
1 Σ′

1 and Σ2
⋂

i∈I S
i
1 Σ′

2.

• If Σ
⋂

i∈I S
i
1 Σ′, then Σ Si

1 Σ′, for all i ∈ I, whence iΣ Si
2 iΣ′ , for all

i ∈ I, and, therefore, iΣ
⋂

i∈I S
i
2 iΣ′ .

• If f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ2,Σ3), f
′ ∈ Sign(Σ′

1,Σ
′
2), and g′ ∈

Sign(Σ′
2,Σ

′
3) and f

⋂
i∈I S

i
2 f

′, g
⋂

i∈I S
i
2 g

′, then f Si
2 f

′, g Si
2 g

′,
for all i ∈ I, whence g ◦ f Si

2 g
′ ◦ f ′, for all i ∈ I, and, therefore,

g ◦ f
⋂

i∈I S
i
2 g

′ ◦ f ′.

�

4 Equivalence Systems

Let Sign be a category and SEN : Sign → Set be a functor. A pair
〈S, θ〉 is said to be an equivalence system on SEN if S is a congruence
on Sign and θ = {〈Σ, θΣ〉 : Σ ∈ |Sign|} is a collection of binary relations
θΣ ⊆ (

⋃
Σ′∈Σ SEN(Σ′))2, such that the following conditions are satisfied:

• θΣ is an equivalence relation on
⋃

Σ′∈Σ SEN(Σ′), for all Σ ∈ |Sign|,

• if f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′
1,Σ

′
2) with f S2 g, and φ ∈ SEN(Σ1),

ψ ∈ SEN(Σ′
1), with 〈φ,ψ〉 ∈ θΣ1

, then 〈SEN(f)(φ),SEN(g)(ψ)〉 ∈ θΣ2
.

Sometimes, when the equivalence class Σ is clear from context, the Σ-
equivalence 〈Σ, θΣ〉 will be denoted simply by θΣ.

Let Sign,Sign′ be two categories and SEN : Sign → Set, SEN′ :
Sign′ → Set two functors. A translation 〈F,α〉 : SEN → SEN′ from
SEN to SEN′ [17] is a pair consisting of a functor F : Sign → Sign′ and
a natural transformation α : SEN → PSEN′F. A translation is said to
be a singleton translation, denoted 〈F,α〉 : SEN →s SEN′, if, for all
Σ ∈ |Sign|, φ ∈ SEN(Σ), |αΣ(φ)| = 1. In that case, the set αΣ(φ) will be
identified with the element it contains and α will be treated as a natural
transformation α : SEN → SEN′F.

It is shown next that, given a category Sign and a functor SEN : Sign →
Set, kernels of singleton translations 〈F,α〉 : SEN →s SEN′, for some cate-
gory Sign′ and some functor SEN′ : Sign′ → Set are equivalence systems
on SEN.
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Proposition 3 Let Sign be a category and SEN : Sign → Set be a functor.

〈S, θ〉 is an equivalence system on SEN if there exists a category Sign′, a
functor SEN′ : Sign′ → Set and a singleton translation 〈F,α〉 : SEN →s

SEN′, such that

• Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|,

• f S2 g if and only if F (f) = F (g), for all f, g ∈ Mor(Sign),

• for all Σ,Σ′ ∈ |Sign|, with Σ S1 Σ′ and all φ ∈ SEN(Σ), ψ ∈ SEN(Σ′),
〈φ,ψ〉 ∈ θΣ if and only if αΣ(φ) = αΣ′(ψ).

Proof: Suppose that Sign′ is a category, SEN′ : Sign′ → Set is a functor
and 〈F,α〉 : SEN →s SEN′ a singleton translation. Define S = 〈S1, S2〉 by
setting

• Σ S1 Σ′ iff F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|, and

• f S2 g iff F (f) = F (g), for all f, g ∈ Mor(Sign).

By Proposition 1, S is a well-defined congruence on the category Sign.
Next, define θ = {〈Σ, θΣ〉 : Σ ∈ |Sign|} by letting, for all φ ∈ SEN(Σ), ψ ∈
SEN(Σ′), with Σ S1 Σ′,

〈φ,ψ〉 ∈ θΣ iff αΣ(φ) = αΣ′(ψ).

Clearly, for all Σ ∈ |Sign|, θΣ is an equivalence relation on
⋃

Σ′∈Σ SEN(Σ′).
Thus, it suffices to show that 〈S, θ〉 is an equivalence system on SEN, i.e.,
that, if f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′

1,Σ
′
2) with f S2 g, and φ ∈ SEN(Σ1),

ψ ∈ SEN(Σ′
1), with 〈φ,ψ〉 ∈ θΣ1

, then 〈SEN(f)(φ),SEN(g)(ψ)〉 ∈ θΣ2
. So

suppose that 〈φ,ψ〉 ∈ θΣ1
. Then αΣ1

(φ) = αΣ′

1
(ψ). Thus, since f S2 g, we

get that SEN′(F (f))(αΣ1
(φ)) = SEN′(F (g))(αΣ′

1
(ψ)). Therefore

SEN(Σ2) SEN′(F (Σ2))-
αΣ2

SEN(Σ1) SEN′(F (Σ1))-αΣ1

?

SEN(f)

?

SEN′(F (f))

SEN(Σ′
2) SEN′(F (Σ′

2))
-

αΣ′

2

SEN(Σ′
1) SEN′(F (Σ′

1))
-

αΣ′

1

?

SEN(g)

?

SEN′(F (g))

αΣ2
(SEN(f)(φ)) = αΣ′

2
(SEN(g)(ψ)). But this, by the definition of θ, gives

〈SEN(f)(φ), SEN(g)(ψ)〉 ∈ θΣ2
. �
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The next result is a partial converse of Proposition 3. It yields the con-
struction of a singleton translation 〈F,α〉 from a given equivalence system
under the hypothesis that the equivalence system is confluent. Confluence
is a property that will be introduced formally below. It says, roughly speak-
ing, that all equivalence classes of sentences over an equivalence class of
signatures have at least one representative over each of the constituent sig-
natures in the class. Confluence of equivalence relations results also in a
corresponding property of the natural transformation α of the constructed
translation.

Let Sign be a category and SEN : Sign → Set a functor. An equivalence
system 〈S, θ〉 on SEN is said to be confluent if, for all Σ,Σ′ ∈ |Sign|, with
Σ S1 Σ′, and φ ∈ SEN(Σ), there exists ψ ∈ SEN(Σ′), such that 〈φ,ψ〉 ∈ θΣ.

Let Sign,Sign′ be two categories and SEN : Sign → Set, SEN′ :
Sign′ → Set two functors. A singleton translation 〈F,α〉 : SEN →s SEN′

from SEN to SEN′ is said to be confluent, if, for all Σ,Σ′ ∈ |Sign|, such
that F (Σ) = F (Σ′), and all φ ∈ SEN(Σ), there exists ψ ∈ SEN(Σ′), such
that αΣ(φ) = αΣ′(ψ).

An easy observation is contained in the following lemma.

Lemma 4 Let 〈F,α〉 : SEN →s SEN′ be a singleton translation. If αΣ is

surjective, for all Σ ∈ |Sign|, then 〈F,α〉 is confluent.

Proof: Suppose Σ,Σ′ ∈ |Sign|, such that F (Σ) = F (Σ′), and let φ ∈
SEN(Σ). Then αΣ(φ) ∈ SEN′(F (Σ)) = SEN′(F (Σ′)). Hence, since αΣ′ :
SEN(Σ′) → SEN′(F (Σ′)) is surjective, there exists ψ ∈ SEN(Σ′), such that
αΣ′(ψ) = αΣ(φ) and 〈F,α〉 is confluent. �

Next, it is shown that confluent equivalence systems correspond exactly
to confluent translations.

Proposition 5 Let Sign be a category and SEN : Sign → Set be a functor.

〈S, θ〉 is a confluent equivalence system on SEN if and only if there exists a

category Sign′, a functor SEN′ : Sign′ → Set and a confluent translation

〈F,α〉 : SEN →s SEN′, such that

• Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|,

• f S2 g if and only if F (f) = F (g), for all f, g ∈ Mor(Sign),

• for all Σ,Σ′ ∈ |Sign|, with Σ S1 Σ′ and all φ ∈ SEN(Σ), ψ ∈ SEN(Σ′),
〈φ,ψ〉 ∈ θΣ if and only if αΣ(φ) = αΣ′(ψ).
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Proof: Suppose that 〈F,α〉 : SEN →s SEN′ is a confluent translation.
Define 〈S, θ〉 as in the statement of the proposition. By Proposition 3, 〈S, θ〉
is an equivalence system. It therefore suffices to show that it is confluent.
To this end, let Σ,Σ′ ∈ |Sign|, such that Σ S1Σ

′ and φ ∈ SEN(Σ). By the
definition of S1, we have F (Σ) = F (Σ′), whence, since 〈F,α〉 is confluent,
there exists ψ ∈ SEN(Σ′), such that αΣ(φ) = αΣ′(ψ). But, by the definition
of θ, this means that 〈φ,ψ〉 ∈ θΣ and 〈S, θ〉 is confluent.

Suppose, conversely, that 〈S, θ〉 is a confluent equivalence system on
SEN. Let Sign′ = Sign/S and F = ΠS : Sign → Sign′. By Proposition
1, Sign′ is a well-defined category and F : Sign → Sign′ is a well-defined
functor. Next, define SEN′ : Sign′ → Set at the object level by letting

SEN′(Σ) = (
⋃

Σ′∈Σ

SEN(Σ′))/θΣ, for all Σ ∈ |Sign|.

At the morphism level, given Σ1,Σ2 ∈ |Sign′|, f ∈ Sign′(Σ1,Σ2), with
f ∈ Sign(Σ1,Σ2), and φ/θΣ1

∈ Σ1, with φ ∈ SEN(Σ′
1), such that Σ′

1 S1 Σ1,
let

SEN′(f)(φ/θΣ1
) = SEN(f)(ψ)/θΣ2

,

where ψ ∈ SEN(Σ1), with 〈ψ, φ〉 ∈ θΣ1
. Such a ψ ∈ SEN(Σ1) exists by

the confluence of 〈S, θ〉. Note that, since 〈S, θ〉 is an equivalence system on
SEN, the definition of SEN′(f) is independent of the choice of ψ. So SEN′

is well-defined on morphisms that are in the range of F . The definition of
SEN′ at the morphism level is extended to all of the morphisms in Sign′ by
first extending it to all compositions of morphisms of the form f for f in
Mor(Sign) and then dividing out by the commutativity relations “inherited”
by Sign. Since gf = gf, when g, f are composing, the extension is well-
defined. To see that SEN′ : Sign′ → Set is a functor, note that, for all Σ ∈
|Sign|, all Σ′ ∈ |Sign|, with Σ S1 Σ′, and all φ ∈ SEN(Σ′), if ψ ∈ SEN(Σ),
with 〈φ,ψ〉 ∈ θΣ,

SEN′(iΣ)(φ/θΣ) = SEN(iΣ)(ψ)/θΣ
= ψ/θΣ
= φ/θΣ,

and if f ∈ Sign′(Σ1,Σ2), g ∈ Sign′(Σ2,Σ3), such that f = fkfk−1 . . . f1,
g = glgl−1 . . . g1, then

SEN′(g ◦ f) = SEN′(glgl−1 . . . g1fkfk−1 . . . f1)

= SEN′(glgl−1 . . . g1)SEN
′(fkfk−1 . . . f1)

= SEN′(g)SEN′(f).
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Last, define α : SEN → SEN′◦F, by letting αΣ : SEN(Σ) → SEN′(F (Σ))
be given by

αΣ(φ) = φ/θΣ, for all φ ∈ SEN(Σ).

α : SEN → SEN′ ◦ F is a natural transformation, since, for all Σ1,Σ2 ∈
|Sign|, f ∈ Sign(Σ1,Σ2) and φ ∈ SEN(Σ1),

SEN(Σ2) SEN′(F (Σ2))-
αΣ2

SEN(Σ1) SEN′(F (Σ1))-αΣ1

?

SEN(f)

?

SEN′(F (f))

SEN′(F (f))(αΣ1
(φ)) = SEN′(f)(φ/θΣ1

)

= SEN(f)(φ)/θΣ2

= αΣ2
(SEN(f)(φ)).

〈F,α〉 is confluent, since, for all Σ,Σ′ ∈ |Sign|, such that F (Σ) = F (Σ′),
and φ ∈ SEN(Σ), we get that Σ S1 Σ′, whence, since 〈S, θ〉 is confluent,
we get a ψ ∈ SEN(Σ′), such that 〈φ,ψ〉 ∈ θΣ, whence, by definition of α,
αΣ(φ) = αΣ′(ψ), i.e., 〈F,α〉 is confluent.

Clearly, 〈F,α〉 and 〈S, θ〉 are related as postulated in the itemized clauses
of the statement. �

It was not possible to obtain a full converse of Proposition 3 without the
property of confluence for the equivalence systems and the corresponding
singleton translations. The difficulty lies in the fact that SEN′ may not
be definable at the morphism level if 〈S, θ〉 is not confluent. We call 〈S, θ〉
extendable if defining SEN′ is possible.

More formally, given a category Sign and a functor SEN : Sign → Set,
an equivalence system 〈S, θ〉 on SEN is said to be extendable if, given the
object mapping SEN′ : |Sign/S| → |Set|, with

SEN′(Σ) =
⋃

Σ′∈Σ

SEN(Σ′)/θΣ,

the mapping SEN′(f) for f ∈ Mor(Sign/S), which is a partial set function,
with SEN′(f) :

⋃
Σ′∈Σ1

SEN(Σ′)/θΣ1
→

⋃
Σ′∈Σ2

SEN(Σ′)/θΣ2
, given, for all

φ ∈ Σ′
1, such that Σ′

1 S1 Σ1, by

SEN(f)(φ/θΣ1
) = SEN(f)(ψ)/θΣ2

,
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if there exists ψ ∈ SEN(Σ1), such that 〈φ,ψ〉 ∈ θΣ1
, may be extended to a

total set function so that SEN′ : Sign/S → Set becomes a functor.
It is now clear from the proof of Proposition 5 that extendable equiva-

lence systems correspond exactly to kernels of singleton translations.

Proposition 6 Let Sign be a category and SEN : Sign → Set be a functor.

〈S, θ〉 is an extendable equivalence system on SEN if and only if there exists

a category Sign′, a functor SEN′ : Sign′ → Set and a singleton translation

〈F,α〉 : SEN →s SEN′, such that

• Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|,

• f S2 g if and only if F (f) = F (g), for all f, g ∈ Mor(Sign),

• for all Σ,Σ′ ∈ |Sign|, with Σ S1 Σ′ and all φ ∈ SEN(Σ), ψ ∈ SEN(Σ′),
〈φ,ψ〉 ∈ θΣ if and only if αΣ(φ) = αΣ′(ψ).

Next, given a category Sign and a functor SEN : Sign → Set, a partial
ordering is introduced on the collection Eqv(SEN) of all equivalence systems
on SEN. It is then shown that Eqv(SEN) forms a complete lattice under this
ordering. This ordering, restricted to the class EqvID(SEN) of all equivalence
systems of the form 〈∆Sign, θ〉, where ∆Sign is the identity congruence on
Sign, also yields a complete lattice structure. Thus, the following increasing
hierarchy of complete lattice structures is formed

Eqv(SEN)

EqvID(SEN)

6

The collection EqvID(SEN) is singled out since it is the collection used in
[19] to define the Tarski congruence system of a given π-institution. Since
in that case only the identity category congruence is allowed as the first
component of the equivalence systems, the equivalence systems considered
in [19] are special cases of those developed here. This fact accounts for the
“generalized” in the “generalized Tarski congruence systems” of the title.

More formally, given a category Sign and a functor SEN : Sign → Set,
a partial ordering ≤ is defined on the collection of all equivalence systems
on SEN by setting

〈S, θ〉 ≤ 〈R, η〉 iff S ≤ R and θΣS
⊆ ηΣR

, for all Σ ∈ |Sign|.
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Theorem 7 Let Sign be a category and SEN : Sign → Set be a func-

tor. The collection Eqv(SEN) of all equivalence systems on SEN forms a

complete lattice under the partial ordering ≤.

Proof: It is clear that ∇ = 〈∇Sign,∇SEN〉, where

∇Sign = 〈∇|Sign|,∇Mor(Sign)〉

is the congruence on Sign defined by ∇|Sign| = |Sign| × |Sign| and by
∇Mor(Sign) = Mor(Sign)×Mor(Sign), and

∇SEN = {〈|Sign|, (
⋃

Σ∈|Sign|

SEN(Σ))2〉}

is an equivalence system of SEN. So it is the maximum element of Eqv(SEN)
under the inclusion ≤.

To prove the statement, it suffices, thus, to show that the collection
Eqv(SEN) is closed under greatest lower bounds. These are given by signa-
ture congruence intersections in the signature component and by domain-
restricted signature respecting intersections in the second component. Sup-
pose to this end that 〈Si, θi〉, i ∈ I, is a collection of equivalence systems of
SEN. By Theorem 2,

⋂
i∈I S

i = 〈
⋂

i∈I S
i
1,
⋂

i∈I S
i
2〉 is a category congruence

on Sign. Suppose, now, that Σ ∈ |Sign|. Let Σ be the equivalence class of
Σ with respect to

⋂
i∈I S

i
1 and ΣSi its equivalence class with respect to the

equivalence Si
1, for all i ∈ I. Consider the system

〈
⋂

i∈I

Si, {〈Σ,
⋂

i∈I

θi
Σ

Si

↾⋃
Σ′∈

⋂
i∈I Σ

Si
SEN(Σ′)〉 : Σ ∈ |Sign|}〉.

By 〈Σ, θΣ〉 is denoted the pair 〈Σ,
⋂

i∈I θ
i
Σ

Si

↾⋃
Σ′∈

⋂
i∈I Σ

Si
SEN(Σ′)〉. It is shown

that this is a valid equivalence system on SEN, whence Eqv(SEN) is closed
under infima, which will prove that Eqv(SEN) is endowed with the structure
of a complete lattice.

First, it must be shown that
⋂

i∈I θ
i
Σ

Si

↾⋃
Σ′∈

⋂
i∈I Σ

Si
SEN(Σ′) is an equiv-

alence relation on
⋃

Σ′∈Σ SEN(Σ′). By its definition, it is in fact a relation
over the set of sentences

⋃
Σ′∈Σ SEN(Σ′). Furthermore, it is an equivalence

relation, since it is the intersection of the restriction of the equivalences θi
Σ

Si

to the set of sentences
⋃

Σ′∈Σ SEN(Σ′).
Finally, it suffices to show that, if f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′

1,Σ
′
2),

such that f
⋂

i∈I S
i
2 g, and 〈φ,ψ〉 ∈ θΣ1

, we have 〈SEN(f)(φ),SEN(g)(ψ)〉 ∈
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θΣ2
. Indeed, if 〈φ,ψ〉 ∈ θΣ1

, then we get 〈φ,ψ〉 ∈
⋂

i∈I θ
i
Σ1Si

and φ,ψ ∈
⋃

Σ′∈
⋂

i∈I
Σ1Si

SEN(Σ′), whence 〈φ,ψ〉 ∈ θi
Σ1Si

, for all i ∈ I, and φ,ψ ∈
⋃

Σ′∈
⋂

i∈I
Σ1Si

SEN(Σ′). Hence, since, for all i ∈ I, 〈Si, θi〉 is an equiv-

alence system on SEN, 〈SEN(f)(φ),SEN(g)(ψ)〉 ∈ θi
Σ2Si

, for all i ∈ I,

and SEN(f)(φ),SEN(f)(ψ) ∈
⋃

Σ′∈
⋂

i∈I
Σ2Si

SEN(Σ′). Therefore, we obtain

〈SEN(f)(φ), SEN(g)(ψ)〉 ∈
⋂

i∈I θ
i
Σ2Si

, together with

SEN(f)(φ),SEN(f)(ψ) ∈
⋃

Σ′∈
⋂

i∈I
Σ2Si

SEN(Σ′),

which give that 〈SEN(f)(φ),SEN(g)(ψ)〉 ∈ θΣ2
. Thus

〈
⋂

i∈I

Si, {〈Σ,
⋂

i∈I

θi
Σ

Si

↾⋃
Σ′∈

⋂
i∈I Σ

Si
SEN(Σ′)〉 : Σ ∈ |Sign|}〉

is an equivalence system on SEN. �

5 Congruence Systems

Let again Sign be a category and SEN : Sign → Set be a functor. In
addition, let N be a category of natural transformations on SEN. An equiv-
alence system 〈S, θ〉 on SEN is said to be an N -congruence system on
SEN if, for all σ : SENk → SEN in N, it satisfies, for all Σ,Σ′ ∈ |Sign|, with
Σ S1 Σ′, and all ~φ ∈ SEN(Σ)k, ~ψ ∈ SEN(Σ′)k,

~φ θk
Σ
~ψ imply σΣ(~φ) θΣ σΣ′(~ψ).

Given two functors SEN : Sign → Set, SEN′ : Sign′ → Set and categories
of natural transformations N,N ′, respectively, on SEN,SEN′, a singleton
translation 〈F,α〉 from SEN to SEN′ is said to be (N,N ′)-homomorphic

if, for every natural transformation σ : SENk → SEN in N, there exists
a natural transformation τ : SEN′k → SEN′ in N ′, such that, for every
Σ ∈ |Sign| and every ~φ ∈ SEN(Σ)k,

SEN(Σ) SEN′(F (Σ))-
αΣ

SEN(Σ)k SEN′(F (Σ))k-αk
Σ

?
σΣ

?
τF (Σ)



CAAL: Generalized Tarski Congruence Systems 18

αΣ(σΣ(~φ)) = τF (Σ)(α
k
Σ(
~φ)). (3)

It is said to be (N,N ′)-epimorphic if it is (N,N ′)-homomorphic and, in
addition, for every τ : SEN′k → SEN′ in N ′, there exists σ : SENk → SEN
in N, such that Equation (3) holds, for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)k. We
denote homomorphic by the superscript h and epimorphic by the superscript
e, respectively, assuming that the categories N andN ′ are clear from context.

The following results are analogs of Propositions 3 and 5, lifting results
pertaining to equivalence systems and translations to corresponding results
pertaining to N -congruence systems and (N,N ′)-epimorphic translations,
respectively.

Proposition 8 Let Sign be a category, SEN : Sign → Set be a functor and

N a category of natural transformations on SEN. 〈S, θ〉 is an N -congruence

system on SEN if there exists a category Sign′, a functor SEN′ : Sign′ →
Set, a category N ′ of natural transformations on SEN′ and an (N,N ′)-
homomorphic translation 〈F,α〉 : SEN →h SEN′, such that

• Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|,

• f S2 g if and only if F (f) = F (g), for all f, g ∈ Mor(Sign),

• for all Σ,Σ′ ∈ |Sign|, with Σ S1 Σ′ and all φ ∈ SEN(Σ), ψ ∈ SEN(Σ′),
〈φ,ψ〉 ∈ θΣ if and only if αΣ(φ) = αΣ′(ψ).

Proof: Suppose there exists a category Sign′, a functor SEN′ : Sign′ →
Set, a category N ′ of natural transformations on SEN′ and an (N,N ′)-
homomorphic translation 〈F,α〉 : SEN →h SEN′, such that the three con-
ditions of the statement are satisfied. Then, by Proposition 3, 〈S, θ〉 is
an equivalence system on SEN. To show that it is an N -congruence sys-
tem, let σ : SENk → SEN be a natural transformation in N and let
τ : SEN′k → SEN′ be the corresponding transformation in N ′, given by
the (N,N ′)-homomorphic property, such that, for all Σ ∈ |Sign|, the rect-
angle

SEN(Σ) SEN′(F (Σ))-
αΣ

SEN(Σ)k SEN′(F (Σ))k-αk
Σ

?
σΣ

?
τF (Σ)

commutes. Then, for all Σ,Σ′ ∈ |Sign|, with F (Σ) = F (Σ′), and all ~φ ∈
SEN(Σ)k, ~ψ ∈ SEN(Σ′)k, such that ~φ θk

Σ
~ψ, we have αk

Σ(
~φ) = αk

Σ′(~ψ), whence

τF (Σ)(α
k
Σ(
~φ)) = τF (Σ′)(α

k
Σ′(~ψ)) and, therefore, by the commutativity of the
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diagram, αΣ(σΣ(~φ)) = αΣ′(σΣ′(~ψ)). But this yields σΣ(~φ) θΣ σΣ′(~ψ), whence
〈S, θ〉 is indeed an N -congruence system on SEN. �

Proposition 9 Let Sign be a category, SEN : Sign → Set be a functor

and N a category of natural transformations on SEN. 〈S, θ〉 is a confluent

N -congruence system on SEN if and only if there exists a category Sign′,
a functor SEN′ : Sign′ → Set, a category N ′ of natural transformations on

SEN′ and a confluent (N,N ′)-epimorphic translation 〈F,α〉 : SEN →e SEN′,
such that

• Σ S1 Σ′ if and only if F (Σ) = F (Σ′), for all Σ,Σ′ ∈ |Sign|,

• f S2 g if and only if F (f) = F (g), for all f, g ∈ Mor(Sign),

• for all Σ,Σ′ ∈ |Sign|, with Σ S1 Σ′ and all φ ∈ SEN(Σ), ψ ∈ SEN(Σ′),
〈φ,ψ〉 ∈ θΣ if and only if αΣ(φ) = αΣ′(ψ).

Proof: Sufficiency is provided by Proposition 8 together with the observa-
tion that, since 〈F,α〉 is a confluent (N,N ′)-epimorphic translation, 〈S, θ〉,
as constructed in the proof of Proposition 8, is a confluent equivalence sys-
tem and, as a result, also a confluent N -congruence system.

For necessity, if 〈S, θ〉 is a confluent N -congruence system on SEN, let
Sign′,SEN′ : Sign′ → Set and 〈F,α〉 : SEN → SEN′ be defined as in
the proof of Proposition 5. Then, by Proposition 5, it suffices to show the
existence of a category of natural transformations N ′ on SEN′ such that
〈F,α〉 is (N,N ′)-epimorphic.

To this end, given σ : SENk → SEN in N , let σ : SEN′k → SEN′ be
defined, for all Σ ∈ |Sign′|, φi ∈ SEN(Σi), i = 0, . . . , k− 1, with Σi S1 Σ, for
all i = 0, . . . , k − 1, by

σΣ(
~φ/θΣ) = σΣ(φ

′
0, . . . , φ

′
k−1)/θΣ,

where φ′i ∈ SEN(Σ) with φ′i θΣ φi, i = 0, . . . , k − 1, are sentences whose
existence is guaranteed by confluence. This definition is independent of the
representatives φ′i, i = 0, . . . , k − 1, since, if Σ′ ∈ |Sign|, with Σ S1 Σ′, and
~ψ ∈ SEN(Σ′)k, such that ψi θΣ φ′i, i = 0, . . . , k − 1, then, since 〈S, θ〉 is an

N -congruence system, σΣ(~φ′) θΣ σΣ′(~ψ). σ : SEN′k → SEN′ is a natural
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transformation, since, for all f ∈ Sign(Σ1,Σ2), we have

SEN′(Σ2)
k SEN′(Σ2)-

σΣ2

SEN′(Σ1)
k SEN′(Σ1)-

σΣ1

?

SEN′(f)k

?

SEN′(f)

σΣ2
(SEN′(f)k(~φ/θΣ1

)) = σΣ2
(SEN(f)k(~φ′)/θΣ2

)

= σΣ2
(SEN(f)k(~φ′))/θΣ2

= SEN(f)(σΣ1
(~φ′))/θΣ2

= SEN′(f)(σΣ1
(~φ′)/θΣ2

)

= SEN′(f)(σΣ1
(~φ′/θΣ1

))

= SEN′(f)(σΣ1
(~φ/θΣ1

)).

Now, define N ′ = {σ : σ in N}. Then we have

SEN(Σ) SEN′(F (Σ))-
αΣ

SEN(Σ)k SEN′(F (Σ))k-αk
Σ

?

σΣ

?

σΣ

σΣ(α
k
Σ(
~φ)) = σΣ(

~φ/θΣ)

= σΣ(~φ)/θΣ
= αΣ(σΣ(~φ)),

whence, 〈F,α〉 is in fact an (N,N ′)-epimorphic translation. �

Next, given a category Sign, a functor SEN : Sign → Set and a category
N of natural transformations on SEN, the partial ordering ≤, introduced
previously on the collection of all equivalence systems, is restricted to the
collection ConN (SEN) of allN -congruence systems on SEN. It is then shown
that ConN (SEN) forms a complete lattice under this ordering. The same
ordering, restricted to the class ConNID(SEN) of all congruence systems of
the form 〈∆Sign, θ〉, where ∆Sign is the identity congruence on Sign, also
yields a complete lattice structure. Thus, the following increasing hierarchy
of complete lattice structures is formed

ConN (SEN)

ConNID(SEN)

6
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The collection ConNID(SEN) is the one used in [19] to define the Tarski con-
gruence system of a given π-institution. Thus, with respect to N -congruence
systems as well, the concepts introduced in [19] constitute special cases of
the concepts presented in the present work.

More formally, given a category Sign, a functor SEN : Sign → Set

and a category of natural transformations N on SEN, consider the partial
ordering ≤, that was defined on the collection of all equivalence systems on
SEN by

〈S, θ〉 ≤ 〈R, η〉 iff S ≤ R and θΣS
⊆ ηΣR

, for all Σ ∈ |Sign|,

restricted to the collection ConN (SEN) of all N -congruence systems on SEN.

Theorem 10 Let Sign be a category, SEN : Sign → Set a functor and N a

category of natural transformations on SEN. The collection ConN (SEN) of
all N -congruence systems on SEN forms a complete lattice under the partial

ordering ≤.

Proof: 〈ConN (SEN),≤〉 may easily be seen to be a complete sublattice of
the complete lattice 〈Eqv(SEN),≤〉 of all equivalence systems on SEN. �

6 Logical and Tarski Congruence Systems

Let now I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. An equivalence
system 〈S, θ〉 on SEN is called a logical equivalence system of I if, for
all Σ1,Σ

′
1 ∈ |Sign|, with Σ1 S1 Σ′

1, all φ ∈ SEN(Σ1), ψ ∈ SEN(Σ′
1), with

〈φ,ψ〉 ∈ θΣ1
, we have

Σ1 Σ′
1

Σ2

f
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@
@R

g
�

�
�	

CΣ2
(SEN(f)(φ)) = CΣ2

(SEN(g)(ψ)),

for all Σ2 ∈ |Sign| and all f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′
1,Σ2), with f S2 g.

An N -congruence system of SEN is a logical N -congruence system

of I if it is logical as an equivalence system of I.

Theorem 11 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and N

a category of natural transformations on SEN. The collection LConN (I),
sometimes also denoted by LConN (C), of all logical N -congruence systems

of I forms a complete lattice under component-wise inclusion.
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Proof: If 〈Si, θi〉, i ∈ I, is a collection of logical N -congruence systems on
SEN, then, using the conventions adopted in the proof of Proposition 7, we
obtain that

〈
⋂

i∈I

Si, {〈Σ,
⋂

i∈I

θi
Σ

Si

↾⋃
Σ′∈

⋂
i∈I Σ

Si
SEN(Σ′)〉 : Σ ∈ |Sign|}〉 ∈ LConN (I),

since, by Theorem 10, the displayed pair is an N -congruence system on
SEN, and it is a logical N -congruence system. To see this, suppose that
Σ1,Σ

′
1 ∈ |Sign|, with Σ1 S1 Σ′

1 and φ ∈ SEN(Σ1), ψ ∈ SEN(Σ′
1), with

〈φ,ψ〉 ∈ θΣ1
. Then 〈φ,ψ〉 ∈

⋂
i∈I θΣ1Si

and φ,ψ ∈
⋃

Σ′∈Σ1
SEN(Σ′). Thus,

〈φ,ψ〉 ∈ θΣ1Si
, for all i ∈ I, and φ,ψ ∈

⋃
Σ′∈Σ1

SEN(Σ′). Now, suppose that

Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′
1,Σ2), such that f S2 g.

Σ1 Σ′
1

Σ2

f
@
@
@R

g
�

�
�	

Thus, since S2 =
⋂

i∈I S
i
2, 〈φ,ψ〉 ∈ θΣ1Si

and 〈Si, θi〉 is logical, we have

CΣ2
(SEN(f)(φ)) = CΣ2

(SEN(g)(ψ)). Therefore

〈
⋂

i∈I

Si, {〈Σ,
⋂

i∈I

θi
Σ

Si

↾⋃
Σ′∈

⋂
i∈I Σ

Si
SEN(Σ′)〉 : Σ ∈ |Sign|}〉

is also logical.
It remains now to show that LConN (I) has a greatest element. To

this end, consider a directed subset {〈Si, θi〉 : i ∈ I} of LConN (I). It is not
difficult to check that 〈

⋃
i∈I S

i,
⋃

i∈I θ
i〉, where

⋃
i∈I S

i = 〈
⋃

i∈I S
i
1,
⋃

i∈I S
i
2〉,

is a logical N -congruence system on SEN, whence it is an upper bound for
{〈Si, θi〉 : i ∈ I} in LConN (I). So, by Zorn’s Lemma, LConN (I) has a
maximal element. If 〈S, θ〉 6= 〈R, η〉 are two such maximal elements, then,
it is not difficult to verify that their join 〈V, ζ〉 as N -congruence systems of
SEN is a logical N -congruence system of I. This, however, contradicts their
maximality, since, clearly, 〈S, θ〉 < 〈V, ζ〉 and 〈R, η〉 < 〈V, ζ〉. Therefore,
the maximal element of LConN (I), provided by Zorn’s Lemma, is in fact a
largest element. �

The largest logical N -congruence system is called theTarski N -congru-
ence system of I and is denoted by 〈ΩN (I), ωN (I)〉 or 〈ΩN (C), ωN (C)〉.
In the context where the π-institution I and the category N are fixed, we
may simply write 〈Ω, ω〉 if confusion is not likely. The reader is cautioned
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about this choice of notation. The capital omega is referring to the category
congruence and the small omega to the sentence component. Ordinarily, in
the special case considered in [19], since the category congruence is always
the identity congruence, the capital omega is used for the sentence compo-
nent, following the long standing notational tradition in abstract algebraic
logic, as originated by Blok and Pigozzi [3].

The following theorem is an adaptation of a characterization result of
Font and Jansana ([9], Proposition 1.2) of the Tarski congruence of an ab-
stract logic, which is, in turn, a generalization of a characterization result of
Blok and Pigozzi [3] of the Leibniz congruence of a logical matrix. It is also a
generalization of a result in [19] concerning the largest logical N -congruence
system of a π-institution with an identity category congruence, which will
be denoted here by 〈∆Sign, ω

N
ID(I)〉. Once more, it is noted that, in [19],

the notation Ω̃N (I) := ωN
ID(I) was used. Some lemmas will be presented

first that will be subsequently used to prove the main theorem. The proof
is broken into several steps and its format goes roughly as follows:

1. For a fixed category congruence S, a characterization is given for the
largest logical N -congruence system 〈S, ωN

S (I)〉 with signature com-
ponent S.

2. It is shown, based on the result of the first step, that, for every category
congruence S of Sign,

ωN
S (I)Σ ↾SEN(Σ)⊆ ωN

ID(I)Σ.

3. This implies that the category congruence ΩN (I) is the largest cate-
gory congruence S, with ωN

S (I)Σ ↾SEN(Σ)= ωN
ID(I)Σ, for all Σ ∈ |Sign|.

4. By step 3, it follows that the category congruence ΩN(I) is the join
of the collection of all category congruences S, such that, for all Σ ∈
|Sign|,

ωN
S (I)Σ ↾SEN(Σ)= ωN

ID(I)Σ.

5. Finally, ωN (I) = ωN
ΩN (I)

(I).

The first lemma below, Lemma 12, is a technical lemma used to prove
the first step in the sequence outlined above. The first step itself is presented
in Lemma 13, that immediately follows Lemma 12.
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Lemma 12 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, N a

category of natural transformations on SEN and 〈S, θ〉 a logical N -congru-

ence system of I. Let Σ1,Σ2 ∈ |Sign|, φ ∈ SEN(Σ1) and f, g ∈ Sign(Σ1,
Σ2), such that f S2 g. Then, for all natural transformations τ : SENk →
SEN in N and all ~χ ∈ SEN(Σ2)

k−1,

CΣ2
(τΣ2

(SEN(f)(φ), ~χ)) = CΣ2
(τΣ2

(SEN(g)(φ), ~χ)). (4)

Proof: We have 〈φ, φ〉 ∈ θΣ1
, since θΣ1

is an equivalence relation. Thus,
since f S2 g and 〈S, θ〉 is an equivalence system, 〈SEN(f)(φ),SEN(g)(φ)〉 ∈
θΣ2

. Hence, since ~χ θk−1
Σ2

~χ and 〈S, θ〉 is an N -congruence system on SEN,
we get

〈τΣ2
(SEN(f)(φ), ~χ), τΣ2

(SEN(g)(φ), ~χ)〉 ∈ θΣ2
.

Finally, since 〈S, θ〉 is a logical congruence system, we get Equation (4). �

Lemma 13 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, N a cat-

egory of natural transformations on SEN and S a category congruence on

Sign. Let Σ1,Σ
′
1 ∈ |Sign|, such that Σ1 S1 Σ′

1, and φ ∈ SEN(Σ1), ψ ∈
SEN(Σ′

1). Then 〈φ,ψ〉 ∈ ωN
S (I)Σ1

if and only if, for all Σ2 ∈ |Sign|,
f ∈ Sign(Σ1,Σ2), g ∈ Sign(Σ′

1,Σ2), such that f S2 g, all natural trans-
formations τ : SENk → SEN in N and all ~χ ∈ SEN(Σ2)

k−1,

CΣ2
(τΣ2

(SEN(f)(φ), ~χ)) = CΣ2
(τΣ2

(SEN(g)(ψ), ~χ)). (5)

Proof: Consider the π-institution I, the category N of natural transfor-
mations on SEN and suppose that S = 〈S1, S2〉 is a category congruence
on Sign. Define, for all Σ ∈ |Sign|, the equivalence relation RΣ on the
collection

⋃
Σ′∈Σ SEN(Σ′) as the collection of all pairs 〈φ,ψ〉 that satisfy

Equation (5), where Σ denotes the S1-class of Σ. RΣ is an equivalence rela-
tion on

⋃
Σ′∈Σ SEN(Σ′) since it is reflexive by Lemma 12 and it is obviously

symmetric and transitive.
R is also an equivalence system of SEN, since, for all Σ1,Σ2,Σ

′
1,Σ

′
2 ∈

|Sign|, with Σ1 S1 Σ′
1,Σ2 S1 Σ′

2, h ∈ Sign(Σ1,Σ2), k ∈ Sign(Σ′
1,Σ

′
2), with

h S2 k, and all φ ∈ SEN(Σ1), ψ ∈ SEN(Σ′
1), with 〈φ,ψ〉 ∈ RΣ1

, we get, for
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all Σ3 ∈ |Sign|, f ∈ Sign(Σ2,Σ3), g ∈ Sign(Σ′
2,Σ3), with f S2 g,

Σ1

Σ2

?

h

Σ′
1

Σ′
2

?

k

Σ3

f
@
@
@R

g
�

�
�	

τ : SENk → SEN in N and ~χ ∈ SEN(Σ3)
k−1,

CΣ3
(τΣ3

(SEN(f)(SEN(h)(φ)), ~χ)) =

= CΣ3
(τΣ3

(SEN(fh)(φ), ~χ))
= CΣ3

(τΣ3
(SEN(gk)(ψ), ~χ))

= CΣ3
(τΣ3

(SEN(g)(SEN(k)(ψ)), ~χ)),

where, passing from the first to the second lines above, we have used the
fact that 〈φ,ψ〉 ∈ RΣ1

and fh S2 gk. Therefore, we get that 〈SEN(h)(φ),
SEN(k)(ψ)〉) ∈ RΣ2

.
Furthermore, R is an N -congruence system on SEN. To see this, let

Σ1,Σ
′
1 ∈ |Sign|, with Σ1 S1 Σ′

1,
~φ ∈ SEN(Σ1)

n, ~ψ ∈ SEN(Σ′
1)

n, with
~φ Rn

Σ1

~ψ and σ : SENn → SEN be in N . Then, for all Σ2 ∈ |Sign|, f ∈

Sign(Σ1,Σ2), g ∈ Sign(Σ′
1,Σ2), with f S2 g, τ : SENk → SEN in N and

~χ ∈ SEN(Σ2)
k−1,

Σ1 Σ′
1

Σ2

f
@
@
@
@R

g
�

�
�

�	

CΣ2
(τΣ2

(SEN(f)(σΣ1
(~φ)), ~χ)) = CΣ2

(τΣ2
(σΣ2

(SEN(f)n(~φ)), ~χ))

= CΣ2
(τΣ2

(σΣ2
(SEN(g)n(~ψ)), ~χ))

= CΣ2
(τΣ2

(SEN(g)(σΣ′

1
(~ψ)), ~χ)),

where, passing from the first to the second row, we have used the fact
that τ(σ, . . .) : SENn+k−1 → SEN is in N and ~φ Rn

Σ1

~ψ. Therefore, we

obtain 〈σΣ1
(~φ), σΣ′

1
(~ψ)〉 ∈ RΣ1

and R is an N -congruence system of SEN.
Finally, it is straightforward, taking the identity natural transformation ι :
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SEN → SEN (which is in N) for τ in Equation (5), that R is a logical N -
congruence system of I. Therefore, by the definition of ωN

S (I)Σ, we get that
RΣ ⊆ ωN

S (I)Σ, for all Σ ∈ |Sign|.
Conversely, if Σ1 S1 Σ′

1 and φ ∈ SEN(Σ1), ψ ∈ SEN(Σ′
1), with 〈φ,ψ〉 ∈

ωN
S (I)Σ1

, then, since 〈S, ωN
S (I)〉 is an equivalence system of SEN, we get,

for every Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2), and g ∈ Sign(Σ′
1,Σ2), such that

f S2 g,
〈SEN(f)(φ),SEN(g)(ψ)〉 ∈ ωN

S (I)Σ2
.

Now, since ωN
S (I)Σ2

is an equivalence relation on
⋃

Σ∈Σ2
SEN(Σ), we get,

for every ~χ ∈ SEN(Σ2)
k−1, ~χ (ωN

S (I)Σ2
)k−1 ~χ, whence, since 〈S, ωN

S (I)〉 is

an N -congruence system, we get, for every τ : SENk → SEN in N ,

〈σΣ2
(SEN(f)(φ), ~χ), σΣ2

(SEN(g)(ψ), ~χ)〉 ∈ ωN
S (I)Σ2

.

Therefore, since 〈S, ωN
S (I)〉 is a logical N -congruence system of I, we have

CΣ2
(σΣ2

(SEN(f)(φ), ~χ)) = CΣ2
(σΣ2

(SEN(g)(ψ), ~χ)).

Hence 〈φ,ψ〉 ∈ RΣ1
and ωN

S (I)Σ ⊆ RΣ, for every Σ ∈ |Sign|. �

Lemma 13 yields immediately the following corollary characterizing the
restriction ωN

S (I)Σ ↾SEN(Σ) of the N -congruence ωN
S (I)Σ on the sentences of

one member of its signature class.

Corollary 14 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, N a

category of natural transformations on SEN and S a category congruence on

Sign. Let Σ ∈ |Sign| and φ,ψ ∈ SEN(Σ). Then 〈φ,ψ〉 ∈ ωN
S (I)Σ ↾SEN(Σ)

if and only if, for all Σ′ ∈ |Sign|, f, g ∈ Sign(Σ,Σ′), such that f S2 g, all
natural transformations τ : SENk → SEN in N and all ~χ ∈ SEN(Σ′)k−1,

CΣ′(τΣ′(SEN(f)(φ), ~χ)) = CΣ′(τΣ′(SEN(g)(ψ), ~χ)). (6)

Based on this corollary, the second step of the outlined proof may now
be accomplished. Namely, it is shown that, for every category congruence S
of Sign, the largest N -congruence system 〈∆Sign, ω

N
ID(I)〉 corresponding to

the identity category congruence on Sign is at least as large on the sentences
of each individual signature of I as the restriction of the largest logical N -
congruence system 〈S, ωN

S (I)〉 corresponding to the category congruence S
on Sign.
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Lemma 15 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, N a cat-

egory of natural transformations on SEN and S a category congruence on

Sign. For every Σ ∈ |Sign|,

ωN
S (I)Σ ↾SEN(Σ)⊆ ωN

ID(I)Σ.

Proof: Suppose that φ,ψ ∈ SEN(Σ), such that 〈φ,ψ〉 ∈ ωN
S (I)Σ ↾SEN(Σ).

Then, by Corollary 14, for all Σ′ ∈ |Sign|, f, g ∈ Sign(Σ,Σ′), such that
f S2 g, all natural transformations τ : SENk → SEN in N and all ~χ ∈
SEN(Σ′)k−1, CΣ′(τΣ′(SEN(f)(φ), ~χ)) = CΣ′(τΣ′(SEN(g)(ψ), ~χ)). Thus, a
fortiori, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), all natural transformations
τ : SENk → SEN in N and all ~χ ∈ SEN(Σ′)k−1, CΣ′(τΣ′(SEN(f)(φ), ~χ)) =
CΣ′(τΣ′(SEN(f)(ψ), ~χ)). But this shows that 〈φ,ψ〉 ∈ ωN

ID(I)Σ. �

Lemma 15, together with the existence result of the Tarski congruence
system of a π-institution, immediately implies

Corollary 16 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and

N a category of natural transformations on SEN. The category congruence

ΩN (I) is the largest category congruence S, with ωN
S (I)Σ ↾SEN(Σ)= ωN

ID(I)Σ,
for all Σ ∈ |Sign|.

Corollary 16 brings us one step closer to our goal, since it may now be
shown that the category congruence ΩN (I) is the join in 〈Con(Sign),≤〉
of the collection of all category congruences S, such that ωN

S (I)Σ ↾SEN(Σ)=

ωN
ID(I)Σ, for all Σ ∈ |Sign|.

Lemma 17 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and N
a category of natural transformations on SEN. The category congruence

ΩN (I) is the join in the complete lattice Con(Sign) of the collection of all

category congruences S, with ωN
S (I)Σ ↾SEN(Σ)= ωN

ID(I)Σ, for all Σ ∈ |Sign|.

Proof: The Tarski N -congruence system is the join in the lattice of all N -
congruence systems ConN (SEN) of all logical N -congruence systems. Since,
by Corollary 16, we have that ωN

ΩN (I)
(I)Σ ↾SEN(Σ)= ωN

ID(I)Σ, it follows that

the Tarski N -congruence system is also the join in the lattice of all N -
congruence systems ConN (SEN) of all logical N -congruence systems 〈S, θ〉,
such that ωN

S (I)Σ ↾SEN(Σ)= ωN
ID(I)Σ. Taking now the signature part of this

join yields the statement. �

Finally, combining Lemma 13 with Lemma 17, we obtain a full charac-
terization of the Tarski N -congruence system of a given π-institution. Note
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that this characterization includes as a special case the characterization of
the special Tarski N -congruence system 〈ΩN

ID(I), ω
N
ID(I)〉 that had already

been obtained in [19].

Theorem 18 Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and N
a category of natural transformations on SEN. The Tarski N -congruence

system 〈ΩN (I), ωN (I)〉 of I is the N -congruence system constructed in three

steps as follows:

1. ωN
ID(I)Σ is constructed using Lemma 13.

2. ΩN(I) is constructed using Part 1 and Lemma 17.

3. ωN (I) is finally constructed using Part 2 and Lemma 13.

7 Discussion and Open Problems

In this paper, we were able to generalize the notion of a congruence of an
algebra to that of a congruence system of a π-institution. Congruence sys-
tems were endowed with a complete lattice ordering, which gave rise to a
generalized Tarski congruence system for π-institutions. This is the largest
logical congruence system of the π-institution in a way analogous to the
Tarski congruence of an abstract logic, as introduced by Josep Maria Font
and Ramon Jansana in [9]. The notion presented here generalizes also the
notion introduced in [19]. The present, more general, notion is not as satis-
factory as the special case, introduced in [19]. First, it has not been possi-
ble to prove Proposition 6 for arbitrary equivalence systems. Furthermore,
it has not been possible to discover a simple property of an equivalence
system equivalent to extendability. Therefore, we do not know whether
the correspondence between confluent N -congruence systems on SEN and
confluent (N,N ′)-epimorphic translations of Proposition 5 extends to all
N -congruence systems and all (N,N ′)-epimorphic translations. The most
important issue that makes this a serious deficiency is that, despite the fact
that the notion of confluence solves the problem of defining the quotient
functor SEN′ : Sign/S → Set and the category N ′ on SEN′, confluent
congruence systems are not closed under intersections and therefore do not
form a lattice. Therefore, there is no hope of defining a confluent Tarski N -
congruence system or to guarantee that the Tarski N -congruence system of
a π-institution will be a confluent congruence system. It seems, at present,
that the solution to this problem may likely come from strengthening conflu-
ence to obtain a new property of N -congruence systems that would allow us,
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at the same time, to define a category of natural transformations N ′ on the
quotient and to obtain a complete lattice structure on those N -congruences
that satisfy this property.
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[2] Blok, W.J., and Pigozzi, D., Protoalgebraic Logics, Studia Logica, Vol.
45 (1986), pp. 337-369

[3] Blok, W.J., and Pigozzi, D., Algebraizable Logics, Memoirs of the Amer-
ican Mathematical Society, Vol. 77, No. 396 (1989)

[4] Borceux, F., Handbook of Categorical Algebra, Vol. I, Encyclopedia of
Mathematics and its Applications, Cambridge University Press, 1994

[5] Brown, D.J., Suszko, R., Abstract Logics, Dissertationes Mathematicae,
Vol. 102 (1973), pp. 9-42

[6] Czelakowski, J., Equivalential Logics I,II, Studia Logica, Vol. 40 (1981),
pp. 227-236, 355-372

[7] Czelakowski, J., Protoalgebraic Logics, Studia Logica Library 10,
Kluwer, Dordrecht, 2001



CAAL: Generalized Tarski Congruence Systems 30

[8] Fiadeiro, J., and Sernadas, A., Structuring Theories on Consequence,

in Recent Trends in Data Type Specification, Donald Sannella and
Andrzej Tarlecki, Eds., Lecture Notes in Computer Science, Vol. 332,
Springer-Verlag, New York 1988, pp. 44-72

[9] Font, J.M., and Jansana, R., A General Algebraic Semantics for Sen-

tential Logics, Lecture Notes in Logic, Vol. 7 (1996), Springer-Verlag,
Berlin Heidelberg 1996

[10] Font, J.M., Jansana, R., and Pigozzi, D., A Survey of Abstract Algebraic

Logic, Studia Logica, Vol. 74, No. 1/2 (2003), pp. 13-97

[11] Goguen, J.A., and Burstall, R.M., Introducing Institutions, in Proceed-
ings of the Logic of Programming Workshop, E. Clarke and D. Kozen,
Eds., Lecture Notes in Computer Science, Vol. 164, Springer-Verlag,
New York 1984, pp.221-256

[12] Goguen, J.A., and Burstall, R.M., Institutions: Abstract Model The-

ory for Specification and Programming, Journal of the Association for
Computing Machinery, Vol. 39, No. 1 (1992), pp. 95-146

[13] Goguen, J.A., and Diaconescu, R., An Introduction to Category-based

Equational Logic, AMAST 1995, pp. 91-126
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