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Abstract

A unified treatment of the operator approach to categorical ab-
stract algebraic logic (CAAL) was recently presented by the author
using as tools the notions of compatibility operator of Czelakowski,
of coherent compatibility operator of Albuquerque, Font and Jansana
and exploiting an abstract Galois connection established via the use
of these operators. The approach encompasses previous work by the
author, but it also enriches the semantic, i.e., operator-based, side of
the categorical Leibniz hierarchy with many new results. In this paper,
we continue the work by providing, inter alia, characterizations of the
categorical analogs of the classes of the Leibniz hierarchy based on full
generalized matrix systems and on various properties of the categorical
Leibniz and Suszko operators.
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1 Introduction: Compatibility Operators

The present paper is a continuation of the work presented in [31], which is,
in turn, based on the work of Albuquerque, Font and Jansana [1]. Thus,
to avoid repetition and to get as quickly as possible to new results, not as
yet covered in [31], we open with a very brief overview of the work in [1]
and present in Section 2 only the most basic notions of CAAL that were
used in [31] and are also needed in the present work. For additional notions
and results, as needed, we rely heavily on the predecessor paper [31], freely
referring to its contents, albeit at the expense of self-sufficiency and at the
risk of causing a, hopefully, minor inconvenience. For brevity Theorem P.x
refers to Theorem x of [31] (the Predecessor paper) and the same holds for
lemmas, propositions etc.

Let S = ⟨L,CS⟩ be a sentential logic. An S-compatibility operator ∇A

maps an S-filter F in the collection FiS(A) of S-filters on an L-algebra A

to a congruence ∇A(F ) on A that is compatible with the filter. The Leib-

niz operator [4] ΩA is the largest S-compatibility operator and the Suszko

operator [9] Ω̃A is the largest order-preserving S-compatibility operator.

Given an S-compatibility operator ∇A, the lifting ∇̃A associates with
an arbitrary collection of S-filters on A the largest congruence on A that
is compatible with all filters in the collection. Moreover, the relativization

∇̃AS associates with an S-filter on A the largest congruence on A that is
compatible with all S-filters on A containing the given filter. The Tarski
operator [11] is the lifting of the Leibniz operator and the Suszko operator
is its relativization. These three operators constitute the prototypical ex-
amples of operators. They motivated the general theory and they form the
cornerstones on which both the work in [1] and the present work are based.

Given an S-compatibility operator ∇A, and a congruence θ on A, let

∇A
−1

(θ) = {F ∈ FiS(A) ∶ θ ⊆ ∇
A(F )}. The springboard of the theory

in [1] is the observation that ∇̃A and ∇A
−1

form a Galois connection:

P(FiS(A))
∇̃A

⇄
∇A

−1

Con(A). The fixed points are the so-called ∇A-full sets of

S-filters and the ∇A-full congruences.
For a given S-filter F ∈ FiS(A), the collection of all S-filters on A

with which ∇A(F ) is compatible constitutes the ∇A-class JF K∇
A

of F
(Definition 3.14 of [1]), which forms a complete lattice. The smallest element

of this class is denoted F∇
A
= ⋂JF K∇

A
. A filter F is termed a ∇A-filter
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in [1] if F = F∇
A
, i.e., if it is the smallest filter that is compatible with its

∇A-associated congruence (see, also, [12, 13] and [19]).

A family ∇ = {∇A}A∈Alg(L) of S-compatibility operators is formed when

an S-compatibility operator ∇A is defined, for every L-algebra A. To relate
the members of ∇ the increasing in strength notions of coherence, commuta-
tivity with inverse images of surjective homomorphisms and commutativity
with inverse images of arbitrary homomorphisms are introduced in Defini-
tions 4.5 and 4.7 of [1]. The first is novel in [1] whereas the latter two are
well known in traditional abstract algebraic logic (AAL) and play a critical
role in the theory of protoalgebraic [2], equivalential [6, 7] and algebraizable
[4, 16] logics (see also [8, 14]).

Coherence is used in establishing a General Correspondence Theorem
(Theorem 4.15 of [1]) that encompasses several well-known isomorphism
theorems from the theory of protoalgebraic logics and beyond, including
results of Blok and Pigozzi [4, 5], of Czelakowski [9] and of Font and Jansana
[12]. Moreover, a parallel categorical theory led to the formulation of analogs
of these Correspondence Theorems in the categorical context (Theorems
40 and 43 of [31]), which comprise some previously known correspondence
theorems from CAAL, e.g., Theorem 13 of [24] and Theorem 5.9 of [28].

Using an abstract family ∇ of S-compatibility operators, Albuquerque,
Font and Jansana define in Subsection 4.2 of [1] classes of algebras con-
sisting of algebras that are reduced with respect to corresponding types of
congruences. These parallel the well-known classes Alg∗S of (Leibniz-) re-
duced, AlgS of Tarski-reduced and AlgSuS of Suszko-reduced algebras from
the classical operator theory of AAL. The hypotheses of coherence and com-
mutativity with inverse images of surjective homomorphisms imply various
relationships between these classes, analogous to those established in the
traditional context between Alg∗S,AlgS and AlgSuS.

Using the concepts of full generalized matrix models, of the Leibniz op-
erator, of the Suszko operator and of the aforementioned classes of alge-
bras associated with S, a wealth of characterizations of the classes in the
AAL hierarchy is obtained in Section 6 of [1]. Some of these have been
well-known in the AAL literature, some less well-known and some are new.
What is remarkable, however, and motivated the present exposition, is the
fact that they are all obtained as consequences of the treatment of abstract
S-compatibility operators and the basic Galois connection, as specialized
in the context of the three main operators of AAL, essentially the Leibniz
operator, since it is the fundamental among the three, whose lifting and
relativization are the Tarski and Suszko operators, respectively.
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2 The Categorical Compatibility Operators

In [31] the work of Albuquerque, Font and Jansana [1], outlined in Section
1 was adapted to the context of logics formalized as π-institutions, forming
the fundamental objects of study in CAAL. The work of [31] constitutes the
first part in the study along these lines and it is continued in the present
paper. Thus, the present work relies heavily both on results presented in
[1] and their more abstract versions established in [31]. In this section we
review very briefly preliminary concepts and results from [31] that will be
needed for subsequent developments.

Let Sign be a category, referred to as a category of signatures. Let,
also, SEN ∶ Sign → Set be a set-valued functor from the category of sig-
natures, referred to as a sentence functor. A collection T = {TΣ}Σ∈∣Sign∣,
with TΣ ⊆ SEN(Σ), for all Σ ∈ ∣Sign∣, is called a sentence family of SEN.

Consider a category N of natural transformations on SEN in the
sense of, e.g., Section 2 of [25]. The triple A = ⟨Sign,SEN, N⟩ is called
an algebraic system. An equivalence family θ = {θΣ}Σ∈∣Sign∣ on SEN, i.e.,
a ∣Sign∣-indexed family of equivalence relations, is called a congruence
family on A if it is invariant under N -morphisms, i.e., if, for all σ ∶ SENk →
SEN in N , all Σ ∈ ∣Sign∣ and all ϕ0, ψ0, . . . , ϕk−1, ψk−1 ∈ SEN(Σ),

⟨ϕi, ψi⟩ ∈ θΣ, i < k, imply ⟨σΣ(ϕ0, . . . , ϕk−1), σΣ(ψ0, . . . , ψk−1)⟩ ∈ θΣ.

A congruence system is an equivalence family that is invariant under
both Sign-morphisms and N -morphisms. The collection of all congruence
systems onA is denoted by ConSys(A). Ordered by signature-wise inclusion
≤, it forms a complete lattice denoted by ConSys(A) = ⟨ConSys(A),≤⟩.

Let F = ⟨Sign,SEN,N⟩ be a fixed algebraic system, termed the base
algebraic system. An algebraic system A = ⟨Sign′,SEN′,N ′⟩ is called an
N -algebraic system if there exists a surjective functor ′ ∶ N → N ′ that
preserves all projection natural transformations and, therefore, preserves
also the arities of all natural transformations in N . We write σ′ in N ′ to
indicate the image in N ′ of a σ in N under the functor ′. Given two N -
algebraic systems A = ⟨Sign′,SEN′,N ′⟩ and B = ⟨Sign′′,SEN′′,N ′′⟩, an
N -(algebraic system) morphism ⟨H,γ⟩ ∶A→B consists of

• a functor H ∶ Sign′ → Sign′′ and

• a natural transformation γ ∶ SEN′ → SEN′′ ○ H, such that, for all
σ ∶ SENk → SEN in N , all Σ ∈ ∣Sign′∣ and all ϕ0, . . . , ϕk−1 ∈ SEN

′(Σ),

γΣ(σ
′
Σ(ϕ0, . . . , ϕk−1)) = σ

′′
H(Σ)(γΣ(ϕ0), . . . , γΣ(ϕk−1)).
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Given an N -morphism ⟨H,γ⟩ ∶ A → B, the kernel of ⟨H,γ⟩ is the con-
gruence system Ker(⟨H,γ⟩) = {KerΣ(⟨H,γ⟩)}Σ∈∣Sign′∣ on A, defined, for all
Σ ∈ ∣Sign′∣, by

KerΣ(⟨H,γ⟩) = {⟨ϕ,ψ⟩ ∈ SEN
′(Σ)2 ∶ γΣ(ϕ) = γΣ(ψ)}.

Given an algebraic system A = ⟨Sign,SEN,N⟩ and a congruence system
θ on A, one can define the quotient algebraic system A/θ = ⟨Sign,SENθ,

N θ⟩ of A by θ (see, e.g., [22]). In this case ⟨ISign, π
θ⟩ ∶A→A/θ denotes the

projection morphism from A onto A/θ. Thus, given a class K of algebraic
systems, it makes sense to consider the K-relative congruence systems
on A, i.e., those θ ∈ ConSys(A), such that A/θ ∈ K. The class of all relative
K-congruence systems on A is denoted by ConSysK(A).

Let A = ⟨Sign,SEN,N⟩ be an algebraic system and T = {TΣ}Σ∈∣Sign∣
a sentence family of SEN. A congruence system θ = {θΣ}Σ∈∣Sign∣ on A

is compatible with T , denoted T comp θ, if, for all Σ ∈ ∣Sign∣ and all
ϕ,ψ ∈ SEN(Σ),

⟨ϕ,ψ⟩ ∈ θΣ and ϕ ∈ TΣ imply ψ ∈ TΣ.

Consider, again, an algebraic system A = ⟨Sign,SEN,N⟩. Given a sen-
tence family T of SEN there always exists a largest congruence system on A

that is compatible with T (Proposition 2.2. of [25]). It is called the Leibniz

congruence system of T on A and denoted ΩA(T ) = {ΩA
Σ
(T )}Σ∈∣Sign∣.

Given a collection T of sentence families of SEN, there always exists a
largest congruence system on A that is compatible with every T ∈ T . This is

termed theTarski congruence system of T onA and denoted by Ω̃A(T ).
A π-institution1 I = ⟨A,C⟩ consists of

• an algebraic system A = ⟨Sign,SEN,N⟩ and

• a closure system C on SEN, i.e., a family of closure operators C =
{CΣ}Σ∈∣Sign∣ that satisfy, for all Σ,Σ

′ ∈ ∣Sign∣ and all f ∈ Sign(Σ,Σ′),

SEN(f)(CΣ(Φ)) ⊆ CΣ′(SEN(f)(Φ)), for all Φ ⊆ SEN(Σ),

a condition known as structurality.

Given a π-institution I = ⟨A,C⟩, a sentence family (system) T = {TΣ}Σ∈∣Sign∣
of SEN is called a theory family (system) if each TΣ ⊆ SEN(Σ) is a Σ-
theory, i.e., a closed set under C: CΣ(TΣ) = TΣ. The collection of all

1This is the same as a π-institution I = ⟨Sign,SEN,C⟩, augmented with a category N

of natural transformations on its sentence functor SEN, in traditional CAAL.
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theory families of I is denoted by ThFam(I). Ordered by signature wise
inclusion ≤, the collection of all theory families forms a complete lattice that
is denoted by ThFam(I) = ⟨ThFam(I),≤⟩.

Let I = ⟨A,C⟩ be a π-institution. As a special case of the definition of
the Tarski congruence system of a collection of sentence families, we obtain
the Tarski congruence system of I, i.e., the largest congruence system
that is compatible with every theory family T ∈ ThFam(I). Ordinarily,

instead of the notation Ω̃A(ThFam(I)), we use the notation Ω̃A(C) or
Ω̃(I) for this congruence system.

Consider, again, a π-institution I = ⟨A,C⟩ and a theory family T ∈
ThFam(I). The Suszko congruence system of T in I, denoted Ω̃I(T ),
is the largest congruence system that is compatible with all T ′ ∈ ThFam(I),
such that T ≤ T ′. This set is usually denoted (ThFam(I))T = {T ′ ∈

ThFam(I) ∶ T ≤ T ′}. Thus, Ω̃I(T ) = Ω̃A((ThFam(I))T ).

In summary, the three congruence systems ΩA(T ), Ω̃I(T ) and Ω̃A(C)

are related by Ω̃I(T ) = ⋂{ΩA(T ′) ∶ T ′ ∈ ThFam(I), T ≤ T ′} and Ω̃(I) =

⋂{ΩA(T ) ∶ T ∈ ThFam(I)}.
Let F = ⟨Sign,SEN,N⟩ be a base algebraic system andA = ⟨Sign′,SEN′,

N ′⟩ an N -algebraic system. A pair A = ⟨A, ⟨F,α⟩⟩ is an (interpreted) N -
algebraic system2 if A is an N -algebraic system and ⟨F,α⟩ ∶ SEN→ SEN′

is an N -morphism.
Let A = ⟨A, ⟨F,α⟩⟩ and B = ⟨B, ⟨G,β⟩⟩ be two interpreted N -algebraic

systems. An N -morphism ⟨H,γ⟩ ∶ A → B is called an N -morphism from
A to B, denoted ⟨H,γ⟩ ∶ A → B, if the following triangle commutes:

SEN

✠�
�
�
�⟨F,α⟩ ❅

❅
❅
❅

⟨G,β⟩

❘
SEN′

⟨H,γ⟩
✲ SEN′′

Such an N -morphism is said to be surjective if both H ∶ Sign′ → Sign′′

and all γΣ′ ∶ SEN
′(Σ′)→ SEN′′(H(Σ′)), Σ′ ∈ ∣Sign′∣, are surjective.

An N -matrix system A = ⟨A, T ′⟩ is a pair consisting of an N -algebraic
system A = ⟨Sign′,SEN′,N ′⟩ and a sentence family T ′ = {T ′

Σ
}Σ∈∣Sign′∣ of

SEN′. An (interpreted) N -matrix system2
A = ⟨A, T ′⟩ is a pair con-

sisting of an interpreted N -algebraic system A = ⟨A, ⟨F,α⟩⟩ and a sentence
family T ′ = {T ′

Σ
}Σ∈∣Sign′∣ of SEN

′.

2Hopefully, the overloading of terminology will not cause any confusion.
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Fix a base algebraic system F = ⟨Sign,SEN,N⟩ and a π-institution I =
⟨F,C⟩, referred to as the base π-institution.3 Then an interpreted N -
matrix system A = ⟨A, T ′⟩ is called an I-matrix system if T ′ is an I-filter
family of A, i.e., for all Σ ∈ ∣Sign∣, Φ∪{ϕ} ⊆ SEN(Σ), such that ϕ ∈ CΣ(Φ),
and all f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(Φ)) ⊆ T
′
Σ′ implies αΣ′(SEN(f)(ϕ)) ∈ T

′
Σ′ .

We denote by FiFamI(A) the collection of all I-filter families of A. Or-
dered by signature-wise inclusion ≤, this set becomes a complete lattice,
denoted by FiFamI(A) = ⟨FiFamI(A),≤⟩. We set (FiFamI(A))T

′

= {T ′′ ∈
FiFamI(A) ∶ T ′ ≤ T ′′}. The following lemma (Lemma P.3) provides some
preservation properties of I-filter families under the application of N -mor-
phisms between the underlying N -algebraic systems.

Lemma 1 Let I = ⟨F,C⟩ be a π-institution, A,B be N -algebraic systems,

⟨H,γ⟩ ∶ A → B an N -morphism and T ′′ a sentence family of B.

1. If T ′′ ∈ FiFamI(B), then γ−1(T ′′) ∈ FiFamI(A).

2. If γ−1(T ′′) ∈ FiFamI(A), then T ′′ ∈ FiFamI(B).

3. If ⟨H,γ⟩ is such that H is an isomorphism, and Ker(⟨H,γ⟩) is com-

patible with T ′ ∈ FiFamI(A), then γ(T ′) ∈ FiFamI(B).

Similar concepts and terminology may be applied to the so-called genera-
lized matrix systems or gmatrix systems for short. An N -gmatrix system
A = ⟨A,T ′⟩ is a pair consisting of an N -algebraic system A = ⟨Sign′,SEN′,
N ′⟩ and a collection of sentence families T ′ of SEN′. An (interpreted)
N -gmatrix system2

A = ⟨A,T ′⟩ is a pair consisting of an interpreted N -
algebraic system A = ⟨A, ⟨F,α⟩⟩ and a collection of sentence families T ′

of SEN′. An I-gmatrix system A = ⟨A,T ′⟩ is a tuple, such that every
sentence family in T ′ is an I-filter family of A.

Note that, given an interpreted N -algebraic system A = ⟨A, ⟨F,α⟩⟩, the
pair I ′ = ⟨A,FiFamI(A)⟩ is also a π-institution (in closure system form). In
accordance, we define the Suszko congruence of T ′ ∈ FiFamI(A), denoted
Ω̃A,I(T ′) by

Ω̃A,I(T ′) = Ω̃I
′

(T ′) =⋂{ΩA(T ′′) ∶ T ′′ ∈ FiFamI(A), T ′ ≤ T ′′}.

3The qualifying “base” is omitted whenever I is considered fixed in a specific context.
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We also extend the notation ΩA(T ′) and ΩA(T ′) to interpretedN -algebraic
systems, writing ΩA(T ′) and ΩA(T ′), with the meaning that these are iden-
tical to those applied to the underlying N -algebraic system A of A. The
restriction of ΩA to FiFamI(A) is the Leibniz operator on A. The re-
striction of Ω̃A,I to ThFamI(A) is the Suszko operator on A and the
restriction of Ω̃A on P(FiFamI(A)) is the Tarski operator on A. The
families

Ω = {ΩA ∶ A an N -algebraic system}
Ω̃I ∶= Ω̃●,I = {Ω̃A,I ∶ A an N -algebraic system}

Ω̃ = {Ω̃A ∶ A an N -algebraic system}

are termed the Leibniz, the Suszko and theTarski operator, respectively.
Saying that one of those has a property P globally means that property P
holds for every member of the family. E.g., the Leibniz operator is globally
order preserving if ΩA ∶ FiFamI(A) → ConSys(A) is order preserving, for
every N -algebraic system A. Proposition P.4 asserts some properties of
these operators:

Proposition 2 Let I be a π-institution, A,B two N -algebraic systems and

⟨H,γ⟩ ∶ A → B a surjective N -morphism. For all T ′′ ∪ {T ′′} ⊆ FiFamI(B),

1. γ−1(ΩB(T ′′)) = ΩA(γ−1(T ′′));

2. γ−1(Ω̃B(T ′′)) = Ω̃A(γ−1(T ′′)).

3. γ−1(Ω̃B,I(T ′′)) = Ω̃A,I((γ−1(FiFamI(B)))γ
−1(T ′′)).

The original definition of a full model in AAL was given by Font and
Jansana in [11] and, it was, subsequently, adapted in CAAL in [23].

Let I = ⟨F,C⟩, with F = ⟨Sign,SEN,N⟩, be a π-institution and A =
⟨A, ⟨F,α⟩⟩, with A = ⟨Sign′,SEN′,N ′⟩, an N -algebraic system. A collection
T ′ ⊆ FiFamI(A) is full if T ′ = {T ′ ∈ FiFamI(A) ∶ Ω̃A(T ′) ≤ ΩA(T ′)}, i.e.,
T ′ consists of all I-filter families on A with which the Tarski congruence
system Ω̃A(T ′) of T ′ is compatible.

If T ′ is full, then T ′ is a closure system onA, whence the pair I ′ = ⟨A,T ′⟩
is a π-institution. We use the terminology full I-gmatrix system for
A = ⟨A,T ′⟩ when T ′ is a full collection of I-filter families. Full I-gmatrix
systems were characterized in Proposition P.5 (see also Proposition 2.7 of
[1]).

Proposition 3 Let A be an N -algebraic system, let T ′ ⊆ FiFamI(A) and
⟨ISign′ , π⟩ ∶ A → A/Ω̃A(T ′) be the canonical projection N -morphism. Then

the following conditions are equivalent:
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(i) T ′ is full.

(ii) π(T ′) = FiFamI(A/Ω̃A(T ′)).

(iii) T ′ = π−1(FiFamI(A/Ω̃A(T ′))).

(iv) T ′ = γ−1(FiFamI(B)) for some N -algebraic system B and some sur-

jective N -morphism ⟨H,γ⟩ ∶ A → B, with H an isomorphism.

Given two N -matrix systems A = ⟨A, T ′⟩ andB = ⟨B, T ′′⟩, an N -matrix
system morphism ⟨H,γ⟩ ∶ A → B is a N -morphism ⟨H,γ⟩ ∶ A → B, such
that γ−1(T ′′) ≤ T ′. It is called strict if γ−1(T ′′) = T ′. These definitions
extend to interpreted systems with the proviso that N -morphisms must be
replaced by morphisms between interpreted systems, i.e., algebraic mor-
phisms commuting with the interpretations.

A N -matrix system A = ⟨A, T ′⟩, with A = ⟨Sign′,SEN′,N ′⟩ is said to

be Leibniz reduced or simply reduced if ΩA(T ′) = ∆SEN
′

, where ∆SEN
′

is the identity congruence system on A. A gmatrix system A = ⟨A,T ′⟩ is

Tarski reduced or simply reduced if Ω̃A(T ′) =∆SEN
′

. Finally, we call an

I-matrix system A = ⟨A, T ′⟩ Suszko reduced if Ω̃A,I(T ′) = ∆SEN
′

. This
terminology extends to interpreted N -matrix systems and to interpreted
N -gmatrix systems.

By analogy with the universal algebraic framework, reduced I-matrix
systems, Suszko reduced I-matrix systems and Tarski reduced I-gmatrix
systems give rise to natural classes of N -algebraic systems that are associ-
ated to a given base π-institution I.

AlgSys∗(I) = {A ∶ (∃T ′ ∈ FiFamI(A))(ΩA(T ′) =∆SEN
′

)}

AlgSysSu(I) = {A ∶ (∃T ′ ∈ FiFamI(A))(Ω̃A,I(T ′) =∆SEN
′

)}

AlgSys(I) = {A ∶ (∃T ′ ⊆ FiFamI(A))(Ω̃A(T ′) =∆SEN
′

)}

= {A ∶ Ω̃A(FiFamI(A)) =∆SEN
′

}.

Analogously with the corresponding AAL classes and accompanying results,
established in [4, 9, 11], we may obtain the following characterizations of
these classes (I denotes the isomorphic copies operator for interpreted N -
algebraic systems):

Lemma 4 Let I be a π-institution.

1. AlgSys∗(I) = I({A/ΩA(T ) ∶ A N -alg system, T ∈ FiFamI(A)}).

2. AlgSysSu(I) = I({A/Ω̃A,I(T ) ∶ A N -alg system, T ∈ FiFamI(A)}).
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3. AlgSys(I) = I({A/Ω̃A(T ) ∶ A N -alg system, T ⊆ FiFamI(A) full}).

4. AlgSys(I) = I({A/Ω̃A(T ) ∶ A N -alg system, T ⊆ FiFamI(A)}).

5. AlgSys(I) = AlgSysSu(I).

Finally, we define the main classes of the CAAL hierarchy of π-institutions.
We note that in the traditional AAL hierarchy of sentential logics, the most
important classes have equivalent semantic and syntactic characterizations.
The semantic ones involve properties of the Leibniz and the other compat-
ibility operators, and associated classes of models, whereas the syntactic
ones are based on the existence of sets of formulas satisfying specific prop-
erties, such as, e.g., reflexivity, the deduction-detachment theorem or the
congruence property [14]. In contrast, in the categorical setting, it has been
conjectured that the corresponding semantic and syntactic properties may
not be equivalent in general. Thus, a π-institution is said to be, e.g., seman-

tically protoalgebraic if it satisfies the semantic property and syntactically

protoalgebraic if it satisfies the corresponding syntactic property and, most
likely, these terms are not equivalent. In the present work, we only intro-
duce and employ the definitions of the semantically defined classes, using
the categorical compatibility operators, and, hence, we omit the qualifica-
tion “semantically”, even though, as pointed out, it is, strictly speaking,
necessary for differentiation purposes.

Definition 5 Let I = ⟨F ,C⟩ be a π-institution.

• I is protoalgebraic ([2] in AAL and [25] in CAAL) if Ω is globally

order-preserving.

• I is equivalential ([6, 7] in AAL and [27] in CAAL) if Ω is globally

order preserving and commutes with inverse N -morphisms.

• I is truth-equational ([20] in AAL and [29] in CAAL) if Ω is globally

completely order reflecting.

• I is weakly algebraizable ([10] in AAL and [30] in CAAL) if it is

protoalgebraic and truth-equational.

• I is algebraizable ([4, 16, 17] in AAL and [21] in CAAL) if it is

equivalential and truth-equational.
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With this definition, we preserve the AAL Leibniz hierarchy:

algebraizable

✠�
�
�
�
� ❅

❅
❅
❅
❅❘

equivalential weakly algebraizable

❅
❅
❅
❅
❅❘ ✠�

�
�
�
� ❅

❅
❅
❅
❅❘

protoalgebraic truth-equational

3 The Leibniz and Suszko Operators

Albuquerque, Font and Jansana defined in [1] arbitrary S-compatibility op-
erators, studied their properties extensively and used the theory to prove
a wealth of results pertaining to the Leibniz hierarchy of AAL by spe-
cializing to the Leibniz, Suszko and Tarski operators. Taking after their
work, in [31], given an arbitrary π-institution I = ⟨F ,C⟩ over a base al-
gebraic system F = ⟨Sign,SEN,N⟩, an I-compatibility operator on an in-
terpreted N -algebraic system A = ⟨A, ⟨F,α⟩⟩, with A = ⟨Sign′,SEN′,N ′⟩,
was defined to be a mapping ∇A ∶ FiFamI(A) → ConSys(A), such that,
for all T ∈ ThFamI(A), ∇A(T ) is compatible with T . The ∇A-class of
T ∈ ThFamI(A) was defined in Definition P.20 by

JT K∇
A

= {T ′ ∈ ThFamI(A) ∶ ∇A(T ) ≤ ΩA(T ′)}.

In other words, the ∇A-class of a filter family T of A consists of all those
filter families of A with which the ∇A-congruence system of T is compatible.
The least element of this class is denoted by T∇

A

= ⋂JT K∇
A

and T is called

a ∇A-filter family if T = T∇
A

. The collection of all ∇A-filter families on A

is denoted by FiFam∇
A

(A).
If a compatibility operator ∇A is defined for every N -algebraic system

A, the family ∇ = {∇A ∶ A an N -algebraic system} is formed. Such a fam-
ily ∇ was called (weakly) coherent in Definition P.32 (see, also Defini-
tion 4.7 of [1]) if, for all surjective N -morphisms ⟨H,γ⟩ ∶ A → B (with H

an isomorphism) and all T ′′ ∈ FiFamI(B), if ⟨H,γ⟩ is ∇A-compatible with
γ−1(T ′′), then ∇A(γ−1(T ′′)) = γ−1(∇B(T ′′)). ∇A-compatibility of ⟨H,γ⟩
with γ−1(T ′′) means that Ker(⟨H,γ⟩) ≤ ∇A(γ−1(T ′′)). Perhaps one of the
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most important results proven in [31] is the General Correspondence Theo-
rem P.40 (see, also, Theorem 4.15 of [1]).

Theorem 6 (General Correspondence Theorem) Let ∇ be a weakly

coherent family of I-compatibility operators. For every surjective N -mor-

phism ⟨H,γ⟩ ∶ A → B, with H an isomorphism, and every T ∈ FiFamI(A), if
⟨H,γ⟩ is ∇A-compatible with T , then ⟨H,γ⟩ induces an order isomorphism

between JT K∇
A

and Jγ(T )K∇
B

, whose inverse is given by γ−1.

In the sequel, we view the Leibniz operator ΩA on an N -algebraic system
A as a special case of an I-compatibility operator and apply some of the
results obtained in [31] to prove various analogs for the CAAL hierarchy of
π-institutions of corresponding results established in [1] for sentential logics.

The ΩA-class of T ∈ FiFamI(A) is defined by specializing Definition

P.20 of the ∇A-class JT K∇
A

of a theory family T ∈ ThFamI(A) with respect
to an arbitrary I-compatibility operator ∇A:

JT KΩ
A

= ΩA
−1

(ΩA(T )) = {T ′ ∈ FiFamI(A) ∶ ΩA(T ) ≤ ΩA(T ′)}.

We call this the Leibniz class of T . By analogy to T∇
A

, TΩA is the least
element of the Leibniz class of T , called the Leibniz filter family of T .
The filter family T is called a Leibniz filter family if T = TΩ

A

. The

collection of all Leibniz filter families if FiFamΩ
A

(A).
The corresponding AAL notions have been developed and explored ex-

tensively in the work of the Barcelona School of AAL by, e.g., Font and
Jansana [12, 13] and Jansana [19], and, more recently, by Albuquerque,
Font and Jansana [1].

Every Leibniz class is a full closure system:

Proposition 7 For all T ∈ FiFamI(A), the Leibniz class JT KΩ
A

is full,

whence it is a closure system on A. It satisfies Ω̃A(JT KΩ
A

) = ΩA(T ). It is

the largest T ⊆ FiFamI(A), and the only full, such that Ω̃A(T ) = ΩA(T ).

Proof: By Proposition P.21, JT KΩ
A

= ΩA
−1

(Ω̃A(JT KΩ
A

)) and JT KΩ
A

is full.

By Lemma P.27, T ∈ JT KΩ
A

, whence, we get Ω̃A(JT KΩ
A

) ≤ ΩA(T ). By

Corollary P.11, Ω̃A ○ΩA
−1

is a closure on ConSys(A), whence

ΩA(T ) ≤ Ω̃A(ΩA
−1

(ΩA(T ))) = Ω̃A(JT KΩ
A

).

Thus, the second claimed equality holds. By Corollary P.18, the Tarski
operator is injective on full I-gmatrix systems, proving uniqueness. ∎
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Borrowing AAL notation, we denote by

[T ] = {T ′ ∈ FiFamI(A) ∶ ΩA(T ′) = ΩA(T )}

the equivalence class of the kernel of the Leibniz operator determined by a
T ∈ FiFamA(I).

It is clear that [T ] ⊆ JT KΩ
A

, for all T ∈ FiFamI(A). In the case of
protoalgebraic π-institutions, the least elements in the collections of the
form [T ] and the least elements in corresponding classes JT KΩ

A

coincide.
Finally, for any π-institution I, a filter family T equals ⋂[T ] if and only if
it is a Leibniz filter family.

Lemma 8 For all T ∈ FiFamI(A):

1. TΩ
A

≤ ⋂[T ] ≤ T .

2. If T = TΩ
A

, then T = ⋂[T ].

3. If I is protoalgebraic, then T = TΩ
A

iff T = ⋂[T ].

Proof: Suppose T ∈ FiFamI(A).

1. Since [T ] ⊆ JT KΩ
A

, we get TΩ
A

= ⋂JT KΩ
A

≤ ⋂[T ]. Moreover, since
T ∈ [T ], ⋂[T ] ≤ T .

2. Immediate consequence of Part 1.

3. Suppose that I is protoalgebraic. Let T = ⋂[T ]. Since TΩ
A

≤ T ,

by protoalgebraicity, ΩA(TΩ
A

) ≤ ΩA(T ). On the other hand, since

TΩA ∈ JT KΩ
A

(JT KΩ
A

is full), ΩA(T ) ≤ ΩA(TΩA). Therefore, ΩA(T ) =

ΩA(TΩ
A

), whence TΩ
A

∈ [T ] and, thus, T = ⋂[T ] ≤ TΩ
A

. ∎

Recalling that the Leibniz operator is the largest I-compatibility opera-
tor, we can easily derive

Lemma 9 Let ∇A be an I-compatibility operator on A. Then, for all T ∈
FiFamI(A):

1. JT KΩ
A

⊆ JT K∇
A

.

2. T∇
A

≤ TΩA .

3. Every ∇A-filter family is a Leibniz filter family.
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Proof: For Part 1, if T ′ ∈ JT KΩ
A

, we get ΩA(T ) ≤ ΩA(T ′), whence, since

∇A(T ) ≤ ΩA(T ), we get ∇A(T ) ≤ ΩA(T ′) and, hence, T ′ ∈ JT K∇
A

. Part 2 is
a direct consequence of Part 1. For Part 3, note, first, that, by Lemma 8,
TΩ

A

≤ T . But we also have

T = T∇
A

(by hypothesis)

≤ TΩ
A

. (by Part 2)

Thus, T = TΩ
A

and T is a Leibniz filter family. ∎

Proposition 10 For all T ∈ FiFamI(A), TΩ
A

is a Leibniz filter family of

A.

Proof: By Lemma 8, (TΩ
A

)Ω
A

≤ TΩ
A

. For the reverse inclusion, since

TΩ
A

∈ JT KΩ
A

(JT KΩ
A

is full), we get JTΩ
A

KΩ
A

⊆ JT KΩ
A

. Therefore, TΩ
A

=

⋂JT KΩ
A

≤ ⋂JTΩ
A

KΩ
A

= (TΩ
A

)Ω
A

. ∎

One may thus derive the fact that, if I is a protoalgebraic π-institution,
an I-filter family is a Leibniz filter family iff it is the least element of some full
I-gmatrix system. Generalizing this to arbitrary π-institutions, we obtain

Theorem 11 An I-filter family T of A is a Leibniz filter family iff there

exists a full I-gmatrix system ⟨A,T ⟩, such that T = ⋂T .

Proof: Suppose that T ∈ FiFamI(A) is a Leibniz filter family. Thus, T is
the least element of its Leibniz class, which, by Proposition 7 is full.

Conversely, assume T = ⋂T , where ⟨A,T ⟩ is a full I-gmatrix sys-

tem. Since T = ⋂T ∈ T , we have Ω̃A(T ) ≤ ΩA(T ). Therefore, JT KΩ
A

=

ΩA
−1

(ΩA(T )) ⊆ ΩA
−1

(Ω̃A(T )) = T , with the last equality justified by Propo-

sition P.17. Hence, T = ⋂T ≤ ⋂JT KΩ
A

= TΩ
A

. The converse inclusion always
holds, whence T is in fact a Leibniz filter family. ∎

Corollary P.28 applied to the Leibniz operator yields the next propo-
sition, which generalizes Proposition 5.6 of [1], which, in turn, taking into
account Lemma 8, is an abstraction of Proposition 10 of [12].

Proposition 12 A filter family T ∈ FiFamI(A) is a Leibniz filter family of

A iff T /ΩA(T ) is the least I-filter family of A/ΩA(T ).

Taking into account Proposition 2 and instantiating Proposition P.35,
we obtain the following
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Lemma 13 The Leibniz operator Ω = {ΩA ∶ A an N -algebraic system} is a

coherent family of I-compatibility operators.

With this at hand, we can establish a correspondence theorem along the
lines of Theorem 6 for Leibniz classes of algebraic systems connected by
surjective N -morphisms (see Theorem 5.8 of [1]).

Theorem 14 (Correspondence for Leibniz Classes) Let ⟨H,γ⟩ ∶ A →
B be a surjective N -morphism and T ∈ FiFamI(A). If H is an isomorphism

and ⟨H,γ⟩ is ΩA-compatible with T , then ⟨H,γ⟩ induces an order isomor-

phism between JT KΩ
A

and Jγ(T )KΩ
B

, whose inverse is γ−1. Moreover, for

every T ′ ∈ JT KΩ
A

, ⟨H,γ⟩ induces an order isomorphism between [T ′] and
[γ(T ′)].

Proof: The first part follows by Theorem 6, using Lemma 13 to justify
its applicability. For the second part, let T ′, T ′′ ∈ JT KΩ

A

. Note that T ′ ∈

JT KΩ
A

implies [T ′] ⊆ JT KΩ
A

. By the already establishes first part, we obtain
that γ−1(γ(T ′)) = T ′ and γ−1(γ(T ′′)) = T ′′. Using Proposition 2 and the
surjectivity of ⟨H,γ⟩, we now get

ΩA(T ′) = ΩA(T ′′) iff ΩA(γ−1(γ(T ′))) = ΩA(γ−1(γ(T ′′)))
iff γ−1(ΩB(γ(T ′))) = γ−1(ΩB(γ(T ′′)))
iff ΩB(γ(T ′)) = ΩB(γ(T ′′)).

This shows that T ′′ ∈ [T ′] iff γ(T ′′) ∈ [γ(T ′)]. Therefore, the order iso-

morphism between JT KΩ
A

and Jγ(T )KΩ
B

restricts to one between [T ′] and
[γ(T ′)]. ∎

Theorem 14 partly generalizes to arbitrary π-institutions and to larger
collections of filter families a correspondence theorem related to protoalge-
braic π-institutions (Theorem 5.9 of [28], see also [3]). It is also an ab-
straction to the categorical context of the Correspondences established in
Corollary 7.7 of [5] and Corollary 9 of [12].

Corollary 15 For every surjective N -morphism ⟨H,γ⟩ ∶ A → B and every

T ∈ FiFamI(A), if H is an isomorphism and ⟨H,γ⟩ is ΩA-compatible with

T , then T is a Leibniz filter family of A if and only if γ(T ) is a Leibniz filter

family of B.

Switching to the Suszko operator for a similar study as the one just
completed for the Leibniz operator, we call the class

JT KΩ̃
A,I

= ΩA
−1

(Ω̃A,I(T )) = {T ′ ∈ FiFamI(A) ∶ Ω̃A,I(T ) ≤ ΩA(T ′)}
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the Suszko class of T . Moreover, T Ω̃A,I

is the least element of the class

JT KΩ̃
A,I

, and T is said to be a Suszko filter family if T = T Ω̃
A,I

. Finally,

FiFamΩ̃
A,I

(A) denotes the collection of all Suszko filter families of A.
Along the lines of Proposition 7, we show the following

Proposition 16 For all T ∈ FiFamI(A), the Suszko class JT KΩ̃
A,I

is full,

whence it is a closure system on A. It satisfies Ω̃A(JT KΩ̃
A,I

) = Ω̃A,I(T ) and
is the largest T ⊆ FiFamI(A), and the only full, such that Ω̃A(T ) = Ω̃A,I(T ).

Proof: By Proposition P.21, JT KΩ̃
A,I

= ΩA
−1

(Ω̃A(JT KΩ̃
A,I

)) and JT KΩ̃
A,I

is
full. Note that, if T ′ ∈ FiFamI(A), with T ≤ T ′, then

Ω̃A,I(T ) ≤ Ω̃A,I(T ′) ≤ ΩA(T ′).

Thus, (FiFamI(A))T ⊆ JT KΩ̃
A,I

. Therefore, Ω̃A(JT KΩ̃
A,I

) ≤ Ω̃A,I(T ). On
the other hand,

Ω̃A,I(T ) ≤ ⋂ΩA({T ′ ∈ FiFamI(A) ∶ Ω̃A,I(T ) ≤ ΩA(T ′)})

= Ω̃A(JT KΩ̃
A,I

).

Thus, the second claimed equality holds. By Corollary P.18, the Tarski
operator is injective on full I-gmatrix systems, giving uniqueness. ∎

Taking into account the fact that the Suszko operator is the largest order
preserving I-compatibility operator, we also get

Lemma 17 For T ∈ FiFamI(A):

1. T Ω̃
A,I

≤ TΩ
A

≤ T .

2. Every Suszko filter family is a Leibniz filter family.

3. If T ≤ T ′, then JT ′KΩ̃
A,I

⊆ JT KΩ̃
A,I

and T Ω̃
A,I

≤ T ′Ω̃
A,I

.

4. (FiFamI(A))T ⊆ JT KΩ̃
A,I

⊆ (FiFamI(A))T
Ω̃
A,I

.

5. JT KΩ̃
A,I

⊆ JT Ω̃
A,I

KΩ̃
A,I

.

6. JT KΩ̃
A,I

= (FiFamI(A))T if and only if T = T Ω̃A,I

, i.e., iff T is a

Suszko filter family.
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Proof: All statements are specializations of results proven previously for
arbitrary I-compatibility operators: The inequalities in Part 1 follow from
Lemma 9 and Lemma 8, respectively. Part 2 specializes Lemma 9. Parts 3
and 4 specialize Lemma P.24. Part 5 specializes Lemma P.27 and, finally,
Part 6 specializes Lemma P.25.

∎

Note that for a T ∈ FiFamI(A), the filter family T Ω̃
I,A

need not be a
Suszko filter family. This is illustrated in the sentential context in (counter)
Example 5.12 of [1].

Since, according to Lemma 17, Suszko filter families are special cases
of Leibniz filter families and the latter are least elements of full I-gmatrix
systems, the former are also. In addition, they can be characterized as the
least elements of those full I-gmatrix systems that are up-sets. The only
such up-sets are the principal ones determined by the Suszko filter families
themselves. More precisely, we obtain the following analog of Theorem 5.13
of [1]:

Theorem 18 For all T ∈ FiFamI(A), the following are equivalent:

(i) T is a Suszko filter family of A.

(ii) ⟨A, (FiFamI(A))T ⟩ is a full I-gmatrix system.

(iii) T = ⋂T , for some full upset T ⊆ FiFamI(A).

Moreover, the principal upset (FiFamI(A))T is the only T ⊆ FiFamI(A)
that satisfies Condition (iii).

Proof:

(i)⇒(ii) The hypothesis implies, by Lemma 17, that JT KΩ̃
A,I

= (FiFamI(A))T .
Therefore, by Proposition 16, we get that (FiFamI(A))T is full.

(ii)⇒(iii) Since (FiFamI(A))T is an up-set and T = ⋂(FiFamI(A))T , (iii) fol-
lows.

(iii)⇒(i) Suppose, now, that T = ⋂T , for some full upset T ⊆ FiFamI(A).

Since T is full, it is a closure system, whence T ∈ T . Therefore, since
T is an up-set, (FiFamI(A))T ⊆ T . But, by hypothesis, T = ⋂T ,
whence T ⊆ (FiFamI(A))T . This shows that T = (FiFamI(A))T .
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Since T is full,

T = (FiFamI(A))T

= {T ′ ∈ FiFamI(A) ∶ Ω̃A((FiFamI(A))T ) ≤ ΩA(T ′)}.

But Ω̃A((FiFamI(A))T ) = Ω̃A,I(T ). Thus, (FiFamI(A))T = JT KΩ̃
A,I

and, therefore, T = ⋂JT KΩ̃
A,I

is a Suszko filter family.
∎

It is possible that a Suszko filter family is the least filter family of another
full I-gmatrix system without that system being an up-set. In fact, since
every Suszko filter family is also a Leibniz filter family, it is also the least
filter family of a Leibniz class, which is also a full I-gmatrix system.

Corollary P.28 applied to the Suszko operator gives

Proposition 19 A filter family T ∈ FiFamI(A) is a Suszko filter family of

A iff T /Ω̃A,I(T ) is the least filter family of A/Ω̃A,I(T ).

Moreover, Proposition P.42 and Lemma 13 yield

Lemma 20 The Suszko operator Ω̃●,I = {Ω̃A,I ∶ A an N -algebraic system}
is a weakly coherent family of I-compatibility operators.

The weak coherence asserted by Lemma 20 allows using the relativized
Correspondence Theorem P.43:

Theorem 21 (Correspondence for Suszko Classes) For every surjec-

tive ⟨H,γ⟩ ∶ A → B and every T ∈ FiFamI(A), if H is an isomorphism and

⟨H,γ⟩ is Ω̃A,I-compatible with T , then ⟨H,γ⟩ induces an order isomorphism

between JT KΩ̃
A,I

and Jγ(T )KΩ̃
B,I

, whose inverse is given by γ−1.

Theorem 21 is a strengthening of Corollary 3.12 of [26], which is an
abstraction in the categorical context of Corollary 2.7 of [9]. In that case, we
had an isomorphism between (FiFamI(A))T and (FiFamI(B))γ(T ), under
the hypothesis that ⟨H,γ⟩, withH an isomorphism, is a surjective, deductive
I-matrix system morphism from ⟨A, T ⟩ to ⟨B, γ(T )⟩. The generalization is
obtained by observing that the property of being deductive is equivalent
to ⟨H,γ⟩ being Ω̃A,I -compatible with T . The present isomorphism extends

that result to an isomorphism between the entire Suszko classes JT KΩ̃
A,I

and

Jγ(T )KΩ̃
B,I

, which contain the up-sets (FiFamI(A))T and (FiFamI(B))γ(T ),
respectively.

Finally, focusing on the least filter families of the complete lattices whose
order isomorphism is established in Theorem 21, we obtain:
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Corollary 22 If ⟨H,γ⟩ ∶ A → B is a surjective N -morphism, with H an

isomorphism, and, for T ∈ FiFamI(A), ⟨H,γ⟩ is Ω̃A,I-compatible with T ,

then T is a Suszko filter family of A iff γ(T ) is a Suszko filter family of B.

4 The Leibniz Hierarchy

We saw that a Leibniz class JT KΩ
A

is full, whence ⟨A, JT KΩ
A

⟩ is a full I-
gmatrix system. The following proposition characterizes those full I-gmatrix
systems that are of this form.

Proposition 23 Let ⟨A,T ⟩ be a full I-gmatrix system. The following are

equivalent:

(i) T = JT KΩ
A

, for some T ∈ FiFamI(A).

(ii) A/Ω̃A(T ) ∈ AlgSys∗(I).

Proof:

(i)⇒(ii) Assume T = JT KΩ
A

, for some T ∈ FiFamI(A). Then, taking into ac-

count Proposition 7, Ω̃A(T ) = Ω̃(JT KΩ
A

) = ΩA(T ). Thus, A/Ω̃A(T ) ∈
AlgSys∗(I).

(ii)⇒(i) Suppose B = A/Ω̃A(T ) ∈ AlgSys∗(I). Then, there is T ′ ∈ FiFamI(B),
such that ΩB(T ′) = ∆SEN

′/Ω̃A(T ). Thus, JT ′KΩ
B

= FiFamI(B). Let

⟨I, π⟩ ∶= ⟨ISign′ , π
Ω̃
A(T )⟩ ∶ A → B be the projection N -morphism. Since

T is full, T = π−1(FiFamI(B)). Thus, T = π−1(JT ′KΩ
B

). Moreover

Ker(⟨I, π⟩) = π−1(∆SEN
′/Ω̃A(T )) = π−1(ΩB(T ′)) = ΩA(π−1(T ′)), show-

ing that ⟨I, π⟩ is ΩA-compatible with π−1(T ′). The Correspondence

Theorem 14 now yields that T = π−1(JT ′KΩ
B

) = Jπ−1(T ′)KΩ
A

.
∎

It is not always the case that every full I-gmatrix system is of the form
JT KΩ

A

, for some T ∈ FiFamI(A). This reflects the fact that, as in the
sentential framework, it may happen that AlgSys∗(I) ⫋ AlgSys(I). The
following proposition provides some equivalent conditions for equality to
hold.

Proposition 24 Let I be a π-institution. The following are equivalent:

(i) AlgSys(I) = AlgSys∗(I).
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(ii) For all A, the class of full I-gmatrix systems on A is {⟨A, JT KΩ
A

⟩ ∶
T ∈ FiFamI(A)}.

(iii) For all A and all T ∈ FiFamI(A), there exists T ′ ∈ FiFamI(A), such
that Ω̃A,I(T ) = ΩA(T ′).

Proof:

(i)⇒(ii) Suppose T ⊆ FiFamI(A) is full. Then A/Ω̃A(T ) ∈ AlgSys(I), i.e.,
by hypothesis, A/Ω̃A(T ) ∈ AlgSys∗(I). Thus, by Proposition 23, T =
JT KΩ

A

, for some T ∈ FiFamI(A).

(ii)⇒(iii) Recall that all Suszko classes are full. Thus, by hypothesis, for all T ∈

FiFamI(A), there exists T ′ ∈ FiFamI(A), such that JT KΩ̃
A,I

= JT ′KΩ
A

.

Therefore, we obtain Ω̃A,I(T ) = Ω̃A(JT KΩ̃
A,I

) = Ω̃A(JT ′KΩ
A

) = ΩA(T ′).

(iii)⇒(i) Recall that AlgSys∗(I) ⊆ AlgSys(I) always holds. To prove the reverse
inclusion, suppose that A ∈ AlgSys(I) = AlgSysSu(I). Thus, there
exists T ∈ FiFamI(A), such that Ω̃A,I(T ) = ∆SEN

′

. By hypothesis,
there exists T ′ ∈ FiFamI(A), such that Ω̃A,I(T ) = ΩA(T ′) = ∆SEN

′

.
Thus, A ∈ AlgSys∗(I).

∎

Protoalgebraicity of I implies that AlgSys(I) = AlgSys∗(I). This is a
consequence of the following

Proposition 25 A π-institution I is protoalgebraic iff the Leibniz and the

Suszko operators coincide, i.e., iff, for all A and all T ∈ FiFamI(A),

Ω̃A,I(T ) = ΩA(T ).

Proof: I is protoalgebraic iff the Leibniz operator is order-preserving iff,
since it is, by definition, the largest I-compatibility operator, it is the largest
order-preserving I-compatibility operator iff it is equal to the Suszko oper-
ator. ∎

It follows that for a protoalgebraic π-institution, Leibniz and Suszko
classes, Leibniz and Suszko filter families, associated classes of N -algebraic
systems and all other notions associated with those operators coincide.
Therefore, in particular, AlgSys(I) = AlgSys∗(I). This equality yields a
characterization of the full I-gmatrix systems in terms of Leibniz classes of
filter families.



CAAL: Compatibility Operators and Hierarchy 21

Corollary 26 If a π-institution I is protoalgebraic, AlgSys∗(I) = AlgSys(I)
and the full I-gmatrix systems are the I-gmatrix systems of the form ⟨A,
JT KΩ

A

⟩, for some N -algebraic system A and some T ∈ FiFamI(A).

In addition, we obtain the following characterizations of protoalgebra-
icity in terms of full I-gmatrix systems, abstracting Theorem 6.5 of [1],
which, in turn, extends Theorem 3.4 of [11]:

Theorem 27 For a π-institution I, the following are equivalent:

(i) I is protoalgebraic.

(ii) Every full collection of I-filter families is an upset, i.e., has form

(FiFamI(A))T , for some I-filter family T on some A.

(iii) Every full collection of I-filter families is of the form (FiFamI(A))T ,
for some Suszko I-filter family T on some A.

(iv) JT KΩ
A

= (FiFamI(A))T
Ω
A

, for all A and all T ∈ FiFamI(A).

Proof:

(i)⇒(ii) Suppose ⟨A,T ⟩ is a full I-gmatrix system. Then

T = {T ′ ∈ FiFamI(A) ∶ Ω̃A(T ) ≤ ΩA(T ′)}.

Since, by hypothesis, Ω is order-preserving, T is an upset. Since T
is a closure system, it must be of the form (FiFamI(A))T , for some
T ∈ FiFamI(A), in fact for T = ⋂T .

(ii)⇒(iii) This follows by Theorem 18.

(iii)⇒(iv) For all T ∈ FiFamI(A), JT KΩ
A

is a full I-gmatrix system. Thus, by

hypothesis, JT KΩ
A

= (FiFamI(A))T
′

, with T ′ = ⋂JT KΩ
A

= TΩ
A

.

(iv)⇒(i) Let T,T ′ ∈ FiFamI(A), such that T ≤ T ′. Then TΩ
A

≤ T ≤ T ′. By

hypothesis, T ′ ∈ JT KΩ
A

. Thus, ΩA(T ) ≤ ΩA(T ′). Since, for all A, ΩA

is order-preserving on FiFamI(A), I is protoalgebraic.
∎

Strengthening Proposition 25, we show that the coincidence of any two
of the Leibniz and Suszko corresponding notions characterizes protoalge-
braicity:
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Proposition 28 For a π-institution I, the following are equivalent:

(i) I is protoalgebraic.

(ii) The full classes of I-filter families coincide with the Ω̃I-full classes.

(iii) JT KΩ
A

= JT KΩ̃
A,I

, for all A and all T ∈ FiFamI(A).

Proof:

(i)⇒(ii(i)) These follow from Proposition 25.

(ii)⇒(i) Suppose that the full classes of I-filter families coincide with the Ω̃I-
full classes. By Lemma P.27, every Ω̃I -full class is an upset. Thus, by
hypothesis, all full classes are upsets. By Theorem 27, I is protoalge-
braic.

(iii)⇒(i) Suppose JT KΩ
A

= JT KΩ̃
A,I

, for all A and all T ∈ FiFamI(A). Let A
be an N -algebraic system and T,T ′ ∈ FiFamI(A), such that T ≤ T ′.

By Lemma 17, T ′ ∈ JT KΩ̃
A,I

= JT KΩ
A

. Hence ΩA(T ) ≤ ΩA(T ′). We
conclude that I is protoalgebraic.

∎

We note that none of the two conditions

• TΩ
A

= T Ω̃
A,I

, for all A and all T ∈ FiFamI(A), or

• T is a Suszko filter family iff it is a Lebniz filter family, for all A and
all T ∈ FiFamI(A),

characterize protoalgebraicity of I. This is because both hold vacuously for
all truth-equational π-institutions. For every truth equational π-institution
I and every N -algebraic system A, T is Suszko, for all T ∈ FiFamI(A), and,
hence, T is also Leibniz (see Theorem 32 and related remarks pertaining to
the sentential case following Proposition 6.6 of [1]).

In Theorem 27 a characterization of protoalgebraic π-institutions was
provided in terms of the form of full classes of I-filter families and of Leibniz
classes. Next, we provide a similar characterization for truth-equational
logics.

Given T ∈ FiFamI(A), we have JT KΩ̃
A,I

⊇ (FiFamI(A))T . Thus, T is a
Suszko filter family when the reverse inclusion holds, i.e., when

for all T ′ ∈ FiFamI(A), Ω̃A,I(T ) ≤ ΩA(T ′) implies T ≤ T ′.

This holding for all T ∈ ThFamI(A) is tantamount to ΩA being completely
order reflecting (due to Raftery [20] in the AAL context):
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Lemma 29 The Leibniz operator ΩA is completely order reflecting on the

class FiFamI(A) iff, for all T ∈ FiFamI(A), the following holds:

for all T ′ ∈ FiFamI(A), Ω̃A,I(T ) ≤ ΩA(T ′) implies T ≤ T ′.

Proof: Suppose, first, that the Leibniz operator ΩA on FiFamI(A) is
completely order reflecting. Assume that T,T ′ ∈ FiFamI(A), such that
Ω̃A,I(T ) ≤ ΩA(T ′). Note that

Ω̃A,I(T ) = Ω̃A((FiFamI(A))T ) =⋂{ΩA(U) ∶ U ∈ (FiFamI(A))T }.

Therefore, by hypothesis, T = ⋂(FiFamI(A))T ≤ T ′.
Conversely, assume that the displayed formula in the statement holds,

for all T ∈ FiFamI(A). Let T i, T ′ ∈ FiFamI(A), i ∈ I, be such that

⋂i∈I Ω
A(T i) ≤ ΩA(T ′). Then

Ω̃A,I(⋂
i∈I

T i) ≤⋂
i∈I

Ω̃A,I(T i) ≤⋂
i∈I

ΩA(T i) ≤ ΩA(T ′).

Now, by hypothesis, ⋂i∈I T
i ≤ T ′ and ΩA is completely order reflecting on

FiFamI(A). ∎

Corollary P.29 asserts that, for any I-compatibility operator ∇A, the
condition ∇A(T ) ≤ ΩA(T ′) implies T ≤ T ′, for all T,T ′ ∈ FiFamI(A), is
equivalent to the condition that all I-filter families on A are ∇A-filter fam-
ilies. Combining Lemma 29, with Corollary P.29, applied to the case of the
Suszko operator, we get the following

Proposition 30 The Leibniz operator ΩA is completely order reflecting on

FiFamI(A) iff every I-filter family T of A is a Suszko filter family.

Corollary P.29, applied to the case of the Leibniz operator, also gives

Proposition 31 The Leibniz operator ΩA is order reflecting on FiFamI(A)
iff every I-filter family T of A is a Leibniz filter family.

We are now ready to provide the promised characterization of truth-
equational π-institutions, an analog of Theorem 6.10 of [1]:

Theorem 32 For a π-institution I, the following are equivalent:

(i) I is truth-equational.

(ii) For all A, every I-filter family on A is a Suszko filter family.
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(iii) For all A ∈ AlgSys(I), every I-filter family on A is a Suszko filter

family.

Proof:

(i)⇒(ii) A consequence of Proposition 30, taking into account Definition 5.

(ii)⇒(iii) Obvious.

(iii)⇒(i) Let A be an N -algebraic system, T ∈ FiFamI(A) and consider the

projection morphism ⟨I, π⟩ ∶= ⟨ISign′ , π
Ω̃
A,I(T )⟩ ∶ A → A/Ω̃A,I(T ). By

Lemma 1, π(T ) ∈ FiFamI(A/Ω̃A,I(T )). On the quotient, define T ′ =

⋂FiFamI(A/Ω̃A,I(T )). Since T ′ ≤ π(T ), by monotonicity of Ω̃A,I and
Lemma P.45,

Ω̃A/Ω̃
A,I(T ),I(T ′) ≤ Ω̃A/Ω̃

A,I(T ),I(π(T )) =∆SEN
′/Ω̃A,I(T ).

Thus, Ω̃A/Ω̃
A,I(T ),I(T ′) = Ω̃A/Ω̃

A,I(T ),I(π(T )). By hypothesis, T ′ and
π(T ) are Suszko filter families on A/Ω̃A,I(T ), since A/Ω̃A,I(T ) ∈

AlgSysΩ̃
I

(I) = AlgSys(I). By Proposition P.23, the Suszko operator is
injective on Suszko filter families, whence

T /Ω̃A,I(T ) = T ′ =⋂FiFamI(A/Ω̃A,I(T )).

By Proposition 19, T is a Suszko filter family. By Proposition 30 and
Definition 5, I is truth equational.

∎

The following results assert that, under truth equationality, the converse
implications of those in Corollary 26 hold:

Proposition 33 If I is truth-equational and AlgSys∗(I) = AlgSys(I), then
I is protoalgebraic.

Proof: By Proposition 24, every full class of I-filter families is of the form
JT ′KΩ

A

, for some A and some T ′ ∈ FiFamI(A). Thus, so are Suszko classes.

If A is an arbitrary N -algebraic system and T ∈ FiFamI(A), then JT KΩ̃
A,I

=

JT ′KΩ
A

, for some T ′ ∈ FiFamI(A). Hence T Ω̃
A,I

= T ′Ω
A

. By Theorem 32,
every filter family is Suszko and, in general, every Suszko filter family is

Leibniz, whence T = T Ω̃
A,I

= T ′Ω
A

= T ′. Now we conclude that JT KΩ̃
A,I

=

JT KΩ
A

, whence, by Proposition 28, I is protoalgebraic. ∎
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Corollary 34 A π-institution I is weakly algebraizable iff it is truth equa-

tional and AlgSys∗(I) = AlgSys(I).

Proof:If I is weakly algebraizable, by Definition 5, it is protoalgebraic
and truth-equational. Thus, by Corollary 26, it is truth equational and
AlgSys∗(I) = AlgSys(I). The converse follows by Proposition 33. ∎

Finally, for a characterization of truth equationality in terms of the form
of full I-gmatrix systems, that parallels the characterization of protoalge-
braicity proven in Theorem 27, we obtain the following analog of Theorem
6.13 of [1]:

Theorem 35 For a π-institution I the following are equivalent:

(i) I is truth equational.

(ii) ⟨A, (FiFamI(A))T ⟩ is a full I-gmatrix system, for all A and all T ∈
FiFamI(A).

(iii) JT KΩ̃
A,I

= (FiFamI(A))T , for all A and all T ∈ FiFamI(A).

Proof: The equivalences follow from Theorem 32 through the application
of the characterizations of Suszko filter families obtained in Lemma 17 and
Theorem 18. ∎

Finally, by Theorems 27 and 35, we get the following characterization of
weakly algebraizable π-institutions in terms of the form of their full classes
of filter families.

Corollary 36 A π-institution I is weakly algebraizable iff the full classes of

I-filter families are exactly the ones of the form JT KΩ̃
A,I

= (FiFamI(A))T ,
for all N -algebraic systems A and all T ∈ FiFamI(A).

In terms of the Suszko property, we obtain the following characterization
of weakly algebraizable π-institutions:

Proposition 37 A π-institution I is weakly algebraizable iff all full classes

of I-filter families are Suszko classes and all I-filter families are Suszko

filter families.

Proof: Suppose I is weakly algebraizable. Then, it is protoalgebraic. By
Theorem 27, every full class of I-filter families is of the form (FiFamI(A))T ,
for some T ∈ FiFamI(A). On the other hand, I is also truth equational.
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Thus, by Theorem 35, (FiFamI(A))T = JT KΩ̃
A,I

, whence every full class is
a Suszko class. Finally, by Theorem 32, every filter family is a Suszko filter
family.

Suppose, conversely, that all full classes of I-filter families are Suszko
classes and all I-filter families are Suszko filter families. By the second
property and Theorem 32, I is truth equational. By Theorem 35, every
Suszko class has the form (FiFamI(A))T , for some T ∈ FiFamI(A). Thus,
every full class of I-filter families has the form (FiFamI(A))T , for some
T ∈ FiFamI(A). By Theorem 27, S is protoalgebraic, whence I is weakly
algebraizable. ∎

Yet another characterization of truth equationality involves the class of
filter families on quotient algebraic systems by the Suszko congruence system
of a filter family:

Corollary 38 A π-institution I is truth equational iff

FiFamI(A/Ω̃A,I(T )) = (FiFamI(A))T /Ω̃A,I(T ),

for all A and all T ∈ FiFamI(A).

Proof: Let A be an N -algebraic system and T ∈ FiFamI(A). Consider

⟨I, π⟩ ∶= ⟨ISign′ , π
Ω̃
A,I(T )⟩ ∶ A → A/Ω̃A,I(T ). By Proposition P.14 and the

definition of the Suszko class, π−1(FiFamI(A/Ω̃A,I(T ))) = ΩA
−1

(Ω̃A,I(T )) =

JT KΩ̃
A,I

. Now, under truth equationality, we get

FiFamI(A/Ω̃A,I(T ))

= π((FiFamI(A))T ) (Theorem 35 and surjectivity)

= (FiFamI(A))T /Ω̃A,I(T ).

If, conversely, FiFamI(A/Ω̃A,I(T )) = π((FiFamI(A))T ), then, again by

Proposition P.14, we have π(JT KΩ̃
A,I

) = π((FiFamI(A))T ). Since Ω̃A,I(T )

is compatible with all filter families in JT KΩ̃
A,I

and (FiFamI(A))T ⊆ JT KΩ̃
A,I

,

it follows that JT KΩ̃
A,I

= (FiFamI(A))T . Then, by Theorem 35, I is truth
equational. ∎

The following theorem is an abstraction of a well-known result of Blok
and Pigozzi [2] (see, also Theorem 2.7 of [16] and Theorem 1.1.8 of [8]).
It has been abstracted in the CAAL context in [28]. We revisit it here,
equipped with the more general tools developed in [31], taking after [1].
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Theorem 39 (Protoalgebraic Correspondence Thm) A π-institution

I is protoalgebraic iff every strict surjective N -matrix system morphism

⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ between I-matrix systems, with H an isomor-

phism, induces an order isomorphism between the posets (FiFamI(A))T and

(FiFamI(B))T
′

, whose inverse is γ−1.

Proof: First, suppose that I is protoalgebraic. By strictness, T = γ−1(T ′),
whence, by surjectivity of ⟨H,γ⟩, T ′ = γ(γ−1(T ′)) = γ(T ). Thus, T =
γ−1(γ(T )) and, therefore, ⟨H,γ⟩ is compatible with T . By Theorem 14,

⟨H,γ⟩ induces an order isomorphism between JT KΩ
A

and JT ′KΩ
B

, whose in-
verse is γ−1. Taking into account protoalgebraicity and Lemma 17, the up-
sets (FiFamI(A))T and (FiFamI(B))T

′

are contained in these two posets,
respectively, and T , T ′ are corresponding filter families, whence the order
isomorphism restricts to one between (FiFamI(A))T and (FiFamI(B))T

′

.
For the converse, we follow the proof of (v)⇒(i) of Theorem 1.1.8 of

[8]. Let A be an N -algebraic system and T,T ′ ∈ FiFamI(A), such that

T ≤ T ′. Then for ⟨I, π⟩ ∶= ⟨ISign′ , π
Ω
A(T )⟩ ∶ A → A/ΩA(T ), we get that

⟨I, π⟩ ∶ ⟨A, T ⟩ → ⟨A/ΩA(T ), T /ΩA(T )⟩ is a strict surjective N -morphism
between two I-matrix systems, with I an isomorphism. By hypothesis,
since T ′ ∈ (FiFamI(A))T , we get that π(T ′) ∈ (FiFamI(A/ΩA(T )))T /Ω

A(T ).
Therefore, π−1(π(T ′)) ∈ (FiFamI(A))T . By the surjectivity of π, π(T ′) =
π(π−1(π(T ′))) and, by the injectivity of π, T ′ = π−1(π(T ′)), whence ΩA(T )
is compatible with T ′ and, hence ΩA(T ) ≤ ΩA(T ′), showing that I is pro-
toalgebraic. ∎

By altering the classes of matrix system morphisms and the filter fam-
ilies, we can also obtain a similar correspondence theorem for truth equa-
tional π-institutions. We first establish a property of strict surjective matrix
system morphisms implied by truth equationality.

Theorem 40 If a π-institution I is truth-equational, then every strict sur-

jective N -matrix system morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ between I-
matrix systems, with H an isomorphism, which is Ω̃A,I-compatible with T ,

induces an order isomorphism between (FiFamI(A))T and (FiFamI(B))T
′

,

whose inverse is γ−1.

Proof: If I is truth equational, and ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ is strict and
surjective, with H is an isomorphism, which is Ω̃A,I-compatible with T ,
then T ′ = γ(T ) and, by Theorem 21, ⟨H,γ⟩ induces an order isomorphism

between JT KΩ̃
A,I

and JT ′KΩ̃
B,I

, whose inverse is γ−1. By Theorem 32, every
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filter family is Suszko, whence JT KΩ̃
A,I

= (FiFamI(A))T and JT ′KΩ̃
B,I

=
(FiFamI(B))T

′

, whence the conclusion follows. ∎

Theorem 41 (Truth-Equational Correspondence Theorem) The π-

institution I is truth-equational iff every strict surjective N -matrix system

morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ between I-matrix systems, with H an

isomorphism, that is Ω̃A,I-compatible with T , induces an order isomorphism

between (FiFamI(A))T and (FiFamI(B))T
′Ω̃
B,I

, whose inverse is γ−1.

Proof: Suppose, first, that I is truth equational. By Theorem 32, every

filter family T ′ is Suszko, whence T ′Ω̃
B,I

= T ′. Therefore, the postulated
property coincides with the one proved in Theorem 40.

For the converse, assuming the postulated property, it is enough to show,
by Theorem 32, that every filter family is Suszko. Let T ∈ FiFamI(A) and

B = A/Ω̃A,I(T ). Let ⟨I, π⟩ = ⟨ISign′ , π
Ω̃A,I(T )⟩ ∶ A → B be the corresponding

projection N -morphism. ⟨I, π⟩ is a strict and surjective N -matrix system
morphism from ⟨A, T ⟩ to ⟨B, T /Ω̃A,I(T )⟩ and clearly Ω̃A,I(T )-compatible
with T . By hypothesis, we get an order isomorphism between the posets

(FiFamI(A))T and (FiFamI(B))π(T )
Ω̃
B,I

, with inverse π−1. The Suszko
operator is a weakly coherent family of I-compatibility operators, whence,

by Lemma P.33, Ω̃B,I(π(T )) = π(Ω̃A,I(T )) = ∆SEN
′

. Thus, Jπ(T )KΩ̃
B,I

=

FiFamI(B), whence π(T )Ω̃
B,I

= ⋂FiFamI(B) and (FiFamI(B))π(T )
Ω̃
B,I

=
FiFamI(B). Applying Theorem 21 to ⟨I, π⟩, we get an order isomorphism

from JT KΩ̃
A,I

and Jπ(T )KΩ̃
B,I

= FiFamI(B), with inverse π−1. Therefore,

necessarily, JT KΩ̃
A,I

= (FiFamI(A))T , which shows, by Theorem 18, that T
is a Suszko filter family.

∎

Dropping the requirement of compatibility results in a characterization
of weakly algebraizable π-institutions:

Theorem 42 A π-institution I is weakly algebraizable iff every strict sur-

jective N -matrix system morphism ⟨H,γ⟩ ∶ ⟨A, T ⟩ → ⟨B, T ′⟩ between I-
matrix systems, with H an isomorphism, induces an order isomorphism

between (FiFamI(A))T and (FiFamI(B))T
′Ω̃
B,I

, whose inverse is γ−1.

Proof: If I is weakly algebraizable, then, it is protoalgebraic. By Theorem
39, we have an order isomorphism from (FiFamI(A))T to (FiFamI(B))T

′

.
Since I is truth equational, by Theorem 32, every filter family is Suszko,

whence T ′Ω̃
B,I

= T ′, yielding the required isomorphism.
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Conversely, assume that the property of the statement holds. Thus,
it holds also, in particular, for all ⟨H,γ⟩, with H an isomorphism, that
are Ω̃A,I-compatible with T . By Theorem 40, I is truth equational. This
implies, again by Theorem 32, that all filter families are Suszko, whence

T ′Ω̃
B,I

= T ′ and the hypothesis establishes an order isomorphism between
(FiFamI(A))T and (FiFamI(B))T

′

, whose inverse is γ−1. By Theorem 39,
I is protoalgebraic and, therefore, weakly algebraizable. ∎

Finally, we focus on characterizing the classes of the categorical abstract
algebraic hierarchy using the Leibniz operator. The range of the Leibniz
operator ΩA is the class ConSysAlgSys∗(I)(A). By Proposition P.23, the
Leibniz operator is order reflecting and, hence, also injective, on the collec-
tion of Leibniz filter families of A. If I is protoalgebraic, then we obtain
monotonicity on FiFamI(A), which is inherited by the collection of Leibniz
filters:

Proposition 43 If I is protoalgebraic, then, for all A, ΩA ∶ FiFamΩ
A

(A)→
ConSysAlgSys∗(I)(A) is an order isomorphism.

To work with Suszko filter families instead of Leibniz filter families, we
prove the following lemmas, showing that, if the preceding isomorphism
holds, then the classes AlgSys(I) and AlgSys∗(I) are identical.

Lemma 44 If ΩA ∶ FiFamΩ
A

(A) → ConSysAlgSys∗(I)(A) is an order iso-

morphism, for all A, then AlgSys(I) = AlgSys∗(I).

Proof: Suppose A ∈ AlgSys(I). Consider T 0 = ⋂FiFamI(A) ∈ FiFamI(A).
Since it is the smallest Leibniz filter family on A, by hypothesis, ΩA(T 0) ≤

ΩA(T ), for all T ∈ FiFamΩ
A

(A). Thus, JT KΩ
A

⊆ JT 0KΩ
A

, for all T ∈

FiFamΩ
A

(A). Let T ′ ∈ FiFamI(A). Since ΩA(T ′) ∈ ConSysAlgSys∗(I)(A),

there exists, by hypothesis, T ∈ FiFamΩA(A), such that ΩA(T ′) = ΩA(T ).

Thus, T ′ ∈ JT ′KΩ
A

= JT KΩ
A

⊆ JT 0KΩ
A

, showing that JT 0KΩ
A

= FiFamI(A).
By Proposition 23, A/Ω̃A(FiFamI(A)) ∈ AlgSys∗(I). The assumption that
A ∈ AlgSys(I) implies that Ω̃(FiFamI(A)) = ∆SEN

′

and this, in turn,
yields A ≅ A/Ω̃A(FiFamI(A)). Therefore, A ∈ AlgSys∗(I), showing that
AlgSys(I) ⊆ AlgSys∗(I). This is all that was needed since the reverse inclu-
sion is universally true. ∎

Moreover, identity of the classes AlgSys(I) and AlgSys∗(I) may also be

drawn under the hypothesis that ΩA ∶ FiFamΩ̃
A,I

(A)→ ConSysAlgSys∗(I)(A)
is an order isomorphism.
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Lemma 45 If ΩA ∶ FiFamΩ̃A,I

(A) → ConSysAlgSys∗(I)(A) is an order iso-

morphism, for all A, then AlgSys(I) = AlgSys∗(I).

Proof:Follow the same steps as in the proof of Lemma 44, taking into

account that T 0 = ⋂FiFamI(A) ∈ FiFamΩ̃
A,I

(A). ∎

The following theorem abstracts to the categorical context Theorem 6.25
of [1], which itself generalizes preceding theorems applicable to classes of
logics narrower than protoalgebraic, e.g., Theorem 4.8 of [10] (see, also,
[18]).

Theorem 46 A π-institution I is protoalgebraic iff the Leibniz operator

restricted to the Suszko filter families

ΩA ∶ FiFamΩ̃A,I

(A)→ ConSysAlgSys∗(I)(A)

is an order isomorphism, for all N -algebraic systems A.

Proof: The left-to-right implication follows from Proposition 43, since, by
Proposition 28, for a protoalgebraic π-institution, the class of all Leibniz
filter families and the class of all Suszko filter families are identical.

Suppose, conversely, that ΩA ∶ FiFamΩ̃
A,I

(A) → ConSysAlgSys∗(I)(A) is

an order isomorphism, for all N -algebraic systems A. We prove Ω̃A,I(T ) =

ΩA(T Ω̃
A,I

) and, also, that ΩA(T ) = ΩA(T Ω̃
A,I

), for all A and all T ∈
FiFamI(A). These equalities show that the Leibniz and Suszko operators
coincide, which, by Proposition 25, characterizes protoalgebraicity.

• If T ∈ FiFamI(A), Ω̃A,I(T ) ∈ ConSysAlgSys(I)(A). By Lemma 45

and the surjectivity of ΩA, there exists T ′ ∈ FiFamΩ̃
A,I

(A), such

that Ω̃A,I(T ) = ΩA(T ′). Thus, JT KΩ̃
A,I

= JT ′KΩ
A

. Hence, since ev-

ery Suszko filter family is Leibniz, T Ω̃
A,I

= T ′Ω
A

= T ′. Now, we get

Ω̃A,I(T ) = ΩA(T Ω̃
A,I

), as claimed.

• Since ΩA(T ) ∈ ConSysAlgSys∗(I)(A), by hypothesis, there exists T ′ ∈

FiFamΩ̃A,I

(A), such that ΩA(T ) = ΩA(T ′). Then JT KΩ
A

= JT ′KΩ
A

,
whence, taking into account that all Suszko filter families are Leibniz,
TΩ

A

= T ′Ω
A

= T ′. Now we get ΩA(T ) = ΩA(TΩ
A

).

Since TΩA = T ′ is a Suszko filter family, we have (TΩA)Ω̃
A,I

= TΩA .

– Since TΩ
A

≤ T , JT KΩ̃
A,I

⊆ JTΩ
A

KΩ̃
A,I

, whence (TΩ
A

)Ω̃
A,I

≤ T Ω̃
A,I

and, therefore, TΩ
A

≤ T Ω̃
A,I

.
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– By Lemma 17, the converse inclusion always holds.

We see that TΩA = T Ω̃A,I

, implying that ΩA(T ) = ΩA(T Ω̃A,I

).
∎

One obtains now a characterization of equivalential π-institutions as well:

Corollary 47 A π-institution I is equivalential iff the Leibniz operator

commutes with inverse N -morphisms and, restricted to the Suszko filter fam-

ilies, ΩA ∶ FiFamΩ̃A,I

(A) → ConSysAlgSys∗(I)(A) is an order isomorphism,

for all A.

If one adds to the hypotheses of Theorem 46 the condition that the
Leibniz operator commute with inverse N -morphisms, then, by Corollary 47,
we obtain a characterization of algebraizable π-institutions as those in which
the Leibniz operator commutes with inverse N -morphisms and, for all A,
ΩA is an order isomorphism between FiFamI(A) and ConSysAlgSys∗(I)(A).
This is a categorical analog of Corollary 3.14 of [15].

Finally, we close this work with some results characterizing the various
levels of the CAAL hierarchy by means of properties of the categorical Suszko
operator. We start with truth equational and protoalgebraic π-institutions
and conclude with an all-encompassing theorem that combines these two
characterizations with the relevant definitions to extend them to the re-
maining classes of the hierarchy.

Theorem 48 For a π-institution I the following are equivalent:

(i) I is truth equational.

(ii) The Suszko operator Ω̃A,I is injective on FiFamI(A), for all A.

(iii) Ω̃A,I is injective on FiFamI(A), for all A ∈ AlgSys(I).

Proof:

(i)⇒(ii) By Proposition P.23, the Suszko operator is injective on the Suszko
filter families. If I is truth equational, by Theorem 32, every filter
family is Suszko, whence the Suszko operator is globally injective.

(ii)⇒(iii) (iii) is a special case of (ii).

(iii)⇒(i) Consider an A and T ∈ FiFamI(A). Let T ′ ∈ ⋂FiFamI(A/Ω̃A,I(T )).
We have A/Ω̃A,I(T ) ∈ AlgSysSu(I) = AlgSys(I). Lemma 1 yields
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T /Ω̃A,I(T ) ∈ FiFamI(A/Ω̃A,I(T )). Thus, T ′ ≤ T /Ω̃A,I(T ), whence
by order preservation and Lemma P.45,

Ω̃A/Ω̃
A,I(T ),I(T ′) ≤ Ω̃A/Ω̃

A,I(T ),I(T /Ω̃A,I(T )) =∆SEN
′/Ω̃A,I(T ).

By the hypothesis, T /Ω̃A,I(T ) = T ′ = ⋂FiFamI(A/Ω̃A,I(T )). By
Proposition 19, T is a Suszko filter family. Since every filter family is
Suszko, by Theorem 32, I is truth equational. ∎

Proposition 49 The Suszko operator restricted to Suszko filter families

Ω̃A,I ∶ FiFamΩ̃
A,I

(A)→ ConSysAlgSys(I)(A) is an order embedding.

Proof: The Suszko operator Ω̃A,I is order-preserving on FiFamI(A). In

particular, also on FiFamΩ̃
A,I

(A). By Proposition P.23, it is also order

reflecting on FiFamΩ̃
A,I

(A). Since it is into ConSysAlgSysSu(I)(A) and, by

Lemma 4, AlgSysSu(I) = AlgSys(I), we obtain the result. ∎

Requiring that Ω̃A,I ∶ FiFamΩ̃
A,I

(A) → ConSysAlgSys(I)(A) be surjective
turns out to characterize protoalgebraicity of I. Moreover, it amounts to
commutativity of the Suszko operator with inverse surjective N -morphisms.

Theorem 50 For a π-institution I the following are equivalent:

(i) I is protoalgebraic.

(ii) Ω̃A,I commutes with inverse surjective N -morphisms.

(iii) Ω̃A,I restricted to the Suszko filter families Ω̃A,I ∶ FiFamΩ̃
A,I

(A) →
ConSysAlgSys(I)(A) is surjective, for all A.

Proof:

(i)⇒(ii) By Proposition 25, if I is protoalgebraic, the Suszko and Leibniz op-
erators coincide. Moreover, by Proposition 2, the Leibniz operator
commutes with inverse surjective N -morphisms.

(ii)⇒(iii) Consider A and θ ∈ ConSysAlgSys(I)(A). Since A/θ ∈ AlgSys(I), we

obtain Ω̃A/θ,I(⋂FiFamI(A/θ)) = ∆SEN
′/θ. Let ⟨I, π⟩ ∶= ⟨ISign′ , π

θ⟩ ∶
A → A/θ be the projection N -morphism. Using the postulated com-
mutativity,

Ω̃A,I(⋂π−1(FiFamI(A/θ))) = Ω̃A,I(π−1(⋂FiFamI(A/θ)))

= π−1(Ω̃A/θ,I(⋂FiFamI(A/θ)))

= π−1(∆SEN
′/θ) = Ker(⟨I, π⟩) = θ.
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We also have

π−1(FiFamI(A/θ)) = ΩA
−1

(θ) (by Proposition P.14)

= ΩA
−1

(Ω̃A,I(⋂π−1(FiFamI(A/θ))))
(previous equality)

= J⋂π−1(FiFamI(A/θ))KΩ̃
A,I

.

(Suszko Class)

Therefore, ⋂π−1(FiFamI(A/θ)) is a Suszko filter family, with Suszko
congruence θ. Thus, Ω̃A,I is surjective when restricted to Suszko filter
families.

(iii)⇒(i) By Theorem 27, it suffices to show that, for all A, every full I-gmatrix
system is of the form (FiFamI(A))T , for some T ∈ FiFamI(A). Let
T be a full I-gmatrix system on some A. Then, by definition of
AlgSys(I), Ω̃A(T ) ∈ ConSysAlgSys(I)(A). By hypothesis, there exists a

Suszko filter family T ∈ FiFamΩ̃
A,I

(A), such that Ω̃A(T ) = Ω̃A,I(T ) =
Ω̃A((FiFamI(A))T ). But, T is a Suszko filter family, whence, by The-
orem 18, (FiFamI(A))T is full. Hence, by the Isomorphism Theorem,
Corollary P.18, T = (FiFamI(A))T .

∎

The following analog of Theorem 6.30 of [1] provides characterizations
of the classes of the CAAL hierarchy of π-institutions in terms of properties
of the categorical Suszko operator.

Theorem 51 Let I be a π-institution.

(1) I is protoalgebraic iff the Suszko operator commutes with inverse sur-

jective N -morphisms.

(2) I is equivalential iff the Suszko operator commutes with inverse N -

morphisms.

(3) I is truth equational iff the Suszko operator is globally injective.

(4) I is weakly algebraizable iff the Suszko operator is globally injective

and commutes with inverse surjective N -morphisms.

(5) I is algebraizable iff the Suszko operator is globally injective and com-

mutes with inverse N -morphisms.

Proof:
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(1) By Theorem 50.

(2) Assume I is equivalential. By definition, I is protoalgebraic and the
Leibniz operator commutes with inverse N -morphisms. Since, under
protoalgebraicity, the Leibniz and the Suszko operators coincide, the
Suszko operator commutes with inverse N -morphisms.

Conversely, assume that the Suszko operator commutes with inverse
N -morphisms. A fortiori, it commutes with inverse surjective N -
morphisms. By Part (1), I is protoalgebraic. Therefore, the Leibniz
and Suszko operators coincide. By hypothesis, the Leibniz operator
commutes with inverse N -morphisms. Hence I is equivalential.

(3) By Theorem 48.

(4) Since weak algebraizability is equivalent to protoalgebraicity and truth
equationality, this follows from Parts (1) and (3).

(5) Similarly, since algebraizability is equivalent to equivalentiality and
truth equationality, this follows from Parts (2) and (3).

∎

We finally conclude with an analog of Theorem 6.31 of [1], providing al-
ternative characterizations in terms of order embeddings/isomorphisms de-
fined by the Suszko operator on the collections of filter families on arbitrary
N -algebraic systems of a given π-institution.

Theorem 52 Let I be a π-institution.

(1) I is protoalgebraic iff, for all A, Ω̃A,I restricts to an order isomorphism

between FiFamΩ̃
A,I

(A) and ConSysAlgSys(I)(A).

(2) I is truth equational iff, for all A, Ω̃A,I is an order embedding of

FiFamI(A) into ConSysAlgSys(I)(A).

(3) I is weakly algebraizable iff, for all A, Ω̃A,I is an order isomorphism

between FiFamI(A) and ConSysAlgSys(I)(A).

(4) I is algebraizable iff the Suszko operator commutes with inverse N -

morphisms and, for all A, Ω̃A,I is an order isomorphism between

FiFamI(A) and ConSysAlgSys(I)(A).

Proof:
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(1) Suppose I is protoalgebraic. By Theorem 46, for all A, ΩA is an order

isomorphism from FiFamΩ̃
A,I

(A) onto ConSysAlgSys∗(I)(A). Since, by
protoalgebraicity, the Leibniz and Suszko operators coincide, we have
AlgSys∗(I) = AlgSys(I), whence the desired isomorphism follows.

If, conversely, Ω̃A,I is an order isomorphism from FiFamΩ̃
A,I

(A) onto
ConSysAlgSys(I)(A), it must be surjective. Therefore, by Theorem 50,
we get that I is protoalgebraic.

(2) By Proposition 49, Ω̃A,I is an order embedding from FiFamΩ̃
A,I

(A)
into ConSysAlgSys(I)(A). By Proposition 32, truth equationality im-

plies that FiFamI(A) = FiFamΩ̃
A,I

(A). Thus, Ω̃A,I is an order em-
bedding from FiFamI(A) into ConSysAlgSys(I)(A).

If, conversely, Ω̃A,I is an order embedding, it is injective. Thus, by
Theorem 48, I is truth equational.

(3) If I is weakly algebraizable, by Theorem 46 and Proposition 32, ΩA

is an isomorphism from FiFamI(A) onto ConSysAlgSys∗(I)(A). Since
I is also protoalgebraic, the coincidence of the Suszko and Leibniz
operators implies that AlgSys∗(I) = AlgSys(I), yielding the claimed
isomorphism.

If, conversely, Ω̃A,I is an order isomorphism from FiFamI(A) onto
ConSysAlgSys(I)(A), then it is injective on filter families, whence, by
Theorem 48, I is truth equational. Since, by Proposition 32, every
filter family is Suszko, Ω̃A,I is surjective when restricted to the collec-

tion FiFamΩ̃
A,I

(A). Thus, by Theorem 50, I is also protoalgebraic.
Therefore, I is weakly algebraizable.

(4) This follows from Part (3) and Theorem 51.
∎
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