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Abstract

Threshold agent networks (TANs) were introduced in [11] and constitute a
finitary modification of threshold (neural) networks appropriate for modeling
computer simulations. In this paper a generalization of TANs, that was pro-
posed in [10], is introduced and some of its properties explored. The new model,
called probabilistic threshold agent network (PTAN) is not a finite dynamical
system in the classical sense [6], since succession of states is not deterministic
but rather probabilistic. We show how known finite dynamical systems may he
represented as special cases of this new class of models and present arguments
to the effect that, in many applications, PTANs are more realistic than finite
dynamical systems.

1 Introduction

Discrete computer models modelling a wide variety of physical systems and physi-
cal phenomena have been used repeatedly in the literature. Among these, cellular
automata and threshold networks or neural networks have played a prominent role.
The books [3, 5, 13| are excellent sources of information regarding these systems.
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Several of the applications for which these models have been used are listed in these
references and many more references may be found especially in [5] and [13].

However, despite the use of all these models for computer simulations of several
physical phenomena, there has not been a well-developed coherent theory of computer
simulations. A recent attempt at this has been made in [1, 2|, where sequential
dynamical systems (SDSs) were introduced for this purpose. An alternative approach,
using a finite discrete version of threshold networks, termed threshold agent networks
(TANs), was initiated in [11]. In [12], the study of TANs has been continued with
the introduction of morphisms between TANs and the investigation of the categorical
properties that the category of TANs, thus formed, possesses. Further expanding
the study of the relations between these finite dynamical systems, in [8] functors
connecting the category of generalized sequential dynamical systems, a generalization
of SDSs introduced in [7], and the category of TANs have been defined and some of
their properties investigated.

In this paper, a generalization of TANs to a probabilistic version, the probabilistic
TAN (PTAN), that was proposed in [10], is introduced and some of its properties and
several applications are explored. This version is more suitable for applications where
actions do not trigger reactions with certainty but rather probabilistically. This is
done, for instance, in most physical systems. Some systems from biology, physics
and business are proposed as possible candidates for applications of this probabilistic
model. More precisely, in Section 2, the new probabilistic model is introduced and
the way it generates a discrete dynamics is discussed. An example from biology is
presented. In Section 3, a theorem is proved that characterizes the class of TANs as
a subclass of PTANs. Section 4 describes how finitary versions of cellular automata
and neural networks may be seen as PTANs. In Section 5 two further applications
of PTANs are proposed. Generalized PTANs (GPTANs) allow for a more flexible
interactive structure between the agents and time-dependent PTANs (TDPTANS)
constitute a stochastic version in which the probability distributions are allowed to
vary with time. Section 6 studies in some detail three special cases of PTANs which
are guaranteed to eventually reach a fixed-point, i.e., a one-element limit cycle. Fi-
nally, Sections 7, 8 and 9 contain three applications of PTANs to specific disciplines.
Section 7 contains an application in modelling of a very simple protocol of coordi-
nated communication between agents. Section 8 contains a numerical simulation of
a conduction heat transfer phenomenon. The results are successfully compared to
analytical results obtained through a solution of the heat equation. Finally, Section
9, addressing future work, discusses briefly how a model could potentially be set up
to simulate the success of an advertising campaign that has been set to achieve a
specific goal. The reader is advised to view the examples presented as indicatory
of the potential power of the proposed model in different application areas and not
as innovative contributions per se. As such, the weight has been placed on their
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simplicity rather than on their realism.

2 The Probabilistic Model

Denote by k the two element set {0, 1}, by n the set {1,2,...,n} and by II the closed
unit interval [0,1]. In what follows, quite often, a subset of n will be represented
interchangeably by its characteristic function and vice-versa.

A probabilistic threshold agent network (PTAN) [10] consists of a finite collection
P = {p;}1<i<n of functions

pi k" =1, 1<i<n.

The indices 1,2,...,n are sometimes referred to as the agents of the network. The
local dynamics of such a model is determined by a collection { f;}1<i<, of 0—1 random
variables on the sample space &™, where

1, with probability p;(x) n .
. — < 9 < n.
fi(@) { 0, with probability 1 — p;(z) ’ forallz €& l<is<mn

The global dynamics is then given by

f(x) = (fi(z),..., fu(z)), forall =xe€k™

As an example consider the following PTAN on 7 agents 1,2,...,7. The agents
1,...,6 are meant to represent parts of the biological system of an organism and
agent 7 represents an external source that stimulates the organism. Agents 1 and 2
are supposed to represent two sensors of the organism. They are sensing the stimulant
7 and give directions to their ”commander” cell 3. 3, in turn, forwards the stimulation
to the primitive brain 4, which sends further directions to the nerves 5 and 6 on how to
handle the stimulant 7. All these actions create a biological cycle that is probabilistic
in nature in the sense that, depending on the health condition and robustness of
the organism and the external environmental conditions for both the organism and
the stimulant, the diverse interactions are not taking place deterministically, but
rather probabilistically. In the model below, it is assumed that each is taking place
with a predetermined probability which stays fixed during the occurrence of this
event. A sketch that illustrates the interaction is shown in Figure 1. A formal PTAN
P = {p;}1<i<7 that could represent this interaction is described by the 7 functions

pii k"I, 1<i<7,
given by

0.6, if7e X |04, fTeX
p(X) = { 0, otherwise ’ pa(X) = { 0, otherwise
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Figure 1: The organism on the right interacts with the external stimulant on the left.

0.8, if {1,2} C X
p3(X)=1<¢ 0.5, ifeitherle Xor2e X | m(X)= {
0, otherwise

0.6, ifde X 04, if4e X
ps(X) = { 0, otherwise ’ pe(X) = { 0, otherwise

0.6, if {5,6} C X
pr(X) =< 0.5, ifeither5€ Xor6e X .
0, otherwise

0.5, if3¢ X

0, otherwise ’

?

As an illustration consider the values of p3. We have, for instance p3({1,2,5,7}) =
0.8 and p3({1,2}) = 0.8. Similarly, p3({1,4,6,7}) = 0.5, ps({1}) = 0.5 and p3({3,4, 5,
6,7}) = 0.

3 TANs and PTANSs

A threshold agent network (TAN), introduced in [11], consists of a collection A =
{A1,..., A} of agents, where each agent A; is formally an ordered pair A; = (k;, F;),
where k; is an integer and P, C {1,...,n}. k;, 1 <14 < n, is the threshold of agent 7 and
P, is his output set. The dynamics of the TAN is generated by stipulating that agent
1 be active at time j if at least k; agents that have ¢ in their output sets are active
at time 7 — 1. Note that if k; is negative, then agent ¢ will always be active at time j
except if at least —k; agents that have ¢ in their output sets are active at time j — 1.
P;,1 <1 < n, is the set of agents that will be affected by agent ¢ at the end of each
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time step in case agent 7’s threshold has been attained at the end of the previous time
step. This dynamical behavior is formally expressed by the function A% : k® — k™
defined as follows: First, given a condition ¢ that an n-tuple (xi,...,x,) € k™ may
or may not satisfy, let x.: k™ — k be the characteristic function of ¢, i.e.,

1, if {xq,...,z,) satisfies ¢
0, otherwise ’

Ye({21, -+ 20)) —{

Then define the functions A : k* — k,1 < i < n, by

hi () = { Xigie; 1 and sepn (0 TR 200 0

Xi(jz;—1 and iep,yj<k; (£)s i <07
Finally, set
B (@) = (W), B (@), for all o € k™.

h?4 is called the dynamics of the TAN A.

TANs are special cases of PTANs. More specifically, the following theorem pro-
vides a characterization of TANs inside the class of PTANs. In order to facilitate the
formulation of the theorem, the following terminological convention is introduced.

A function f : k™ — 1 is called levelled if it is a 0-1 monotone or antimonotone
function, such that all minimal or maximal, respectively, elements mapped to 1 have
the same number of 1’s. Functions of the first kind are called positively levelled and
functions of the second kind negatively levelled.

For instance the function f : k® — II, given by the table below is levelled, whereas
g : k3 — 1, given by the same table, is not.

X

0

{1}

{2}

{3}
{1,2}
{1,3}
{2,3}
{1,2,3}

~
—~—~
e
g
<
—~—~
e e
g

An illustration of these two functions is given in Figure 2.

Theorem 1 Let P = {pi}i<i<n be a PTAN. P is a TAN if and only if, for all
1 <1< n, p; is levelled.



PROBABILISTIC THRESHOLD AGENT NETWORKS 6

Figure 2: The levelled function f and the non-levelled function g.

Another interesting class of models that has been considered in the literature of
finite dynamical systems is that of sequential dynamical systems (SDSs for short).
The definition is recalled below and then, based on a theorem of [11] and Theorem 1,
a simulation result is obtained, relating SDSs with PTANs.

Let G = (V, E) be a simple graph with vertex set V' = {v1,...,v,}. Foreachi € V,
suppose that we are given a function F; : k™ — k™, that only changes the value of the
i-th position and only depends on the i-th position and those positions j, such that
(1,7) € E. The F}’s are referred to as the local update functions. Now let # € S,, be a
permutation of V. 7 is called an update schedule. The functions F; are composed in the
order prescribed by 7 to obtain the function F(G,7) = Fr(n)0Frn-1)0-..0Frq) : k* —
k™. We call the function F(G,7) the sequential dynamical system (SDS) determined
by G, the local update functions F; and the update schedule = € 5,,.

In [11] the following was proved about the possibility of simulating SDSs with
TANSs.

Theorem 2 For every SDS F(G,x) of dimension n, there exist a TAN with set of
agents A = {A;}ier, a subset J C I and a positive integer d, such that, for every
ingtial condition x° for I, there exists an initial condition y° for A, such that

((y;ls cjEJ), s Ew) = (2° 5 €Ew).

This, combined with Theorem 1, gives the following result about the possibility
of simulating SDSs with PTANS.
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Corollary 3 For every SDS F(G,x) of dimension n, there exist a PTAN P =
{pi}icr, a subset J C I and a positive integer d, such that, for every initial condition
2° for I, there exists an initial condition y° for P, such that

((y;ls cjEJ), s Ew) = (2° 5 €Ew).

4 (CAs and Neural Networks as PTANs

Two of the best known models that have been used in the past for modelling physical
systems are cellular automata [13, 3, 5| and threshold or neural networks [4, 5]. Both
models are potentially infinite. Here, a finite modification will be described and a
brief account on how these finite versions of the original models may be modelled as
PTANs will be given.

Let I be an index set (finite for our purposes). A finite automata network defined
on [ is a triple A = (G, @, (9:):c1), such that

o (G = (I, F) is a digraph with vertex set I,
e (Q is a finite set of states (@ = {0, 1} for our purposes) and

o g : QP — Q, forall i € I, where E; = {j € I:(j,i) € E}. The g;’s are the
local update functions.

It is assumed that synchronous updating is used for obtaining the global update
function G : Qf — Q' from the local ones.
A PTAN P = {p;}icr that captures this finite automata network is defined by

_ 17 if gi(x TEZ) =1 I
pil®) = { 0, otherwise , forallwe @,

A finite cellular space consists of a regular graph G = (I, E) together with a tran-
sitive group H of automorphisms of G. Finite cellular automata are finite automata
networks that are defined on finite cellular spaces, all of whose local update functions
are invariant under the automorphisms in H. Therefore, a finite cellular automaton is
a special case of a finite automata network and, thus, it can be modelled as a PTAN
exactly as a finite automata network was modelled above.

Finite threshold or neural networks form a subclass of finite automata networks
as well. The graph G = (I, F) possesses weighted structures ¢ : I — IR giving, for
each vertex i € I, its threshold t(i), and w : & — IR, giving, for each edge (i, j), its
weight w(i, 7). Setting w(i, 7) = 0, whenever (7, j) € E, we may view w as a function
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w : I x I — IR. The local update functions are then defined with the help of these
weighted structures by

gi(m; 1 j € ) = T(>_ w(j,i)w; — t(i)), forallm= (z;:4€1l),

JEE;
where the function T': R — {0, 1} is given by

1, ifu>0
ﬂw—{o,ﬁu<0'

The finite neural network N = (I, E,w,t), being a finite automata network, may
also be modelled as a PTAN as before. Thus PTANs are significantly more general
than many natural finite versions of several well-known models that one may want to
consider as appropriate for simulating natural phenomena or for other applications.

5 0-, 1- and 0-1-PTANSs

In this section, three special classes of PTANs are studied in more detail. One is
the class of all these networks all of whose probability functions take values in the
semi-closed interval [0, 1) and have the zero vector as a fixed point. It is shown that
systems of this kind will end up at the zero vector state with probability 1 as time
goes to infinity. The second class consists of all these networks all of whose probability
functions take values in the semi-closed interval (0, 1] and have the all one vector as
a fixed point. Systems of these kind will be shown to end up at the all one vector
with probability 1 as time goes to infinity. Finally, the third class is the class of all
networks all of whose probability functions are in the open interval (0, 1) except that
they have both the zero and the all one vector as fixed points. These systems will
end up either at the zero or at the all one vector with probability 1 as time goes to
infinity. The formal definitions of these classes of systems together with the theorems
predicting their asymptotic behavior will now be given.

A PTAN P = {p;}1<i<n is said to be a zero PTAN, written 0-PTAN;, if, for all
1 <7 <nandall x € k™,

pi(x) <1 and p;({0,...,0))=0.

Theorem 4 Let P = {p;}1<i<n be a 0-PTAN. Then, for all initial vector conditions
p° € k™, there exists a stochastic N > 0, such that

psz, forall1 <i<mn,5>N.
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Proof:

Since, for all 1 < ¢ < n,x € k™, p;(x) < 1, there exists a maximum p < 1, such
that p;(x) < p, for all 1 < ¢ < n, z € k™. Thus, from every state, the probability
that, in the next time step, the system will be at the zero state is at least ¢ > 0,
where ¢ = 1 — p. Therefore the system will eventually pass from the zero state with
probability 1. But since the zero state is a fixed point, the system will end up at the
zero state with probability 1. [ |

A PTAN P = {pi}1<i<n is said to be a one PTAN, written 1-PTAN, if, for all
1 <7 <nandall x € k™,

pi(x) >0 and p((1,...,1)) =1

Theorem 5 Let P = {p;}1<i<n be a 1-PTAN. Then, for all initial vector conditions
p° € k™, there exists a stochastic N > 0, such that

ple, forall1 <i<mn,5>N.

The proof of Theorem 5 is very similar to the proof of Theorem 4 and will, there-
fore, be omitted.

Finally, a PTAN P = {p;}1<i<n is said to be a zero-one PTAN, written 0-1-PTAN,
if, forall 1 <7 <mandall z € k* — {(0,...,0),(1,..., 1)},

0<pi(z) <1, p({0,...,0))=0 and p({1,...,1))=1.

Theorem 6 Let P = {p;}1<i<n be a 0-1-PTAN. Then, for all initial vector conditions
p° € k?, there exists a stochastic N > 0, such that (p] = 0, for all 1 <1 <n and all
j>N)or(pl =1, forall1 <i<mn and all j > N.)

6 Coordinating Access to a Resource

A simple but interesting application of a special case of PTANSs is their use to model
a protocol for coordinating communication of a collection of agents with a central
processing unit with limited input capability or for coordinating requests of agents to
access a single resource with limited output capability. More precisely, we are dealing
with the following setting which is illustrated in Figure 3. Agent 1, which is a central
processing unit, is supposed to collect information for processing from a collection of
peripheral sensor agents 2,3, ..., N. The communication channels through which this
information is to be transmitted are the solid lines in Figure 3. However, the central
processing unit has a limited input capability, i.e., it can only receive input from a
limited number of agents at the same time step. For simplicity, in this example it
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S

CPU: Agent 1 Master Agent 2

Figure 3: Agents competing to send information to a central processing unit.

is assumed that it can only receive input from one of the other agents at a time. A
protocol, thus, has to be established so that not more than one agents try to contact
the central unit at each time step. The implementation of this protocol is to be
achieved by the use of both the transmission and some additional, communication
lines that connect the sensor agents cyclically and are depicted as dashed lines in
Figure 3. Here, the following protocol is implemented. When the central processing
unit is started, many sensor agents may be trying to access it simultaneously. The
unit is detecting conflicting requests and sends a signal out to all agents. A signal
received by the central unit causes all but a distinguished agent, termed the master
agent and taken to be agent 2 in Figure 3, to stop transmission. All the sensor agents
then wait for their predecessor in the circle to send its data to the central unit and
then transmit their own data.

The PTAN that implements this configuration, together with the communication
protocol, is a very simple one in the sense that all probability functions p; : kN —
I,1 < ¢ < N, are binary valued functions p; : kN — k. However, it is not a TAN
because the lattice-theoretic condition of Theorem 1 is not satisfied. It consists of NV
agents 1,2, ..., N. Agent 1 is the central processing unit and agent 2 is the master
sensor agent. The probability functions p;, 1 <¢ < N, are given by

?

(z) — 0, if ZfiQxi<20ra:1:1
Piiv) = 1, otherwise
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(z) — 1, ifzy=T1or(zy =0and zy = 1)
P2it) = 0, otherwise

and, for 3 <1 < N,

(z) — 1, ifz;=0and ;1 =1
pil\t) = 0, otherwise '

The following table gives the output of a run of this model with N = 7 and initial
state 0110101 for 8 time steps.

Time Step
0

- 00 =1 O O i oD
_ O OO o oo O
OO OO O O H N
SO O OO O HFHFW
OO OO H OO Ok
O OO OO OO ot
OO PR OO oo O
O —H O OO O oo

7 Diffusion of Energy

Another very interesting application of PTANs is their use in simulating physical
systems. In this section it will be shown how a PTAN may be used to simulate
diffusion of energy or diffusion of a substance through a medium.

The physical setting consists of a thin square layer of material of dimension n x n
whose left hand side has been heated and whose right hand side is cold. The square
is shown in Figure 4, where the heated side has been shaded. The square is then
insulated so that heat cannot escape into the environment and the diffusion of heat
from its left hand side to the entire surface is observed.

The PTAN that models this diffusion phenomenon is constructed as follows. As-
sume that the given square is of dimensions 10 x 10 and that one element per unit is
sufficient to model the material contained per square unit. Thus a 10 x 10 network of
agents will be used to model heat conduction. The collection of these agents together
with the way they interact with each other is shown in Figure 5. The probability
that an agent is active at a certain time step is exactly proportional to the number of
agents in its neighborhood (including himself) that were active during the previous
time step. This reflects the fact that an element of the material will be hot at a
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Figure 4: The half-heated square.

Figure 5: The grid of 100 agents used in the PTAN modelling heat diffusion.

12
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Agents at (3,1),(3.5)45.6)45.10)

Agent at(51]

AQrEnIies

Agent at |3,E)

! Agert at i3 :0)

Time Step

Figure 6: The agent energy in terms of time for four of the agents in the first experi-
ment.

certain time step depending on how hot it was at the previous time step and how hot
the other elements next to it had been during the previous time step. To model the
initial condition the left half of the agents are set to 1 and the right half is set to 0 at
the beginning of the simulation. Then the model is left to run for 1000 time steps for
a total of 1000 times and the states of the agents at corresponding positions and time
steps are added over all 1000 random runs. The sum over 1000 shows how likely it is
that the specific element will be hot or cold at that time step. The diagram in Figure
6 show the aggregates obtained for a horizontal cross section of the agents over time
starting from the agent at the 5th row and 1st column and ending at the agent at
the 5th row and 10th column. Figure 7 shows the spatial distribution of heat over
specific time steps.

These diagrams show that the PTAN approximation of the transient heat model
is very close to the results obtained by analytically solving the heat equation (see,
e.g., [9], Section 2.4)

Ou  10u
—=-——, 0<z<1, 0<t
022 kot T !
that describes the heat flow subject to the boundary value conditions
Ju Ju
—(0,t) =0, —(1,t)=0, 0<t,
500 =0, 5 (1,t) =0,
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Spatlal Distributlon of Energy Every 3 Tlme Steps for the First 100 Time Steps

o . |
i, S o .,
o0 :?-;;;“x‘f_\_—___% S
ot
|
:b""*«.—‘—_-— - ,
Lz T H:_‘“Q?“H-,_
B R — = '\—\_‘“h \
2 3 = e, g
E S
= |“':'°§:-..\_\_ b — e
= b T B
00 \ ==
-._\\ e \-\\‘-\_\_\_\_
00 ., o - =
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- — —
o ™~ --\-\-'—\_
\ & e
.,
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g -
1 2 3 4 E & 7 & L] 0

Agents

Figure 7: The distribution of energy along the square every 5 time steps until time
step 100.

and the initial value condition

ute.0) = 1)~ {

1, if0<z<3
0, fj<z<l1

Here, it is assumed that heat transfer is taking place uniformly across a cross section of
the material flowing from the heated to the colder side. So u(x,t) is the heat function
in terms of the distance x from the heated edge and the time ¢. k is the diffusivity
constant. The boundary value conditions assure that the material is insulated so
that energy is preserved during the experiment and the initial value condition makes
explicit the original heating configuration.

This boundary value-initial value problem may be solved analytically to obtain
the explicit solution

R
u(z,t) = 5 + Z — sin %T Cos (nmv)e_(m)%t, 0<z<1, 0<{.
n=1

A graph for an approximation of this solution for z = 0 in terms of time is given in
Figure 8 and for = 1 in terms of time in Figure 9. A graph for an approximation
of the solution for ¢ = 0.1 in terms of z is given in Figure 10.

The experiment is then repeated over the initial condition depicted in Figure 11.
The plots depicting the energy in terms of time for the agents in positions 1,4,5 and
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Figure 8: Approximating the analytical solution u(0,t).
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Figure 9: Approximating the analytical solution u(1,t).
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Figure 10: Approximating the analytical solution u(z,0.1).

Figure 11: The half-heated square of the second experiment.
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Figure 12: The agent energy in terms of time for four of the agents in the second
experiment.

10 across the diagonal starting at the hottest and ending at the coldest corner are
shown in Figure 12. Finally, in Figure 13 are shown the spatial distributions of energy
among the 10 agents on the same diagonal every 5 time steps for the first 100 time
steps of the run.

8 Future Work: A Potential Business Application

The ideas used in the example above may also be successfully applicable in a busi-
ness related context. More specifically, we are dealing with the following setting. A
telecommunications company has a network of telephone lines that are used by its
customers. If too many of the customers try to place phone calls at the same time,
then the servers get overwhelmed by service requests and the calls cannot go through
causing frustration and dissatisfaction among the customers. On the other hand, if
too few of the customers place calls at the same time, then the lines are under-used
causing the company to lose money because of smaller usage than capacity. So, the
ideal situation for the phone company is to have usage always balanced to a volume
very close to the capacity of the network it is employing. What is required is to find
an advertisement strategy that will encourage users to call in areas where lines are
under-used and during low usage time periods and will discourage users from calling
in areas where the lines are used to capacity and during times when too many users
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Spatlal Distributlons Every 5 Time Steps
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Figure 13: The distribution of energy across the diagonal every 5 time steps until
time step 100.

are trying to get through, causing the load in the communications network to be close
or over capacity.

A PTAN that would potentially be of use in this setting would consist of users
and their interconnections as agents and their state would show whether they are
placing or not phone calls during a specific time step. The probabilities will have to
do with a statistical survey of how effective a specific advertisement strategy followed
by the phone company at a specific geographical area is. Based on the results of
the runs that will indicate what the company should expect in terms of loads in its
network, the company will have to modify or adjust its strategy to achieve the load
that optimizes the usage of the phone lines and, consequently, the company earnings.

A more detailed analysis of the usefulness of PTANs in modelling a realistic busi-
ness application and other similar applications will be the subject of a future, more
applied, research effort in this important simulation area.
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