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Many real world applications of ontologies call for reasoning with modular ontologies. We describe a tableau-
based reasoning algorithm based on Package-based Description Logics (P-DL), an ontology language that extends
description logics with language features to support modularity. Unlike classical approaches that assume a single
centralized, consistent ontology, the proposed algorithm adopts a federated approach to reasoning with modular
ontologies wherein each ontology module has associated with it, a local reasoner. The local reasoners communicate
with each other, as needed, in an asynchronous fashion. Hence, the proposed approach offers an attractive alternative
to reasoning with multiple, autonomously developed ontology modules, in settings where it is neither possible nor
desirable to integrate all involved modules into a single centralized ontology.
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1. Introduction

The success of the world wide web is, in large part, due to the network effect which leverages the
participation of independent contributors who publish the web pages that constitute the web. Unlike the
current web, which consists largely of web pages intended for human consumption, the semantic web
aims at making the information sources machine interpretable and resources and services interoperable
by annotating them using terms and relationships defined in controlled vocabularies or ontologies. Such
ontologies typically represent conceptualizations of entities and properties developed by individuals or
communities for use in a specific context. Consequently, such ontologies are autonomous, decentralized,
and offer necessarily incomplete, partially overlapping coverage of specific domains (e.g., biology, medicine,
pharmacology).

Effective use of web ontologies in practice requires support for inference across a loosely coupled fed-
eration of multiple, distributed, autonomous ontology modules, without having to combine the ontologies
in one location. Current web ontology languages such as OWL [18] and the associated reasoners (e.g.,
FaCT++ [26] and Pellet [22]) provide, at best, very limited capabilities in such a setting. For example,
an OWL ontology can “reuse” knowledge from another OWL ontology via the owl:imports construct.
When one ontology imports another, the result is a union of the two ontologies with a single domain of
interpretation. Inference in such a setting requires an integration of the relevant ontologies.

Because an OWL ontology can indirectly import knowledge from other OWL ontologies through ar-
bitrarily deep importing chains, which collectively constitute its importing transitive closure, querying a
small ontology might involve inference over a significant portion of the semantic web. This presents scala-
bility challenges in terms of memory, time, and bandwidth requirements. Ontologies with more than a few
tens of thousands of concepts are often beyond the capabilities of current reasoners [10].

The situation is further complicated in applications where no global knowledge of all ontology modules
is available. For example, in a peer-to-peer setting, that is not at all atypical of semantic web applications,

Web Intelligence and Agent Systems: An International Journal

ISSN 1570-1263, IOS Press. All rights reserved



2 J. Bao et al. / Distributed Reasoning with Modular Ontologies

each peer has access to only a subset of peers, namely, its local acquaintances [6]. In addition, many web
applications require the protection of private information in their ontologies; hence, those applications
only provide limited query interfaces instead of exposing their ontologies explicitly. In both scenarios,
integration of all ontologies is not possible.

In response to these needs, Package-based Description Logics (P-DL) [5] allows context-preserving knowl-
edge reuse between description logic ontologies connected by importing relations. This paper presents a
federated reasoning algorithm for P-DL ALCPC , that allows importing of concepts between ontologies,
which overcomes many of these limitations and offers several advantages over existing approaches. By
using distributed reasoning with localized P-DL semantics, the algorithm avoids combining the local on-
tology modules in a centralized memory space, thereby allowing local reasoning modules to operate in a
peer-to-peer fashion. The P-DL semantics also guarantees that the results of reasoning in the distributed
setting are identical to those obtainable by applying a reasoner to an ontology constructed by integrating
the different modules [5].

One reason for which description logics enjoy good computational properties, e.g., being robustly de-
cidable, is that they have the tree model property [27,12], i.e., if the ontology in question is consistent, it
has at least one model which has a tree-shaped relational structure. Hence, a tableau algorithm for DL
may decide the consistency of an ontology by searching for the existence of such a tree-shaped model, or a
completion graph1. P-DL, as an extension of DL, still enjoys the tree-model property, but in a distributed
fashion. If a P-DL ontology is consistent, it has a distributed model such that each local model (tableau) of
it (for a component module of the ontology) is a forest, and all those local models can be seen as fragments
of a conceptual, tree-shaped “global model”. The P-DL tableau algorithm is motivated by the desire to
discover such a model using a federation of local reasoners, each maintaining a local tableau, by message
exchanging between those reasoners.

In this paper, we focus on algorithmic design rather than on implementation details. The latter may
include the communication protocols between the local reasoners and aspects of the process of synchro-
nization and backtracking, such as, e.g., handshaking and acknowledgement protocols, remembering of
previous choices, dependency between choices and the token passing protocol. We leave those details to
the implementation of the algorithm, that is expected to be influenced by experimental studies for best
performance. Some of those techniques have already been applied in popular DL reasoners, e.g., Pellet [22].

The rest of the paper is organized as follows. Section 2 briefly reviews the syntax and semantics of
P-DL and the basic tableau algorithm for the description logic ALC. Section 3 presents the tableau data
structure for ALCPC . In Section 4, the reasoning algorithm for modular ontologies with acyclic importing
is presented. Section 5 extends this algorithm to cover modular ontologies with cyclic importing. In Section
6, related work is discussed and, finally, Section 7 concludes with a summary.

2. Preliminaries

We start by briefly reviewing the syntax and semantics of ALCPC [4] and the tableau algorithm for
ALC. We assume that the reader is familiar with the basic theory of description logics.

2.1. ALCPC

Informally, a package in ALCPC can be viewed as an extended ALC TBox. We define the signature
Sig(Pi) of a package Pi as the set of names used in Pi. Sig(Pi) is the disjoint union of the set of concept
names NCi and the set of role names NRi, used in package Pi.

The set of ALCPC concepts in Pi is defined inductively by the following grammar:

C := A|¬kC|C ⊓ C|C ⊔ C|∀R.C|∃R.C

1In some expressive DLs, such as the ones with transitive roles, the completion graph is a tree-shaped skeleton of a model
from which the model can be reconstructed. In DLs with nominals, the completion graph may not be a tree but a forest.
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where A ∈ NCi, R ∈ NRi; ¬kC denotes the contextualized negation of concept C w.r.t. Pk. For any k and
k-concept name C, ⊤k = ¬kC ⊔ C, and ⊥ = ¬kC ⊓ C. Thus, there is no universal top concept (⊤) or
global negation (¬). Instead, we have, for each package Pk, a contextualized top ⊤k and a contextualized
negation ¬k. This allows a logical formula in P-DL, including ALCPC , to be interpreted within the context
of a specific package.

A general concept inclusion (GCI) axiom in Pi is an expression of the form C ⊑ D, where C,D are
concepts in Pi. Thus, formally, a package Pi in ALCPC is the set of all GCIs in Pi, i.e., its TBox Ti. An
ALCPC ontology Σ is a set of packages {Pi}. We assume that every name used in an ALCPC ontology Σ
has a home package in Σ.

The signature Sig(Pi) of package Pi is divided into two disjoint parts: its local signature Loc(Pi) and
its external signature Ext(Pi). For all t ∈ Loc(Pi), Pi is the home package of t, denoted by Pi = Home(t),
and t is called an i-name; more specifically, an i-concept name or an i-role name. If a concept name

t ∈ Loc(Pj)∩ Ext(Pi), i 6= j, we say that Pi imports t and denote it as Pj
t
−→ Pi. If any local name of Pj is

imported into Pi or ¬j is used in Pi, we say that Pi imports Pj and denote it by Pj 7→ Pi.
The importing transitive closure of a package Pi, denoted by P+

i , is the set of all packages that are
directly or indirectly imported by Pi. Let P ∗

i = {Pi} ∪ P+
i . An ALCPC ontology Σ = {Pi} has an acyclic

importing relation if, for all i 6= j, Pj ∈ P+
i → Pi 6∈ P+

j ; otherwise, it has a cyclic importing relation. We

denote by ALCP−
C a restricted type of ALCPC , namely, that with acyclic importing.

A concept C is understandable by a package Pi if each name occurring in C has a home package in P ∗
i

and for each k-negation occurring in C, Pk 7→ Pi.
An ALCPC ontology has localized semantics in the sense that each package has its own local inter-

pretation domain. Formally, for an ALCPC ontology Σ = {Pi}, a distributed interpretation is a tu-
ple I = 〈{Ii}, {rij}Pi∈P

+
j
〉, where Ii is the local interpretation of package Pi, with domain ∆Ii , and

rij ⊆ ∆Ii × ∆Ij is the (image) domain relation for the interpretation of the direct or indirect importing
relation from Pi to Pj . For convenience, we use rii = {(x, x)|x ∈ ∆Ii} to denote the identity mapping on
the local domain ∆Ii .

Given i, j, such that Pi ∈ P ∗
j , define:

rij(A) = {y ∈ ∆Ij |∃x ∈ A, (x, y) ∈ rij}, for every A ⊆ ∆Ii .

Moreover, let ρ be the equivalence relation on
⋃

i ∆Ii generated by the collection of all domain relations,
i.e., the symmetric and transitive closure of the set

⋃

Pi∈P∗
j

rij . For every i, j such that Pi ∈ P ∗
j , ρij =

ρ ∩ (∆Ii × ∆Ij ).
Each of the local interpretations Ii = 〈∆Ii , ·Ii〉 consists of a domain ∆Ii and an interpretation function

·Ii , which maps every concept name to a subset of ∆Ii and every role name to a subset of ∆Ii ×∆Ii , such
that the following equations are satisfied, where R is an i-role name and C,D are concepts:

(C ⊓ D)Ii = CIi ∩ DIi

(C ⊔ D)Ii = CIi ∪ DIi

(¬jC)Ii = rji(∆
Ij )\CIi

(∃R.C)Ii = {x ∈ ∆Ii |(∃y ∈ ∆Ii)((x, y) ∈ RIi ∧ y ∈ CIi)}

(∀R.C)Ii = {x ∈ ∆Ii |(∀y ∈ ∆Ii)((x, y) ∈ RIi → y ∈ CIi)}

Note that, when i = j, (¬jC)Ii reduces to the usual negation (¬iC)Ii = ∆Ii\CIi .
A local interpretation Ii is said to satisfy a GCI C ⊑ D if CIi ⊆ DIi . Ii is called a model of Pi, denoted

by Ii ² Pi, if it satisfies all axioms in Pi.

Definition 1 An interpretation I = 〈{Ii}, {rij}Pi∈P∗
j
〉 is a model of an ALCPC KB Σ = {Pi}, denoted by

I ² Σ, if the following conditions are satisfied.

1. For all i, j, rij is one-to-one, i.e., it is an injective partial function;
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2. Compositional Consistency: For all i, j, k, i 6= j, s.t. Pi ∈ P ∗
k and Pk ∈ P ∗

j , we have ρij = rij =
rkj ◦ rik;

3. For every i-concept name C that appears in Pj, we have rij(C
Ii) = CIj ;

4. Ii ² Pi, for every i.

Note that if Pj 6∈ P ∗
i , rji does not exist even if rij exists. Moreover, we have that rij = r−ji if Pi and Pj

mutually import one another. Also note that rij may not be a total function.

Definition 2 An ontology Σ is consistent as witnessed by a package Pi of Σ if P ∗
i has a model I =

〈{Ii}, {rij}Pi∈P
+
j
〉, such that ∆Ii 6= ∅. A concept C is satisfiable as witnessed by Pi if there is a model of

P ∗
i , such that CIi 6= ∅. A concept subsumption C ⊑ D is valid as witnessed by Pi, denoted by C ⊑i D, if

for every model of P ∗
i , CIi ⊆ DIi . We use C ≡j D as the abbreviation of C ⊑j D and D ⊑j D.

Hence, in ALCPC , consistency, satisfiability and subsumption problems are always answered from the
local point of view of a witness package, and it is possible for different packages to draw different conclusions
from their own points of view.

2.2. Tableau Algorithm for ALC

Modern description logics exploit tableau algorithms [3] for deciding concept satisfiability with respect
to (w.r.t.) a knowledge base. For an ALC ontology O and an ALC-concept C, a tableau algorithm will
construct a common model for both O and C. If one such model, represented as a completion graph, is
found, C is satisfiable w.r.t. O, otherwise C is unsatisfiable w.r.t. O.

Before the reasoning process starts, the concepts in O and C should be transformed into Negation Normal
Form (NNF), i.e., with negation only occurring in front of concept names, using the following rewriting
rules:

¬¬C ≡ C ¬(C ⊓ D) ≡ ¬C ⊔ ¬D

¬(C ⊔ D) ≡ ¬C ⊓ ¬D ¬∃R.C ≡ ∀R.¬C

¬∀R.C ≡ ∃R.¬C

Reasoning w.r.t. a TBox T can be reduced to reasoning w.r.t. an empty TBox with the internalization
technique. Given T , a concept CT is defined as CT = ⊓

(Ci⊑Di)∈T
(¬Ci ⊔Di). Any individual x in any model

of T will be an instance of CT .
A completion graph or a tableau T = 〈V,E,L〉 for ALC is a tree, where V is the node set, E is the edge

set and L is a function that assigns a label to each node and each edge. Each node x in the tree represents
an individual in the domain of the model and its label L(x) contains all concepts of which x is an instance.
Each edge 〈x, y〉, on the other hand, represents a set of role instances in the model and its label L(〈x, y〉)
contains the names of the roles of which 〈x, y〉 is an instance. If R ∈ L(〈x, y〉), y is an R-successor of x.
An ALC-tableau satisfies the following conditions:

(A0) for every x ∈ V , CT ∈ L(x);
(A1) if C ∈ L(x), then ¬C 6∈ L(x);
(A2) if C1 ⊓ C2 ∈ L(x), then C1 ∈ L(x) and C2 ∈ L(x);
(A3) if C1 ⊔ C2 ∈ L(x), then C1 ∈ L(x) or C2 ∈ L(x);
(A4) if ∀R.C ∈ L(x) and R ∈ L(〈x, y〉), then C ∈ L(y);
(A5) if ∃R.C ∈ L(x), then, there exists y ∈ V , such that R ∈ L(〈x, y〉) and C ∈ L(y).

Given a concept C and a TBox T , the tableau is a tree expanded from an initial root node x0, with
L(x0) = C ⊓ CT , using the following expansion rules:

– CE-rule: if CT 6∈ L(x), then L(x) = L(x) ∪ {CT };
– ⊓-rule: if C1 ⊓ C2 ∈ L(x), x is not blocked, {C1, C2} 6⊆ L(x), then L(x) = L(x) ∪ {C1, C2};
– ⊔-rule: if C1 ⊔ C2 ∈ L(x), x is not blocked, {C1, C2} ∩ L(x) = ∅, then L(x) = L(x) ∪ {C1} or
L(x) = L(x) ∪ {C2};
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– ∃-rule: if ∃R.C ∈ L(x), x is not blocked, and x has no R-successor y with C ∈ L(y), then create a

new node y with L(〈x, y〉) = {R} and L(y) = {C};
– ∀-rule: if ∀R.C ∈ L(x), x is not blocked, and there is an R-successor y of x with C 6∈ L(y), then
L(y) = L(y) ∪ {C}.

To ensure termination, a node can be blocked with the subset blocking strategy: for any node x, if there
is an ancestor node y of x in the tree, and L(x) ⊆ L(y), x is blocked. No expansion rule will be applied to

a blocked node.

An ALC tableau contains a clash if {C,¬C} ⊆ L(x) for some node x and concept C. A tableau is
consistent if it contains no clash, and is complete if no expansion rule can be applied. The given concept

is satisfiable if and only if the algorithm finds a consistent and complete tableau.

3. A Tableau for ALCPC

We first introduce the notion of tableau for ALCPC .

Before the reasoning process starts, all concepts are converted into negation normal form (NNF), i.e.,
a form in which negation only occurs before concept names, including local “tops”, and there are only

j-negations in a package Pj . We use ¬̇iC to denote the NNF of ¬iC. We can transform formulae in Pj into

NNF by applying the following rules:

¬i(¬kD) ⇒ ⊤i ⊓ (D ⊔ ¬i⊤k) ¬iC ⇒ ⊤i ⊓ ¬jC, where C is a concept name or a local top,
¬i(C1 ⊓ C2) ⇒ ¬iC1 ⊔ ¬iC2 ¬i(C1 ⊔ C2) ⇒ ¬iC1 ⊓ ¬iC2

¬i∃R.D ⇒ ⊤i ⊓ ∀R.¬jD, ¬i∀R.D ⇒ ⊤i ⊓ ∃R.¬jD

¬i⊥ ⇒ ⊤i ¬i⊤i ⇒ ⊥

Lemma 1 For any concept C in a package Pj and for any i such that Pi 7→ Pj, ¬̇iC ≡j ¬iC.

Proof: The statement is obvious if C = ⊤i or C = ⊥. For any model I of P ∗
j , we have:

– if C is a concept name or a local top concept, (¬̇iC)Ij = (⊤i ⊓ (¬jC))Ij = rij(∆
Ii) ∩ ∆Ij\CIj =

rij(∆
Ii)\CIj = (¬iC)Ij ;

– if C = ¬kD, then

(¬̇iC)Ij = (⊤i ⊓ (D ⊔ ¬i⊤k))Ij (by NNF transformation rules)

= ⊤
Ij

i ∩ (DIj ∪ (¬i⊤k)Ij ) (by the definition of ·Ij )
= rij(∆

Ii) ∩ (DIj ∪ (rij(∆
Ii)\rkj(∆

Ik))) (by the definition of I)
= (rij(∆

Ii)\(rkj(∆
Ik)\DIj )) (set-theorectically)

= (¬i(¬kD))Ij (by the definition of ·Ij )
= (¬iC)Ij ; (since C = ¬kD)

– if C = C1 ⊓ C2, then

(¬̇iC)Ij = (¬iC1 ⊔ ¬iC2)
Ij (by NNF transformation rules)

= (rij(∆
Ii)\C

Ij

1 ) ∪ (rij(∆
Ii)\C

Ij

2 ) (by the definition of ·Ij )

= rij(∆
Ii)\(C

Ij

1 ∩ C
Ij

2 ) (set-theorectically)
= (¬i(C1 ⊓ C2))

Ij (by the definition of ·Ij )
= (¬iC)Ij ; (since C = C1 ⊓ C2)

– if C = C1 ⊔ C2, the proof is similar;

– if C = ∃R.D, then
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(¬̇iC)Ij = (⊤i ⊓ ∀R.¬jD)Ij (by NNF transformation rules)
= {x ∈ rij(∆

Ii) ∩ ∆Ij |(∀y ∈ ∆Ij )((x, y) ∈ RIj → y ∈ (¬jD)Ij )} (by the definition of ·Ij )
= {x ∈ rij(∆

Ii)|(∀y ∈ ∆Ij )((x, y) ∈ RIj → y 6∈ DIj )} (by the definition of ·Ij )
= rij(∆

Ii)\{x ∈ ∆Ij |(∃y ∈ ∆Ij )((x, y) ∈ RIj ∧ y ∈ DIj )} (set-theorectically)
= (¬i(∃R.D))Ij (by the definition of ·Ij )
= (¬iC)Ij ; (since C = ∃R.C)

– if C = ∀R.D, the proof is similar to the previous case.

Hence, (¬̇iC)Ij = (¬iC)Ij holds, for every model I of P ∗
j , whence ¬̇iC ≡j ¬iC. Q.E.D.

The main idea behind the ALCPC tableau algorithm is to construct multiple, federated local tableaux
using only knowledge locally available to each module, instead of creating a single tableau using the inte-
grated ontology resulting by combining all those modules. A set of messages will be exchanged between the
local modules to connect the local tableaux by creating partial correspondences between them. Formally,
we have:

Definition 3 The set of subconcepts sub(C) of an ALCPC concept C in NNF is inductively defined by:

sub(A) = {A}, for a concept name , including a local top concept, or its negation A

sub(C ⊓ D) = {C ⊓ D} ∪ sub(C) ∪ sub(D)

sub(C ⊔ D) = {C ⊔ D} ∪ sub(C) ∪ sub(D)

sub(∃R.C) = {∃R.C} ∪ sub(C)

sub(∀R.C) = {∀R.C} ∪ sub(C)

For every package Pi, we define CTi
= ⊓

(C⊑D)∈Ti

(¬̇iC ⊔ D).

Definition 4 Let Pw be a witness package and D be an ALCPC-concept in NNF w.r.t. Pw, such that D is
understandable by Pw. A distributed tableau for D w.r.t. Pw is a tuple T = 〈{Ti}, {tij}Pi∈P

+
j
〉, where each

Ti is a local tableau, for Pi ∈ P ∗
w, and tij is the tableau relation from a local tableau Ti to a local tableau

Tj. Each local tableau is a tuple Ti = (Si,Li, Ei), where

– Si is a set of individuals,
– Lw : Sw → 2sub(D)∪sub(CTw ) and Li : Si → 2sub(CTi

), i 6= w, map individuals to corresponding sets of
concepts,

– Ei : NRi → 2Si×Si maps roles to the corresponding sets of pairs of individuals.

Each tableau relation tij is a subset of Si × Sj. Let ρt be the symmetric and transitive closure of the set
⋃

Pi∈P∗
j

tij. And, for all i, j, such that Pi ∈ P ∗
j , set ρt

ij = ρt ∩ (Si × Sj).

The distributed tableau T should satisfy the following conditions:

(E) there exists x ∈ Sw, such that D ∈ Lw(x);
(A0) for every x ∈ Si, CTi

∈ Li(x);
(A1) if C ∈ Li(x), then ¬iC 6∈ Li(x);
(A2) if C1 ⊓ C2 ∈ Li(x), then C1 ∈ Li(x) and C2 ∈ Li(x);
(A3) if C1 ⊔ C2 ∈ Li(x), then C1 ∈ Li(x) or C2 ∈ Li(x);
(A4) if ∀R.C ∈ Li(x) and 〈x, y〉 ∈ Ei(R), then C ∈ Li(y);
(A5) if ∃R.C ∈ Li(x), then, there exists y ∈ Si, such that 〈x, y〉 ∈ Ei(R) and C ∈ Li(y);
(B1) tij is a one-to-one partial function, for all i, j;
(B2) ρt

ij = tij = tkj ◦ tik for all i, j, k, i 6= j, such that Pi ∈ P ∗
k and Pk ∈ P ∗

j ;
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(B3) if C is an i-concept name, Pi
C
−→ Pj , i 6= j, then

(∀x′ ∈ Sj)((∃x ∈ Si)(〈x, x′〉 ∈ tij and C ∈ Li(x)) iff C ∈ Lj(x
′));

Explanation: Conditions (A0)-(A5) are similar to the ones used in the tableau definition of ALC [16].
Intuitively, Conditions (B1) and (B2) ensure that domain relations are one-to-one and compositionally
consistent. On the other hand, Condition (B3) ensures that rij(C

Ii) = CIj , for any concept name C.
It should be noted that the correspondence of individuals across multiple local tableaux is only partial.

Some individuals in a local tableau may not be connected to any individuals in another local tableau.
This conforms with the localized semantics of P-DL stipulating that each ontology module has its own
interpretation domain.

The following lemma establishes the correspondence between concept satisfiability, hence, also between
TBox consistency and concept subsumption, and the existence of a tableau for that concept in ALCPC :

Lemma 2 Let D be an ALCPC concept that is understandable by an ALCPC package Pw. Then D is
satisfiable as witnessed by Pw iff D has a distributed tableau w.r.t. Pw.

Proof: For the “if” direction, suppose that 〈{Ti}, {tij}Pi∈P
+
j
〉, with Ti = (Si,Li, Ei), is a tableau for D

w.r.t. P ∗
w. Then, a model I = 〈{Ii}, {rij}Pi∈P

+
j
〉 of P ∗

w may be defined as follows:

∆Ii = Si;

AIi = {x|A ∈ Li(x)}, for every concept name A;

RIi = Ei(R), for every i-role name R;

rij = tij .

By using induction on the structure of concepts, we show that

C ∈ Li(x) implies x ∈ CIi . (1)

– If C is a concept name, then the statement follows by the definition of CIi .
– If C = ¬iE, where E is a concept name, then, by Property (A1) of the tableau, E 6∈ Li(x), whence,

by the definition of EIi , x 6∈ EIi and, hence, x ∈ ∆Ii\EIi = CIi .
– If C = C1 ⊓ C2, then, by Property (A2), C1 ∈ Li(x) and C2 ∈ Li(x), whence, by the induction

hypothesis, x ∈ CIi

1 and x ∈ CIi

2 and, therefore, x ∈ (C1 ⊓ C2)
Ii .

– The case C = C1 ⊔ C2 may be handled similarly.
– If C = ∀R.E and 〈x, y〉 ∈ RIi , then 〈x, y〉 ∈ Ei(R) and, by Property (A4), E ∈ Li(y), whence, by the

induction hypothesis, y ∈ EIi and, hence, x ∈ (∀R.E)Ii .
– If C = ∃R.E, then, by Property (A5), there exists y ∈ Si, such that 〈x, y〉 ∈ Ei(R) and E ∈ Li(y),

whence, by definition, 〈x, y〉 ∈ RIi and, by the induction hypothesis, y ∈ EIi , and, therefore, x ∈
(∃R.E)Ii .

Next, using Implication (1), it is shown that all ALCPC restrictions on domain relations are satisfied.

– First, DIw is not empty, since there exists, by hypothesis, x ∈ Sw, such that D ∈ Lw(x).
– The image domain relations rij are one-to-one and compositionally consistent by tableau Properties

(B1) and (B2).

– For every concept importing Pi
C
−→ Pj , where C is an i-concept name, we have rij(C

Ii) = CIj , by
Property (B3).

– For every Pi ∈ P ∗
w, every axiom C ⊑ D ∈ Pi and every individual x ∈ Si, we have, using tableau

Properties (A0) and (A2), that ¬iC ⊔ D ∈ Li(x). Thus, by Property (A3), either ¬iC ∈ Li(x) or
D ∈ Li(x). Hence, by Implication (1), x 6∈ CIi or x ∈ DIi , whence CIi ⊆ DIi , and, therefore, Ii |= Pi.
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For the “only if” direction, if I = 〈{Ii}, {rij}Pi∈P
+
j
〉 is a model of P ∗

w, with CIw 6= ∅, then a tableau

T = 〈{Ti}, {tij}Pi∈P
+
j
〉 for P ∗

w may be defined as follows:

Si = ∆Ii ;

Li(x) = {C ∈ sub(CTi
)|x ∈ CIi}, x ∈ ∆Ii , i 6= w;

Lw(x) = {C ∈ sub(D) ∪ sub(CTw
)|x ∈ CIw}, x ∈ ∆Iw ;

Ei(R) = RIi ;

tij = rij .

We now verify that T is indeed a tableau for D w.r.t. Pw, i.e., that it satisfies all conditions in Definition
2:

– (E): Since CIw 6= ∅, there exists x ∈ Sw, such that C ∈ Lw(x).
– (A0): Since Ii is a model of Pi, we have, for every x ∈ Si, x ∈ CIi

Ti
, whence CTi

∈ Li(x).

– (A1): If C ∈ Li(x), then x ∈ CIi , whence x 6∈ (¬iC)Ii = ∆Ii\CIi , and, hence, ¬iC 6∈ Li(x).
– (A2): If C1 ⊓ C2 ∈ Li(x), then x ∈ (C1 ⊓ C2)

Ii = CIi

1 ∩ CIi

2 , hence C1 ∈ Li(x) and C2 ∈ Li(x).
– (A3): The proof is similar to the previous one.
– (A4): If ∀R.C ∈ Li(x) and 〈x, y〉 ∈ Ei(R), we have x ∈ (∀R.C)Ii and 〈x, y〉 ∈ RIi , whence, according

to the semantics of ∀R.C, y ∈ CIi and, hence, C ∈ Li(y).
– (A5): If ∃R.C ∈ Li(x), then there exists y ∈ ∆Ii = Si, such that 〈x, y〉 ∈ RIi = Ei(R) and y ∈ CIi ,

whence C ∈ Li(y).
– (B1): tij = rij must be a one-to-one partial function, for all i, j.
– (B2): By the compositional consistency of the rij , we have, for all i, j, k, i 6= j, such that Pi ∈ P ∗

k and
Pk ∈ P ∗

j , that ρij = rij = rkj ◦ rik, whence, by the definition of {tij}, we have ρt
ij = tij = tkj ◦ tik.

– (B3): If C is an i-concept name, Pi
C
−→ Pj , j 6= i, then rij(C

Ii) = CIj , whence, since tij = rij ,
(∀x′ ∈ Sj)((∃x ∈ Si)(〈x, x′〉 ∈ tij and C ∈ Li(x)) iff C ∈ Lj(x

′)).

Q.E.D.

4. A Tableau Algorithm for ALCP−
C

We now proceed to describe a sound and complete algorithm to determine the existence of a tableau
for an ALCPC concept w.r.t. a witness package. We start with the special case in which there is only
acyclic importing between packages, i.e., ALCP−

C . The algorithm allows each local tableau to be created
and maintained by a local reasoner. Thus, reasoning is carried out by a federation of reasoners that
communicate with each other via messages instead of a single reasoner over an integrated ontology.

4.1. Distributed Completion Graph

The algorithm works on a distributed completion graph, which is a partial finite description of a tableau.
A distributed completion graph is G = {Gi}, where {Gi} is a set of local completion graphs. Each local
completion graph Gi = 〈Vi, Ei,Li〉 consists of a finite set of finite trees, i.e., a forest, where Vi and Ei are
the corresponding sets of nodes and edges respectively, and of a function Li, that assigns labels to nodes
and edges in Gi. Each node x in Vi represents an individual in the corresponding tableau, denoted as i : x,
and is labeled with Li(x), a set of concepts of which x is a member. Each edge 〈x, y〉 ∈ Ei represents a set
of role memberships in the tableau, and is labeled with Li(〈x, y〉), the corresponding set of role names.

If R ∈ Li(〈x, y〉), y is said to be a local R-successor of x and x is said to be a local R-predecessor of y.
Local ancestors and local descendants of a node are defined in the usual manner.
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Every node x has associated with it a node origin(x), which, informally speaking, is the “original” node
from which x is “copied”. If origin(i : x) = origin(j : y) and Pi ∈ P+

j , we say that node y in Gj is an

image of node x in Gi, denoted by y = xi→j , that node x is a pre-image of y, denoted by x = yi←j , and
that there is a graph relation 〈x, y〉.2

A typical distributed completion graph is shown in Figure 1. Dotted edges in the graph represent graph
relations. If we merge nodes of the same origin, all local graphs may, in fact, be merged into a tree-shaped
global graph. Tree(s) in a local graph are fragments of the corresponding (virtual) global tree. In fact, the
virtual global tree represents a conceptual model for the ontology resulting by integrating all modules.

Fig. 1. ALCP
−
C Distributed Tableaux Example

4.2. Distributed Tableau Expansion

A distributed ALCP−
C completion graph is constructed by applying a set of tableau expansion rules

and by exchanging messages between local reasoners. The ALCP−
C expansion rules are adapted from the

ALC expansion rules (see Section 2.2) as follows: Each module is only locally internalized, instead of being
globally internalized with respect to a combined TBox. A local completion graph can create “copies” of
its local nodes in another local completion graph, as needed, during an expansion.

A concept reporting message propagates concept labels of a node to the corresponding image node or
pre-image node. We use S+= X to denote the operation of adding the elements of the set X to a set S,
i.e., the operation S = S ∪ X. Using this notation, we have:

– A forward concept reporting message ri→j(x,C) executes the following action: if there is a node
x′ ∈ Vj , such that origin(x) = origin(x′) and C 6∈ Lj(x

′), then Lj(x
′)+= {C}.

– A backward concept reporting message rj←i(x,C) executes the following actions: if there is a node
x′ ∈ Vj , such that origin(x) = origin(x′), then do Lj(x

′)+= {C} if C 6∈ Lj(x
′) and C 6= ⊤j ; else

create a node x′ in Vj with origin(x′) = origin(x), and do Lj(x
′)+= {C} if C 6= ⊤j .

Some nodes in the graph may be blocked, as will be explained later. The expansion rules are:

– CE-rule: if CTi
6∈ Li(x), then Li(x)+= CTi

.

2Sometimes we use the same name with different prefixes for two nodes to indicate that they have the same origin, e.g.,
i : x and j : x means origin(i : x) = origin(j : x). We may omit the prefix when it is clear from the context.
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– ⊓-rule: if C1 ⊓ C2 ∈ Li(x), x is not blocked, and {C1, C2} 6⊆ Li(x), then Li(x)+= {C1, C2}.
– ⊔-rule: if C1 ⊔ C2 ∈ Li(x), x is not blocked, and {C1, C2} ∩ Li(x) = ∅, then Li(x)+= {C} for some

C ∈ {C1, C2}.
– ∃-rule: if ∃R.C ∈ Li(x), x is not blocked and x has no local R-successor y of x in Gi with C ∈ Li(y),

then create a new node y with orgin(y) = y, Li(〈x, y〉) = {R} and Li(y) = {C}.
– ∀-rule: if ∀R.C ∈ Li(x), x is not blocked and there is a local R-successor y of x in Gi with C 6∈ Li(y),

then Li(y)+= {C}.

– CPush-rule: if C ∈ Li(x), where C is an i-concept name, with Pi
C
−→ Pj , x is not blocked and there

exists an x′ = xi→j ∈ Vj , such that x′ is not blocked, with C 6∈ Lj(x
′), then transmit ri→j(x,C).

– CReport-rule: if C ∈ Li(x), where C is ⊤j or a j-concept name, x is not blocked and xj←i does not
exist or (x′ = xj←i exists, x′ is not blocked and C 6∈ Lj(x

′)), then transmit rj←i(x,C).
– r-rule: if origin(i : x) = origin(j : x′), x, x′ are not blocked, and there exists k such that Pi ∈ P+

k ,
Pk ∈ P+

j and there is no k : x′′ with origin(j : x′) = origin(k : x′′), then transmit rk←j(x′,⊤k).

Explanation: The ⊓-, ⊔-, ∃-, ∀- and CE- rules are adaptations of the corresponding ALC expansion
rules. The r-rule serves to ensure the compositional consistency of domain relations according to tableau
Property (B2). The CPush- and CReport- rules are introduced to ensure rij(C

Ii) = CIj , for every i-concept
name C, according to tableau Property (B3). The reader will get an even better feeling for the adoption
of these rules while studying the soundness and completeness lemmas for the distributed algorithm, that
will be presented later.

A distributed completion graph is complete if no ALCP−
C expansion rule can be applied to it, and it is

clash-free if there is no x in any local completion graph Gi, such that both C and ¬iC are in Li(x), for
some concept C.

For a satisfiability query of a concept C as witnessed by a package Pw, where C is understandable by
Pw, a local completion graph Gw, with an initial node x0, such that origin(x0) = x0 and Lw(x0) = {C},
will be created first. The ALCP−

C tableau expansion rules will be applied until a complete and clash-free
distributed completion graph is found or until all search efforts for such a distributed completion graph
fail.

4.3. Blocking and Backtracking

When only acyclic importing among packages is considered, the termination and correctness of the
algorithm can be obtained by using subset blocking and token passing.

Subset blocking has been applied in the ALC tableau algorithm [3]. The motivation behind subset
blocking is the detection of cycles in tableau expansions. Formally, we have:

Definition 5 (Subset Blocking) For a distributed completion graph of an ALCP−
C ontology, a node x is

directly blocked by a node y, if both x and y are in the same local completion graph Gi, for some i, y

is a local ancestor of x, and Li(x) ⊆ Li(y). Node x is indirectly blocked by a node y if one of x’s local
ancestors is directly blocked by y. Node x is blocked by y if it is directly or indirectly blocked by y.

Subset blocking in ALCP−
C only depends on the local information in completion graphs, i.e., a local

completion graph determines blocking regardless of whether a node has any image or preimage nodes in
any other local completion graphs and irrespective of the labels of those nodes. Thus, a node is blocked
only by its local ancestors. As we will show in Example 4, subset blocking is required to guarantee the
correctness of reasoning.

Token passing is used to coordinate expansions in different local completion graphs, as illustrated by
the following example.

Example 1 : Suppose we have two packages:
P1 : {⊤1 ⊑ (2 : D3),⊤1 ⊑ ((2 : D1) ⊓ ∃(1 : R).(1 : C) ⊓ ∀(1 : R).(¬1(1 : C))) ⊔ ¬1(2 : D2)}
P2 : {(2 : D1) ⊑ (2 : D2)}
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The reasoning task is to check the consistency of P1. Figure 2 (a) and (b) show the running of ALCP−
C

tableau expansions in one scenario, which will be referred to as Scenario 1. In (a), we first apply the CE-rule
and ⊓-rule, adding D3 into L1(x), which results in the firing of the CPeport-rule, the message r2←1(x,D3)
and the creation of x′. Next, due to the CE- and ⊔-rule, we may choose adding D1 ⊓∃R.C ⊓∀R.¬1C into
L1(x), which leads to a reporting message r2←1(x,D1). Further applying expansion in G1, we will generate
node y and find a clash in L1(y).

In Figure 2 (b), due to the clash, we will restore the status of node 1 : x, as it had been before the
choice in the ⊔-rule was made, and try the next choice, i.e., adding ¬1D2 into L1(x). In the meantime,
local completion graph G2 may apply the CE- and ⊔-rules and add D2 into L2(x

′). Since, by a domain
relation that was established before the clash in Phase 1, x is an image node of x′ and P1 imports D2, G2

will apply the CPush-rule and send the message r2→1(x′,D2), which will lead to a clash in L1(x). Hence,
according to Scenario 1, we may assert that P1 is not consistent since all choices in the tableau expansion
of G1 lead to clashes.

However, Figure 2 (c) shows another expansion scenario, which will be referred to as Scenario 2, that
finds a consistent distributed completion graph. Hence, P1 is actually consistent.

G1

R

x

y

L1(x) = {D3, (D1 ⊓ ∃R.C...

... ⊓ ∀R.¬1C) ⊔ ¬1D2,

D1 ⊓ ∃R.C ⊓ ∀R.¬1C, D1,

∃R.C, ∀R.¬1C}

L1(y) = {C, ¬1C}

G2

x′ L2(x′) = {D3, D1}

r(x, D3)

r(x, D1)

(a) Scenario 1, Phase 1

G1

xL1(x) = {(D1 ⊓ ∃R.C ⊓ ∀R.¬1C)...

... ⊔ ¬1D2, D3, ¬1D2, D2}

G2

x′ L2(x′) = {D3, D1,

¬2D1 ⊔ D2, D2}r(x′, D2)

(b) Scenario 1, Phase 2

G1

xL1(x) = {(D1 ⊓ ∃R.C ⊓ ∀R.¬1C)...

... ⊔ ¬1D2, D3, ¬1D2}}

G2

x′ L2(x′) = {D3,

¬2D1 ⊔ D2, ¬2D1}r(x, D3)

(c) Scenario 2

Fig. 2. The Need for Token Blocking

The problem with Scenario 1 in Example 1 is caused by the asynchronous operation of the different local
reasoners. The message r2→1(x′,D2) in Phase 2 is in fact a consequence of the choice of adding D1⊓∃R.C⊓
∀R.¬1C into L1(x) and the subsequent message r2←1(x,D1) in Phase 1. However, since local reasoners run
autonomously and communication between them may be delayed, as it relies on network conditions, when
the message r2→1(x′,D2) arrives at G1, the previous choice, in which r2←1(x,D1) was sent, has already
been abandoned. Thus, the clash arising in Phase 1 is a false one, since it mixes consequences of different
choices during the tableau expansion.
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To avoid such problems, we resort to the techniques of token passing and of clocks in order to synchronize
the creation of the local completion graphs by the local reasoners. The basic idea is to coordinate the
expansion of all local completion graphs in such a way that, at any time, all node and edge labels in all
local completion graphs always belong to the same sequence of non-deterministic choices.

Definition 6 (Local Clocks) Clocks of local completion graphs are maintained in the following way:

– Every local completion graph Gi has a local clock Ki of integer type, initialized to 0.
– For every concept label C in Li(x) where x is a node in Gi, there is a timestamp ti(x,C) of integer

type. Informally speaking, this time stamp records the clock value of the last choice in the application
of the ⊔-rule before C was added into Li(x), possibly in another local completion graph.

– For every role label R in Li(〈x, y〉), where 〈x, y〉 is an edge in Gi, there is a timestamp ti(x, 〈x, y〉) of
integer type.

– If a reporting message ri→j(x,C) or rj←i(x,C) is sent, tj(j : x,C) will be the same as ti(i : x,C) and
Kj = max{Kj , ti(i : x,C)};

– When a new label is added in Gi by an application of CE-, ⊓-, ∀- or ∃- rules, its timestamp will be
the value of the clock Ki;

– When a new concept label is added in Gi by an application of the ⊔- rule, the clock Ki is increased by
1 and the label’s timestamp is set to be the new value of the clock Ki.

Definition 7 (Token and Backtracking) A token T is passed between local completion graphs. It is originally
assigned to the local completion graph of the witness package. Only the local completion graph that has T

can apply the ⊔-rule. A local completion graph whose clock value is no smaller than the clock value of any
other local completion graph is a token target. We require that 1) T only stays at a token target; 2) if Gi

has T and Gi is complete, then T is transferred to a token target that is not complete.3

A node x in Gi is said to have a t-clash if both C and ¬iC are in Li(x), for some concept C, and
t = max{ti(x,C), ti(x,¬iC)}.

A distributed completion graph is said to be synchronized if 1) all concept report messages have arrived
at targets; and 2) all local completion graphs have stopped expansion.

A pruning operation Prune(t) (where t is the timestamp parameter) in Gi does the following:

– Removes all concept and role labels in Gi with timestamp ≥ t.
– Removes every node with empty label set and its incoming edges.
– Sets Ki to the largest timestamp of concept labels in Gi after the pruning, i.e., Ki = max{ti(x,C) :

x ∈ Vi, C ∈ Li(x)}.

If a t-clash occurs in Gi, Gi will broadcast a t-clash message to all other local completion graphs, such
that the following steps will be executed in order:

– Stop all expansions at all local completion graphs, until the distributed completion graph is synchro-
nized.

– Perform Prune(t) in all local completion graphs.
– Transfer T to a token target.

The pruning operation is necessary to restore all local completion graphs to their status just before the
choice which led to the clash, or to the initial status of the local tableau, if no choice at all had ever been
made.

Token passing ensures that all local completion graphs are synchronized and that there is only one local
completion graph that can apply non-deterministic expansions at any time. Whenever a t-clash is detected,

3We do not require a particular token passing protocol (i.e., when and how T should be transferred) on purpose. We believe

it is best that it be determined based on empirical results. In what follows, for the sake of concreteness, we adopt a strategy
according to which T may be transferred immediately after a concept reporting message, if the message target becomes a

token target after the message is sent. We emphasize that this is not the only strategy that can be adopted, nor do we claim
that it is the most efficient one.
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consequences (i.e. nodes and edge labels) dependent on the choice at time t in all local completion graphs
will be purged before any other non-deterministic choice can be made. Hence, the handling of a t-clash
ensures that different choices in the searching for a clash-free distributed completion graph are always
being kept separate. In Example 1, Scenario 1, after G1 detects the clash, it will send a clash message
to G2 and all local completion graphs will be synchronized. Hence, even if the message r2→1(x′,D2) has
already been sent before the clash is detected, D2 will be purged from L1(x) during pruning, before G1

tries other choices. Hence, problems like the one encountered in Phase 2 of Scenario 1 are avoided.
Note that local completion graphs may perform expansions on different reasoning subtasks concurrently.

This improves the overall efficiency and scalability of the reasoning process. Further, note that with the
introduction of messages, subset blocking in ALCP−

C is dynamic: it can be established, broken and re-
established. Moreover, the completeness of a local completion graph is also dynamic. A complete local
completion graph may become incomplete, i.e., some expansion rules may become applicable, when a new
reporting message arrives.

4.4. ALCP−
C Expansion Examples

Example 2 Transitive Subsumption Propagation: Given three packages:

P1 : {1 : A ⊑ 1 : B}

P2 : {1 : B ⊑ 2 : C}

P3 : {2 : C ⊑ 3 : D}

G3
x L3(x) = {A ⊓ ¬3D, A,

¬3D,¬3C ⊔ D, C, D}

G1

x
L1(x) = {A,

¬1A ⊔ B, B}

r(x, A)

G2

x
r(x, B)

L2(x) = {B,

¬2B ⊔ C, C}

r(x, C)

Fig. 3. Transitive Subsumption Propagation in ALCP
−
C

The query is 1 : A ⊑ 3 : D w.r.t. the witness package P3. The expansion and message exchange
between local completion graphs are shown in Figure 3. The following steps result from the execution of
the algorithm:

1. G3 is initialized with the token T and the node x with L3(x) = {A ⊓ ¬3D}; applying ⊓- and CE-
rules in G3, A,¬3D and ¬3C ⊔D are added into L3(x). K3 = 0 and all concept labels in G3 have the
timestamp 0.

2. Since A has home package P1, a message r1←3(x,A) is sent and G3 transfers T to G1. G1 is initialized
with L1(x) = {A}. Applying ⊔- and CE- rules in G1, ¬1A ⊔ B and B are added into L1(x). K1 = 1.

3. Since P2 imports P1, P3 imports P2 and origin(1 : x) = origin(3 : x), we apply the r-rule, creating
2 : x, with origin(2 : x) = origin(3 : x).

4. Applying the CPush-rule, G1 sends the message r1→2(x,B) and T to G2. Applying the ⊔- and CE-
rules in G2, ¬2B ⊔ C and C are also added into L2(x). K2 = 2.
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5. Applying the CPush-rule in G2, C is added to L3(x) and T is passed to G3. Applying the ⊔-rule in
G3, K3 = 3 and D is added to L3(x). The 3-clash {D,¬3D} ⊆ L3(x) is detected.

6. As a result, D is now removed from L3(x) and clash messages with timestamp 3 are sent to G1 and
G2, but nothing is removed from G1 or G2. K3 is set to 0. T is transferred to G2, since it has the
largest clock value.

7. Similarly, all other choices in applying the ⊔-rule lead to clashes. Hence, no clash-free and complete
distributed tableau can be found for A ⊓ ¬3D. Therefore A ⊑ D, as witnessed by P3.

This example shows that P-DL offers a solution to the well-known problem of non-composability of
ontology mappings, that is present in DDL [28].

Example 3 Detect Inter-module Unsatisfiability: Given two packages P1 : {1 : B ⊑ 1 : F}, P2 : {2 : P ⊑
1 : B, 2 : P ⊑ ¬2(1 : F )}, test the satisfiability of 2 : P , as witnessed by P2. The results shows 2 : P is
unsatisfiable as witnessed by P2 (Figure 4):

1. G2 is initialized with T and the node x with L2(x) = {P}, K2 = 0. Applying the ⊔-rule and the
CE-rule, ¬2P ⊔ B, ¬2P ⊔ ¬2F , B and ¬2F are added into L2(x) and K2 = 2.

2. Since B’s home package is P1, we apply the CReport-rule, resulting in the creation of 1 : x and
L1(x) = {B}. T is passed to G1. K1 = 2.

3. Applying the ⊔- and CE- rules in G1, ¬1B ⊔ F and F are added into L1(x). K1 = 3.
4. Applying the CPush-rule, the message r1→2(x, F ) is sent and F is added into L2(x), resulting in a

clash.
5. Since t2(x,¬2F ) = 2 and t2(x, F ) = 3, G2 has a 3-clash. F is removed from L2(x) and a clash message

is sent to G1. K2 = 2.
6. G1 receives the clash message and removes F from L1(x). However, the next choice, i.e., adding ¬1B,

also leads to a clash.
7. Similarly, all other choices in G1 lead to clashes.

G2

x
L2(x) = {P,¬2P ⊔ B,

¬2P ⊔ ¬2F, B,¬2F , F}

G1

x
r(x, B)

L1(x) = {B,¬1B ⊔ F, F}

r(x, F )

Fig. 4. Detect Inter-module Unsatisfiability in ALCP
−
C

This example shows that P-DL can also solve the inter-module unsatisfiability problem, that is present
in DDL [14].

Example 4 Reasoning from the Local Point of View: Given two packages

P1 : {1 : A ⊑ 1 : C}

P2 : {1 : A ⊑ ∃(2 : R).(2 : B), 2 : B ⊑ (1 : A) ⊓ ¬2(1 : C)}

We need to test the satisfiability of 1 : A, as witnessed by P1 and P2, respectively. It is easy to see
that A is satisfiable as witnessed by P1, but unsatisfiable as witnessed by P2. Figure 5 shows one possible
execution when the witness package is P2.

– G2 is initialized with T , 2 : x and L2(x) = {A}; applying the CE-, ⊓- and ⊔- rules, ¬2A ⊔ ∃R.B,
¬2B ⊔ (A ⊓ ¬2C), ∃R.B and ¬2B are added to L2(x). K2 = 2.

– A has home package P1, whence a message r1←2(x,A) is sent. Consequently, 1 : x is created, with
L1(x) = {A}. T is not transferred to G1 because K1 = 0 < K2.
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– Applying the CE-rule in G1, ¬1A ⊔ C is added to L1(x). Now G1 stops, since it does not have T .
– In the mean time, G2 applies the ∃-, CE-, ⊓ and ⊔-rules, creating the node 2 : z with L2(z) =
{B,¬2A ⊔ ∃R.B,¬2B ⊔ (A ⊓ ¬2C),∃R.B,A ⊓ ¬2C,A,¬2C}. The message r1←2(z,A) is sent. Node
1 : z is created with L1(z) = {A}. K1 = K2 = 4. T is transferred to G1.

– Applying the CE- and ⊔-rules in G1, C is added to L1(x) and L1(z). Two messages r1→2(x,C) and
r1→2(z, C) are sent. K1 = K2 = 6. T is transferred back to G2.

– Since {C,¬2C} ⊆ L2(z), a 6-clash is detected in G2. Prune(6) is preformed at G1 and G2.
– Similarly, all other choices lead to clashes.

This example shows that reasoning in P-DL always supports the local semantic point of view of the
witness package. In this way, the same reasoning problem may have different answers from the points of
view of different packages.

G2

x

L2(x) = {A,¬2A ⊔ ∃R.B,

¬2B ⊔ (A ⊓ ¬2C),

∃R.B,¬2B, C}

z

L2(z) = {B,¬2A ⊔ ∃R.B,

¬2B ⊔ (A ⊓ ¬2C),

A ⊓ ¬2C, A,¬2C,

∃R.B, C}

P

G1

z

x
r(x, A)

L1(x) = {A,¬1A ⊔ C, C}

r(x, C)

r(z, A)

L1(z) = {A,¬1A ⊔ C, C}

r(z, C)

Fig. 5. Reasoning from Local Point of View in ALCP
−
C

This example also illustrates the fact that subset blocking in ALCP−
C only depends on the local an-

cestorship rather than on the “global” ancestorship. One might have argued that, since 2 : x is the local
ancestor of 2 : z, 1 : x is a global ancestor of 1 : z, whence it should have been allowed to block 1 : z.
However, that strategy would have resulted in incorrect blocking: after the message r1←2(z,A) is sent,
L1(1 : z) = {A}, which is a subset of L1(1 : x). If this had resulted in blocking 1 : z, adding C to L1(1 : z)
would have been prevented and this would have led to the erroneous discovery of a consistent distributed
completion graph. On the other hand, in the next section, it is shown that, with the presence of cyclic
importing, global ancestorship is needed in blocking to ensure termination.

4.5. Soundness, Completeness, Termination and Complexity

In order to show that the algorithm is a decision procedure for concept satisfiability in ALCP−
C , it is

necessary to prove that the algorithm terminates, that the models that can be constructed from clash-free
and complete distributed completion graphs, generated from the algorithm, are valid with respect to the
semantics of the logic (soundness) and that the algorithm always finds a model if one exists (completeness).

Termination and complexity of the algorithm is obtained by proving that there is an upper bound for
the total size of all local completion graphs. More specifically, we have the following lemma:

Lemma 3 Let Σ be an ALCP−
C ontology and D be an ALCP−

C concept that is understandable by a wit-

ness package Pw in Σ. The ALCP−
C tableau algorithm runs in worst case non-deterministic O

(

2m ×

∏

Pj∈P∗
w

22nj×log nj

)

time, where ni = |CTi
|, i 6= w, nw = |CTw

| + |D| and m = |P ∗
w|.
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Proof: We start with a set of observations:

– For every node that has no local predecessor (called local top node henceforth), its local descendants
have a tree shape. This observation follows from the form of the expansion rules.

– For every local top node j : x, j 6= w, x must be a preimage of a node in another local completion
graph Gi, such that Pj 7→ Pi. This holds because such an x must be created by a backward concept
reporting message triggered by an application of the CReport-rule or of the r-rule. Suppose, for the
sake of concreteness, that the message is rj←i(x′, C), i 6= j, where x′ ∈ Vi, origin(x) = origin(x′) and
C is ⊤j or a j-concept name. Note that, since x does not exist before the message, C is not added to
Li(x

′) by a concept reporting message, whence it must be case that C appears in Pi. Thus, Pi imports
Pj and, hence, x is a preimage of x′.

– For any j,x, all local descendants of j : x in Gj are not preimages of nodes in any other local completion
graph. This holds because a local descendant of j : x is generated only by an application of the ⊔-rule,
while a preimage node is created only by an application of the CReport-rule or of the r-rule.

Hence, 1) each local completion graph is a forest; 2) the root of every tree, i.e., a local top node, in a
local completion graph, except for the root of Gw, is “copied” from, i.e., it is the preimage of, a node in
another local completion graph.

Next we prove that the size of each local completion graph, hence also the total size of the “global

completion graph”, is limited. For convenience, we define a function f(x) = 22x×log x

.
First, due to subset blocking, for any local top node in Gj , the depth of its local descendant tree is

bounded by O(2nj ) and its breadth is bounded by the number of “∃” in CTj
, for j 6= w, or in CTw

⊓D, for

j = w, which is smaller than nj . Thus, the size of the tree is bounded by O(nj
2nj

) = O(f(nj)).
Since there is only acyclic importing, we can put all packages in P ∗

w in an ordered list L, such that
L1 = Pw and each package comes in L before all packages in its importing transitive closure, in a way
similar to topological sorting in DAG. Let #(Lj) be the subscript of the package at Lj . Then, we have
that the size of G#(Lj) is bounded by:

|G#(L1)| : O(f(nw))

|G#(Lj)| : O
(

∑

k<j

|G#(Lk)| × f(n#(Lj))
)

, for j > 1

This holds because there is only one local top node in G#(L1) = Gw (the original node), and, for every
j > 1 and p = #(Lj), the number of local top nodes in Gp is limited by

∑

Pp 7→Pq

|Gq|, i.e., by the total size

of the local completion graphs of packages that directly import Pp, since all nodes in Pp must be preimage
nodes of nodes in those local completion graphs. In the worst case, {Pq|Pp 7→ Pq} contains all packages
that are before j in L. On the other hand, the size of a tree under a local top node in Gk is limited by
f(nk).

Setting |G#(Lj)| = tj and ej = f(n#(Lj)), we obtain that tj is bounded by

O
(

(t1 + t2 + ... + tj−1) × ej

)

. (2)

Using induction, it will now be shown that tj is bounded by

O
(

2j−2 × e1 × ... × ej

)

, for j > 1. (3)

By Equation (2), when j = 2, t2 is bounded by O(t1 × e2) = O(e1 × e2), whence Equation (3) holds. Let
j > 2. Assuming, as the induction hypothesis, that, for every 1 < k < j, Equation (3) holds, we have, by
Equation (2), that tj is bounded by

O
(

(t1 + t2 + · · · + tj−1) × ej

)

< O
(

(e1 + 20e1e2 + · · · + 2j−3e1e2 · · · ej−1)ej

)

< O
(

(1 + 20 + · · · + 2j−3) × e1e2 · · · ej

)

= O
(

2j−2e1e2 · · · ej

)
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This finishes the induction step and concludes the proof of Equation (3). Hence, the size of all local
completion graphs is bounded by:

O

(

e1 +
∑

2≤j≤m

(

2j−2
∏

k≤j

ej

)

)

≤ O

(

2m−1 ×
∏

Pj∈P∗
w

f(nj)

)

< O

(

2m ×
∏

Pj∈P∗
w

22nj×log nj

)

Q.E.D.

Lemma 4 (Termination and Complexity) Let Σ be an ALCP−
C ontology and D be an ALCP−

C concept,
that is understandable by a witness package Pw in Σ. The ALCP−

C tableau algorithm runs in worst case
2NExpTime w.r.t. the size of D and the size of the largest package in P ∗

w.

Proof : Let nk = max{|CTi
|} be the size of the largest package in P ∗

w, nD = |D| be the size of D, and
m = |P ∗

w| be the number of packages in the importing closure of Pw. In general, m ≪ 2nk log nk . By Lemma
3, it follows that the total size of all local completion graphs is bounded by

O
(

2m × 2m×2(nk+nD)×log (nk+nD)
)

< O
(

22(nk+nD)2
)

Q.E.D.

.
In fact, by the proof of Lemma 3, it follows that the complexity of the ALCP−

C algorithm is bounded by

NTime
(
∏

Pj∈P∗
w

22nj log nj
)

=NTime

(

2

∑

Pj∈P∗
w

2nj log nj
)

, where ni = |CTi
|, for i 6= w, and nw = |CTw

| + |D|.

On the other hand, an equivalent reasoning task over the integrated ontology4 using the ALC tableau

algorithm of [3] will be bounded by NTime
(

22nΣ log nΣ
)

, where nΣ =
∑

Pj∈P∗
w

nj is the size of the integrated

ontology. Since, ordinarily, m ≪ 2nk log nk ,

∑

Pj∈P∗
w

2nj log nj ≪ 2

∑

Pj∈P∗
w

nj log nj

< 2nΣ log nΣ

The last inequality holds because, for every x1 ≥ 1, x2 ≥ 1, we have x1 log x1 + x2 log x2 − (x1 +
x2) log (x1 + x2) = x1(log x1 − log (x1 + x2)) + x2(log x2 − log (x1 + x2)) < 0. Thus, under the hypotheses
that each module in the ontology is moderately sized and that the communication between local reasoners
is reliable, it would be reasonable to expect the distributed ALCP−

C reasoning algorithm to terminate
significantly faster than its classical counterpart applied on the integrated ontology.

In the following two lemmas, soundness and completeness of the ALCP−
C algorithm are proven.

Lemma 5 (Soundness) If the ALCP−
C algorithm yields a complete and clash-free distributed completion

graph for a concept D w.r.t. a witness package Pw, then D has a tableau w.r.t. Pw.

Proof : Let G = {Gi}, with Gi = (Vi, Ei,L
g
i ), be a complete and clash-free distributed completion graph

generated by the ALCP−
C algorithm. We will obtain a tableau by “unraveling” blocked nodes and tableau

relations. For a directly blocked node x, we denote by bk(x) the node that directly blocks x. Thus, we have
Lg

i (x) ⊆ Lg
i (bk(x)). We can define a tableau T = 〈{Ti}, {tij}Pi∈P

+
j
〉, with Ti = (Si,L

t
i, Ei), for D w.r.t. Pw

in the following way:

4A reduction to an integrated ontology is described in [5].
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Si = {x ∈ Vi| neither x nor any image or preimage node of x is blocked};

Lt
i(x) = Lg

i (x);

Ei(R) = {〈x, y〉 ∈ Vi × Vi| y is an R-successor of x, y is not blocked};

∪{〈x, bk(y)〉 ∈ Vi × Vi| y is an R-successor of x, y is directly blocked};

tij = {〈x, y〉 ∈ Si × Sj | origin(x) = origin(y)}, for Pi ∈ P+
j .

We show that T satisfies all tableau properties.

– Property (A0) holds due to the CE-rule.
– Property (A1) holds since G is clash-free.
– Properties (A2) and (A3) hold because of the ⊓- and ⊔-rules and the fact that G is complete.
– To show Property (A4), suppose that ∀R.C ∈ Lt

i(x) = Lg
i (x) and 〈x, y〉 ∈ Ei(R). Then it must be the

case that either 1) 〈x, y〉 ∈ Ei, R ∈ Lg
i (〈x, y〉), whence, according to the ∀-rule, C ∈ Lg

i (y) = Lt
i(y); or

2) there exists a y′, such that y = bk(y′), whence Lg
i (y

′) ⊆ Lg
i (y), 〈x, y′〉 ∈ Ei, R ∈ Lg

i (〈x, y′〉). Thus,
according to the ∀-rule and the fact that G is complete, C ∈ Lg

i (y
′) ⊆ Lg

i (y) = Lt
i(y). Therefore, in

both cases, Property (A4) holds.
– Property (A5) may be shown to hold by a proof dual to that of Property (A4).
– Property (B1) holds because, according to the concept reporting message, for any i, j, a node i : x

has at most one node of the same origin in Gj .
– For Property (B2) we have: 1) For any Pi ∈ P+

j , (x, y) ∈ tij iff origin(x) = origin(y), whence (x, y) ∈

ρt
ij iff origin(x) = origin(y) and, therefore, ρt

ij = tij . 2) For all Pi ∈ P+
k and Pk ∈ P+

j , i 6= j, if there
exist x ∈ Si and x′ ∈ Sj , such that origin(x) = origin(x′), then, according to the r-rule and the fact
that G is complete, there must also exist an x′′ ∈ Vk, such that origin(x′′) = origin(x) = origin(x′).
This x′′ cannot be blocked, since it must be a local top node, whence x′′ ∈ Sk. Therefore, it follows
that tij ⊆ tkj ◦ tik. On the other hand, tkj ◦ tik ⊆ tij follows by construction.

– Finally, the “only if” direction of Property (B3) holds because of the CPush-rule and the “if” direction
because of the CReport-rule.

Q.E.D.

Lemma 6 (Completeness) If an ALCP−
C concept D has a distributed tableau w.r.t. a witness package Pw,

then the ALCP−
C algorithm produces a complete and clash-free distributed completion graph for D w.r.t.

Pw.

Proof : Let T = 〈{Ti}, {tij}Pi∈P
+
j
〉, with Ti = (Si,L

t
i, Ei), be a tableau for D w.r.t. Pw. Following [16],

we will use T to guide the application of the non-deterministic ⊔-rule in a way that yields a complete and
clash-free distributed completion graph G = {Gi}, with Gi = (Vi, Ei,L

g
i ).

To construct G, we start with a single node x0 in the local tableau Tw, with D ∈ Lt
w(x0). Such an x0

exists, since T is a tableau for D w.r.t. Pw. Let π ⊆
⋃

i(Vi × Si) be a function that maps all individuals
in local completion graphs to individuals in corresponding local tableaux. Initially, we have Vw = {x0},
Lg

w(x0) = {D} , π(x0) = x0 and all Gi, i 6= w, being empty. Next, we apply ALCP−
C expansion rules to

extend G and π, in such a way that the following conditions always (inductively) hold:















Lg
i (x) ⊆ Lt

i(π(x))

if R ∈ Lg
i (〈x, y〉), then 〈π(x), π(y)〉 ∈ Ei(R)

if origin(i : x) = origin(j : y) in G, then 〈π(x), π(y)〉 ∈ tij in T , for Pi ∈ P+
j

(4)

– CE-rule: if CTi
6∈ Lg

i (x), then Lg
i (x)+= {CTi

}. Since, by Property (A0), CTi
∈ Lt

i(π(x)), this rule can
be applied without violating Conditions (4).
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– ⊓-rule: if C1 ⊓ C2 ∈ Lg
i (x), x is not blocked, and {C1, C2} 6⊆ Lg

i (x), then Lg
i (x)+= {C1, C2}. Since,

by Property (A2) of ALCP−
C tableaux, C1 ⊓C2 ∈ Lt

i(π(x)) implies C1 ∈ Lt
i(π(x)) and C2 ∈ Lt

i(π(x)),
Conditions (4) are not violated.

– ⊔-rule: if C1 ⊔ C2 ∈ Lg
i (x), x is not blocked, and {C1, C2} ∩ Lg

i (x) = ∅, then Lg
i (x)+= {C}, for some

C ∈ {C1, C2} ∩ Lt
i(π(x)). Such a C must exist because T is a tableau and, hence, satisfies Property

(A3), and C1 ⊔ C2 ∈ Lt
i(π(x)), by the induction hypothesis. Hence, in this case, Conditions (4) are

not violated either.
– ∀-rule: if ∀R.C ∈ Lg

i (x), x is not blocked, and there is a local R-successor y of x in Gi with C 6∈ Lg
i (y),

then Lg
i (y)+= {C}. By the induction hypothesis, 〈π(x), π(y)〉 ∈ Ei(R) and ∀R.C ∈ Lt

i(π(x)), whence,
by Property (A4), C ∈ Lt

i(π(y)). Thus, Conditions (4) are not violated.
– ∃-rule: if ∃R.C ∈ Lg

i (x), x is not blocked, and x has no local R-successor y of x in Gi, with C ∈ Lg
i (y),

then 1) create a new node y, with orgin(y) = y, Lg
i (〈x, y〉) = {R} and Lg

i (y) = {C}; 2) let π(y) = y′,
where y′ ∈ Si, 〈π(x), y′〉 ∈ Ei(R) and C ∈ Lt

i(y
′). Such a y′ must exist because T is a tableau

and, hence, it satisfies Property (A5) and, by the induction hypothesis, ∃R.C ∈ Lt
i(π(x)). Therefore,

Conditions (4) are not violated.
– r-rule: if origin(i : x) = origin(j : x′), there exists k such that Pi ∈ P+

k , Pk ∈ P+
j and there is no

k : x′′ with origin(j : x′) = origin(k : x′′), then 1) transmit rk←j(x′,⊤k). This will create k : x′′, such
that origin(k : x′′) = origin(j : x′) = origin(i : x); 2) let π(x′′) = z, where z ∈ Sk, 〈π(x′), z〉 ∈ tik
and 〈z, π(x′)〉 ∈ tkj ; such a z must exist because, by the induction hypothesis, 〈π(x), π(x′)〉 ∈ tij and,
by the tableau Property (B2), tij = tkj ◦ tik. After this operation Lg

k(x′′) = ∅. Therefore, Conditions
(4) are not violated.

– CPush-rule: if C ∈ Lg
i (x), where C is an i-concept name, Pi

C
−→ Pj , x is not blocked and there exists

an x′ = xi→j ∈ Vj , such that C 6∈ Lg
j (x

′), then transmit ri→j(x,C). This will set Lg
j (x

′)+= {C}. By

the induction hypothesis, 〈π(x), π(x′)〉 ∈ tij , C ∈ Lt
i(π(x)), whence, by Property (B3), C ∈ Lt

j(π(x′)).
Hence, Conditions (4) are not violated.

– CReport-rule: if C ∈ Lg
i (x), where C is ⊤j or a j-concept name, x is not blocked and there is no

x′ = xj←i ∈ Vj such that C ∈ Lg
j (x

′), then 1) transmit rj←i(x,C). This will create x′ = xj←i, with
origin(x′) = origin(x), if such an x′ had not already been created, and set Lg

j (x
′)+= {C}; 2) let

π(x′) = x′′, if π(x′) has not yet been given, where x′′ ∈ Sj , 〈x
′′, π(x)〉 ∈ tji and C ∈ Lt

i(x
′′). Such a,

x′′ must exist because, by the induction hypothesis, C ∈ Lt
i(π(x)) and T satisfies tableau Property

(B3). Therefore, Conditions (4) are not violated in this case either.

G must be clash-free, since, if there existed i, x, C, such that {C,¬iC} ⊆ Lg
i (x), then, by Conditions (4),

{C,¬iC} ⊆ Lt
i(π(x)), which would contradict tableau Property (A1) for T . Hence, whenever an expansion

rule is applicable to G, it can be applied in such a way that maintains Conditions (4). By the Termination
Lemma, any sequence of rule applications must terminate. Hence, we will obtain a complete and clash-free
completion graph G for D from T . Q.E.D.

By Lemmas 3-6, we obtain the following theorem, which is the main theorem of the paper.

Theorem 1 Let Σ be an ALCP−
C ontology and D be an ALCP−

C concept, that is understandable by a witness
package Pw in Σ. The ALCP−

C tableau algorithm is a sound, complete, and terminating decision procedure
for satisfiability of D as witnessed by Pw. This decision procedure is in 2NExpTime w.r.t. the size of D

and the size of the largest package in P ∗
w.

5. A Reasoning Algorithm for ALCPC

5.1. Extended Subset Blocking

The reasoning algorithm for ALCP−
C may fail if we relax the acyclicity assumption, i.e., when applied

to the P-DL ALCPC , as illustrated by the following example.
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Example 5 : Suppose we have two packages that mutually import one another:

P1 : {⊤1 ⊑ ∃(1 : R).(2 : D)}

P2 : {⊤2 ⊑ ∃(2 : P ).(1 : C)}

The reasoning task is to check the consistency of the ontology as witnessed by P1. If we employ the
decision procedure for ALCP−

C , the algorithm will not terminate, as shown in Figure 6. Since there is
mutual importing, each of the local completion graphs G1 and G2 can send reporting messages and create
new nodes in the other. Subset blocking, as given in the previous section, cannot prevent local completion
graphs from exchanging messages in a cyclic fashion, which leads to non-termination.

G1

x1
L1(x1) = {∃R.D}

x2
L1(x2) = {D, ∃R.D}

R

x3
L1(x3) = {C,∃R.D}

x4
L1(x4) = {D, ∃R.D}

R

G2

x2 L2(x2) = {D, ∃P.C}

x3 L2(x3) = {C,∃P.C}

x4 L2(x4) = {D, ∃P.C}

...

r(x2, D)

r(x3, C)

r(x4, D)

Fig. 6. Non-termination Caused by Cyclic Importing

Extending the ALCP−
C algorithm to handle cyclic importing relations requires the detection and preven-

tion of cyclic message exchanges as well as of cyclic local expansions. In fact, termination of the ALCP−
C

algorithm is due to the fact that a local completion graph Gi can cause the creation of a local top node,
i.e., a node without a local predecessor, in another local completion graph Gj by an application of the
CReport- or the r-rule if and only if the package Pi directly or indirectly imports package Pj . With the
presence of cyclic importing, the creation of infinitely many local top nodes in a local completion graph
may not be avoided. Thus, subset blocking may fail, since it can only ensure that the number of local
descendant nodes of a local top node is limited.

Termination with cyclic importing can be regained if we can ensure that, in any local completion graph,
the number of local top nodes as well as the number of local descendant nodes of each local top node are
limited. This goal will be realized by an appropriate extension of subset blocking.

Definition 8 (Extended Subset Blocking) A node x is a global ancestor of another node y, which may
be in a different local graph, if origin(x) 6= origin(y) and there is a path from x to y on the graph
G′ =

⋃

i Gi ∪ {(u, v)|origin(u) = origin(v)}, i.e., a path using both local edges and edges in the symmetric
closure of graph relations. For any i and any x, y, such that x ∈ Vi, x is a least global ancestor of y in Gi

if x is a global ancestor of y and there is no other z ∈ Vi such that z is a global ancestor of y and x is a
global ancestor of z.

For a distributed completion graph of an ALCPC ontology, a node x in Gi is directly blocked by a y in
Gi if 1) y is a global ancestor of x and Li(x) ⊆ Li(y), and 2) for every j 6= i, if there are x′, y′ in Gj such
that origin(x′) = origin(x) and origin(y′) = origin(y), then Li(x

′) ⊆ Li(y
′). Node x is indirectly blocked

by a node y if one of x’s global ancestors is directly blocked by y. Finally, node x is blocked by y if it is
directly or indirectly blocked by y.
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Explanation: With extended subset blocking, a node x, including a local top node, can be blocked by one
of its global ancestors y, if every local “copy” of x contains no more information than the corresponding
local “copy” of y. In this case, expansions at x are not needed, since corresponding expansions must have
been preformed at y. Hence, the creation of infinitely many local top nodes as well as of infinitely large
local trees under each local top node is avoided. A more detailed analysis of this point will be presented
in the termination proof of the algorithm.

For instance, in Example 5, 1 : x4 will be blocked by 1 : x2. As a result, the backward concept reporting
messages r2←1(x4,D) will not be sent (a similar message r2←1(x2,D) has been sent before) and the rea-
soning process will terminate. On the other hand, when applying extended subset blocking in Example 4,
node 1 : z will not be blocked by node 1 : x, whence the necessary forward reporting message r1→2(z, C)
will not be undesirably blocked.

Labeling for Global Ancestorship: Since each local reasoner is autonomously maintained, the topology
of a local completion graph may not be available to other reasoners. To keep track of the global ancestor
relationship in the distributed setting, we may use a labeling schema for dynamic tree representation, since,
by merging nodes of the same origin, all local completion graphs can be combined into a tree. The basic
intuition is to assign localized, informative labels to each node in the distributed graph which will contain
global topology information of the graph. Each node of the same origin will be assigned the same label. In
this way, testing global ancestorship can be reduced to comparison of the labels of different nodes. Several
labeling schemas for static and/or dynamic trees have been recently proposed [8,7,17,9]. The adoption of
a particular labeling schema is to be decided during the implementation of the algorithm. It will partially
depend on the communication protocol on which the algorithm will be based to achieve best performance.

5.2. Correctness and Complexity

The reasoning algorithm for ALCPC is a modified version of the ALCP−
C algorithm, resulting by replacing

subset blocking by extended subset blocking and by adding the labeling technique of the various nodes, as
described previously.

Theorem 2 Let Σ be an ALCPC ontology and D an ALCPC concept, that is understandable by a witness
package Pw in Σ. The ALCPC tableau algorithm is a sound, complete and terminating decision procedure
for satisfiability of D as witnessed by Pw. This decision procedure is in 2NExpTime w.r.t. the size of D

and the total size of packages in P ∗
w.

Proof: Only a sketch of the proof will be provided. Proofs of the soundness and completeness are similar
to the proofs of Lemmas 5 and 6, respectively. So we concentrate on termination and complexity.

Termination will be proven by showing that the “combined” completion graph G′, resulting from the
various local completion graphs by merging all nodes of the same origin into one node, is finite. For a local
completion graph Gi, let ni = |CTi

|, for i 6= w, nw = |CTw
| + |D|, nΣ = Σ

i
ni and m = |P ∗

w|. Let x0 be the

initial node of Gw.
For every node in Gi, its out-degree is at most ni, whence, for every node in G′, its out-degree is bounded

by nΣ. Similarly, the size of the concept label set of each node in Gi is bounded by nΣ. The depth of G′

is a most 2nΣ due to the extended subset blocking. Hence, the total number of nodes in G′ is bounded by

O
(

(nΣ)2
nΣ

)

= O
(

22nΣ log nΣ
)

.

Therefore, the total number of nodes in the distributed completion graph is bounded by

O
(

m × 22nΣ log nΣ
)

. Q.E.D.
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With the presence of cyclic importing, the worst-case time complexity of the ALCPC algorithm is
bounded by the total size of all packages, while that of the ALCP−

C algorithm is only bounded by the size
of the largest package involved in the reasoning task. This result indicates that avoiding cyclic importing
between ontology modules will significantly improve reasoning performance.

The ALCPC algorithm has the same worst-case time complexity with the ALC tableau algorithm applied
on the combined ontology from all modules. However, the analysis in Theorem 2 does not take into account
the gain resulting from local reasoners concurrently exploring different reasoning sub-tasks. We believe
that, with the proper design of communication protocols between local reasoners, the distributed ALCPC

tableau algorithm has the potential of processing a reasoning task more efficiently than would a centralized
reasoner.

6. Related Work

Partition-based Logics and Somewhere: Several authors have recently investigated distributed reason-
ing algorithms for modular ontologies. Partition-based Logics [2] provides an approach to automatically
decompose propositional and first-order logic (FOL) into partitions and an algorithm for reasoning with
those partitions using message passing. The Somewhere peer-to-peer data management system [1] pro-
vides a distributed query answering algorithm for a “propositional” fragment of Description Logics. On
the other hand, our focus is on developing a sound and complete distributed reasoning for distributed
Package-based Description Logics.

DDL: In [20,19] a tableau-based reasoning algorithm for Distributed Description Logics (DDL) with
acyclic bridge rules between concepts is developed. The algorithm divides a reasoning problem w.r.t. a
DDL TBox into several local reasoning problems answered by local modules. The basic idea behind this
algorithm is to infer concept subsumption in one module from subsumptions in another module and inter-
module bridge rules. For example, consider two ontology modules i and j, in which the concepts A,B and

G,H respectively, are defined, together with the bridge rules i : A
⊒
−→ j : G, i : B

⊑
−→ j : H. If module i

entails A ⊑ B, then it is possible for module j to infer G ⊑ H. Thus, an ontology module may submit a
subsumption query, or an unsatisfiability query, to another module to complete a local reasoning task.

The algorithm is implemented in the DRAGO system [19,25], which allows multiple reasoners to com-
municate with one another via TCP connections to perform a reasoning task. This approach is extended
in [21] to cover the distributed version of retrieval in DDL, in [19] to cover reasoning with cyclic bridge
rules using fixed-point semantics, and in [11] to cover reasoning with bridge rules between roles.
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Fig. 7. Completion Graph in the DDL Tableau Algorithm

The DDL reasoning algorithm builds a virtual tree-shaped global completion graph (for the integrated
ontology from all modules) by constructing multiple trees in local reasoners using local knowledge. This
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is in accord with the basic intuition of P-DL reasoning algorithms. However, the two approaches differ
on how to decompose the virtual global completion graph. In the DDL approach (Figure 7), each local
reasoner builds a “branch” of the global tree. On the other hand, in the P-DL approach (Figure 8), due
to the fact that the concept languages of modules are not disjoint, a local reasoner builds a “projection”
of the global tree and, as a result, some nodes may be “shared” by multiple local trees.
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Fig. 8. Completion Graph in P-DL Tableau Algorithms

The DDL reasoning algorithm is limited in several ways. The algorithm does not support inference of

bridge rules. For instance, if L1 = {1 : A ⊑ 1 : B}, L2 = ∅,B12 = {1 : B
⊑
−→ 2 : C}, the algorithm cannot

infer that 1 : A
⊑
−→ 2 : C.5 On the contrary, P-DL solves these problems since 1) P-DL semantics en-

sures transitive reusability of ontology modules and 2) semantic importing in P-DL allows “inter-module”
semantic relations, like DDL bridge rules, and “intra-module” semantic relations, like local concept sub-
sumptions, to be treated in a uniform way. As a result, the P-DL reasoning algorithms, described in this
paper, can handle both scenarios successfully.

E-Connections: In [14,13,15] a tableau-based reasoning procedure for E-Connections is presented. It
generates a set of local completion graphs (typically trees) linked by E-connection instances (cross-module
role instances), as illustrated in Figure 9. Each local completion graph is associated with a color and the
reasoning process is performed on the combined completion forest resulting by combining all those local
completion graphs.

The E-connections algorithm adopts the approach of “coloring”, but not of physically separating, local
completion graphs. Hence, it is assumed in the algorithm that a local completion graph can freely access
information of other local completion graphs, e.g., the node successor relationship and neighborhood, node
and edge labels and blocking conditions. Therefore, no message passing or any other forms of communi-
cation between local completion graphs are required, nor are specially designed distributed backtracking
strategies provided. Thus, the implementation of the algorithm in the Pellet reasoner [23] utilizes a single
reasoner to preform reasoning tasks for an E-connected ontology.

However, such an approach implicitly assumes the availability of global knowledge in all ontology modules
for the reasoning in a modular ontology to be possible. This counteracts many of the benefits of having
a modular ontology; in particular, scalability and the preservation of module privacy. For example, as
is implied by the CE-rule of its algorithm, the Pellet implementation requires that all ontology modules
be loaded into the same memory space. Thus, this implementation implicitly requires the integration of
all ontology modules. By contrast, P-DL, and also DDL, reasoning algorithms are genuinely distributed
reasoning algorithms, not requiring, either implicitly or explicitly, the integration of ontology modules.

5Reasoning about properties of bridge rules has been addressed in [24]. However, [24] does not provide a decision procedure
for the inference of bridge rules.
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7. Conclusion

We have presented a distributed tableau-based reasoning algorithm for the package-based extension of
the DL language ALCPC . The proposed algorithm offers a practical approach that

1. avoids the need for loading the entire contents of all ontology modules into a central location, by
circumventing the integration of modules into a single ontology;

2. allows arbitrary reuse of knowledge among the various ontology modules, such as the presence of
mutual or cyclic importing among packages, by using a message-based inter-reasoner communication
strategy;

3. tackles a broader range of reasoning tasks, based on the P-DL formalism.

Work in progress is aimed at:

– extending the proposed reasoning algorithm to work with more expressive DLs such as SHIQP, i.e.,
package-based SHIQ with concept and role importing;

– designing communication protocols between local reasoners, including ones based on handshaking and
acknowledgement, clash reporting and backtracking, token passing and labeling for the global ancestor
relationship;

– evaluating the performance of the implementation of the proposed algorithm based on several practical
application scenarios.
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