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Abstract Weakly algebraizable sentential logics were introduced by Czelakowski and

Jansana and constitute a class in the abstract algebraic hierarchy of logics lying between

the protoalgebraic logics of Blok and Pigozzi and the algebraizable logics, in the sense of

Czelakowski’s and Hermann’s generalization of the original notion introduced by Blok

and Pigozzi. Very recently protoalgebraic π-institutions were introduced by the author

in order to abstract the algebraic hierarchy to the categorical level. The present work

continues this program by introducing the class of weakly algebraizable π-institutions,

a proper superclass of protoalgebraic π-institutions, sharing many of the properties of

the weakly algebraizable sentential logics of Czelakowski and Jansana.
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1 Introduction

In [2] Blok and Pigozzi introduced the class of protoalgebraic sentential logics. Given

a logic S = 〈L,`S〉 and a set of L-formulas Γ, two formulas α and β are Γ -equivalent

if, for every formula γ(p,q),

Γ `S γ(α,q) iff Γ `S γ(β,q).

On the other hand, α and β are Γ -interderivable if

Γ, α `S β iff Γ, β `S α.
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According to the original definition in [2], a logic S = 〈L,`S〉 is protoalgebraic if, for all

Γ ⊆ FmL(V ), any two formulas that are Γ -equivalent are also Γ -interderivable. This

definition was shown to be equivalent to the monotonicity of the Leibniz operator, that

associates to every theory of the logic S the greatest congruence on the formula algebra

that is compatible with the theory. It is now widely accepted in abstract algebraic logic

that the class of protoalgebraic logics is the widest class of logics that are amenable to

a study via universal algebraic techniques.

Later, in [3], Blok and Pigozzi introduced the class of algebraizable sentential logics.

With updated terminology, these are now better known as the finitely algebraizable

logics and this new term will be used here in reference to them. The original definition

stipulates that a finitary logic S = 〈L,`S〉 is finitely algebraizable if there exists a class

K of L-algebras, such that S is interpretable in the equational logic SK = 〈L, |=K〉 of

the class K, SK is interpretable in S and the two interpretations are inverses of one

another in a specific technical sense. It was shown in [3] that finite algebraizability is

equivalent to the Leibniz operator being an isomorphism between the complete lattice

of theories of S and the complete lattice of K-congruences on the formula algebra

FmL(V ). This, in turn is tantamount to the Leibniz operator being injective and

continuous on the theories of the logic (see, e.g., Theorem 4.6.2 of [7]).

Taking after the work of Blok and Pigozzi, Czelakowski [6] and, independently, Her-

rmann [14], [15], [16] generalized the notion to encompass infinitary deductive systems,

thus obtaining what are now known as the algebraizable logics. These are characterized

by the property of the Leibniz operator being monotone, injective and commuting with

inverse substitutions on the theories of the logic. For more details, see Theorem 4.5.5

of [7]. The reader may notice that passing from the protoalgebraic to the algebraizable

logics in this sense, besides monotonicity, requires that the Leibniz operator satisfy the

two extra properties of injectivity and commutativity with inverse substitutions.

A question now naturally arises concerning the classes that are obtained as inter-

mediate classes between the protoalgebraic and the algebraizable logics if one adds to

monotonicity, either commutativity of the Leibniz operator with inverse substitutions

alone, or injectivity of the Leibniz operator alone.

The logics that are characterized by the monotonicity of the Leibniz operator on

their theories plus its commutativity with inverse substitutions are the equivalential

logics, that were introduced by Prucnal and Wroński [18] and, later, studied in detail by

Czelakowski [5]. According to the original definition, a logic S = 〈L,`S〉 is equivalential

if there exists a set E(p, q) of L-formulas in two variables p and q, such that, for all

formulas α, β, γ, all operation symbols λ ∈ L and all tuples α, β of formulas of length

the arity of λ, the following conditions hold:

1. `S E(α, α);

2. E(α, β) `S E(β, α);

3. E(α, β) ∪ E(β, γ) `S E(α, γ);

4. E(α0, β0) ∪ . . . ∪ E(αn−1, βn−1) `S E(λ(α), λ(β));

5. E(α, β) ∪ {α} `S β.

In recent work, Czelakowski and Jansana [8] introduced the class of sentential logics

that falls between the protoalgebraic and the algebraizable logics and are character-

ized by the monotonicity of the Leibniz operator on the theories of the logic plus its

injectivity. These are the weakly algebraizable logics. Since monotonicity of the Leibniz

operator characterizes protoalgebraic logics and these had been studied extensively be-

fore, [8] focuses on its best part in giving several characterizations of the injectivity of
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the Leibniz operator in terms of the definability, both implicit and explicit, of the filters

of classes of matrices for the logic. These results are then used to obtain several alter-

native characterizations of weak algebraizability. Czelakowski’s and Jansana’s work is

completed by the presentation of several examples showing that all classes, discussed

so far, and summarized in the following diagram, are dinstinct from each other. In the

diagram arrows denote inclusion of classes.

equivalential weakly algebraizable

algebraizable

¡
¡

¡¡ª

@
@

@@R

protoalgebraic

@
@

@@R

¡
¡

¡¡ª

In recent work [24]-[31], the theory of the Leibniz operator was adapted to cover

logics that are presented as π-institutions. The framework of π-institutions covers logics

with multiple signatures and quantifiers and has the special feature that it incorporates

substitutions of terms of one signature for basic symbols of another in the object

language, rather than relegating them to the metalanguage. It thus provides a more

efficient setting for handling non sentential logics (see, e.g., [19], [20], [21] for more

explanations). The motivating examples for developing this more abstract framework

have been the algebraization of equational and of first-order logic [22], [23] in a way

more natural than that employed by more traditional treatments.

As a result of the development of this theory, in more recent work [30], [31] the no-

tion of a protoalgebraic π-institution was introduced. In analogy with sentential logics,

protoalgebraic π-institutions are π-institutions whose Leibniz operator is monotone on

theory families. Several properties of protoalgebraic π-institutions were studied in [30],

[31] and the reader is referred to these works for further information. It is remarked

here that the generality of this framework allows, in many cases, only partial analogs

of results pertaining to sentential logics to be carried over to π-institutions. Neverthe-

less, the exploration of the limits to which results known to hold in the more concrete

framework may be abstracted to π-institutions is necessary for successfully carrying

out this abstraction process.

In the present paper, the introduction and study of properties of weakly algebraiz-

able π-institutions, corresponding to the class of weakly algebraizable sentential logics,

is initiated. Again an effort is made to establish analogs at the level of π-institutions

of as many of the properties obtained by Czelakowski and Jansana for sentential logics

as possible. The knowledgeable reader will discover that here, as was the case with

protoalgebraic π-institutions, a certain distance may be covered, but full analogs of

some results are more difficult to establish.

In Section 2, parameterized equivalence systems, that were previously introduced

for π-institutions in [31], are reviewed and an interesting new result characterizing them

is obtained. In Section 3, implicit and explicit definability of theory systems is studied.

It is shown that implicit definability is equivalent to injectivity of the Leibniz operator

on theory families but that explicit definability seems to be a stronger property, unlike

the situation encountered in the sentential framework, where all three conditions are

shown to be equivalent. Finally, in Section 3, weakly algebraizable π-institutions are
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introduced and a characterization theorem together with a sufficient condition for weak

algebraizability are provided.

For all unexplained categorical terminology and notation the reader is referred to

any of [1], [4], [17]. For the definitions pertaining to institutions see [12], [13], whereas π-

institutions were introduced in [9]. For background on the theory of abstract algebraic

logic and discussion of the classes of the abstract algebraic hierarchy, some of which

were mentioned in this introduction, the reader is referred to the review article [11],

the monograph [10] and the comprehensive treatise [7].

2 Parameterized Equivalence Systems

Some of the elements of the theory of N -parameterized equivalence systems, presented

in Section 4 of [31], that are needed for the part of the theory developed here, will be

reviewed in this section.

Let I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and N a category of natural

transformations on SEN. Suppose that E is a set of natural transformations of the form

ε : SENk+2 → SEN in N , i.e.,

E = {εi : SENki+2 → SEN : i ∈ I},

where εi is in N , for all i ∈ I. The following notation, borrowed from [7], will prove

convenient.

EΣ(φ, ψ, χ) = {εΣ(φ, ψ, χ0, . . . , χk−1) : ε ∈ E with ε : SENk+2 → SEN},

for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ) and χ ∈ SEN(Σ)ω. Also, following [7], Section 1.2,

denote, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

EΣ(〈φ, ψ〉) =
[

χ∈SEN(Σ)ω

EΣ(φ, ψ, χ).

Moreover, given Σ ∈ |Sign| and ∆ ⊆ SEN(Σ)2, let

EΣ(〈∆〉) =
[

〈φ,ψ〉∈∆

EΣ(〈φ, ψ〉).

Finally, for all theory families T of I, define the family of binary relations E(T ) =

{EΣ(T )}Σ∈|Sign| by letting, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ EΣ(T ) iff EΣ′(〈SEN(f)(φ), SEN(f)(ψ)〉) ⊆ TΣ′ ,

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′). (1)

It is easy to see that, for all Σ1, Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2),

〈φ, ψ〉 ∈ EΣ1(T ) implies 〈SEN(f)(φ), SEN(f)(ψ)〉 ∈ EΣ2(T ),

i.e., E(T ) is a relation system on SEN.1

1 System, as opposed to family, is used in the categorical theory to describe a collection
indexed by signature objects and preserved by signature morphisms.
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The right-hand side of the Equivalence (1) will sometimes be abbreviated to

(∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′).

In Proposition 4.1 of [31], it is shown that, if E(T ) is a reflexive relation system,

i.e., EΣ(T ), Σ ∈ |Sign|, is a reflexive binary relation on SEN(Σ), for all Σ ∈ |Sign|,
then E(T ) contains the Leibniz N -congruence system ΩN (T ). Thus, by the maximality

property of ΩN (T ), if E(T ) is an N -congruence system of I compatible with the theory

family T , then it has to coincide with ΩN (T ).

Given a π-institution I = 〈Sign, SEN, C〉, with N a category of natural transfor-

mations on SEN, a subset E of N , as above, will be said to be an N -parameterized

equivalence system for I if, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), σ : SENn → SEN in

N , and all φ, ψ ∈ SEN(Σ)n,

(R) EΣ(〈φ, φ〉) ⊆ CΣ(∅),
(MP) for every theory family T of I,

– φ ∈ TΣ and

– EΣ′(〈SEN(f)(φ), SEN(f)(ψ)〉) ⊆ TΣ′ , for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,

Σ′),
imply ψ ∈ TΣ ,

(RP) for every theory family T of I, EΣ′(〈SEN(f)(φi), SEN(f)(ψi)〉) ⊆ TΣ′ , for all

Σ′ ∈ |Sign| and all f ∈ Sign(Σ, Σ′), i < n, imply

EΣ′(〈SEN(f)(σΣ(φ)), SEN(f)(σΣ(ψ))〉) ⊆ TΣ′ ,

for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ, Σ′).

(R) stands for reflexivity, (MP) for modus ponens and (RP) for replacement. The added

complexity of these three conditions, as compared to the corresponding conditions of [7],

is due to the additional effort needed in the present framework to make the collection

of relations E(T ) structural, i.e., a relation system.

Note that the three conditions have the following abbreviated forms, according to

the convention introduced after Equivalence (1):

(R) EΣ(〈φ, φ〉) ⊆ CΣ(∅),
(MP) for every theory family T of I, if φ ∈ TΣ and (∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′),

then ψ ∈ TΣ ,

(RP) for every theory family T of I, if (∀f)(EΣ′(〈SEN(f)2(φi, ψi)〉) ⊆ TΣ′), for all i < n,

then (∀f)(EΣ′(〈SEN(f)2(σΣ(φ), σΣ(ψ))〉) ⊆ TΣ′).

Lemma 4.3 of [31] asserts that an N -parameterized equivalence system E of a π-

institution I gives rise to a reflexive, symmetric and N -invariant relation system E(T )

that is compatible with T , for every theory family T of I. More precisely, if E is an

N -parameterized equivalence system for I and T a theory family of I, then

1. E(T ) is reflexive,

2. E(T ) is compatible with T and

3. for all Σ ∈ |Sign|, σ : SENn → SEN in N , φ, ψ ∈ SEN(Σ)n,

〈φi, ψi〉 ∈ EΣ(T ), i < n, imply 〈σΣ(φ), σΣ(ψ)〉 ∈ EΣ(T ).
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Furthermore, in Lemma 4.4 of [31], it is shown that the relation E(T ), associated with

an N -parameterized equivalence system E of a π-institution I and a theory family T

of I, satisfies a property satisfied by all N -congruence systems of I. More precisely,

using the notational convention of Equation (2) of [30], if T a theory family of I, then,

for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), if 〈φ, ψ〉 ∈ EΣ(T ) then, for all Σ′ ∈ |Sign|, f ∈
Sign(Σ, Σ′), and all σ : SENn → SEN in N , χ ∈ SEN(Σ′)n−1,

〈σΣ′(SEN(f)(φ), χ), σΣ′(SEN(f)(ψ), χ)〉 ∈ EΣ′(T ).

This is followed by Lemma 4.5, which shows that E(T ) is a symmetric relation system

of I, for every N -parameterized equivalence system E and every theory family T of

I, and this chain of results culminates in the characterization Theorem 4.6 of [31],

which shows that a collection E of natural transformations in N is an N -parameterized

equivalence system for a π-institution I if and only if E(T ) = ΩN (T ), for every theory

family T of I.

Finally, in the main Proposition 4.8 of [31], it is shown that a π-institution I =

〈Sign, SEN, C〉, with N a category of natural transformations on SEN, is N -proto-

algebraic if it possesses an N -parameterized equivalence system.

Proposition 1 [Proposition 4.8 of [31]] Let I = 〈Sign, SEN, C〉 be a π-institution and

N a category of natural transformations on SEN. If I possesses an N-parameterized

equivalence system, then it is N-protoalgebraic.

An alternative characterization of an N -parameterized equivalence system for a

π-institution I is given in the following theorem, which is an analog of Theorem 4.1 of

[8].

Theorem 1 Let I = 〈Sign, SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. Then a subcollection E = {εi : SEN2+ki → SEN : i ∈ I} of

natural transformations in N is an N-parameterized equivalence system for I if and

only if

1. For all Σ ∈ |Sign|, ∆ ∪ {〈φ, ψ〉} ⊆ SEN(Σ)2 and all T ∈ ThFam(I),

(∆ ⊆ ΩN (T ) ⇒ 〈φ, ψ〉 ∈ ΩN (T )) implies

((∀f)(EΣ′(〈SEN(f)2(∆)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′)).

2. For all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ) and all T ∈ ThFam(I), if φ ∈ TΣ and

(∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′), then ψ ∈ TΣ .

Proof Suppose, first, that E is an N -parameterized equivalence system for I. Then

Condition 2 is satisfied by the definition, whence it suffices to prove Condition 1. To

this end, let Σ ∈ |Sign|, ∆ ∪ {〈φ, ψ〉} ⊆ SEN(Σ)2 and T ∈ ThFam(I). Then

∆ ⊆ ΩN
Σ (T ) ⇒ 〈φ, ψ〉 ∈ ΩN

Σ (T ) iff

∆ ⊆ EΣ(T ) ⇒ 〈φ, ψ〉 ∈ EΣ(T ) iff

(∀f)(EΣ′(〈SEN(f)2(∆)〉) ⊆ TΣ′) ⇒ (∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′).

Suppose, conversely, that Conditions 1 and 2 of the statement hold for E. Because

of Condition 2, to show that E is an N -parameterized equivalence system for I, it
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suffices to prove that (R) and (RP) hold for E. Now Condition 1 gives, for all Σ ∈
|Sign|, φ ∈ SEN(Σ),

〈φ, φ〉 ∈ ΩN
Σ (CΣ(∅)) implies (∀f)(EΣ′(〈SEN(f)2(φ, φ)〉) ⊆ CΣ′(∅)).

Since the hypothesis always holds, we get, using f = iΣ , that EΣ(〈φ, φ〉) ⊆ CΣ(∅).
Hence (R) holds.

Condition 1 also gives, for all T ∈ ThFam(I), σ : SENn → SEN in N , all Σ ∈ |Sign|
and all φ, ψ ∈ SEN(Σ)n,

(∀i < n)(〈φi, ψi〉 ∈ ΩN
Σ (T )) ⇒ 〈σΣ(φ), σΣ(ψ)〉 ∈ ΩN

Σ (T ) implies

(∀i < n)(∀f)(EΣ′(〈SEN(f)2(φi, ψi)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈SEN(f)2(σΣ(φ), σΣ(ψ))〉) ⊆ TΣ′).

Since the hypothesis again holds in general, we obtain

(∀i < n)(∀f)(EΣ′(〈SEN(f)2(φi, ψi)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈SEN(f)2(σΣ(φ), σΣ(ψ))〉) ⊆ TΣ′),

which is the rule (RP).

Therefore, E is an N -parameterized equivalence system for I.

3 Injectivity of the Leibniz Operator on Theory Systems

Recall from [31], Section 5, the relation ∼ between two theory systems T 1, T 2 in

the collection ThSys
〈F,α〉
I (SEN′) of all theory systems of an 〈F, α〉-min (N, N ′)-model

I′min = 〈Sign′, SEN′, C′min〉 of I on SEN′, via a surjective (N, N ′)-logical morphism

〈F, α〉 : I〉−seI′, which was defined by

T 1 ∼ T 2 iff ΩN ′
(T 1) = ΩN ′

(T 2),

i.e., ∼ is the kernel of the N ′-Leibniz operator as applied on the collection of the-

ory systems ThSys
〈F,α〉
I (SEN′). Proposition 5.3 of [31] showed that, for I N -protoal-

gebraic, at most one of the theory systems in each ∼-equivalence class is a member

of ThSys
〈F,α〉F
I (SEN′), the collection of all those theory systems T ′ of I′min that are

such that I′minT ′
= 〈Sign′, SEN′, C′minT ′ 〉 is an 〈F, α〉-full (N, N ′)-model of I.

If I is N -protoalgebraic, then, denoting by T/∼ the ∼-equivalence class of a theory

system T , we get that

ΩN (
\

T/∼) =
\

T ′∈T/∼
ΩN (T ′) =

\

T ′∈T/∼
ΩN (T ) = ΩN (T ),

whence the theory system
T

T/∼ is in the same ∼-class with T. It was shown in

Proposition 5.4 of [31] that
T

T/∼ is in ThSys
〈F,α〉F
I (SEN′), i.e., that

T
T/∼ is the

representative of T/∼ in ThSys
〈F,α〉F
I (SEN′). More precisely, we had

Proposition 2 [Proposition 5.4 of [31]] Suppose I = 〈Sign, SEN, C〉 is a π-institution

and N a category of natural transformations on SEN. Let SEN′ : Sign′ → Set be a

functor, N ′ a category of natural transformations on SEN′ and 〈F, α〉 : SEN →se SEN′

a surjective (N, N ′)-epimorphic translation. If I is N-protoalgebraic and T is a theory

system of the 〈F, α〉-min (N, N ′)-model of I on SEN′, then the following statements

are equivalent:
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1. T ∈ ThSys
〈F,α〉F
I (SEN′).

2. T is the least element in the class T/∼.

3. T/ΩN ′
(T ) is the least element in ThSys

〈F,πN′
F α〉

I (SEN′N
′
).

Proposition 2 yielded the following corollary:

Proposition 3 [Proposition 5.5 of [31]] Suppose I = 〈Sign, SEN, C〉 is a π-institution

and N a category of natural transformations on SEN. Let SEN′ : Sign′ → Set be a

functor, N ′ a category of natural transformations on SEN′ and 〈F, α〉 : SEN →se SEN′

a surjective (N, N ′)-epimorphic translation. If I is N-protoalgebraic, then we have

that ThSys
〈F,α〉F
I (SEN′) = ThSys

〈F,α〉
I (SEN′) if and only if Ω

〈F,α〉
SEN′ is injective on

ThSys
〈F,α〉
I (SEN′).

Now recall from Proposition 4.8 of [31] (repeated in the present paper as Proposition

1) that the existence of an N -parameterized equivalence system for a π-institution I
implies that I is N -protoalgebraic. Therefore, by the preceding remarks, if I has an

N -parameterized equivalence system, then every ∼-equivalence class of theory systems

has a minimum member. This minimum element is now characterized based on the

existence of an N -parameterized equivalence system. This result forms an analog in

the π-institution framework of Lemma 3.4 of [8] for sentential logics.

Lemma 1 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of natural

transformations on SEN and E an N-parameterized equivalence system for I. Then,

for every theory system T of I, the collection T ∗ = {T ∗Σ}Σ∈|Sign|, defined, for all

Σ ∈ |Sign|, by

T ∗Σ = CΣ(
[
{EΣ(〈φ, ψ〉) : 〈φ, ψ〉 ∈ ΩN

Σ (T )}),

is a theory system of I and it is the minimum element of T/∼.

Proof It is shown, first, that T ∗ = {T ∗Σ}Σ∈|Sign| is indeed a theory system of I. It is

clearly a theory family, whence it suffices to show that, for all Σ1, Σ2 ∈ |Sign| and all

f ∈ Sign(Σ1, Σ2), SEN(f)(T ∗Σ1
) ⊆ T ∗Σ2

. We have

SEN(f)(T ∗Σ1
) = SEN(f)(CΣ1(

S{EΣ1(〈φ, ψ〉) : 〈φ, ψ〉 ∈ ΩN
Σ1

(T )}))
⊆ CΣ2(SEN(f)(

S{EΣ1(〈φ, ψ〉) : 〈φ, ψ〉 ∈ ΩN
Σ1

(T )}))
= CΣ2(

S{SEN(f)(EΣ1(〈φ, ψ〉)) : 〈φ, ψ〉 ∈ ΩN
Σ1

(T )})
⊆ CΣ2(

S{EΣ2(〈SEN(f)(φ), SEN(f)(ψ)〉) :

〈SEN(f)(φ), SEN(f)(ψ)〉 ∈ ΩN
Σ2

(T )})
⊆ CΣ2(

S{EΣ2(〈φ, ψ〉) : 〈φ, ψ〉 ∈ ΩN
Σ2

(T )})
= T ∗Σ2

.

For every 〈φ, ψ〉 ∈ ΩN
Σ (T ) = EΣ(T ), we have that EΣ(〈φ, ψ〉) ⊆ TΣ , whence

[
{EΣ(〈φ, ψ〉) : 〈φ, ψ〉 ∈ ΩN

Σ (T )} ⊆ TΣ ,

for every Σ ∈ |Sign|. This immediately yields that T ∗Σ ⊆ TΣ , for all Σ ∈ |Sign|, i.e.,

T ∗ ≤ T . Therefore, using Proposition 1, we obtain, by the N -protoalgebraicity of I,

that ΩN (T ∗) ≤ ΩN (T ).
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Suppose, now, that 〈φ, ψ〉 ∈ ΩN
Σ (T ). Since ΩN (T ) is, by definition, an N -congru-

ence system, we obtain that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),

〈SEN(f)(φ), SEN(f)(ψ)〉 ∈ ΩN
Σ′(T ),

and, therefore, by the definition of T ∗, that EΣ′(〈SEN(f)(φ), SEN(f)(ψ)〉) ⊆ T ∗Σ′ .
Thus, by the definition of EΣ(T ), we get that 〈φ, ψ〉 ∈ EΣ(T ∗) = ΩN

Σ (T ∗). Thus

ΩN (T ) ≤ ΩN (T ∗).
Therefore ΩN (T ) = ΩN (T ∗), i.e., T ∼ T ∗. If, T ′ is a theory system of I, such that

T ′ ∼ T , then, since ΩN (T ′) = ΩN (T ), we obtain that T ′∗ = T ∗, whence T ∗ ⊆ T ′,
which shows that T ∗ is the least theory system of I in T/∼.

Recall, from [30] the definition of the least theory system T 〈Σ0,Φ0〉 of a π-institution

I that contains the theory system T of I and a fixed set Φ0 of Σ0-sentences over some

signature Σ0 ∈ |Sign|. Using this notion, a theorem is provided that characterizes the

injectivity of the N -Leibniz operator on theory systems of a π-institution I in terms

of the ∼-equivalence class of the theory system T 〈Σ0,φ0〉, for an arbitrary Σ0-sentence

φ0, for arbitrary Σ0 ∈ |Sign|. This result forms an analog of Theorem 3.5 of [8] for

π-institutions.

Recall that, given a π-institution I = 〈Sign, SEN, C〉, by

Thm = {ThmΣ}Σ∈|Sign| = {CΣ(∅)}Σ∈|Sign|

is denoted the theorem system of I, which is always the smallest theory system and

the smallest theory family of I.

Theorem 2 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of

natural transformations on SEN and E an N-parameterized equivalence system for I.
Then, the following statements are equivalent:

1. ΩN is injective on theory systems.

2. For all Σ0 ∈ |Sign|, φ0 ∈ SEN(Σ0), Thm〈Σ0,φ0〉/∼ is a singleton.

3. For all Σ, Σ0 ∈ |Sign|, φ0 ∈ SEN(Σ0),

Thm
〈Σ0,φ0〉
Σ = CΣ(

[
{EΣ(〈ψ, χ〉) : 〈ψ, χ〉 ∈ ΩN

Σ (Thm〈Σ0,φ0〉)}). (2)

Proof1 → 2 This part is obvious.

2 → 3 Suppose, next, that, for all Σ0 ∈ |Sign|, φ0 ∈ SEN(Σ0), Thm〈Σ0,φ0〉/∼ is a single-

ton. Thus, we must have Thm〈Σ0,φ0〉∗ = Thm〈Σ0,φ0〉, whence, by Lemma 1, for all

Σ ∈ |Sign|,

Thm
〈Σ0,φ0〉
Σ = CΣ(

[
{EΣ(〈ψ, χ〉) : 〈ψ, χ〉 ∈ ΩN

Σ (Thm〈Σ0,φ0〉)}).

3 → 1 Suppose, now, that, for all Σ, Σ0 ∈ |Sign|, φ0 ∈ SEN(Σ0), Equation (2) holds.

The goal is to show that, for every theory system T of I, T ∗ = T, since this will

yield that T/∼ is a singleton, for every theory system T, and, therefore, that ΩN

is injective on theory systems.

As it was already seen in the proof of Lemma 1, T ∗ ≤ T, for all theory systems

T of I. Now let Σ ∈ |Sign|, φ ∈ SEN(Σ), such that φ ∈ TΣ . We have, by the
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minimality of Thm〈Σ,φ〉 (Lemma 3.6 of [30]), that Thm〈Σ,φ〉 ≤ T . Hence, by N -

protoalgebraicity, we obtain that ΩN (Thm〈Σ,φ〉) ≤ ΩN (T ). Thus, using Equation

(2), we get that

φ ∈ Thm
〈Σ,φ〉
Σ

= CΣ(
S{EΣ(〈ψ, χ〉) : 〈ψ, χ〉 ∈ ΩN

Σ (Thm〈Σ,φ〉)})
⊆ CΣ(

S{EΣ(〈ψ, χ〉) : 〈ψ, χ〉 ∈ ΩN
Σ (T )})

= T ∗Σ .

Thus φ ∈ T ∗Σ , which yields T ≤ T ∗. Therefore T = T ∗, as was to be shown.

The next main result (Theorem 3) is a restricted “transfer theorem”. It says that

the injectivity of the N -Leibniz operator on the theory systems of a given π-institution

implies the injectivity of the N ′-Leibniz operator on the theory systems of any (N, N ′)-
model I′ = 〈Sign′, SEN′, C′〉 of I via a surjective (N, N ′)-logical morphism 〈F, α〉 :

I〉−seI′. Theorem 3 forms an analog of Theorem 3.6 of [8] for π-institutions. For its

proof, however, a chain of technical lemmas are needed, which will now be formulated

and presented.

The first lemma asserts that if both a theory system T and a specific Σ0-sentence

φ0 of a π-institution I are mapped inside a theory system T ′ of another π-institution

I′ via a surjective singleton semi-interpretation 〈F, α〉 : I〉−sI′, then the least theory

system T 〈Σ0,φ0〉 is also mapped inside T ′.

Lemma 2 Suppose that I = 〈Sign, SEN, C〉, I′ = 〈Sign′, SEN′, C′〉 are π-institu-

tions, 〈F, α〉 : I〉−sI′ a surjective singleton semi-interpretation, T a theory system

of I, T ′ a theory system of I′, Σ0 ∈ |Sign| and φ0 ∈ SEN(Σ0). If, for all Σ ∈
|Sign|, αΣ(TΣ) ⊆ T ′F (Σ) and αΣ0(φ0) ∈ T ′F (Σ0)

, then, for all Σ ∈ |Sign|,

αΣ(T
〈Σ0,φ0〉
Σ ) ⊆ T ′F (Σ).

Proof To show the required inclusions, it suffices, by Lemma 5 of [30], to show that

T ≤ α−1(T ′) and φ0 ∈ α−1
Σ0

(T ′F (Σ0)
).

For the first inclusion, if Σ ∈ |Sign|, φ ∈ SEN(Σ), such that φ ∈ TΣ , then αΣ(φ) ∈
αΣ(TΣ) ⊆ T ′F (Σ), whence φ ∈ α−1

Σ (T ′F (Σ)). Therefore, for all Σ ∈ |Sign|, TΣ ⊆
α−1

Σ (T ′F (Σ)), which verifies that T ≤ α−1(T ′).
The second inclusion follows from the hypothesis αΣ0(φ0) ∈ T ′F (Σ0)

.

The second lemma in the series asserts that, if a theory system T of a π-institution

I is mapped inside a theory system T ′ of a π-institution I′ via a surjective (N, N ′)-
logical morphism 〈F, α〉 : I〉−seI′, then the N -Leibniz congruence system of T is also

mapped inside the N ′-Leibniz congruence system of T ′.

Lemma 3 Suppose that I = 〈Sign, SEN, C〉, I′ = 〈Sign′, SEN′, C′〉 are π-institu-

tions, with N, N ′ categories of natural transformations on SEN, SEN′, respectively,

and 〈F, α〉 : I〉−seI′ a surjective (N, N ′)-logical morphism, T a theory system of I,
T ′ a theory system of I′, such that αΣ(TΣ) ⊆ T ′F (Σ), for all Σ ∈ |Sign|. If I is

N-protoalgebraic, then

αΣ(ΩN
Σ (T )) ⊆ ΩN ′

F (Σ)(T
′), for all Σ ∈ |Sign|.
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Proof By Lemma 5.21 of [30], we have that

ΩN
Σ (α−1(T ′)) = α−1

Σ (ΩN ′
F (Σ)(T

′)), (3)

for all Σ ∈ |Sign|. But, by the hypothesis, we have T ≤ α−1(T ′), whence, by N -

protoalgebraicity and Equation (3), we get, for all Σ ∈ |Sign|,

ΩN
Σ (T ) ⊆ ΩN

Σ (α−1(T ′)) = α−1
Σ (ΩN ′

F (Σ)(T
′)),

which yields αΣ(ΩN
Σ (T )) ⊆ ΩN ′

F (Σ)(T
′).

Finally, the last lemma needed in order to proceed with the proof of Theorem 3

verifies that, if 〈F, α〉 : I〉−seI′ is a surjective (N, N ′)-logical morphism and E is an

N -parameterized equivalence system for I, then E′, the collection of natural transfor-

mations in N ′ corresponding to the collection E via the (N, N ′)-epimorphic property,

is an N ′-parameterized equivalence system for I′.

Lemma 4 Suppose that I = 〈Sign, SEN, C〉, I′ = 〈Sign′, SEN′, C′〉 are π-institu-

tions, with N, N ′ categories of natural transformations on SEN, SEN′, respectively,

〈F, α〉 : I〉−seI′ a surjective (N, N ′)-logical morphism and E an N-parameterized

equivalence system for I. Then E′, the collection corresponding to E via the (N, N ′)-
epimorphic property, is an N ′-parameterized equivalence system for I′.

Proof It suffices, by Theorem 4.6 of [31] and surjectivity, to show that, for every theory

family T ′ of I′ and all Σ ∈ |Sign|, E′F (Σ)(T
′) = ΩN ′

F (Σ)(T
′). We have, in fact,

ΩN ′
F (Σ)(T

′) = αΣ(ΩN
Σ (α−1(T ′))) (by Lemma 5.21 of [30])

= αΣ(EΣ(α−1(T ′))) (by hypothesis and Thm 4.6 of [31])

= E′F (Σ)(T
′),

where the last equality follows from the following string of equalities

αΣ(EΣ(α−1(T ′)))
= αΣ({〈φ, ψ〉 : (∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ α−1

Σ′ (T
′
F (Σ′)))})

= {〈αΣ(φ), αΣ(ψ)〉 : (∀f)(αΣ′(EΣ′(〈SEN(f)2(φ, ψ)〉)) ⊆ T ′F (Σ′))}
= {〈αΣ(φ), αΣ(ψ)〉 : (∀f)(E′F (Σ′)(αΣ′(〈SEN(f)2(φ, ψ)〉)) ⊆ T ′F (Σ′))}
= {〈αΣ(φ), αΣ(ψ)〉 :

(∀f)(E′F (Σ′)(〈SEN′(F (f))2(αΣ(φ), αΣ(ψ))〉)) ⊆ T ′F (Σ′))}
= {〈φ′, ψ′〉 : (∀f ′)(E′Σ′′(〈SEN′(f ′)2(φ′, ψ′)〉) ⊆ T ′Σ′′)}
= E′F (Σ)(T

′),

where in many of the steps of the above chain of equalities the surjectivity of 〈F, α〉
played a crucial role.

We are now ready to proceed with formulating and proving the “transfer theorem”

asserting that the property of injectivity of the Leibniz operator on theory systems of a

π-institution transfers to the injectivity of the Leibniz operator on the theory systems

of all its models via surjective logical morphisms.



12

Theorem 3 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of

natural transformations on SEN and E an N-parameterized equivalence system for

I. Then, ΩN is injective on theory systems if and only if, for every (N, N ′)-model

I′ = 〈Sign′, SEN′, C′〉 of I via a surjective (N, N ′)-logical morphism 〈F, α〉 : I〉−seI′,
Ω
〈F,α〉
I := ΩN ′

is injective on theory systems.

Proof The “if” direction is obvious, since 〈ISign, ι〉 : I `se I is a surjective (N, N)-

logical morphism from I to itself.

For the “only if” direction, suppose that ΩN is injective on the theory systems of

I and let I′ = 〈Sign′, SEN′, C′〉 be an (N, N ′)-model of I via a surjective (N, N ′)-
logical morphism 〈F, α〉 : I〉−seI′. By Theorem 2 and the fact that 〈F, α〉 : I〉−seI′ is

a semi-interpretation, we have, for all Σ, Σ0 ∈ |Sign| and all φ0 ∈ SEN(Σ0), that

C′F (Σ)(αΣ(Thm
〈Σ0,φ0〉
Σ )) =

C′F (Σ)(αΣ(
S{EΣ(〈ψ, χ〉) : 〈ψ, χ〉 ∈ ΩN

Σ (Thm〈Σ0,φ0〉)})).

This, combined with the fact that 〈F, α〉 is (N, N ′)-epimorphic and surjective, yields

that

C′F (Σ)(αΣ(Thm
〈Σ0,φ0〉
Σ )) =

C′F (Σ)(
S{E′F (Σ)(〈αΣ(ψ), αΣ(χ)〉) : 〈ψ, χ〉 ∈ ΩN

Σ (Thm〈Σ0,φ0〉)}). (4)

Consider two theory systems T, T ′ of I′ and suppose that ΩN ′
(T ) = ΩN ′

(T ′). It will

be shown that T ≤ T ′. By symmetry, then, it is obtained that T ′ ≤ T, whence it will

follow that T = T ′ and, hence, that ΩN ′
is injective on theory systems.

To show that T ≤ T ′, let Σ′ ∈ |Sign′| and φ′ ∈ TΣ′ . By surjectivity of 〈F, α〉,
there exists Σ ∈ |Sign| and φ ∈ SEN(Σ), such that F (Σ) = Σ′ and αΣ(φ) = φ′. Then

we have

φ′ ∈ C′F (Σ)(αΣ(Thm
〈Σ,φ〉
Σ )) (since φ′ = αΣ(φ))

= C′F (Σ)(
S{E′F (Σ)(〈αΣ(ψ), αΣ(χ)〉) : 〈ψ, χ〉 ∈ ΩN

Σ (Thm〈Σ,φ〉)})
(by Equation (4))

⊆ C′F (Σ)(
S{E′F (Σ)(〈αΣ(ψ), αΣ(χ)〉) : 〈αΣ(ψ), αΣ(χ)〉 ∈ ΩN ′

F (Σ)(T )})
(by Lemmas 2 and 3)

⊆ C′F (Σ)(
S{E′F (Σ)(〈αΣ(ψ), αΣ(χ)〉) : 〈αΣ(ψ), αΣ(χ)〉 ∈ ΩN ′

F (Σ)(T
′)})

(by hypothesis, since ΩN ′
(T ) = ΩN ′

(T ′))
⊆ T ′F (Σ) (by Lemma 4 and N ′-protoalgebraicity).

Therefore φ′ ∈ T ′F (Σ), yielding that T ≤ T ′, as was to be shown.

The following result is borrowed from [31].

Proposition 4 [Proposition 5.5 of [31]] Suppose I = 〈Sign, SEN, C〉 is a π-institution

and N a category of natural transformations on SEN. Let SEN′ : Sign′ → Set be a

functor, N ′ a category of natural transformations on SEN′ and 〈F, α〉 : SEN →se

SEN′ a surjective singleton (N, N ′)-epimorphic translation. If I is N-protoalgebraic,

then ThSys
〈F,α〉F
I (SEN′) = ThSys

〈F,α〉
I (SEN′) if and only if Ω

〈F,α〉
SEN′ is injective on

ThSys
〈F,α〉
I (SEN′).
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Using this result, a necessary condition and a sufficient condition for those π-

institutions whose full models via surjective (N, N ′)-logical morphisms 〈F, α〉 can be

identified with the theory systems of their 〈F, α〉-min (N, N ′)-models is given. This is

a partial analog of Theorem 3.8 of [10] and paves the way for introducing the notion

of a weakly algebraizable π-institution, analogous, in the π-institution context, to the

notion of a weakly algebraizable sentential logic.

Theorem 4 Let I = 〈Sign, SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. Then the following statements are related by (1 ↔ 2) → 3 →
4 → 5 → 6:

1. I is N-protoalgebraic and, for every functor SEN′ : Sign′ → Set, with N ′ a cate-

gory of natural transformations on SEN′, and 〈F, α〉 : SEN → SEN′ a surjective sin-

gleton (N, N ′)-epimorphic translation, if T ∈ ThSys
〈F,α〉
I (SEN′), then T/ΩN ′

(T )

is the least theory system in the collection ThSys
〈F,π

ΩN′ (T )
F α〉

I (SEN′Ω
N′ (T )).

2. For every functor SEN′ : Sign′ → Set, with N ′ a category of natural transforma-

tions on SEN′, and 〈F, α〉 : SEN → SEN′ a surjective singleton (N, N ′)-epimorphic

translation, the Leibniz operator Ω
〈F,α〉
SEN′ is monotone on theory families and injec-

tive on theory systems.

3. For every functor SEN′ : Sign′ → Set, with N ′ a category of natural transforma-

tions on SEN′, and 〈F, α〉 : SEN → SEN′ a surjective singleton (N, N ′)-epimorphic

translation, the mapping T 7→ C′minT

is a bijection from ThSys
〈F,α〉
I (SEN′) to

FMod
〈F,α〉
I (SEN′) and, as a consequence, a complete lattice isomorphism between

ThSys
〈F,α〉
I (SEN′) and FMod

〈F,α〉
I (SEN′).

4. For every functor SEN′ : Sign′ → Set, with N ′ a category of natural trans-

formations on SEN′, and 〈F, α〉 : SEN → SEN′ a surjective singleton (N, N ′)-
epimorphic translation, the Leibniz operator Ω

〈F,α〉
SEN′ is a lattice isomorphism from

ThSys
〈F,α〉
I (SEN′) to Con

〈F,α〉
AlgN (I)

(SEN′).
5. For every functor SEN′ : Sign′ → Set, with N ′ a category of natural trans-

formations on SEN′, and 〈F, α〉 : SEN → SEN′ a surjective singleton (N, N ′)-
epimorphic translation, the Leibniz operator Ω

〈F,α〉
SEN′ is a lattice isomorphism from

ThSys
〈F,α〉
I (SEN′) to Con

〈F,α〉
AlgN (I)∗(SEN′).

6. For every functor SEN′ : Sign′ → Set, with N ′ a category of natural transforma-

tions on SEN′, and 〈F, α〉 : SEN → SEN′ a surjective singleton (N, N ′)-epimorphic

translation, the Leibniz operator Ω
〈F,α〉
SEN′ is monotone and injective on theory sys-

tems.

Proof1 ↔ 2 N -protoalgebraicity is equivalent to the N ′-Leibniz operator being monotone

on theory families and, by Proposition 5.4 of [31], the property in Part 1 is equiva-

lent to T ∈ ThSys
〈F,α〉F
I (SEN′). Therefore, by Proposition 4, the property in Part

1 is equivalent to the injectivity of the N ′-Leibniz operator on theory systems.

1 → 3 The given mapping is always injective and, by Proposition 5.4 of [31], the image lies

in FMod
〈F,α〉
I (SEN′). By Theorem 5.2 of [31], it is a surjective mapping, whence it

is a bijection. Since, both itself and its inverse are obviously order-preserving, this

mapping is a lattice isomorphism as claimed.

3 → 4 Using again Theorem 5.2 of [31], we conclude that I is an N -protoalgebraic π-

institution. Now compose the mapping of Part 3 with the mapping provided by the
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Isomorphism Theorem 13 of [27] to obtain an isomorphism from ThSys
〈F,α〉
I (SEN′)

to Con
〈F,α〉
AlgN (I)

(SEN′). This composite mapping is the mapping

T 7→ eΩ〈F,α〉
SEN′ (C

′minT

) = ΩN ′
(T ),

the second equality following from Part 3 of Proposition 17 of [30]. We conclude

that the N ′-Leibniz operator is a lattice isomorphism from ThSys
〈F,α〉
I (SEN′) to

Con
〈F,α〉
AlgN (I)

(SEN′).

4 → 5 It suffices to show that AlgN (I) = AlgN (I)∗. It was shown in Proposition 18 of [30]

that AlgN (I)∗ ⊆ AlgN (I), whence, it suffices to show that AlgN (I) ⊆ AlgN (I)∗.
Every element of Con

〈F,α〉
AlgN (I)

(SEN′) is, by the hypothesis, of the form ΩN ′
(T ), for

some T ∈ ThSys
〈F,α〉
I (SEN′). But, for every T ∈ ThSys

〈F,α〉
I (SEN′), ΩN ′

(T ) ∈
AlgN (I)∗, whence, we obtain AlgN (I) ⊆ AlgN (I)∗.

5 → 6 This implication is trivial.

4 Definability of Theory Systems

Let I = 〈Sign, SEN, C〉 be a π-institution, N a category of natural transformations on

SEN. An N -matrix system for I is a pair 〈〈SEN′, 〈F, α〉〉, T ′〉, where SEN′ : Sign′ →
Set is a functor, with N ′ a category of natural transformations on SEN′, 〈F, α〉 :

SEN →se SEN′ is an (N, N ′)-epimorphic translation and T ′ ∈ ThSys
〈F,α〉
I (SEN′) is a

theory system of the 〈F, α〉-min (N, N ′)-model of I on SEN′. In this case T ′ will be

said to be the designated theory system of the N -matrix system. An N -matrix

system class for I is a class of N -matrix systems for I.

An N -matrix system class for I

M = {〈〈SENi, 〈F i, αi〉〉, T i〉 : i ∈ I}

will be said to have designated theory systems implicitly definable if, for all

i, j ∈ I, such that 〈SENi, 〈F i, αi〉〉 = 〈SENj , 〈F j , αj〉〉, we necessarily have T i = T j .

If I = 〈Sign, SEN, C〉 is a π-institution and N a category of natural transforma-

tions on SEN, we use the abbreviated notation 〈SEN, T 〉 to denote the N -matrix system

〈〈SEN, 〈ISign, ι〉〉, T 〉, for all T ∈ ThSys(I). Similarly, slightly overloading notation, the

notation 〈SENθ, T/θ〉 will be used for 〈〈SENθ, 〈ISign, πθ〉〉, T/θ〉 for an N -congruence

system θ on SEN, where, of course, 〈ISign, πθ〉 : SEN →se SENθ denotes the natural

(N, Nθ)-epimorphic projection.

Let I = 〈Sign, SEN, C〉 be a π-institution, N a category of natural transformations

on SEN and T a theory system of I. T is said to be explicitly N -definable by a set

of pairs of natural transformations ∆ = {〈γj , δj〉}j∈J , with γj , δj : SEN → SEN in N ,

for all j ∈ J , if, for all Σ ∈ |Sign|, φ ∈ SEN(Σ),

φ ∈ TΣ iff (∀j ∈ J)(〈γj
Σ(φ), δj

Σ(φ)〉 ∈ ΩN
Σ (T )).

In the following proposition, a characterization of the injectivity of the N -Leibniz

operator on theory systems is given in terms of the implicit definability of designated

theory systems of given matrix system classes. Proposition 5 forms an analog of Propo-

sition 3.7 of [8].
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Proposition 5 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of

natural transformations on SEN and E an N-parameterized equivalence system for I.
Then, the following are equivalent:

1. ΩN is injective on theory systems.

2. The matrix system class {〈SENΩN (T ), T/ΩN (T )〉 : T ∈ ThSys(I)} has designated

theory systems implicitly definable.

3. The matrix system class

{〈〈SEN′Ω
N′ (T ), 〈F, π

ΩN′ (T )
F α〉〉, T/ΩN ′

(T )〉 : 〈F, α〉 : SEN →se SEN′

surjective and T ∈ ThSys
〈F,α〉
I (SEN′)}

has designated theory systems implicitly definable.

Proof1 → 3 If ΩN is injective on theory systems, then, by Theorem 3, ΩN ′
is injective

on the theory systems of the 〈F, α〉-min (N, N ′)-model I′ of I via the surjective

(N, N ′)-logical morphism 〈F, α〉. Thus, if

〈SEN′Ω
N′ (T ), 〈F, π

ΩN′ (T )
F α〉〉 = 〈SEN′Ω

N′ (T ′), 〈F, π
ΩN′ (T ′)
F α〉〉,

then we must have SEN′Ω
N′ (T ) = SEN′Ω

N′ (T ′), whence ΩN ′
(T ) = ΩN ′

(T ′),
whence T = T ′ and, therefore, Condition 3 holds.

3 → 2 This is obvious, since I is an 〈ISign, ι〉-min (N, N)-model of I via the surjective

(N, N)-logical morphism 〈ISign, ι〉 : I `se I.

2 → 1 Suppose that T, T ′ are theory systems of I with ΩN (T ) = ΩN (T ′). Then, obvi-

ously, SENΩN (T ) = SENΩN (T ′). Consider the matrix systems

〈SENΩN (T ), T/ΩN (T )〉 and 〈SENΩN (T ′), T ′/ΩN (T ′)〉.
These two have the same functor component, whence, by Condition 2, we ob-

tain T/ΩN (T ) = T ′/ΩN (T ′). Therefore, since ΩN (T ) is compatible with T ′ and

ΩN (T ′) is compatible with T , we obtain T = T ′.

Finally, in the following lemma, a characterization is provided of the explicit defin-

ability of designated theory systems of a given matrix system class. Lemma 5 forms a

partial analog of Theorem 3.8 of [8].

Lemma 5 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of natural

transformations on SEN and E an N-parameterized equivalence system for I. Let ∆ =

{〈γj , δj〉 : j ∈ J} be a set of pairs of natural transformations γj , δj : SEN → SEN in

N . Then I has its theory systems explicitly definable by ∆ iff, for all T ∈ ThSys(I),

all Σ ∈ |Sign| and all φ ∈ SEN(Σ),

φ ∈ TΣ iff
S{EΣ′(〈SEN(f)(ψ), SEN(f)(χ)〉) : 〈ψ, χ〉 ∈ ∆Σ(φ)} ⊆ TΣ′

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′).

Proof I has its theory systems explicitly definable by ∆ iff, for all T ∈ ThSys(I) and

all φ ∈ SEN(Σ), φ ∈ TΣ iff, for all j ∈ J, 〈γj
Σ(φ), δj

Σ(φ)〉 ∈ ΩN
Σ (T ) iff, since E is an

N -parameterized equivalence system for I, φ ∈ TΣ iff, for all j ∈ J, 〈γj
Σ(φ), δj

Σ(φ)〉 ∈
EΣ(T ) iff φ ∈ TΣ iff, for all j ∈ J,

EΣ′(〈SEN(f)(γj
Σ(φ)), SEN(f)(δj

Σ(φ))〉) ⊆ TΣ′ ,

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′).
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Finally, a partial analog of Theorem 3.9 of [8] is presented that ties the implicit

definability with the explicit definability of designated theory systems of matrix systems

for a given π-institution.

Theorem 5 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of

natural transformations on SEN and E an N-parameterized equivalence system for I.
Then, the following are related by 1 → (2 ↔ 3):

1. I has its theory systems explicitly definable by a set ∆ = {〈γj , δj〉}j∈J of pairs on

natural transformations γj , δj : SEN → SEN, j ∈ J, in N .

2. ΩN is injective on theory systems.

3. The N-matrix system class {〈SENΩN (T ), T/ΩN (T )〉 : T ∈ ThSys(I)} has desig-

nated theory systems implicitly definable.

Proof The equivalence between 2 and 3 was shown in Proposition 5. That 1 implies

2 is easy to see. Let T, T ′ ∈ ThSys(I), such that ΩN (T ) = ΩN (T ′). We have, for all

Σ ∈ |Sign|, φ ∈ SEN(Σ),

φ ∈ TΣ iff 〈γj
Σ(φ), δj

Σ(φ)〉 ∈ ΩN (T ), for all j ∈ J,

iff 〈γj
Σ(φ), δj

Σ(φ)〉 ∈ ΩN (T ′), for all j ∈ J,

iff φ ∈ T ′Σ .

Hence T = T ′ and ΩN is injective on theory systems.

We were unable to show, and think it unlikely that it holds in general, that implicit

definability implies explicit definability, as is the case for sentential logics (see, e.g.,

Theorem 3.9 of [8]).

5 Weakly Algebraizable π-Institutions

A π-institution I = 〈Sign, SEN, C〉, with N a category of natural transformations on

SEN, is said to be N -weakly algebraizable if the Leibniz operator ΩN is monotone

on the collection of all theory families and injective on the collection of all theory

systems of I.

By combining the characterization of N -protoalgebraicity provided in Lemma 3.8 of

[30] in terms of the monotonicity of the N -Leibniz operator on theory families and the

characterization of the injectivity of the N -Leibniz operator on theory systems provided

in Theorem 5, we obtain the following characterization of N -weak algebraizability.

Theorem 6 Let I = 〈Sign, SEN, C〉 be a π-institution and N a category of natural

transformations on SEN. Then I is N-weakly algebraizable iff I is N-protoalgebraic and

the N-matrix system class {〈SENΩN (T ), T/ΩN (T )〉 : T ∈ ThSys(I)} has designated

theory systems implicitly definable.

Proof I is N -weakly algebraizable iff, by definition, ΩN is monotone on theory fami-

lies and injective on theory systems iff, by the characterization of N -protoalgebraicity

(Lemma 3.8 of [30]) and by Theorem 5, I is N -protoalgebraic and the matrix sys-

tem class {〈SENΩN (T ), T/ΩN (T )〉 : T ∈ ThSys(I)} has designated theory systems

implicitly definable.
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A sufficient condition for N -weak algebraizability will be presented next. A tech-

nical lemma is needed first.

Lemma 6 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of natural

transformations on SEN, ∆ = {〈γj , δj〉}j∈J a collection of pairs of natural transfor-

mations γj , δj : SEN → SEN in N and E = {εi : i ∈ I} a collection of natural

transformations εi : SEN2+ki → SEN, i ∈ I, in N . If

– for all Σ ∈ |Sign|, Θ ∪ {〈φ, ψ〉} ⊆ SEN(Σ)2 and all T ∈ ThFam(I),

(Θ ⊆ ΩN
Σ (T ) ⇒ 〈φ, ψ〉 ∈ ΩN

Σ (T )) implies

(∀f)(EΣ′(〈SEN(f)2(Θ)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′)

– for all Σ ∈ |Sign|, φ ∈ SEN(Σ), and all theory families T ∈ ThFam(I),

φ ∈ TΣ iff (∀f)(EΣ′(〈SEN(f)2(∆Σ(φ))〉) ⊆ TΣ′),

then, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ) and all T ∈ ThFam(I), if φ ∈ TΣ and

(∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′), then ψ ∈ TΣ .

Proof The proof is rather long, but not very difficult. It is modeled after the proof

of Lemma 4.2 of [8]. To compactify the notation inside the proof the abbreviation

f(φ) := SEN(f)(φ), for f ∈ Sign(Σ, Σ′), φ ∈ SEN(Σ), will be used.

By the first hypothesis, we have, for all T ∈ ThFam(I), all σ : SENn → SEN in N ,

all φ, ψ, χ ∈ SEN(Σ) and all φ, ψ ∈ SEN(Σ)n,

(∀f)(EΣ′(〈f(φ), f(ψ)〉) ⊆ TΣ′) ⇒ (∀f)(EΣ′(〈f(ψ), f(φ)〉) ⊆ TΣ′)

(∀i < n)(∀f)(EΣ′(〈f(φi), f(ψi)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈f(σΣ(φ)), f(σΣ(ψ))〉) ⊆ TΣ′)

(∀f)(EΣ′(〈f(φ), f(ψ)〉) ⊆ TΣ′) and (∀f)(EΣ′(〈f(ψ), f(χ)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈f(φ), f(χ)〉) ⊆ TΣ′)

Now, fix Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ) and T ∈ ThFam(I) and assume that φ ∈ TΣ and

(∀f)(EΣ′(〈f(φ), f(ψ)〉) ⊆ TΣ′ . Now, by the second condition in the hypothesis,

φ ∈ TΣ iff (∀f)(EΣ′(〈f2(∆Σ(φ))〉) ⊆ TΣ′).

Combining the above we have, for all j ∈ J,

(∀f)(EΣ′(〈f(φ), f(ψ)〉) ⊆ TΣ′) ⇒ (∀f)(EΣ′(〈f(γj
Σ(φ)), f(γj

Σ(ψ))〉) ⊆ TΣ′)

(∀f)(EΣ′(〈f(φ), f(ψ)〉) ⊆ TΣ′) ⇒ (∀f)(EΣ′(〈f(δj
Σ(φ)), f(δj

Σ(ψ))〉) ⊆ TΣ′)

(∀f)(EΣ′(〈f(γj
Σ(φ)), f(γj

Σ(ψ))〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈f(γj

Σ(ψ)), f(γj
Σ(φ))〉) ⊆ TΣ′)

We also have

(∀f)(EΣ′(〈f2(∆Σ(φ))〉) ⊆ TΣ′) and

(∀f)(∀j ∈ J)(EΣ′(〈f(δj
Σ(φ)), f(δj

Σ(ψ))〉) ⊆ TΣ′)

⇒ (∀f)(∀j ∈ J)(EΣ′(〈f(γj
Σ(φ)), f(δj

Σ(ψ))〉) ⊆ TΣ′)
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and

(∀f)(∀j ∈ J)(EΣ′(〈f(γj
Σ(ψ)), f(γj

Σ(φ))〉) ⊆ TΣ′) and

(∀f)(∀j ∈ J)(EΣ′(〈f(γj
Σ(φ)), f(δj

Σ(ψ))〉) ⊆ TΣ′)

⇒ (∀f)(∀j ∈ J)(EΣ′(〈f(γj
Σ(ψ)), f(δj

Σ(ψ))〉) ⊆ TΣ′)

Therefore, we end up with (∀f)(EΣ′(〈f2(∆Σ(ψ))〉) ⊆ TΣ′), which is, by the second

hypothesis, equivalent to ψ ∈ TΣ .

Theorem 7 Suppose that I = 〈Sign, SEN, C〉 is a π-institution, N a category of

natural transformations on SEN, ∆ = {〈γj , δj〉}j∈J a collection of pairs of natural

transformations γj , δj : SEN → SEN, j ∈ J, in N and E = {εi : i ∈ I} a collection of

natural transformations εi : SEN2+ki → SEN, i ∈ I, in N . If

– for all Σ ∈ |Sign|, Θ ∪ {〈φ, ψ〉} ⊆ SEN(Σ)2 and all T ∈ ThFam(I),

(Θ ⊆ ΩN
Σ (T ) ⇒ 〈φ, ψ〉 ∈ ΩN

Σ (T )) implies

(∀f)(EΣ′(〈SEN(f)2(Θ)〉) ⊆ TΣ′) ⇒
(∀f)(EΣ′(〈SEN(f)2(φ, ψ)〉) ⊆ TΣ′)

– for all Σ ∈ |Sign|, φ ∈ SEN(Σ), and all theory families T ∈ ThFam(I),

φ ∈ TΣ iff (∀f)(EΣ′(〈SEN(f)2(∆Σ(φ))〉) ⊆ TΣ′),

then I is N-weakly algebraizable.

Proof Note that by Lemma 6 and Theorem 1, E is an N -parameterized equivalence

system for I. Therefore, by Proposition 1, I is N -protoalgebraic. So it suffices to show

that ΩN is injective on theory systems. This is done by using the 1 → 2 implication

of Theorem 5. We have, for all T ∈ ThSys(I), Σ ∈ |Sign|, φ ∈ SEN(Σ),

φ ∈ TΣ iff (∀f)(EΣ′(〈SEN(f)2(∆Σ(φ))〉) ⊆ TΣ′)

iff ∆Σ(φ) ⊆ EΣ(T )

iff ∆Σ(φ) ⊆ ΩN
Σ (T ).

Therefore ∆ explicitly defines theory systems of I, and, by Theorem 5, ΩN is injective

on theory systems.
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