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Abstract

Let Set be the category of small sets and F, G two endofunctors on Set.
An (F, G)-bialgebra A = (A, a) consists of a set A and a mapping o : F(4) —
G(A). Given two operations R and Q on classes of (F,G)-bialgebras, QR is
their set-theoretic composition. Moreover R < Q is defined to mean that, for
every class K of (F,G)-bialgebras, R(K) C Q(K). < is a partial ordering on
the class of all operations on classes of bialgebras. Special cases of bialgebras
include universal algebras and coalgebras. The result obtained by Pigozzi on
the structure of the partially ordered monoid of operations on classes of alge-
bras, generated by the operations of taking homomorphic images, subalgebras
and direct products, is revisited from the point of view of operations on classes
of bialgebras under the assumption that G preserves products and pullbacks.
The result obtained by Magulovié¢ and Tasi¢ on the partially ordered monoid of
operations on classes of coalgebras, generated by the operations of taking sub-
coalgebras, homomorphic images and sums, is also revisited from the point of
view of the corresponding monoid of operations on classes of bialgebras under
the assumption that F preserves coproducts and pushouts. The results here
are not new, since the conditions imposed on G and F, respectively, reduce
bialgebras to algebras and coalgebras, respectively, but the generalized frame-
work allows the formulation of many more related problems, some of which are
suggested in the closing section for further research, and the proofs in this new
framework may help in suggesting solutions to these problems.
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1 Introduction

One of the best known results in universal algebra is Birkhoft’s HSP-theorem, which
states that a class of algebras is closed under the operations H,S and P of tak-
ing homomorphic images, subalgebras and products, respectively, if and only if it is
equationally defined, i.e., if and only if there exits a set of equations over the type of
the class that are satisfied by exactly the algebras of the class (see, e.g., [2] or [9]).
These classes are called varieties. Set-theoretic composition on operators on classes
of algebras is an operation on the class of all operators. Moreover, a natural ordering
< on operators on classes of algebras may be defined by stipulating that, given two
operators R and Q, R < Q means that, for all classes K of algebras, R(K) C Q(K).
Starting from Birkhoft’s result on varieties, Don Pigozzi [10] investigated the struc-
ture of the partially ordered monoid of the operations on classes of algebras generated
by the operations H, S and P. He showed that there are 18 different operations in
these monoid and that their partial ordering is the one given in Figure 1.

Recently, categorical structures dual to algebras, called coalgebras, have been de-
fined and extensively used in theoretical computer science for the specification of data
structures and programming languages and as a formalism in which models of com-
putation may be developed (see, e.g., [13, 14, 15, 16]). In universal coalgebra, the
role of products is assumed by sums. So closure of classes of algebras with respect
to the operations of taking homomorphic images, subalgebras and direct products is
translated in the domain of coalgebras as closure of classes of coalgebras with respect
to the operations S, H and ¥ of taking subcoalgebras, homomorphic images and sum
coalgebras, respectively. Thus, keeping Pigozzi’s result in mind, it is only natural to
ask in the coalgebraic framework for the structure of the partially ordered monoid of
operations on classes of coalgebras generated by S,H and X¥. The composition and
ordering in this monoid are defined as for algebras. The structure of this monoid has
been investigated by Masulovi¢ and Tasié [8], who showed that the monoid contains
13 operations and its partial order is the one shown in Figure 2.

A common generalization of algebra and coalgebra, called bialgebra, has been
introduced and studied in [20]. Bialgebraic constructs appeared for the first time in
[19] under the name generalized algebras and, later, in [17, 18, 1], where the emphasis
was on some properties of set functors and on the structure of categories of generalized
algebras rather than on the generalized algebras themselves. Recently, bialgebras
have been reintroduced from a more computational perspective under the name of
dialgebras in [11]. Bialgebras include partial algebras and multi-algebras, that have
been studied in universal algebra in parallel with ordinary algebras and have also been
used in theoretical computer science as models of nondeterminism and parallelism
(see, e.g., [3] and [7]). Bialgebras, once thoroughly developed, have the potential
for an even wider applicability since they generalize algebras, multi-algebras and
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coalgebras that have already proven very useful in several applications.

Let Set be the category of small sets and F, G : Set — Set be two endofunctors
on Set. An (F, G)-bialgebra A = (A, &) consists of a set A and a mapping « : F(A) —
G(A). A bialgebra homomorphism h : A — B from a bialgebra A to a bialgebra B is
a set mapping h : A — B, such that the following rectangle commutes

F(h)

W
The notions of a subbialgebra and of a homomorphic image make sense for bialge-
bras. The same holds for the notions of product and sum although these may not
always exist as they do for universal algebras and coalgebras, respectively. However,
appropriate conditions may be imposed on the functors F' and G, so as to force the
existence of products and/or sums. If these conditions are imposed, it is natural to
ask about the structure of the partially ordered monoid of operations on classes of
bialgebras that is generated by the operations of taking subbialgebras, homomorphic
images, products and/or sums. In this paper, the aforementioned results of Pigozzi
on algebras and Magulovié¢ and Tasi¢ on coalgebras are revisited from a bialgebraic
viewpoint. Namely, it is shown, in the bialgebraic context, that, if G preserves prod-
ucts and pullbacks, then the partially ordered monoid of operations on classes of
(F, G)-bialgebras generated by the operations H,S and P is the partially ordered
monoid of Pigozzi and, if F' preserves coproducts and pushouts, then the partially
ordered monoid of operations on classes of bialgebras generated by the operations
S, H and X is the partially ordered monoid of Masulovi¢ and Tasi¢. Although these
results may sound new, they are restatements of the results of Pigozzi and Masulovié
and Tasié¢, respectively. This is due to the fact that the conditions imposed on G
and F| respectively, i.e., preservation of products and pullbacks and preservation of
coproducts and pushouts, force (F, G)-bialgebras to become M x F-algebras and G°-
coalgebras for some sets M and C, respectively [17, 18]'. However, viewing these two
results in this generalized context naturally leads to several related open questions
concerning genuine bialgebras and the proofs, in the present bialgebraic context, al-
beit similar to the proofs for algebras and coalgebras, may provide clues for solving
those problems in the more general context. Some of these more general cases in
which, either no conditions are imposed on the functors F' or G, or all four operations

1The author acknowledges the help of an anonymous referee in bringing these facts to his atten-
tion.
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are considered simultaneously, with or without conditions on F' or G are left open for
further research.

2 Basic Notions

Let Set be the category of all small sets and F,G : Set — Set two endofunctors on
Set. An (F,G)-bialgebra A is a pair A = (A, ), where A is a set and o : F'(4) —
G(A) is a set function. An (F,G)-bialgebra homomorphism % : A — B from a
bialgebra A = (A, «) to a bialgebra B = (B, 3) is a mapping h : A — B, such that
the following diagram commutes
F(h)

F(A) ——— F(B)

o g

G(4) G(B)

G(h
Identity set morphisms are bialgebra hon(loinorphisms and so is the composition of
two homomorphisms. Thus, the collection of all (F,G)-bialgebras with bialgebra
homomorphisms between them forms a category, called the category of (F,G)-
bialgebras and denoted by Set;. Bialgebras were introduced in [20] as a construct
unifying universal algebras and coalgebras and several of their elementary properties
were investigated. Categories of bialgebras first appeared in [19] under the name
of generalized algebraic categories as categories generalizing usual universal algebraic
categories. Many of their properties were subsequently studied in [17, 18] and [1].

In what follows, use will be made of the underlying set forgetful functor U :
Setf, — Set. This is the functor that sends an (F,G)-bialgebra A = (A, ) to its
underlying set A and an (F, G)-bialgebra homomorphism 4 : A — B to the underlying
set mapping h: A — B.

Given a family A; = (4;,04),% € I, of (F, G)-bialgebras, their product J[;.; A;
is defined to be their product in the category Setg, if this product exists. Similarly,
their sum 3, ; A, is defined to be their coproduct or sum in Setg, if it exists. In [1]
(see also [20]), the following sufficient conditions were given for the existence of limits
and colimits in terms of properties of the functors F, G:

Theorem 1 U : Setg — Set creates and preserves all types of limits that G : Set —
Set preserves.

Theorem 2 U : Setg — Set creates and preserves all types of colimits that F :
Set — Set preserves.
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In particular, if G preserves products, then all products in Setg exist and are
created and preserved by U, and, if F' preserves sums, then all sums in Setg exist
and are created and preserved by U.

An (F,G)-bialgebra B = (B, §) is a subbialgebra of the bialgebra A = (4, a),
denoted B < A, if B C A and the inclusion map 7 : B < A is a homomorphism

FB) T . pea
5} Q
6(8) —5— G(4)

B = (B, ) is a homomorphic image of A = (A, «) if there exists a surjection
h: A — B, such that h: A — B is a homomorphism.

Given a class K of (F,G)-bialgebras, by P(K) will be denoted the class of all
bialgebras isomorphic to a product of bialgebras in K, by X(K) the class of all
bialgebras isomorphic to a sum of bialgebras in K, by S(K) the class of all bialgebras
isomorphic to a subbialgebra of a bialgebra in K and, finally, by H(K) the class of
all bialgebras that are homomorphic images of bialgebras in K. K will be said to be
closed under P,X,S or H if P(K) C K,%(K) C K,S(K) C K or H(K) C K,
respectively.

The following lemma holds (see also [2], Section 9, [4], Lemma 7.2, and [5], Lemma
2.7)

Lemma 3 P,X,S and H are closure operators, i.e., for all classes K, K, Ky of
(F, G)-bialgebras and all O € {P,X,S, H},

1 K C O(K)

2 K C K, implies O(K;) C O(K))
3 O(K) = O(O(K))

Proof:

1 This is straightforward since, given a bialgebra A = (A, ), A is the product
and coproduct of the set {A} and, also, it is a subbialgebra and a homomorphic
image of itself via the identity map.

2 This follows directly from “set-theoretic” considerations.
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3 For S and H the statement follows by the fact that the composition of two
injections is an injection and the composition of two epimorphisms is an epi-
morphism. We prove the statement for P. The proof for X is similar. Suppose
that A = (4,a) € P(P(K)). Then, there exist A; = (4, ;) € P(K), such
that A & HZE[A with projections m; : A — A,;,i € I, and, for each ¢ € I,
there exist A;;,j € J;, such that A; = H 7, Aij with projections m;; : A; —
A;,i e 1,5 € J;. It is not difficult to check then that A =[] A,;; with
projections 7TZ] =myom,t€l,j€ Jj.

el jed;

T Tij

A A; Aij

B

For any bialgebra B and family of homomorphisms p;; : B — A;;,i € 1,5 € J;,
the universal mapping property of A; gives a collection of uniquely determined
morphisms p; : B — A;, ¢ € I, and the universal mapping property of A gives
a unique morphism p: B — A. |

3 H,Sand P

In this section, the structure of the partially ordered monoid generated by the opera-
tions H, S and P of taking homomorphic images, subbialgebras and product bialge-
bras on classes of (F,G)-bialgebras is investigated. The multiplication operation of
the monoid is the composition operation and the identity is the identity operator I
on classes of bialgebras. The ordering is defined, for all operations O;, O3 on classes
of bialgebras, by

O, < Oy if and only if, for every class K of (F,G) -bialgebras, O,(K) C Oy(K).

Since, in general, products may not exist in Setg and in view of Theorem 1, we will
restrict our attention to the special case in which the functor G : Set — Set preserves
products and pullbacks. We will show that, in this case, the partially ordered monoid
is the partially ordered monoid of operators on classes of universal algebras generated
by the operators of taking homomorphic images, subalgebras and direct products,
that was obtained by Don Pigozzi ([10], Theorem 2). Even though this result may
seem to generalize the result of Pigozzi, since algebras are special cases of bialgebras
in which the functor F' : Set — Set is the functor ¥*, studied in [12], Section 2.1,



OPERATIONS ON CLASSES OF ALGEBRAS AND COALGEBRAS 7

and G : Set — Set is the identity functor on Set, which preserves products and
pullbacks, this is not the case. Since G preserves products and pullbacks, G = (—)M
for a set M [17, 18], whence an (F,G)-bialgebra is given by a map « : F(4) — AM,
and, therefore, reduces to an M x F-algebra. Revisiting the proof in the bialgebraic
context here, without using this fact, may help in discovering proofs in the genuine
bialgebraic case, where these preservation properties will no more be in effect.

Lemma 4 Let K be an arbitrary class of (F,G)-bialgebras and suppose that G pre-
serves products and pullbacks. Then

1 SH < HS
2 PH < HP
3 PS <SP

Proof:

1 Suppose that A = (A, a) € S(H(K)). Then, there exists a bialgebra B € K, a
surjective homomorphism A : B — C and an injection 7 : A — C.

B

h

A - C
1
Since GG preserves pullbacks, by Theorem 1, The pullback in Set

72

D B
st h
A . o
i
may be lifted to to a pullback in Set,
D— 2 B
st h
A C

i
and 7m; : D — A is surjective and 7y : D — B is injective. Thus, since B € K,
A € H(S(K)) and SH < HS.
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2 Suppose that A = (A, ) € P(H(K)). Then, there exists a collection A; € K
and surjective homomorphisms h; : A; — B;, such that A = []..; B;, with
projections 7; : A — B;,1 € I.

i€l

A;
hi

[lic Bi —— Bi
Since G preserves products, by Theorem 1, the product []
Denote by o; : [[,c; Ai = Ay,4 € I, its projections.

. . F
;cr A exists in Set.

[Tic; Ai —2 A,
f hi

A= HiEI BZ i BZ
Then, by the universal mapping property of A, there exists a unique homomor-
phism f : [[,c; Ai = A, such that 7 f = hio;,¢ € 1. f is surjective since it is
surjective in Set. Thus, since A; € K,i € I, A € H(P(K)) and PH < HP.

3 Suppose that A = (A, o) € P(S(K)). Then, there exists a collection A; € K,i €
I, and injective homomorphisms j; : B; — A;,i € I, such that A = []._; By,
with projections m; : A — B;,7 € I.

75
Hie[ BZ Bz

i€l

Ji
A;

Since G preserves products, by Theorem 1, the product J[,.; A; exists in Setg.
Denote by o; : [[,c; Ai = Ay,4 € 1, its projections.

A= HiEI Bi i B;

f Ji

[icr Ai —5— Ai

Then, by the universal mapping property of [[,.; A;, there exists a unique
homomorphism f : A — [],.; Ay, such that jim; = o;f,i € I. f is injective
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since it is injective in Set. Thus, since A; € K,i € I, A € S(P(K)) and
PS < SP. |

Now Lemmas 3 and 4 impose the following nine relations on the generators of the
partially ordered monoid H, S and P:

I<H ILS ILP
H=HH S=SS P =PP
SH < HS PH <HP PS <SP

But these are exactly the relations satisfied by the generators of the partially ordered
monoid of operations on classes of algebras studied by Pigozzi in [10]. Thus Theorem
1 of [10] may be applied to obtain

Theorem 5 Suppose GG : Set — Set is a functor preserving products and pullbacks.
Then every operation on classes of (F,G)-bialgebras in the monoid generated by the
operations H,S and P coincides with one of the 18 operations

I H S P SH PH PS HS SP
HP PSH PHS SPH HPS SHP SPHS SHPS HSP

Since, moreover, all universal algebras are (F, G)-bialgebras, where G is the iden-
tity functor on Set, and, a fortiori, all commutative semigroups are bialgebras, The-
orem 2 of [10] may also be applied to obtain

Theorem 6 Suppose G : Set — Set is a functor preserving products and pull-
backs. The structure of the partially ordered monoid of operations on classes of
(F, G)-bialgebras generated by H,S and P is given in Figure 1.

4 S,H and X

In this section, the structure of the partially ordered monoid generated by the opera-
tions S, H and X of taking subbialgebras, homomorphic images and sums on classes
of (F,G)-bialgebras is investigated. The multiplication operation of the monoid is
again the composition operation and the identity is the identity operator I on classes
of bialgebras. The ordering is defined as before. Since, in general, sums may not exist
in Setg and in view of Theorem 2, we will restrict our attention to the special case in
which the functor F' : Set — Set preserves coproducts and pushouts. We will show
that, in this case, the partially ordered monoid is the partially ordered monoid of op-
erators on classes of coalgebras generated by the operators of taking subcoalgebras,
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Figure 1: The partially ordered monoid of Theorem 6

homomorphic images and sum coalgebras, that was obtained by Dragan Masulovié
and Boza Tasié ([8], Section 3). Similar to Section 3, despite its appearance, this re-
sult does not generalize the result of Masulovi¢ and Tasié. This is due to the fact that,
if F' preserves coproducts and pushouts, then F' = C' x (—), for some set C [17, 18],
whence an (F,G)-bialgebra is given by a map a : C x A — G(A), and, therefore,
reduces to a G¢-coalgebra. Once more, the reason for revisiting the proof in the bial-
gebraic context, without using this characterization of colimit-preserving functors, is
the hope that it may provide clues as to how to proceed in the case of bialgebras, in
which no preservation properties will be in effect.

Lemma 7 Let K be an arbitrary class of (F,G)-bialgebras and suppose that F' pre-
serves coproducts and pushouts. Then
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1 HS <SH
2 38 < SX
3 ¥XH <HX

Parts 1,2 and 3 of Lemma 7 may be proven similarly to parts 1,2 and & of Lemma
4. So the proof will be omitted.

Now Lemmas 3 and 7 impose the following nine relations on the generators of the
partially ordered monoid S, H and X:

I<H I<S I<P
H = HH S =SS P = PP
HS<SH XS<S¥ SH<HS

But, as is the case for coalgebras, the following two additional relations hold among

the generators:
S <X¥S and SHX = HSXYXH.

The proofs are given in Propositions 8 and 11, the first of which is essentially due to
Gumm and Schréder (see [6], Lemma 3.2) and the second due to Masulovi¢ and Tasié
(see [8], Proposition 3.3), but are both adapted here for the case of bialgebras.

Proposition 8 The operators S and X on classes of (F,G)-bialgebras, with F' co-
product preserving, commute.

Proof:

By Lemma 7 we have XS < S3.. So it suffices to show that S¥ < ¥S. Suppose
that A = (A4,a) € S(X(K)). If A = 0, then A € X(S(K)) and we are done.
So suppose that A # (). Then, there exist A; = (4;,;) € K,i € I, such that
A < 3. A, Without loss of generality we may assume that AN A; # §, for all
i € I. Denote by m; : A; — >, .; Ay,1 € I, the injections and by i : A — > ., A; the
inclusion morphism. ANA, A,

el

Di

bi Dier AN A; ki

A - Zie[ Ai

o~
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By Theorem 37 of [20], A N A; admits a subbialgebra structure p; : F(AN 4;) —
G(AN 4A;), for all i € I, i.e., the following rectangles commute

F(k;)

F(AN 4)) F(A)

Pi o

G(AN 4;) G(A)

G (ki)
where k; : ANA; — A,i € I, are the inclusions. Since F' preserves coproducts, the sum
Y ier ANA; exists in Setg by Theorem 2. Denote by p; : ANA; — > .., ANA;,i € I,
the corresponding injections. By the universal mapping property of the coproduct
Y icr A N A;, there exists a unique homomorphism f : > ,.; AN A; = A, which
coincides with the unique morphism from the coproduct }_,.; A N A; to A in Set,
such that fp; = ki € I. But f @ >, ;AN A; — Ais a bijection, whence, by
Proposition 1 of [20], it is a bialgebra isomorphism. Therefore A = 3., ANA; and,
since A; € K, for all i € I, we have A € X(S(K)). Thus SX < XS. [

In order to prove Proposition 11, the notion of a conjunct sum of (F, G)-bialgebras
will be used and two lemmas, correspoding to Lemmas 3.1 and 3.2 of [8], will be
formulated. The proofs in [8] carry through here unchanged, but will be presented so
as to give a full picture of the proof of Proposition 11 for bialgebras.

A bialgebra A = (A, «) is said to be the conjunct sum of bialgebras A; =
(A, a;),1 € I, if there exist injective homomorphisms e; : A; — A i € I, such that
A = J;erei(A4i). In this case we write A = Y 7 ; A;. Given a class K of bialgebras, by
3¢(K) is denoted the class of all bialgebras isomorphic to a conjunct sum of bialgebras
in K. It is then easy to see that, if F' preserves coproducts, then

> < HE. (1)

The following two lemmas concern the relation of 3¢ with the operators H and S and
will be used in the proof of Proposition 11.

Lemma 9 For any class K of (F, G)-bialgebras, with F' coproduct preserving,
H(X(K)) = Z°(H(K)).

Proof:

(L
First, ¥‘H < HXH < HHY = H3..
Suppose, conversely, that A € H(X(K)). Then, there exist bialgebras A; € K,i €
I, and a surjective homomorphism b : >, ; A; - A. Let m; : A;j = >, ;A0 € 1,
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denote the injections.

hw;
Now, by Theorem 7 of [20], the epi-mono factorization A; — h(m;(A;)) — A exists in
Set(.. Since h is a surjection, 4 = (J,.; h(mi(A;)), whence A = =¢_h(m;(A;)). Thus,
A € Z¢(H(K)).

il
|
Lemma 10 For any class K of (F,G)-bialgebras, S(X¢(K)) < X¢(S(K)).

Proof:

Suppose that A € S(X¢(K)). If A = 0, then A € X¢(S(K)). So assume that
A # (). Then, there exist A; € K,i € I, injections e; : A; — B,: € I, such that
B = J;crei(4;), and an injection h : A — B.

A,
€

A

5 B

Let Iy = {i € I : h(A)Ne;(A;) # 0}. Since B = {J,¢; €i(4i), Ip # 0. Now, every endo-
functor in Set preserves nonempty intersections, i.e., it preserves nonempty pullbacks
of monos. Thus, by Theorem 1, The following pullback exists in Setg, for all ¢ € I,

P, gi A,

Di €;

A

5 B

and p;,q;, i € Iy, are all injective. Thus P; € S(K),: € Ip. Now, since all p;’s are
injectives, to show that A € 3°(S(K)), it suffices to show that A = |J;; pi(F%). But,
if a € A, then there exists ¢ € Iy and a; € A;, such that e;(a;) = h(a). Therefore
(a,a;) € P; and p;({(a, a;)) = a. [

Proposition 11 Suppose that F' : Set — Set preserves coproducts and pushouts.
Then SHY = HSXH.
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Proof:
SHY = SX‘H (by Lemma 9)
< 3‘SH (by Lemma 10)
< HXSH (by (1))
= HSXH (by Proposition 8)
On the other hand,
HSXH HSHY. (by Lemma 7, Part 8)

<
< SHHX (by Lemma 7, Part 1)
= SHY (by Lemma 3, Part 8)

[ |

It has now been shown that, for (F, G)-bialgebras, with F' coproduct and pushout

preserving, the relations between the generators of the partially ordered monoid of

operations generated by S, H and X are exactly the relations satisfied by the genera-

tors of the partially ordered monoid of operations on classes of coalgebras studied by
Masgulovi¢ and Tasié in [8]. Thus their result may be applied to obtain

Theorem 12 Suppose F' : Set — Set is a functor preserving coproducts and push-
outs. Then every operation on classes of (F,G)-bialgebras in the monoid generated
by the operations S,H and X coincides with one of the 13 operations

I H S b)) HS S¥ XH
SH HY XHS SXH HSY SHX

Since, moreover, all coalgebras are (F, G)-bialgebras, where F' is the identity func-
tor on Set, all examples given in [8] to demonstrate proper inclusions are valid in the
case under consideration. Thus, we obtain

Theorem 13 Suppose F' : Set — Set is a functor preserving coproducts and push-
outs. The structure of the partially ordered monoid of operations on classes of (F,G)-
bialgebras generated by S,H and X is given in Figure 2.

5 Problems for Further Research

In this paper, the results of Pigozzi [10] on the structure of the partially ordered
monoid of operators on classes of universal algebras generated by the operators H, S
and P and of Magulovi¢ and Tasié¢ [8] on the structure of the partially ordered monoid
of operators on classes of coalgebras generated by the operators S, H and X have been
revisited from the point of view of operators on classes of (F, G)-bialgebras
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SHZ

Figure 2: The partially ordered monoid of Theorem 13.

(a) generated by H,S and P, under the assumption that the functor G preserves
products and pullbacks

(b) generated by S,H and X, under the assumption that F' preserves coproducts
and pushouts.

It is now natural to ask and try to give an answer to the following problems which
are suggested for further research

Problem 1: Which is the structure of the partially ordered monoid of operations
on classes of (F,G)-bialgebras generated by H,S and P (where no restriction is
imposed on G)?

Problem 2: Which is the structure of the partially ordered monoid of operations
on classes of (F,G)-bialgebras generated by S,H and X (where no restriction is
imposed on F)?

Problem 3: Which is the structure of the partially ordered monoid of operations
on classes of bialgebras generated by H, S, P and ¥ (with or without restrictions on
the functors F' and G)?
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