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Abstract

Constructions on π-institutions, such as taking products and filtered products, are
introduced. Based on these constructions, operators on classes of π-institution models
of a given π-institution are defined. It is shown that the class of π-institution models of
a given π-institution is closed under some of these π-institution model class operators.
Moreover, given a collection of models of a π-institution I, strongly adequate for I, a
closure operator generating the entire class of all π-institution models of I out of the
given collection of models is provided.

1 Introduction

One of the greatest achievements of the theory of abstract algebraic logic, as developed by
Czelakowski, Blok and Pigozzi and Font and Jansana, among others, is the classification
of sentential logics in an abstract algebraic hierarchy whose steps provide a measure of the
“algebraizability” of the logic, see, e.g., [8, 7, 9]. For instance, logics in the lowest step
of this hierarchy, known as the protoalgebraic logics [3], may be studied algebraically, but
their ties with their algebraic counterparts are very weak. At the other end of the spectrum
are the finitely algebraizable logics [4], whose ties with their equivalent algebraic semantics
are very strong. Practically all metalogical properties of the class of finitely algebraizable
sentential logics may be translated and studied in the algebraic domain, using existing
powerful methods of universal algebra. A major role in the study of the classes in this
hierarchy has traditionally been played by the logical matrix models of sentential logics and
closure properties that classes of these logical matrix models of a given logic may or may not
possess. This tradition of considering closure properties of classes of matrices goes back to
the well-known characterizations of varieties and of quasi-varieties of universal algebras by
Birkhoff [2] (see also Theorem 4.131 in [12]) and by Mal’cev [10] (see also Theorem V.2.25
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of [6]), respectively. Many important results in abstract algebraic logic follow these two
paradigms. Some of the most important and interesting examples of results along these
lines will be given as background information in this section. No attempt is made to give
appropriate historical credit to the colleagues that originally formulated these results but the
reader is referred to Czelakowski’s book [7] and to the review article by Font, Jansana and
Pigozzi [9] for more references and better placing of these results in the general landscape
of abstract algebraic logic.

Suppose that S = 〈L,⊢S〉 is a sentential logic, i.e., L is an algebraic language type
and ⊢S ⊆ P(FmL(V ))× FmL(V ) is a structural (but not necessarily finitary) consequence
operator on the collection FmL(V ) of all formulas of type L built out of a denumerable set
of propositional variables V . A matrix of type L is a pair A = 〈A, F 〉, where A = 〈A,LA〉
is an L-algebra and F ⊆ A is a set of designated elements, or a filter, on the carrier A
of the algebra A. A is said to be an S-matrix if, for all Φ ∪ {φ} ⊆ FmL(V ), and every
homomorphism h : FmL(V ) → A,

if Φ ⊢S φ and h(Φ) ⊆ F, then h(φ) ∈ F.

The greatest L-congruence on the algebra A that is compatible with the filter F , i.e.,
does not paste together elements inside with elements outside of F , is called the Leibniz
congruence associated with F and denoted by ΩA(F ). If ΩA(F ) = ∆A, i.e., to the identity
congruence on A, then the matrix A is said to be reduced. The class of all reduced S-
matrices is denoted by Mod∗(S). Closure properties of this class with respect to operations
on matrices, such as taking products and ultraproducts of members of a given class of
matrices, serve to characterize all major classes of sentential logics in the aforementioned
abstract algebraic hierarchy. We repeat here Theorem 3.15 of [9] as an illustration of this
phenomenon.

Theorem 1 (Theorem 3.15 of [9]) Let S be a sentential logic. Then:

1. S is protoalgebraic iff Mod∗(S) is closed under subdirect products.

2. S is equivalential iff Mod∗(S) is closed under submatrices and direct products.

3. S is finitely equivalential iff Mod∗(S) is closed under submatrices, direct products and

ultraproducts.

4. S is weakly algebraizable iff it is protoalgebraic and for every 〈A, F 〉 ∈ Mod∗(S), F
is the least S-filter on A.

5. S is algebraizable iff it is equivalential and for every matrix 〈A, F 〉 ∈ Mod∗(S), F is

the least S-filter on A.

6. S is finitely algebraizable iff it is finitely equivalential and for every matrix 〈A, F 〉 ∈
Mod∗(S), F is the least S-filter on A.

The author has developed a categorical theory [16]-[24] (see also [13, 14, 15] for the
origins of these developments and for more explanations on the motivation) paralleling
the theory of algebraizability of sentential logics [8]. In that theory, π-institutions replace
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sentential logics as the underlying logical structures. It has also been clear from these de-
velopments that π-institution models [17, 19] have an important role to play in analogy
with matrix models in the universal algebraic theory. It is reasonable to expect that closure
properties of classes of π-institution models may play in this theory a role analogous to the
closure properties of classes of logical matrix models. There is, however, one significant dif-
ference between matrix models and π-institution models. Roughly speaking, a π-institution
model I ′ of a given π-institution I is accompanied by a specific translation from I to I ′,
whereas a matrix 〈A, F 〉 is a matrix model of a sentential logic S = 〈L,⊢S〉 if it satis-
fies interpretability under all possible homomorphisms from FmL(V ) into A. Therefore,
in introducing operations on classes of π-institution models, besides the transformation of
the π-institutions involved, the translations have to also be transformed accordingly, to
accompany the newly constructed models.

In the present work, this project of defining transformations on classes of π-institution
models is initiated. The hope is that these closure properties will serve in future work
in characterizing different properties of classes of π-institutions as related to their alge-
braizability. The operations that are studied in this work consist of taking sub-institutions,
taking direct institution products, taking images and pre-images under semi-interpretations
and interpretations and, finally, taking filtered institution products. For each of these op-
erations, preservation results are also formulated and proved. This culminates in the last
section in the formulation of general results about the closure of the class of π-institution
models of a given π-institution under a variety of operators.

For general background on abstract algebraic logic, the reader is referred to the book
[7] and the monograph [8]. For all unexplained categorical notation any of [1], [5] or [11]
may be consulted.

2 SubFunctors, SubInstitutions and SubModels

Let SEN : Sign → Set be a functor. A functor SEN′ : Sign′ → Set is a subfunctor of
SEN, if

• Sign′ is a subcategory of Sign,

• SEN′(Σ′) ⊆ SEN(Σ′), for all Σ′ ∈ |Sign′|, and

• SEN′(f)(φ) = SEN(f)(φ), for all f ∈ Sign′(Σ,Σ′), φ ∈ SEN′(Σ).

If N is a category of natural transformations on SEN, such that, for all σ : SENn → SEN
in N , all Σ′ ∈ |Sign′| and all ~φ′ ∈ SEN′(Σ′)n, σΣ′(~φ′) ∈ SEN′(Σ′), then SEN′ will be said to
be an N -subfunctor of SEN. If SEN′ : Sign → Set is a subfunctor of SEN : Sign → Set,
with the same domain category, then SEN′ is said to be a simple subfunctor of SEN.

In what follows, it will always be assumed that, when a tuple ~φ ∈ SEN(Σ)n is under
consideration, by φi will be denoted the i-th component of ~φ, for all i < n, i.e., that ~φ =
〈φ0, . . . , φn−1〉. Given a functor SEN : Sign → Set and a sub-functor SEN′ : Sign′ → Set,
we also use the notation 〈J, j〉 : SEN′ → SEN to denote the inclusion singleton translation
from SEN′ to SEN. Note that, if SEN′ is an N -subfunctor of SEN, then 〈J, j〉 : SEN′ → SEN
is, by definition, an N -morphism from SEN′ to SEN. Also, if SEN′ is a simple sub-functor
of SEN, then, automatically, J = ISign.
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Consider two π-institutions I = 〈Sign,SEN, C〉 and I ′ = 〈Sign′,SEN′, C ′〉.
The π-institution I ′ is a sub-institution of the π-institution I if

• SEN′ is a subfunctor of SEN and

• C ′
Σ′(Φ′) = CΣ′(Φ′) ∩ SEN′(Σ′), for all Σ′ ∈ |Sign′|,Φ′ ⊆ SEN′(Σ′).

In case SEN′ is a simple subfunctor of SEN, then I ′ is said to be a simple subinstitution
of I and, in case SEN′ is an N -subfunctor of SEN, I ′ is said to be an N -subinstitution
of I.

It is not difficult to see that, if I ′ = 〈Sign′,SEN′, C ′〉 is a subinstitution of I =
〈Sign,SEN, C〉, then 〈J, j〉 : I ′ ⊢s I is a singleton interpretation and if, in addition, SEN′

is an N -subfunctor of SEN, then 〈J, j〉 : I ′ ⊢s I is an N -interpretation, i.e., a strong
(N,N)-logical morphism.

We turn now to the models of given π-institutions, as defined in [17]. Recall that a π-
institution I ′ = 〈Sign′,SEN′, C ′〉 is a model of a given π-institution I = 〈Sign,SEN, C〉 if
there exists a semi-interpretation 〈F,α〉 : I〉−I ′. In case 〈F,α〉 is an N -semi-interpretation,
i.e., an (N,N ′)-logical morphism, then I ′ is said to be an (N,N ′)-model of I via 〈F,α〉.

It is shown now that subinstitutions of models via appropriately factorable semi-inter-
pretations via the subinstitution inclusions are also models.

Proposition 2 Suppose that I = 〈Sign,SEN, C〉 is a π-institution and I ′ = 〈Sign′,SEN′,
C ′〉 a model of I via the singleton semi-interpretation 〈F,α〉 : I〉−sI ′. Suppose that I ′′ =
〈Sign′′,SEN′′, C ′′〉 is a subinstitution of I ′, with 〈J, j〉 : I ′′ ⊢s I ′ the inclusion, and that

〈F,α〉 factors through 〈J, j〉,

I I ′✲〈F,α〉

I ′′

〈G,β〉
❅
❅
❅
❅❘

〈J, j〉

�
�
�
�✒

i.e., there exists a singleton translation 〈G,β〉 : I →s I ′′, such that 〈F,α〉 = 〈J, j〉 ◦ 〈G,β〉.
Then I ′′ is also a model of I via 〈G,β〉.

Proof:
We have, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies αΣ(φ) ∈ C ′

F (Σ)(αΣ(Φ)) (since 〈F,α〉 : I〉−sI ′)

iff jG(Σ)(βΣ(φ)) ∈ C ′

G(Σ)(jG(Σ)(βΣ(Φ)))

(since 〈F,α〉 = 〈J, j〉 ◦ 〈G,β〉)
iff βΣ(φ) ∈ C ′

G(Σ)(βΣ(Φ)) (since 〈J, j〉 : I ′′ ⊢s I ′).

Thus 〈G,β〉 : I〉−sI ′′ is a semi-interpretation and, therefore, I ′′ is also a model of I via
〈G,β〉. �

The π-institution I ′′ of Proposition 2 together with the semi-interpretation 〈G,β〉 :
I〉−sI ′′ is said to be a subinstitution model factor of the π-institution model I ′ via the
semi-interpretation 〈F,α〉 : I〉−sI ′.

The following corollary follows easily from Proposition 2 by taking all the translations
involved to respect categories of natural transformations.
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Corollary 3 Suppose that I = 〈Sign,SEN, C〉, with N a category of natural transforma-

tions on SEN, is a π-institution and I ′ = 〈Sign′,SEN′, C ′〉, with N ′ a category of nat-

ural transformations on SEN′, an (N,N ′)-model of I via the (N,N ′)-logical morphism

〈F,α〉 : I〉−sI ′. Suppose that I ′′ = 〈Sign′′,SEN′′, C ′′〉 is an N ′-subinstitution of I ′, with
〈J, j〉 : I ′′ ⊢s I ′ the inclusion, and that 〈F,α〉 factors through 〈J, j〉, i.e., there exists an

N -morphism 〈G,β〉 : I →s I ′′, such that 〈F,α〉 = 〈J, j〉 ◦ 〈G,β〉. Then I ′′ is also an

(N,N ′)-model of I via 〈G,β〉.

The π-institution I ′′ of Corollary 3 together with the (N,N ′)-logical morphism 〈G,β〉 :
I〉−sI ′′ is said to be an N -subinstitution model factor of the π-institution model I ′ via
the (N,N ′)-logical morphism 〈F,α〉 : I〉−sI ′.

Finally, it is shown that superinstitutions of models are also models via the composition
of the original model semi-interpretations with the inclusion interpretations.

Proposition 4 Suppose that I = 〈Sign,SEN, C〉 is a π-institution and I ′ = 〈Sign′,SEN′,
C ′〉 a model of I via the singleton semi-interpretation 〈F,α〉 : I〉−sI ′. Suppose that I ′ is a

subinstitution of I ′′ = 〈Sign′′,SEN′′, C ′′〉, with 〈J, j〉 : I ′ ⊢s I ′′ the inclusion.

I I ′✲〈F,α〉
I ′′✲〈J, j〉

Then I ′′ is also a model of I via 〈JF, jFα〉.

Proof:
We have, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies αΣ(φ) ∈ C ′

F (Σ)(αΣ(Φ)) (since 〈F,α〉 : I〉−sI ′)

iff jF (Σ)(αΣ(φ)) ∈ C
′′

F (Σ)(jF (Σ)(αΣ(Φ)))

(since 〈J, j〉 : I ′ ⊢s I ′′).

Thus 〈JF, jFα〉 : I〉−
sI ′′ is a semi-interpretation and, therefore, I ′′ is also a model of I via

〈JF, jFα〉. �

The π-institution I ′′ of Proposition 4 together with the semi-interpretation 〈JF, jFα〉 :
I〉−sI ′′ is said to be a superinstitution model of the π-institution model I ′ via the
semi-interpretation 〈F,α〉 : I〉−sI ′.

Similarly with Proposition 2, by stipulating preservation of categories of natural trans-
formations, we obtain the following corollary.

Corollary 5 Suppose that I = 〈Sign,SEN, C〉, with N a category of natural transforma-

tions on SEN, is a π-institution and I ′ = 〈Sign′,SEN′, C ′〉, with N ′ a category of natural

transformations on SEN′, a model of I via the (N,N ′)-logical morphism 〈F,α〉 : I〉−sI ′.

Suppose that I ′ is an N ′-subinstitution of I ′′ = 〈Sign′′,SEN′′, C ′′〉, with 〈J, j〉 : I ′ ⊢s I ′′

the inclusion. Then I ′′ is also an (N,N ′)-model of I via 〈JF, jFα〉.

The π-institution I ′′ of Corollary 5 together with the (N,N ′)-logical morphism 〈JF,
jFα〉 : I〉−

sI ′′ is said to be an N -superinstitution model of the π-institution model I ′

via the (N,N ′)-logical morphism 〈F,α〉 : I〉−sI ′.
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Given a π-institution I and a class J of π-institution models of I, by Sf(I) will be
denoted the class of all isomorphic copies of all subinstitution model factors of members of
I and by Sp(I) the class of all isomorphic copies of all superinstitution models of members
of I. By SfN (I) will be denoted the class of all isomorphic copies of all N -subinstitution
model factors of members of I and by SpN (I) the class of all isomorphic copies of all
N -superinstitution models of members of I.

3 Products of Functors, Institutions and Models

Given a collection of categories Signi, i ∈ I, by
∏
i∈I Sign

i will be denoted the product
category of the Signi, i ∈ I, and by P j :

∏
i∈I Sign

i → Signj the associated j-th projection
functor, j ∈ I. We use either of the notations 〈Σi : i ∈ I〉 or

∏
i∈I Σi for the tuple in

|
∏
i∈I Sign

i| of the elements Σi ∈ |Signi|, i ∈ I, and an analogous notation for tuples of
morphisms in this product category.

Given a collection SENi : Signi → Set, i ∈ I, of functors, the product functor∏
i∈I SEN

i :
∏
i∈I Sign

i → Set is defined as the functor, such that, for all 〈Σi : i ∈ I〉 ∈
|
∏
i∈I Sign

i|, ∏

i∈I

SENi(〈Σi : i ∈ I〉) =
∏

i∈I

SENi(Σi),

and, for all 〈fi : i ∈ I〉 ∈
∏
i∈I Sign

i(
∏
i∈I Σi,

∏
i∈I Σ

′
i), by

∏

i∈I

SENi(〈fi : i ∈ I〉)(~φ) = 〈SENi(fi)(φi) : i ∈ I〉,

for all ~φ ∈
∏
i∈I SEN

i(
∏
i∈I Σi).

Of course, there exist natural projection translations

〈P j , πj〉 :
∏

i∈I

SENi → SENj ,

such that
P j(

∏

i∈I

Σi) = Σj, for all
∏

i∈I

Σi ∈ |
∏

i∈I

Signi|,

and, similarly for morphisms, and

πj∏
i∈I

Σi
(~φ) = φj , for all ~φ ∈

∏

i∈I

SENi(Σi).

Moreover,
∏
i∈I SEN

i has the usual categorical universal property of products:

Lemma 6 Let SENi : Signi → Set, i ∈ I, be a collection of functors, SEN : Sign → Set a

functor and 〈F i, αi〉 : SEN →s SENi, i ∈ I, singleton translations. Then

∏
i∈I SEN

i SENi✲〈P i, πi〉

SEN

✻

〈G,β〉 〈F i, αi〉

�
�
�
�
�
��✒
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there exists a unique singleton translation 〈G,β〉 : SEN →
∏
i∈I SEN

i, such that 〈P i, πi〉 ◦
〈G,β〉 = 〈F i, αi〉, for all i ∈ I.

Proof:
The functor G : Sign →

∏
i∈I Sign

i is given, for all Σ ∈ |Sign|, by G(Σ) = 〈F i(Σ) : i ∈
I〉, and, for all f ∈ Sign(Σ1,Σ2), by G(f) = 〈F i(f) : i ∈ I〉. The natural transformation
β : SEN →

∏
i∈I SEN

i is defined, for all Σ ∈ |Sign|, by

βΣ(φ) = 〈αiΣ(φ) : i ∈ I〉, for all φ ∈ SEN(Σ).

It is left to the reader the easy task to verify that, with these definitions, 〈G,β〉 becomes a
singleton translation satisfying the commutativity of the given triangle. �

〈G,β〉, as defined in Lemma 6, will be denoted by
∏
i∈I〈F

i, αi〉.

Suppose, next, that N i is a category of natural transformations on SENi : Signi → Set,
such that, for every i ∈ I, 〈Signi,SENi, N i〉 is an N -algebraic system. We follow custom
in denoting by σi : (SENi)n → SENi the natural transformation on SENi corresponding to
σ in N . Then one may define a category

∏
i∈I N

i of natural transformations on
∏
i∈I SEN

i

(the notation is not intended to suggest that
∏
i∈I N

i is some product in the usual set
theoretic or categorical sense), with

∏
σ in

∏
i∈I N

i denoting the natural transformation
corresponding to σ in N , by setting, for all

∏
σ : (

∏
i∈I SEN

i)n →
∏
i∈I SEN

i, all Σi ∈

|Signi|, i ∈ I, ~φ0, . . . , ~φn−1 ∈
∏
i∈I SEN

i(
∏
i∈I Σi),

∏
σ∏

i∈I
Σi
(~φ0, . . . , ~φn−1) = 〈σiΣi

(φ0i , . . . , φ
n−1
i ) : i ∈ I〉.

To assert that, for all i ∈ I, the N i endows the functor SENi with an N -algebraic system
structure, we sometimes use the terminology that there exist compatible categories of
natural transformations on SENi, i ∈ I, or that the 〈Signi,SENi, N i〉 are similar.

In this case, the product
∏
i∈I SEN

i will be referred to as an N -product and, it is not
difficult to see that 〈P j , πj〉 :

∏
i∈I SEN

i → SENj is an N -translation, for all j ∈ I.
Given π-institutions I i = 〈Signi,SENi, Ci〉, i ∈ I, the institution product

∏
i∈I I

i =
〈
∏
i∈I Sign

i,
∏
i∈I SEN

i,
∏
i∈I C

i〉 consists of

• the product functor
∏
i∈I SEN

i :
∏
i∈I Sign

i → Set and

• the closure system
∏
i∈I C

i on
∏
i∈I SEN

i, defined by

∏

i∈I

Ci∏
i∈I

Σi
(Φ) =

∏

i∈I

CiΣi
(πi∏

i∈I
Σi
(Φ)),

for all Σi ∈ |Signi|, i ∈ I,Φ ⊆
∏
i∈I SEN

i(
∏
i∈I Σi).

It is now shown that, given a collection of π-institutions I i, i ∈ I, the triple
∏
i∈I I

i, as
defined above, is in fact a π-institution.

Proposition 7 Suppose that I i = 〈Signi,SENi, Ci〉, i ∈ I, is a collection of π-institutions.
Then

∏
i∈I I

i is a π-institution.
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Proof:
Since from the work done so far we have that

∏
i∈I Sign

i is a category and
∏
i∈I SEN

i :∏
i∈I Sign

i → Set is a functor, it suffices to show that
∏
i∈I C

i, as defined above, is a
closure system on

∏
i∈I SEN

i. All properties of a closure system follow relatively easily
from corresponding properties of the Ci’s.

1. For inflation, suppose that Σi ∈ |Signi|, for all i ∈ I, and Φ ⊆
∏
i∈I SEN

i(
∏
i∈I Σi).

Then, if ~φ ∈ Φ, then φi ∈ πi∏
i∈I

Σi
(Φ), whence, since CiΣi

is inflationary, φi ∈

CiΣi
(πi∏

i∈I
Σi
(Φ)) and, hence, we obtain ~φ ∈

∏
i∈I C

i
Σi
(πi∏

i∈I
Σi
(Φ)), i.e., by the defini-

tion of
∏
i∈I C

i, we get that ~φ ∈
∏
i∈I C

i∏
i∈I

Σi
(Φ) and

∏
i∈I C

i is inflationary.

2. Proof of monotonicity of
∏
i∈I C

i is similar to that for inflation and will not be pre-
sented in detail.

3. For idempotency, suppose that Σi ∈ |Signi|, i ∈ I, and that Φ ⊆
∏
i∈I SEN

i(
∏
i∈I Σi)

and ~φ ∈
∏
i∈I C

i∏
i∈I

Σi
(
∏
i∈I C

i∏
i∈I

Σi
(Φ)). Then, we get, by unraveling the definition

of
∏
i∈I C

i, that

φi ∈
∏

i∈I

CiΣi
(CiΣi

(πi∏
i∈I

Σi
(Φ))) =

∏

i∈I

CiΣi
(πi∏

i∈I
Σi
(Φ)),

for all i ∈ I, by the idempotency of Ci, i ∈ I. This, again by the definition of
∏
i∈I C

i,

gives that ~φ ∈
∏
i∈I C

i∏
i∈I

Σi
(Φ). Thus

∏
i∈I C

i is also idempotent.

4. Finally, for structurality, suppose that Σi,Σ
′
i ∈ |Signi|, that fi ∈ Signi(Σi,Σ

′
i), i ∈ I,

and that Φ ⊆
∏
i∈I SEN

i(
∏
i∈I Σi). Then, if

~φ ∈
∏

i∈I

SENi(
∏

i∈I

fi)(
∏

i∈I

Ci∏
i∈I

Σi
(Φ)),

then φi ∈ SENi(fi)(C
i
Σi
(πi∏

i∈I
Σi
(Φ))), for all i ∈ I, whence, by the structurality of

Ci, φi ∈ CiΣ′

i

(SENi(fi)(π
i∏

i∈I
Σi
(Φ))), for all i ∈ I, and, therefore,

~φ ∈
∏
i∈I C

i
Σ′

i

(SENi(fi)(π
i∏

i∈I
Σi
(Φ)))

=
∏
i∈I C

i
Σ′

i

(πi∏
i∈I

Σ′

i

(
∏
i∈I SEN

i(
∏
i∈I fi)(Φ)))

=
∏
i∈I C

i∏
i∈I

Σ′

i

(
∏
i∈I SEN

i(
∏
i∈I fi)(Φ)),

and
∏
i∈I C

i is also structural.

�

Moreover, it is shown that 〈P j , πj〉 :
∏
i∈I I

i〉−sIj is a surjective singleton semi-inter-
pretation from the product π-institution to the j-th factor, for all j ∈ I.

Proposition 8 Suppose that I i = 〈Signi,SENi, Ci〉, i ∈ I, is a collection of π-institutions.
Then the surjective singleton translation 〈P j , πj〉 :

∏
i∈I SEN

i →s SENj is a singleton semi-

interpretation 〈P j , πj〉 :
∏
i∈I I

i 〉−sIj, for all j ∈ I.
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Proof:
Suppose Σi ∈ |Signi|, i ∈ I, and Φ ∪ {~φ} ⊆

∏
i∈I SEN

i(
∏
i∈I Σi). Then, if ~φ ∈∏

i∈I C
i∏

i∈I
Σi
(Φ), then φi ∈ CiΣi

(πi∏
i∈I

Σi
(Φ)), for all i ∈ I. Each of these conditions is

equivalent to
πi∏

i∈I
Σi
(~φ) ∈ CiP i(

∏
i∈I

Σi)
(πi∏

i∈I
Σi
(Φ)).

Thus, for all i ∈ I, 〈P i, πi〉 :
∏
i∈I SEN

i →s SENi is a singleton semi-interpretation 〈P i, πi〉 :∏
i∈I I

i〉−sI i. �

As a corollary, imposing preservation of natural transformations, we obtain

Corollary 9 Suppose that I i = 〈Signi,SENi, Ci〉, with N i a category of natural transfor-

mations on SENi, i ∈ I, is a collection of π-institutions with compatible categories of natural

transformations. Then the surjective singleton translation 〈P j , πj〉 :
∏
i∈I SEN

i →s SENj

is a surjective (
∏
i∈I N

i, N j)-logical morphism 〈P j , πj〉 :
∏
i∈I I

i〉−sIj, for all j ∈ I.

Lemma 6 will now be adapted to cover the case of singleton semi-interpretations between
π-institutions.

Proposition 10 Suppose that I i = 〈Signi,SENi, Ci〉, i ∈ I, is a collection of π-institu-
tions, I = 〈Sign,SEN, C〉 a π-institution and 〈F i, αi〉 : I〉−sI i, i ∈ I, a collection of

singleton semi-interpretations. Then, if 〈G,β〉 =
∏
i∈I〈F

i, αi〉, for all Σ ∈ |Sign|,Φ∪{φ} ⊆
SEN(Σ),

∏
i∈I I

i I i✲〈P i, πi〉

I

✻

〈G,β〉 〈F i, αi〉

�
�
�
�
�
��✒

βΣ(φ) ∈
∏

i∈I

CiG(Σ)(βΣ(Φ)) iff αiΣ(φ) ∈ CiF i(Σ)(α
i
Σ(Φ)), for all i ∈ I.

Proof:
Note that the left-to-right implication is just a restatement of Proposition 8. So it

suffices to show the right-to-left implication. To this end, let Σ ∈ |Sign|,Φ∪{φ} ⊆ SEN(Σ)
be such that αiΣ(φ) ∈ Ci

F i(Σ)
(αiΣ(Φ)), for all i ∈ I. Then, by the definition of a product,

∏

i∈I

αiΣ(φ) ∈
∏

i∈I

Ci∏
i∈I

F i(Σ)(
∏

i∈I

αiΣ(Φi)).

But this is equivalent to βΣ(φ) ∈
∏
i∈I C

i
G(Σ)(βΣ(Φ)). �

Next, the possibility of lifting a collection of semi-interpretations from a given π-
institution to a collection of π-institution models to a semi-interpretation into the product
π-institution is explored.
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Proposition 11 Suppose that I = 〈Sign,SEN, C〉 is a π-institution, I i = 〈Signi,SENi,
Ci〉, i ∈ I, a collection of π-institutions and 〈F i, αi〉 : I〉−sI i, i ∈ I, singleton semi-

interpretations from I into I i, i ∈ I.
∏
i∈I I

i I i✲〈P i, πi〉

I

✻

〈G,β〉 〈F i, αi〉

�
�
�
�
�
��✒

Then, there exists a singleton semi-interpretation 〈G,β〉 : I〉−s∏
i∈I I

i, such that the trian-

gle above commutes, i.e., 〈P i, πi〉 ◦ 〈G,β〉 = 〈F i, αi〉, for all i ∈ I.

Proof:
Lemma 6 provides a singleton translation 〈G,β〉 : SEN →

∏
i∈I SEN

i, that makes
the given triangle commute. So, it suffices to show that 〈G,β〉 : I〉−s∏

i∈I I
i is a semi-

interpretation. We have, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies αiΣ(φ) ∈ CiF i(Σ)(α
i
Σ(Φ)), for all i ∈ I,

(since 〈F i, αi〉 : I〉−sI i)
iff βΣ(φ) ∈

∏
i∈I C

i
G(Σ)(βΣ(Φ)) (by Proposition 10).

�

As before, there is a version of Proposition 11 dealing with (N,N ′)-logical morphisms
instead of simple semi-interpretations.

Corollary 12 Suppose that I = 〈Sign,SEN, C〉 is a π-institution, N a category of natural

transformations on SEN, I i = 〈Signi,SENi, Ci〉, i ∈ I, a collection of π-institutions, with
compatible categories of natural transformations N i on SENi, i ∈ I, and 〈F i, αi〉 : I〉−sI i, i ∈
I, an (N,N i)-logical morphism from I into I i, i ∈ I. Then, there exists an (N,

∏
i∈I N

i)-
logical morphism 〈G,β〉 : I〉−s∏

i∈I I
i, such that 〈P i, πi〉 ◦ 〈G,β〉 = 〈F i, αi〉, for all i ∈ I.

Given a class I of π-institution models of a given π-institution I, by P(I) will be
denoted the class of all isomorphic copies of institution products of families of members of
I via the product semi-interpretations. Furthermore, by PN (I) will be denoted the class
of all isomorphic copies of institution (N,

∏
i∈I N

i)-models of families of (N,N i)-models,
i ∈ I, of members of I with compatible categories of natural transformations.

4 Homomorphic Images and Pre-Images

Suppose that I = 〈Sign,SEN, C〉 and I ′ = 〈Sign′,SEN′, C ′〉 are π-institutions. I ′ will
be said to be a homomorphic image of I if there exists a singleton semi-interpretation
〈F,α〉 : I〉−sI ′. In that case I is said to be a homomorphic pre-image of I ′. I ′ is said
to be a strict homomorphic image of I in case there exists a singleton interpretation
〈F,α〉 : I ⊢s I ′. In that case I is said to be a strict homomorphic pre-image of I ′.
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We urge the reader to notice that neither in the preceding definitions nor in the following
ones are the semi-interpretations or the interpretations involved required to be surjective.
This is a difference between the present context and the well-known corresponding defini-
tions from the context of logical matrices.

Given two π-institutions I = 〈Sign,SEN, C〉, I ′ = 〈Sign′,SEN′, C ′〉 and categories of
natural transformations N,N ′ on SEN,SEN′, respectively, I ′ is said to be a logical image
of I via 〈F,α〉 : SEN → SEN′ and I a logical pre-image of I ′ if 〈F,α〉 : I〉−sI ′ is an
(N,N ′)-logical morphism. I ′ is a strict logical image of I via 〈F,α〉 : SEN → SEN′ and
I a strict logical pre-image of I ′ if 〈F,α〉 : I ⊢s I ′ is a strong (N,N ′)-logical morphism.
An injective (N,N ′)-bilogical morphism is an isomorphism. In that case, we write I ∼= I ′.

The following propositions describe some preservation properties when one takes homo-
morphic images and pre-images and strict homomorphic images and pre-images.

Proposition 13 If I = 〈Sign,SEN, C〉 is a π-institution, I ′ = 〈Sign′, SEN′, C ′〉 a model

of I via the singleton semi-interpretation 〈F,α〉 : I〉−sI ′ and I ′′ = 〈Sign′′,SEN′′, C ′′〉 a

homomorphic image of I ′ via the singleton semi-interpretation 〈G,β〉 : I ′〉−sI ′′,

I I ′✲〈F,α〉
I ′′✲〈G,β〉

then I ′′ is a model of I via the semi-interpretation 〈GF, βFα〉 : I〉−
sI ′′.

Proof:
Composition of two semi-interpretations is also a semi-interpretation. �

Preservation of natural transformations now yields

Corollary 14 If I = 〈Sign,SEN, C〉, with N a category of natural transformations on

SEN, is a π-institution, I ′ = 〈Sign′,SEN′, C ′〉, with N ′ a category of natural transfor-

mations on SEN′, a model of I via the (N,N ′)-logical morphism 〈F,α〉 : I〉−sI ′ and

I ′′ = 〈Sign′′,SEN′′, C ′′〉, with N ′′ a category of natural transformations on SEN′′, a logical

image of I ′ via the (N ′, N ′′)-logical morphism 〈G,β〉 : I ′〉−sI ′′, then I ′′ is a model of I via

the (N,N ′′)-logical morphism 〈GF, βFα〉 : I〉−
seI ′′.

For strict homomorphic images and pre-images we have the following adaptation of
Proposition 13.

Proposition 15 Suppose that I ′ = 〈Sign′,SEN′, C ′〉 is a π-institution and I ′′ = 〈Sign′′,
SEN′′, C ′′〉 a strict homomorphic image of I ′ via the singleton interpretation 〈G,β〉 : I ′ ⊢s

I ′′. Given a π-institution I = 〈Sign, SEN, C〉, I ′ is a model of I via the singleton semi-

interpretation 〈F,α〉 : I〉−sI ′

I I ′✲〈F,α〉
I ′′✲〈G,β〉

if and only if I ′′ is a model of I via the singleton semi-interpretation 〈GF, βFα〉 : I〉−
sI ′′.

Proof:
If 〈F,α〉 : I〉−sI ′, then, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies αΣ(φ) ∈ C ′

F (Σ)(αΣ(Φ))

iff βF (Σ)(αΣ(φ)) ∈ C ′′

G(F (Σ))(βF (Σ)(αΣ(Φ))).
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If, conversely, 〈GF, βFα〉 : I〉−
sI ′′, then,for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies βF (Σ)(αΣ(φ)) ∈ C ′′

G(F (Σ))(βF (Σ)(αΣ(Φ)))

iff αΣ(φ) ∈ C ′

F (Σ)(αΣ(Φ)).

�

And, once more preservation of natural transformations results in

Corollary 16 Suppose that I ′ = 〈Sign′,SEN′, C ′〉, with N ′ a category of natural trans-

formations, is a π-institution and I ′′ = 〈Sign′′,SEN′′, C ′′〉 a strict logical image of I ′

via the strong (N ′, N ′′)-logical morphism 〈G,β〉 : I ′ ⊢s I ′′. Given a π-institution I =
〈Sign,SEN, C〉, with N a category of natural transformations on SEN, I ′ is a model of I
via the (N,N ′)-logical morphism 〈F,α〉 : I〉−sI ′

I I ′✲〈F,α〉
I ′′✲〈G,β〉

if and only if I ′′ is a model of I via the (N,N ′′)-logical morphism 〈GF, βFα〉 : I〉−
sI ′′.

Given a class I of π-institution models of a given π-institution I, byH(I) will be denoted
the class of all isomorphic copies of homomorphic images of members of I, by H−1(I) will
be denoted the class of all isomorphic copies of homomorphic pre-images of members of I,
by HS(I) the class of all isomorphic copies of strict homomorphic images of members of I
and, finally, by H−1

S (I) the class of all isomorphic copies of strict homomorphic pre-images
of members of I.

We add the superscript N to all four operators to denote logical images, logical pre-
images, strict logical images and strict logical pre-images, respectively. Thus, the classes
HN (I), HN−1

(I),HN
S (I) and HN−1

S (I), respectively, are obtained.

5 Filtered Products

Suppose that SENi : Signi → Set, i ∈ I, is a collection of functors. Let F be a filter over
the index set I. For all Σi ∈ |Signi|, and φi, ψi ∈ SENi(Σi), i ∈ I, define the equivalence
relation ≡F∏

i∈I
Σi
⊆ (

∏
i∈I SEN

i(Σi))
2, by

〈φi : i ∈ I〉 ≡F∏
i∈I

Σi
〈ψi : i ∈ I〉 iff {i ∈ I : φi = ψi} ∈ F.

In this case 〈φi : i ∈ I〉 and 〈ψi : i ∈ I〉 are said to be
∏
i∈I Σi-equivalent modulo F . Let

[~φ]F or ~φ/F denote the equivalence class of ~φ modulo the filter F . Then set

∏

i∈I

SENi(Σi)/F = {~φ/F : ~φ ∈
∏

i∈I

SENi(Σi)}.

The filtered product
∏
F SENi :

∏
i∈I Sign

i → Set of the functors SENi : Signi →
Set, i ∈ I, modulo the filter F is the functor defined by

∏

F

SENi(
∏

i∈I

Σi) =
∏

i∈I

SENi(Σi)/F,
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for all
∏
i∈I Σi ∈ |

∏
i∈I Sign

i|, and, given
∏
i∈I fi ∈

∏
i∈I Sign

i(
∏
i∈I Σi,

∏
i∈I Σ

′
i), by

∏

F

SENi(
∏

i∈I

fi)(~φ/F ) = 〈SENi(fi)(φi) : i ∈ I〉/F,

for all ~φ ∈
∏
i∈I SEN

i(Σi). Note that, because

{i ∈ I : SENi(fi)(φi) = SENi(fi)(ψi)} ⊇ {i ∈ I : φi = ψi},

the action of
∏
F SENi on morphisms is well-defined.

Now suppose that N i, i ∈ I, are compatible categories of natural transformations on
SENi, i ∈ I. Recall the definition of

∏
i∈I N

i. Note that, if σ : (
∏
i∈I SEN

i)n →
∏
i∈I SEN

i

is in
∏
i∈I N

i, then, for all
∏
i∈I Σi ∈ |

∏
i∈I Sign

i|, and all ~φ0, . . . , ~φn−1, ~ψ0, . . . , ~ψn−1 ∈∏
i∈I SEN

i(
∏
i∈I Σi),

{i ∈ I : σiΣi
(φ0i , . . . , φ

n−1
i ) = σiΣi

(ψ0
i , . . . , ψ

n−1
i )} ⊇

n−1⋂

j=0

{i ∈ I : φji = ψji },

whence, if ~φi ≡F∏
i∈I

Σi

~ψi, for all i = 1, . . . , n − 1, then

σ∏
i∈I

Σi
(~φ0, . . . , ~φn−1) ≡F∏

i∈I
Σi
σ∏

i∈I
Σi
(~ψ0, . . . , ~ψn−1).

Thus, one may define the category of natural transformations
∏
F N

i and may similarly
define the N -filtered product

∏
F SENi of the functors SENi, i ∈ I, with

∏
F N

i the natural
choice of a category of natural transformations on

∏
F SENi.

Next, it is shown that there exists a natural projection translation from the institution
product of a collection SENi, i ∈ I, of sentence functors to any of their filtered products.

Lemma 17 Suppose that SENi : Signi → Set, i ∈ I, is a collection of sentence functors

and F a filter over I. Then, there exists a singleton surjective translation 〈I∏
i∈I

Signi , πF 〉 :
∏
i∈I SEN

i →s
∏
F SENi.

Proof:
Given Σi ∈ |Signi|, i ∈ I, define πF∏

i∈I
Σi

:
∏
i∈I SEN

i(
∏
i∈I Σi) →

∏
F SENi(

∏
i∈I Σi),

by

πF∏
i∈I

Σi
(~φ) = ~φ/F, for all ~φ ∈

∏

i∈I

SENi(Σi).

It is not difficult to check that, defined in this way, πF is a natural transformation and,
therefore, that 〈I∏

i∈I
Signi , πF 〉 :

∏
i∈I SEN

i →s
∏
F SENi is a singleton surjective transla-

tion. �

The translation 〈I∏
i∈I

Signi , πF 〉 is called the natural projection onto the filtered

product of the SENi, i ∈ I. When the subscript of the identity functor I∏
i∈I

Signi is clear

from context, it will be omitted to shorten the notation. Accordingly, the natural projection
will be written 〈I, πF 〉.

Preservation of categories of natural transformations yields the following corollary.
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Corollary 18 Suppose that SENi : Signi → Set, i ∈ I, is a collection of sentence functors,

N i, i ∈ I, is a collection of compatible categories of natural transformations on SENi, i ∈
I, and F a filter over I. Then, there exists a surjective N -morphism 〈I∏

i∈I
Signi , πF 〉 :

∏
i∈I SEN

i →s
∏
F SENi.

Having at hand the definition of a filtered product of functors, it is now possible to define
a filtered product of π-institutions. Suppose, to this end, that I i = 〈Signi,SENi, Ci〉, i ∈ I,
is a collection of π-institutions and that F is a filter over the index set I. Define the filtered
product

∏
F I i = 〈

∏
i∈I Sign

i,
∏
F SENi,

∏
F C

i〉, of the I i, i ∈ I, modulo the filter F
by letting, for all

∏
i∈I Σi ∈ |

∏
i∈I Sign

i| and all Φ ⊆
∏
F SENi(Σi),

∏
F C

i∏
i∈I

Σi
(Φ) =

{~ψ/F ∈
∏
F SENi(

∏
i∈I Σi) : {i ∈ I : ψi ∈ CiΣi

(πiΣi
(
⋃

Φ))} ∈ F}.

Again, because

{i ∈ I : φi ∈ C
i
Σi
(πiΣi

(∪Φ)) iff ψi ∈ CiΣi
(πiΣi

(∪Φ))} ⊇ {i ∈ I : φi = ψi},

∏
F C

i∏
i∈I

Σi
(Φ) is well-defined.

Recall, now, that, given a π-institution I = 〈Sign,SEN, C〉 and a cardinal number κ,
we write |C| = κ if κ is the least infinite cardinal such that, for all Σ ∈ |Sign|,Φ ⊆ SEN(Σ),

CΣ(Φ) =
⋃

{CΣ(Φ
′) : Φ′ ⊆ Φ and |Φ′| < κ}.

Moreover, a filter F over I is said to be a κ-filter if, for all D ⊆ F, with |D| < κ,
⋂
D ∈ F .

It is not difficult to verify that, if, for some cardinal µ, we have |Ci| ≤ µ, for all i ∈ I, and F
is a µ-filter, then

∏
F C

i, defined as above, is a closure system on
∏
F SENi, whence

∏
F I i

is indeed a π-institution.

Proposition 19 Suppose that I i = 〈Signi,SENi, Ci〉, i ∈ I, is a collection of π-institu-
tions, with |Ci| ≤ µ, for all i ∈ I, and F a µ-filter over the index set I, for some cardinal

number µ. Then, the triple
∏
F I i = 〈

∏
i∈I Sign

i,
∏
F SENi,

∏
F C

i〉 is a π-institution.

Proof:
It has been seen that

∏
F SENi :

∏
i∈I Sign

i → Set is a functor. So, it suffices to show
that

∏
F C

i is a closure system on
∏
F SENi.

1. For inflation, suppose that Σi ∈ |Signi|, i ∈ I, and that Φ∪{~φ} ⊆
∏
i∈I SEN

i(
∏
i∈I Σi),

such that ~φ/F ∈ Φ/F and assume, without loss of generality, that Φ is closed under
≡F∏

i∈I
Σi
. Thus, there exists ~ψ ∈ Φ, such that ~φ ≡F∏

i∈I
Σi

~ψ, i.e., X = {i ∈ I : φi =

ψi} ∈ F . Then, by inflation for Ci, i ∈ I, we have that πi∏
i∈I

Σi
(~φ) ∈ CiΣi

(πi∏
i∈I

Σi
(Φ)),

for all i ∈ X, whence {i ∈ I : πi∏
i∈I

Σi
(~φ) ∈ CiΣi

(πi∏
i∈I

Σi
(Φ))} ⊇ X ∈ F and, therefore

~φ ∈
∏
F C

i∏
i∈I

Σi
(Φ) and

∏
F C

i is inflationary.

2. Proof of the monotonicity of
∏
F C

i is similar to that of inflation and details will be
omitted.
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3. For idempotency, suppose Σi ∈ |Signi|, i ∈ I, and that Φ∪{~φ} ⊆
∏
i∈I SEN

i(
∏
i∈I Σi),

such that
~φ/F ∈

∏

F

Ci∏
i∈I

Σi
(
∏

F

Ci∏
i∈I

Σi
(Φ/F )).

To ease the argument, use the notation Ψ/F =
∏
F C

i∏
i∈I

Σi
(Φ/F ). So, we also have

~φ/F ∈
∏
F C

i∏
i∈I

Σi
(Ψ/F ). The second condition gives

X = {i ∈ I : φi ∈ CiΣi
(πi∏

i∈I
Σi
(
⋃

Ψ/F ))} ∈ F. (1)

The first condition gives, for all ~ψ ∈
⋃

Ψ/F,

Y~ψ = {i ∈ I : ψi ∈ CiΣi
(πi∏

i∈I
Σi
(
⋃

Φ/F ))} ∈ F. (2)

Because |Ci| ≤ µ, we may assume, without loss of generality, that |
⋃

Ψ/F | < µ. Now,
using Conditions (1) and (2), together with idempotency of Ci, i ∈ I, and the fact
that F is a µ-filter, we obtain

{i ∈ I : φi ∈ CiΣi
(πi∏

i∈I
Σi
(
⋃

Φ/F ))}

⊇ {i ∈ I : φi ∈ CiΣi
(CiΣi

(πi∏
i∈I

Σi
(
⋃

Φ/F )))}

⊇ X ∩
⋂
~ψ∈

⋃
Ψ/F Y~ψ

∈ F.

Therefore ~φ/F ∈
∏
F C

i∏
i∈I

Σi
(Φ/F ) and

∏
F C

i is also idempotent.

4. For structurality, suppose that Σi,Σ
′
i ∈ |Signi|, f ∈ Signi(Σi,Σ

′
i), for all i ∈ I, and

Φ ⊆
∏
i∈I SEN

i(
∏
i∈I Σi),

~ψ ∈
∏
i∈I SEN

i(
∏
i∈I Σ

′
i), such that

~ψ/F ∈
∏

F

SENi(
∏

i∈I

fi)(
∏

F

Ci∏
i∈I

Σi
(Φ/F )).

Then, there exists ~φ ∈
∏
i∈I SEN

i(
∏
i∈I Σi), such that

~φ/F ∈
∏

F

Ci∏
i∈I

Σi
(Φ/F ) and ~ψ/F =

∏

F

SENi(
∏

i∈I

fi)(~φ/F ).

Thus, we obtain X = {i ∈ I : φi ∈ CiΣi
(πi∏

i∈I
Σi
(
⋃

Φ/F ))} ∈ F and Y = {i ∈ I : ψi =

SENi(fi)(φi)} ∈ F. Therefore

{i ∈ I : ψi ∈ CiΣi
(SENi(fi)(π

i∏
i∈I

Σi
(
⋃

Φ/F )))}

⊇ {i ∈ I : ψi ∈ SENi(fi)(C
i
Σi
(πi∏

i∈I
Σi
(
⋃

Φ/F )))}

⊇ X ∩ Y
∈ F

and, hence ~ψ ∈
∏
F C

i∏
i∈I

Σi
(
∏
F SENi(

∏
i∈I fi)(Φ/F )), i.e.,

∏
F C

i is also structural.
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�

From now on when a filtered product
∏
F I i of a collection I i, i ∈ I, of π-institutions

modulo a given filter F is considered, there will be an implicit assumption that all closure
systems Ci, i ∈ I, involved, are of a given cardinality |Ci| ≤ µ, i ∈ I, and that the filter
is also a µ-filter so that the resulting filtered product is itself a π-institution, according to
Proposition 19.

Lemma 17 and Corollary 18 have the following extensions when it comes to filtered
products of π-institutions.

Lemma 20 Let µ be a cardinal number. Suppose that I i = 〈Signi,SENi, Ci〉, i ∈ I, is
a collection of π-institutions, such that |Ci| ≤ µ, for all i ∈ I, and F is a µ-filter over I.
Then, there exists a singleton surjective semi-interpretation 〈I, πF 〉 :

∏
i∈I I

i〉−s∏
F I i.

Proof:
We know by Lemma 17 that 〈I, πF 〉 :

∏
i∈I SEN

i →s
∏
F SENi is a surjective singleton

translation. So it suffices to show that it is a semi-interpretation 〈I, πF 〉 :
∏
i∈I I

i〉−s∏
F I i.

To this end, let Σi ∈ |Signi|, i ∈ I, Φ ∪ {~φ} ⊆
∏
i∈I SEN

i(Σi). Then

~φ ∈
∏
i∈I C

i∏
i∈I

Σi
(Φ) iff {i ∈ I : φi ∈ CiΣi

(πi∏
i∈I

Σi
(Φ))} = I

implies ~φ/F ∈
∏
F C

i∏
i∈I

Σi
(Φ/F ).

�

As in the case of Lemma 17, requiring preservation of natural transformations yields
the following corollary.

Corollary 21 Let µ be a cardinal number. Suppose that I i = 〈Signi,SENi, Ci〉, i ∈ I, is
a collection of π-institutions, such that |Ci| ≤ µ, for all i ∈ I, with N i, i ∈ I, compatible

categories of natural transformations on SENi, i ∈ I, and let F be a µ-filter over I. Then,

there exists a surjective (
∏
i∈I N

i,
∏
F N

i)-logical morphism 〈I, πF 〉 :
∏
i∈I I

i〉−s∏
F I i.

As is customary in model theory and, more specifically, in the model theory of logical
matrices in abstract algebraic logic, if I i = I, for all i ∈ I, then a filtered product

∏
F I i is

said to be a filtered power of I and, if F is an ultrafilter over I, then
∏
F I i is said to be

an ultrafiltered product or, more often, an ultraproduct of I i, i ∈ I. An ultrafiltered
power of I is also called an ultrapower of I.

The following proposition shows that families of singleton translations from a given
functor to a family of functors give rise to singleton translations from the given functor to
filtered products of the family of functors.

Proposition 22 Suppose that
∏
F SENi is a filtered product of a family SENi : Signi →

Set, i ∈ I, of functors and SEN : Sign → Set a functor. If there exist singleton translations

〈F i, αi〉 : SEN →s SENi, i ∈ I, then there exists a singleton translation 〈F,α〉 : SEN →s
∏
F SENi, such that, for all Σ ∈ |Sign|, φ ∈ SEN(Σ),

αΣ(φ) = 〈αiΣ(φ) : i ∈ I〉/F. (3)
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Proof:
Suppose that there exist singleton translations 〈F i, αi〉 : SEN →s SENi, i ∈ I. Then, by

Lemma 6, there exists
∏
i∈I〈F

i, αi〉 : SEN →s
∏
i∈I SEN

i, such that 〈P i, πi〉◦
∏
i∈I〈F

i, αi〉 =
〈F i, αi〉.

SEN SENi✲〈F i, αi〉

∏
i∈I〈F

i, αi〉

❅
❅
❅
❅
❅
❅❅❘∏
i∈I SEN

i

✻

〈P i, πi〉

∏
F SENi✲〈I, πF 〉

Now compose
∏
i∈I〈F

i, αi〉 with 〈I, πF 〉 :
∏
i∈I SEN

i →s
∏
F SENi to get 〈F,α〉 : SEN →s

∏
F SENi. We have, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ),

αΣ(φ) = πF∏
i∈I

F i(Σ)(
∏

i∈I

αiΣ(φ)) =
∏

i∈I

αiΣ(φ)/F.

�

The singleton translation 〈F,α〉 : SEN →
∏
F SENi, displayed in Equation (3), is called

the filtered product of the singleton translations 〈F i, αi〉 : SEN → SENi, i ∈ I, modulo
the filter F and will be denoted by

∏
F 〈F

i, αi〉 or by
∏
i∈I〈F

i, αi〉/F . Thus, an alternative,
more informal, way to state the content of Proposition 24 is to say that the filtered product
of singleton translations from a given functor to the factors of a filtered product functor is
a singleton translation from the functor to the filtered product of the factors.

Proposition 22 has the following corollary.

Corollary 23 Let SENi : Signi → Set, i ∈ I, be a family of functors, with N i, i ∈ I,
compatible categories of natural transformations on SENi, i ∈ I, and SEN : Sign → Set a

functor, with N a category of natural transformations on SEN. If there exist N -morphisms

〈F i, αi〉 : SEN →se SENi, i ∈ I, then there exists an N -morphism 〈F,α〉 : SEN →s
∏
F SENi, such that, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), αΣ(φ) = 〈αiΣ(φ) : i ∈ I〉/F.

Finally, an extension of Proposition 22 and an extension of Corollary 23 are presented
for the case of π-institutions.

Proposition 24 Let µ be a cardinal number. Suppose that
∏
F I i is a filtered product of

a family I i = 〈Signi,SENi, Ci〉, i ∈ I, of π-institutions, such that |Ci| ≤ µ, for all i ∈ I,
and I = 〈Sign,SEN, C〉 a π-institution. Let F be a µ-filter over I. If there exist singleton

semi-interpretations 〈F i, αi〉 : I〉−sI i, i ∈ I, then there exists a singleton semi-interpretation

〈F,α〉 : I〉−s∏
F I i, such that, for all Σ ∈ |Sign|, φ ∈ SEN(Σ),

αΣ(φ) = 〈αiΣ(φ) : i ∈ I〉/F. (4)

Proof:
The proof is very similar to the proof of Proposition 22 and it will be omitted. �

We do obtain in this case as well
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Corollary 25 Let µ be a cardinal number. Suppose I i = 〈Signi,SENi, Ci〉, i ∈ I, is a

family of π-institutions, such that |Ci| ≤ µ, for all i ∈ I, with N i, i ∈ I, compatible categories

of natural transformations on SENi, i ∈ I, and I = 〈Sign,SEN, C〉 a π-institution, with

N a category of natural transformations on SEN. Let F be a µ-filter over I. If there exist

(N,N i)-logical morphisms 〈F i, αi〉 : I〉−sI i, i ∈ I, then there exists an (N,
∏
F N

i)-logical
morphism 〈F,α〉 : I〉−s∏

F I i, such that, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), αΣ(φ) = 〈αiΣ(φ) :
i ∈ I〉/F.

Given a π-institution I and a class I of π-institution models of I, by PR(I) will be
denoted the class of all isomorphic copies of filtered products of members of I via the
filtered product semi-interpretations and by PU(I) the class of all isomorphic copies of
ultraproducts of members of I via via the analogous ultraproduct semi-interpretations. We
add as before the superscript N to denote that natural transformations are preserved, thus
obtaining PN

R (I) and PN
U (I), respectively.

6 Closure Properties of Model Classes

In this final section, some of the results that were proven on sub-institutions, institution
products, logical and bilogical images and pre-images and filtered products in the preceding
sections are reviewed and recast in model class operator forms. A new result is also proven
to the effect that the operatorHH−1

S P suffices to generate the entire class of all π-institution
models of a given π-institution I out of any given subclass strongly adequate for I.

For the reader’s convenience, the operations on classes of π-institution models that have
been introduced so far are summarized in the following table:

Symbol Brief Description

Sf(I) Subinstitution Model Factors
Sp(I) Superinstitution Models
P(I) Institution Products
H(I) Homomorphic Images
H−1(I) Homomorphic Pre-Images
HS(I) Strict Homomorphic Images

H−1
S (I) Strict Homomorphic Pre-Images

PR(I) Filtered Institution products
PU(I) Institution Ultraproducts

Given a π-institution I = 〈Sign,SEN, C〉, denote by Mod(I) the class of all pairs
〈I ′, 〈F,α〉〉, consisting of a π-institution model I ′ of I, together with a singleton semi-
interpretation 〈F,α〉 : I〉−sI ′, via which I ′ is considered to be a model of I. Similarly,
if N is a category of natural transformations on SEN, denote by ModN (I) the class of
all pairs 〈I ′, 〈F,α〉〉, consisting of a π-institution (N,N ′)-model I ′ of I, together with an
(N,N ′)-logical morphism 〈F,α〉 : I〉−sI ′, via which I ′ is considered to be a model of I.

The following result now follows by collecting together several of the results that have
been proven in the previous sections.

Theorem 26 (Closure Properties of the Class of Models) Let I = 〈Sign,SEN, C〉
be a π-institution. Then
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1. Sf(Mod(I)) ⊆ Mod(I) and Sp(Mod(I)) ⊆ Mod(I).

2. P(Mod(I)) ⊆ Mod(I).

3. H(Mod(I)) ⊆ Mod(I), HS(Mod(I)) ⊆ Mod(I) and H−1
S (Mod(I)) ⊆ Mod(I).

4. PR(Mod(I)) ⊆ Mod(I).

Proof:

1. Combine Propositions 2 and 4.

2. Use Proposition 11.

3. Use Proposition 13 for the first and Proposition 15 for the second and third inclusions.

4. Use Proposition 24.

�

And, of course, requiring preservation of natural transformations from the institution
morphisms, we get

Theorem 27 Suppose that I = 〈Sign, SEN, C〉 is a π-institution and N a category of

natural transformations on SEN. Then

1. SfN (ModN (I)) ⊆ ModN (I) and SpN (ModN (I)) ⊆ ModN (I).

2. PN (ModN (I)) ⊆ ModN (I).

3. HN (ModN (I)) ⊆ ModN (I), HN
S (ModN (I)) ⊆ ModN (I) and

HN−1

S (ModN (I)) ⊆ ModN (I).

4. PN
R (ModN (I)) ⊆ ModN (I).

Proof:
The Proof is very similar to that of Theorem 26. In this case, for 1, we combine

Corollaries 3 and 5. For 2, we use Corollary 12. For 3 Corollary 14 for the first and
Corollary 16 for the second and third inclusions. Finally, for the last part, use Corollary
25. �

Finally, a result in the spirit of Theorem 0.6.1 of [7], a fundamental general result for the
study of the structure of the model classes of sentential logics, is provided for π-institutions.
It depicts the kind of results, like Theorem 3.15 of [9], given in the Introduction, that it is
hoped that the current line of research will motivate in the framework of π-institutions.

Theorem 28 (Characterization of Mod(I)) Let I = 〈Sign,SEN, C〉 be a π-institution
and K a class of π-institution models of I, that is strongly adequate for I. Then

Mod(I) = HH−1
S P(K).



CAAL: Operations on Classes of Models 20

Proof:
Since K ⊆ Mod(I), Theorem 26 yields that

HH−1
S P(K) ⊆ HH−1

S P(Mod(I)) ⊆ Mod(I).

Suppose, conversely, that 〈I ′, 〈F,α〉〉 ∈ Mod(I) and assume that K = {〈I i, 〈F i, αi〉〉 : i ∈ I}.
Then, it is not difficult to see, using the following diagram, that

I
∏
i∈I I

i✲∏
i∈I〈F

i, αi〉

I I i✲〈F i, αi〉

❄

〈ISign, ι〉

❄

〈P i, πi〉
∏
i∈I〈F

i, αi〉

❍❍❍❍❍❍❍❍❍❍❍❍❍❥

I ′

❄

〈F,α〉

〈I, 〈ISign, ι〉〉 ∈ H−1
S P(Mod(K)), whence, 〈I ′, 〈F,α〉〉 ∈ HH−1

S P(K).
Therefore, we obtain Mod(I) = HH−1

S P(K). �
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