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Abstract. Recently, Caleiro, Gonçalves and Martins introduced the notion of behav-

iorally algebraizable logic. The main idea behind their work is to replace, in the traditional

theory of algebraizability of Blok and Pigozzi, unsorted equational logic with multi-sorted

behavioral logic. The new notion accommodates logics over many-sorted languages and

with non-truth-functional connectives. Moreover, it treats logics that are not algebraiz-

able in the traditional sense while, at the same time, shedding new light to the equivalent

algebraic semantics of logics that are algebraizable according to the original theory. In this

paper, the notion of an abstract multi-sorted π-institution is introduced so as to transfer

elements of the theory of behavioral algebraizability to the categorical setting. Institu-

tions formalize a wider variety of logics than deductive systems, including logics involving

multiple signatures and quantifiers. The framework developed has the same relation to

behavioral algebraizability as the classical categorical abstract algebraic logic framework

has to the original theory of algebraizability of Blok and Pigozzi.
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1. Introduction

In [8] Caleiro, Gonçalves and Martins, based on previous work of Caleiro and
Gonçalves on the algebraization of multi-sorted logics [6, 7] and of Martins
on the behavioral equivalence of k-deductive systems [21, 22], introduced
the notion of behaviorally algebraizable logic. They noticed that many log-
ics that fail to be algebraizable in the traditional sense of Blok and Pigozzi
[4] (or any of its refinements and extensions, e.g., [19, 20, 1]) do so even
though they include an algebraizable fragment. This happens because the
language includes connectives that are non-truth-functional, i.e., fail to have
the congruence property with respect to the equivalence of the algebraizable
fragment. Motivated by this observation, they replaced in the traditional
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framework of algebraization unsorted equational logic by many-sorted be-
havioral logic with one distinguished sort standing for the sort of formulas. In
this way, they obtained behaviorally algebraizable logics. Besides extending
the scope of the theory to multi-sorted logics and to logics with non-truth-
functional connectives, the new theory offers algebraic semantics to logics
that were not algebraizable in the traditional sense. Moreover, it sheds new
light to the algebraic counterparts of logics that were Blok-Pigozzi (or Her-
rmann) algebraizable, but whose semantics were not perfectly understood.
In addition to introducing the new notion, Caleiro, Gonçalves and Martins
also introduce a behavioral Leibniz operator, which provides, given a theory
of a logic, the largest behavioral congruence, termed the behavioral Leibniz
congruence, associated with the theory. In this way, they are able to classify
and characterize logics in a behavioral algebraic hierarchy much in the same
way as the traditional theory, initiated by Blok and Pigozzi [4, 3, 5] and
extended in [9, 10, 12], gave rise to the well-known Leibniz hierarchy (see
[14, 11, 15] for overviews). In fact the theory of [8] gives rise to the hierarchy
depicted below, which resides inside the class of protoalgebraic logics in the
traditional sense.
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Equivalential

©©©©©¼
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HHHHHj

Behav. Algebraizable
?
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?
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?
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As is pointed out in [8], the term “behavioral” originates in Computer Sci-
ence, and more precisely, in the area of specification and verification of com-
plex, object-oriented systems (see, e.g., [25, 2, 23]). Abstract data types
and object classes are specified by properties of their associated operations.
In particular, data are classified as hidden or visible, where the former are
intended to capture the internal states of an abstract machine on which
programs are run and the latter are the input/output data that are di-
rectly accessible and observable by the user. Inferences about the hidden
data can only be made indirectly by observing the visible data through
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“experiments”. The notion of behavioral equivalence captures the property
of two values being indistinguishable based on available experiments. For
details about behavioral or hidden equational logic the reader may consult
[26, 27, 28].

The key in the treatment of logics in [8] with respect to behavioral prop-
erties is to consider multi-sorted signatures with one distinguished sort φ,
called the sort of formulas. Thus, although a corresponding absolutely free
term algebra has terms of each sort, only those of sort φ will be taken to
be formulas of the logic and all the remaining have behaviors that are only
observable through their indirect influence as components of terms of sort
φ. We transfer these treatment to the categorical level by considering logics
formalized as π-institutions, in which signatures may be many-sorted but
one of them is singled out to represent the sort of formulas of interest in an
analogous way that directly abstracts the treatment in [8]. The goal here is
to fill in the upper-right-hand side of the following rectangle, where edges
are thought of as representing “analogies” and point from the less to the
more abstract setting:

Algebraizable Logics Behaviorally Algebraizable Logics-

Algebraizable π-Institutions Behaviorally Algebraizable π-Institutions-

6 6

We now provide an overview of the contents of the paper. In Section 2,
several of the notions that have proven invaluable in building the cate-
gorical theory of abstract algebraic logic are reviewed. The notion of a
π-institution is recalled, which provides the underlying structure in which
logical systems are formalized. Moreover, categories of natural transforma-
tions on set-valued functors are reviewed. They provide an analog of the
clone of algebraic operations in the categorical setting and have played a
key role in lifting universal algebraic properties of logics to the categorical
level. These categories help in formulating the notion of congruence system
over a set-valued functor, which forms an analog of the notion of congruence
in universal algebra.

Our new material begins in Section 3, that starts with the introduction of
the notion of a multi-sorted sentence functor and that of a category of multi-
sorted natural transformations on a multi-sorted functor. These categories
are also referred to as transformation signatures. They are both key com-
ponents in formulating the notion of an abstract multi-sorted π-institution,
which generalizes the notion of a π-institution and aims at providing a frame-
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work in which a categorical study of behavioral logical systems may take
place.

Section 4 introduces the notion of behavioral equivalence system on a
given multi-sorted sentence functor. Roughly speaking, two elements are
identified in this equivalence system if, regardless of how they are translated
across signatures and of which contexts they are used in, they cannot be
distinguished by experiments over the given sentence functor. It is shown
that the behavioral equivalence system is indeed an equivalence system in
the sense of categorical abstract algebraic logic and that it is a congruence
system if one restricts attention to those operations in the clone that have
output of visible sort.

The remaining three sections of the paper initiate the development of
a categorical theory of behavioral algebraic logic providing key analogs of
corresponding results from the theory of categorical abstract algebraic logic
along the lines of [8]. The feasibility of this endeavor, as well as the question
of the precise connections between the work presented in [6, 8] and the
categorical framework were raised in [6]

In Section 5, we introduce the notion of a theory family of a multi-
sorted π-institution and define the behavioral Leibniz congruence system
associated with the family. The operator that maps a theory family to
its associated behavioral Leibniz congruence system plays a key role in the
behavioral theory of algebraizability. It abstracts, at the same time, the
ordinary Leibniz operator of categorical abstract algebraic logic and the
behavioral Leibniz operator of [8].

Section 6 introduces the notion of a behaviorally N -protoalgebraic multi-
sorted π-institution. It characterizes this class of multi-sorted π-institutions
as those on whose lattices of theory families the behavioral Leibniz operator
is monotone. It also provides a sufficient condition based on the existence of
a protoequivalence system. Both results have been known to hold for ordi-
nary deductive systems and π-institutions and were lifted to the behavioral
context in [8].

Finally, the paper concludes with Section 7, which introduces the notion
of behaviorally N -equivalential multi-sorted π-institution. These institu-
tions form a subclass of the class of behaviorally N -protoalgebraic multi-
sorted π-institutions. Here, as samples of the variety of possible results that
may be obtained, we provide an analog of the classical result on the defin-
ability of the behavioral Leibniz congruence via equivalence systems as well
as an analog of Herrmann’s Test, that characterizes those abstract multi-
sorted π-institutions that are behaviorally N -equivalential inside the class
of all behaviorally N -protoalgebraic multi-sorted π-institutions.
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2. π-Institutions and Natural Transformations

To generalize the framework of [8] to accommodate logics with multiple
signatures and quantifiers we will use as our underlying structures, instead
of sentential logics, π-institutions [13] (see also [17, 18]).

A π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 consists of

(i) A category Sign whose objects are called signatures;

(ii) A functor SEN : Sign → Set, from the category Sign of signatures
into the category Set of small sets, called the sentence functor and
giving, for each signature Σ, a set whose elements are called sentences
over that signature Σ or Σ-sentences;

(iii) A mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, called
Σ-closure, such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(c) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(d) SEN(f)(CΣ1(A)) ⊆ CΣ2(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈
Sign(Σ1,Σ2), A ⊆ SEN(Σ1).

For simplicity, we write C = {CΣ}Σ∈|Sign| and call C a closure (operator)
system. A Σ-theory of I is a set TΣ ⊆ SEN(Σ), such that CΣ(TΣ) = TΣ.
A theory family of I is a |Sign|-indexed collection T = {TΣ}Σ∈|Sign|,
such that, for all Σ ∈ |Sign|, TΣ is a Σ-theory. A theory system of I
is a theory family T = {TΣ}Σ∈|Sign|, such that, for all f ∈ Sign(Σ1,Σ2),
SEN(f)(TΣ1) ⊆ TΣ2 . In other words, as is customary in categorical abstract
algebraic logic, whenever the word “family” is replaced by the word “sys-
tem”, invariance under signature morphisms is also assumed. The collection
of all theory families of a π-institution I is denoted by ThFam(I) and the
collection of all theory systems by ThSys(I). Endowed with signature-wise
inclusion ≤, ThFam(I) becomes a complete lattice, denoted ThFam(I) =
〈ThFam(I),≤〉 and the same holds for ThSys(I) = 〈ThSys(I),≤〉.

As an illustration of the definition, let us indicate how a deductive sys-
tem may be recast as a π-institution. The reader should keep in mind
that there are other possible alternatives and each may have advantages
and disadvantages over the others. Given a language type L and a fixed
denumerable set V of variables, the set of all L-formulas with variables in
V is denoted by FmL(V ). The corresponding absolutely free L-algebra of
formulas is denoted by FmL(V ). A substitution σ is an endomorphism of
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the formula algebra FmL(V ). The set of all substitutions will be denoted
by End(FmL(V )). By a (not necessarily finitary) deductive system over L
we mean a pair S = 〈L,`S〉, where `S ⊆ P(FmL(V )) × FmL(V ) satisfies,
for all Φ ∪Ψ ∪ {φ, ψ, χ} ⊆ FmL(V ),

1. Φ `S φ, if φ ∈ Φ;

2. Φ `S ψ, for all ψ ∈ Ψ, and Ψ `S χ imply Φ `S χ;

3. Φ `S φ implies σ(Φ) `S σ(φ), for all substitutions σ.

These conditions also imply that, for all Φ ∪Ψ ∪ {φ} ⊆ FmL(V ),

4. Φ `S φ implies Ψ `S φ, if Φ ⊆ Ψ.

Define CS : P(FmL(V )) → P(FmL(V )) by setting, for all Φ ⊆ FmL(V ),

CS(Φ) = {φ ∈ FmL(V ) : Φ `S φ}. (1)

Let IS = 〈SignL, SENL, CS〉, where

• SignL is a single object category, with object, say, V , and SignL(V, V ) =
End(FmL(V )). Composition and identities are the usual ones in the
monoid of endomorphisms.

• SENL(V ) = FmL(V ) and, given σ ∈ SignL(V, V ), we get SENL(σ)(φ) =
σ(φ), for all φ ∈ FmL(V ). This defines a functor SENL : SignL → Set.

• Finally, CS : P(SENL(V )) → P(SENL(V )) is the function defined in (1).

It is not difficult to verify that IS is a π-institution. It is called the π-
institution associated with the deductive system S.

The notion of a category of natural transformations on a sentence functor
was introduced in [35] and was updated in [29, 31]. It is intended to capture
in the categorical level the counterpart of the universal algebraic notion of
clone of algebraic operations generated by the fundamental operations of
a universal algebra. Before introducing the notion formally, note that in
the context of the sentence functor SENL of the π-institution IS associated
with a given deductive system S, n-ary term operations t(v0, . . . , vn−1) may
be identified with natural transformations τ : SENn

L → SENL. In fact, the
mappings t(~v) 7→ τ , with τV (~φ) = t(~φ), for all ~φ ∈ SENn

L(V ), and τ 7→ τV (~v),
where ~v = 〈v0, . . . , vn−1〉 if τ is n-ary, establish a bijection between n-ary
term operations and n-ary natural transformations on SENL. Motivated by
this paradigm, we make the following definition.
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Let Sign be a category and SEN : Sign → Set a functor. The clone
of all natural transformations on SEN is defined to be the locally small
category with collection of objects {SENα : α an ordinal} and collection
of morphisms τ : SENα → SENβ β-sequences of natural transformations
τi : SENα → SEN. Composition of

SENα SENβ-〈τi : i < β〉
SENγ-〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.

A subcategory N of this category containing all objects of the form SENk

for k < ω, and all projection morphisms pk,i : SENk → SEN, i < k, k < ω,
with pk,i

Σ : SEN(Σ)k → SEN(Σ) given by

pk,i
Σ (~φ) = φi, for all ~φ ∈ SEN(Σ)k,

and such that, for every family {τi : SENk → SEN : i < l} of natural
transformations in N , the sequence 〈τi : i < l〉 : SENk → SENl is also in N ,
is referred to as a category of natural transformations on SEN.

Motivated by the fact that congruences in universal algebra are equiva-
lence relations that are preserved by the fundamental operations and, there-
fore, as a result by all derived operations on the clone generated by the
fundamental operations, we make the following definition of congruence sys-
tems on set-valued functors. Let Sign be a category, SEN : Sign → Set be
a functor and N be a category of natural transformations on SEN. Given
Σ ∈ |Sign|, an equivalence relation θΣ on SEN(Σ) is said to be an N -
congruence if, for all σ : SENk → SEN in N and all ~φ, ~ψ ∈ SEN(Σ)k,

~φ θk
Σ

~ψ imply σΣ(~φ) θΣ σΣ(~ψ).

A collection θ = {θΣ}Σ∈|Sign| is called an equivalence system of SEN if

• θΣ is an equivalence relation on SEN(Σ), for all Σ ∈ |Sign|,
• SEN(f)2(θΣ1) ⊆ θΣ2 , for all Σ1, Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2).

If, in addition, θΣ is an N -congruence, for all Σ ∈ |Sign|, then θ is said
to be an N -congruence system of SEN. By ConN (SEN) is denoted the
collection of all N -congruence systems of SEN.
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Let now I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. An equiva-
lence system θ of SEN is called a logical equivalence system of I if, for
all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ θΣ implies CΣ(φ) = CΣ(ψ).

An N -congruence system of SEN is a logical N -congruence system of I
if it is logical as an equivalence system of I. This notion abstracts the notion
of a logical congruence, which was defined in the context of abstract logics,
i.e., generalized matrices, in [14].

3. Abstract Multi-Sorted π-Institutions

In this section, based on the notion of π-institution, we introduce the notion
of an (abstract) multi-sorted π-institution. These institutions are used to
transfer elements of the theory of algebraization of multi-sorted deductive
systems [6] and of behavioral abstract algebraic logic [8] to the categorical
setting, where they have the potential of wider applicability.

To motivate the definition of a multi-sorted sentence functor, we look at
the case of a multi-sorted deductive system and how it can be recast as a
π-institution. A multi-sorted signature Σ = 〈S, F 〉 consists of a set S of sorts
together with an indexed family F = {Fws}w∈S∗,s∈S of sets of operation sym-
bols. Given Σ and a fixed indexed collection X = {Xs}s∈S of denumerable
sets of variables, one for each sort, the set of all Σ-formulas with variables in
X is denoted by FmΣ(X) = {FmΣ,s(X)}s∈S . The corresponding absolutely
free Σ-algebra of formulas is denoted by FmΣ(X). A substitution σ is an
endomorphism of the formula algebra FmΣ(X), which, due to freeness, ex-
actly corresponds to a family of functions σ = {σs : Xs → FmΣ,s(X)}s∈S ,
indexed by the set of sorts. The set of all substitutions will be denoted
by End(FmΣ(X)). In [6] (modulo some technical details), a (not nec-
essarily finitary) multi-sorted deductive system over Σ is defined to be a
pair S = 〈Σ,`S〉, where `S ⊆ P(FmΣ(X)) × FmΣ(X) satisfies, for all
Φ ∪Ψ ∪ {φ, ψ, χ} ⊆ FmΣ(X),

1. Φ `S φ, if φ ∈ Φ;

2. Φ `S ψ, for all ψ ∈ Ψ, and Ψ `S χ imply Φ `S χ;

3. Φ `S φ implies σ(Φ) `S σ(φ), for all substitutions σ.

In [8], where the focus is on behavioral algebraization, a special sort £ ∈ S
of formulas is singled out and a multi-sorted deductive system is postulated
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to be one of the form S = 〈Σ,`S〉, where `S ⊆ P(FmΣ,£(X))× FmΣ,£(X)
satisfies, for all Φ ∪Ψ ∪ {φ, ψ, χ} ⊆ FmΣ,£(X), the conditions listed above.

We formulate the definition of the π-institution IS associated with the
multi-sorted deductive system S in such a way as to accommodate both
definitions (and also others). Define CS to be the closure operator associated
with the consequence relation `S exactly as in the case of a single-sorted
logic S. This is either a function CS : P(FmΣ(X)) → P(FmΣ(X)) or a
function CS : P(FmΣ,£(X)) → P(FmΣ,£(X)), depending on which of the
two definitions of a multi-sorted deductive system is adopted.

Let IS = 〈SignΣ, SENΣ, CS〉, where

• SignΣ is a single object category, with object, say, X, and SignΣ(X,
X) = End(FmΣ(X)). Composition and identities are the usual ones in
the monoid of endomorphisms.

• SENΣ(X) = FmΣ(X) (or SENΣ(X) = FmΣ,£(X)) and, given σ ∈
SignΣ(X, X), we get SENΣ(σ)(φ) = σ(φ), for all φ ∈ SENΣ(X). This
defines a functor SENΣ : SignΣ → Set.

• Finally, CS is the closure operator defined above.

It is not difficult to verify that IS is a π-institution, called the π-institution
associated with the multi-sorted deductive system S. As can be easily
seen by abstracting from this example, we could have taken any subset of
the sorts in S as relevant for the consequence relation, rather than just the
sort £, and the corresponding multi-sorted deductive system as well as the
associated π-institution would have been built similarly.

We now proceed to define the abstract notion of a multi-sorted sentence
functor. We define it in such a way so as to be able to accommodate later the
notion of a category of multi-sorted natural transformations that will gener-
alize the clone of multi-sorted operations generated by the basic operations
of a multi-sorted universal algebra.

A sentence functor SEN : Sign → Set is said to be multi-sorted if there
exists a set S of sorts and set-valued functors SENs : Sign → Set, s ∈
S, such that SEN =

∏
s∈S SENs. A multi-sorted sentence functor SEN :

Sign → Set over a set of sorts S is said to be hidden if a subset V ⊆ S
of the sorts, called the set of visible sorts, has been singled out. The set
H = S\V is called the set of hidden sorts.

The notion of a category of natural transformations on the sentence func-
tor of an abstract multi-sorted π-institution is a generalization of the corre-
sponding notion for a π-institution, presented in the previous section. Note
again that, given a multi-sorted signature Σ = 〈S, F 〉, as before, the derived
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operations of the form t(x1 : s1, . . . , xn : sn) of sort s correspond to natural
transformations τ : SENs1 × · · · × SENsn → SENs. This motivates the fol-
lowing definition of the category of multi-sorted natural transformations on
SEN, which is intended to abstract the entire clone of derived operations on
a multi-sorted universal algebra.

Let Sign be a category and SEN : Sign → Set a multi-sorted sentence
functor. The clone of all natural transformations on SEN is defined
to be the locally small category with collection of objects {∏κ<α SENsκ :
sκ ∈ S, α an ordinal} and collection of morphisms τ :

∏
κ<α SENsκ →∏

λ<β SENs′λ
β-sequences of natural transformations τi :

∏
κ<α SENsκ →

SENs′λ
, λ < β. Composition of

∏
κ<α SENsκ

∏
λ<β SENs′λ

-〈τi : i < β〉 ∏
µ<γ SENs′′µ

-〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.

A subcategory N of this category containing all objects of form
∏k

i=1 SENsi

for k < ω, and all projection morphisms ps1...sk→si :
∏k

i=1 SENsi → SENsi ,
i < k, k < ω, with ps1...sk→si

Σ :
∏k

i=1 SENsi(Σ) → SENsi(Σ) given by

ps1...sk→si
Σ (~φ) = φi, for all ~φ ∈

k∏

i=1

SENsi(Σ),

and such that, for every family {τi :
∏k

i=1 SENsk
→ SENs′i : i < l} of

natural transformations in N , the sequence 〈τi : i < l〉 :
∏k

i=1 SENsk
→∏l

i=1 SENs′i is also in N , is referred to as a category of (multi-sorted)
natural transformations on SEN. We will refer to such a category also
as a transformation signature on SEN. A natural transformation σ :∏m

i=1 SENsi → SENs in N will be said to be of type s1 . . . sm → s or of
sort s, if only the output sort is relevant.

Recall that a subcategory of a given category is wide if it contains all ob-
jects of the original category. On some occasions in the remainder of the pa-
per, we will be considering, given a multi-sorted functor SEN : Sign → Set
and a category N of multi-sorted natural transformations on SEN, a wide
subcategory N ′ of N , that is also a category of natural transformations on
SEN on its own right, i.e. it contains the projection natural transformations
and is closed under formation of tuples. Such a subcategory will be referred
to as a transformation subsignature of N .
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Following [8] (see, also, [21, 22] and [23]), we present a definition of a
multi-sorted π-institution that captures the case of a multi-sorted deductive
system, presented above, in which a single sort £ of formulas is singled
out and an entailment relation is introduced only on sentences of sort £.
However, as was indicated in the preceding example, this definition may be
generalized further to accommodate entailment relations over sentences of
sorts belonging to arbitrary subsets of the set S of sorts.

Let Sign be a category and SEN : Sign → Set be a multi-sorted sentence
functor over a set S of sorts containing a distinguished sort £ of formulas.
A multi-sorted π-institution over SEN is a π-institution I = 〈Sign,
SEN£, C〉.

Recall that a subcategory of a given category is full if, for any pair
of objects that it contains, it also contains all morphisms in the original
category between the two objects. A category of natural transformations N
on SEN£ is said to be a transformation signature of I over SEN if it is
the full subcategory of a transformation signature N ′ on SEN with objects
SENk

£, for all k < ω.
Let SEN : Sign → Set be a hidden functor and N a transformation

signature on SEN. An N -context for sort s ∈ S (and of type ss1 . . . sm →
s′ or, putting the emphasis on the output sort, of sort s′) is a natural
transformation

σ : SENs ×
m∏

i=1

SENsi → SENs′ in N, for some s1, . . . , sm, s′ ∈ S. (2)

Important Notational Convention: In writing (2), we follow a common
convention in categorical abstract algebraic logic, by which, although the
specified argument of sort s appears, for simplicity, in the first position, the
implied meaning is that it may appear in any position. Thus, (2) should be
viewed as a shorthand for

σ :
k−1∏

i=1

SENsi × SENs ×
m∏

i=k

SENsi → SENs′ in N,

for some s1, . . . , sm, s′ ∈ S and some 1 ≤ k ≤ m. This notational convention
will be used in multiple places throughout the paper without being explicitly
mentioned. Hopefully, it will not cause any confusion.

An N -context for sort s, as above, is called an N -experiment, if s′ ∈ V .
We denote by CN (s) and EN (s) the collections of all N -contexts for sort s
and of all N -experiments for sort s, respectively. Moreover, we let CN

s′ (s)
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and EN
s′ (s) be, respectively, the collections of all N -contexts and of all N -

experiments of (output) sort s′ for sort s.
Observe that, given σ : SENs ×

∏m
i=1 SENsi → SENs′ ∈ CN

s′ (s) and
φ ∈ SENs(Σ), we obtain a function σΣ(φ, ~x) :

∏m
i=1 SENsi(Σ) → SENs′(Σ).

4. Behavioral Equivalence Systems

In this section, given a hidden sentence functor with a multi-sorted trans-
formation signature on it, we define the notion of a behavioral equivalence
system on the functor. This is an equivalence system in the sense of categor-
ical abstract algebraic logic that identifies all those sentences over a given
signature that, informally speaking, are behaving identically with respect to
all experiments. This follows the pioneering work of Martins [21, 22] and
Martins and Pigozzi [23] in the context of sentential logics.

Let SEN : Sign → Set be a multi-sorted sentence functor over a set
of sorts S, with N a transformation signature on SEN. An equivalence
family on SEN is a |Sign|-indexed family θ = {θΣ}Σ∈|Sign|, where, for all
Σ ∈ |Sign|, θΣ is an S-indexed family θΣ = {θs

Σ}s∈S of equivalence relations
on SENs(Σ). θ will be said to be an equivalence system on SEN if, for
all Σ1, Σ2 ∈ |Sign|, all f ∈ Sign(Σ1, Σ2) and all s ∈ S, we have

SENs(f)(θs
Σ1

) ⊆ θs
Σ2

. (3)

An equivalence family θ on SEN is said to be an N -congruence family
if, for all σ :

∏m
i=1 SENsi → SENs′ in N , all Σ ∈ |Sign| and all ~φ, ~ψ ∈∏m

i=1 SENsi(Σ),

~φ
m∏

i=1

θsi
Σ

~ψ implies σΣ(~φ) θs′
Σ σΣ(~ψ).

An N -congruence family is an N -congruence system on SEN if it satisfies
Condition (3). By ConN (SEN) is denoted the collection of all N -congruence
systems of SEN.

Let Sign be a category, SEN : Sign → Set be a hidden functor over a
set S of sorts, with visible set of sorts V , and N a transformation signature
on SEN. Define an equivalence family ≡ = {≡Σ}Σ∈|Sign| on SEN, by letting,
for all Σ ∈ |Sign|, ≡Σ = {≡s

Σ}s∈S , be given, for all s ∈ S and all φ, ψ ∈
SENs(Σ), by

φ ≡s
Σ ψ iff σΣ′(SENs(f)(φ), ~χ) = σΣ′(SENs(f)(ψ), ~χ),
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for all σ : SENs ×
∏m

i=1 SENsi → SENs′ ∈ EN (s), all Σ′ ∈ |Sign|, f ∈
Sign(Σ,Σ′) and all ~χ ∈ ∏m

i=1 SENsi(Σ
′). Note that, in this definition, the

important notational convention (2) for σ applies.
It is shown in Proposition 1 that ≡ is an equivalence system.

Proposition 1. Let SEN : Sign → Set be a hidden sentence functor over a
set of sorts S, with set of visible sorts V , and N a transformation signature
on SEN. The equivalence family ≡ is an equivalence system on SEN.

Proof. This is a standard proof in categorical abstract algebraic logic. Let
Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1, Σ2) and assume that φ, ψ ∈ SENs(Σ1), such
that φ ≡s

Σ1
ψ. Thus, for all σ : SENs ×

∏m
i=1 SENsi → SENs′ ∈ EN (s), all

Σ′ ∈ |Sign|, g ∈ Sign(Σ1, Σ′) and all ~χ ∈ ∏m
i=1 SENsi(Σ

′),

σΣ′(SENs(g)(φ), ~χ) = σΣ′(SENs(g)(ψ), ~χ).

This implies that, for all σ : SENs ×
∏m

i=1 SENsi → SENs′ ∈ EN (s), all
Σ′ ∈ |Sign|, h ∈ Sign(Σ2, Σ′)

Σ1 Σ2
-f

Σ′

g
@

@
@R

h
¡

¡
¡ª

and all ~χ ∈ ∏m
i=1 SENsi(Σ

′),

σΣ′(SENs(h ◦ f)(φ), ~χ) = σΣ′(SENs(h ◦ f)(ψ), ~χ),

whence, for all σ : SENs×
∏m

i=1 SENsi → SENs′ ∈ EN (s), all Σ′ ∈ |Sign|, h ∈
Sign(Σ2, Σ′) and all ~χ ∈ ∏m

i=1 SENsi(Σ
′), σΣ′(SENs(h)(SENs(f)(φ)), ~χ) =

σΣ′(SENs(h)(SENs(f)(ψ)), ~χ), showing that SENs(f)(φ) ≡s
Σ2

SENs(f)(ψ),
i.e., that ≡ is an equivalence system on SEN.

The equivalence system ≡ on SEN will be called the N -behavioral
equivalence system on SEN. Note that it does depend on N due to
the use of the collection EN (s) of N -experiments for sort s in its definition.

By way of illustrating the definition of ≡ and making it more trans-
parent to readers familiar with the universal algebraic framework, we look
at the special case of the π-institution IS associated with a hidden multi-
sorted deductive system S. In fact, in that special case, there exists only
one signature object X, the signature morphisms correspond to substitu-
tions σ : FmΣ(X) → FmΣ(X) and the N -experiments correspond to de-
rived term operations of visible sort associated with terms t(x : s, ~x : ~s).
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Now observe that the condition defining the behavioral equivalence between
φ, ψ ∈ FmΣ,s(X) on the hidden sentence functor SENΣ of the multi-sorted
π-institution IS takes the form t(σ(φ), ~χ) = t(σ(ψ), ~χ), for every substitu-
tion σ, every experiment t for sort s and all parameters ~χ of appropriate
sorts. But this condition can be easily seen to be equivalent in that context
to the condition t(φ, ~χ) = t(ψ, ~χ), for all experiments t for sort s and all pa-
rameters ~χ of appropriate sorts. This, in turn, is the condition that defines
the behavioral equivalence relation between two formulas in the universal
algebraic case (see Definition 4 of [8]).

Although, in general, the N -behavioral equivalence system on SEN is
not an N -congruence system in the sense of categorical abstract algebraic
logic, it is an N ′-congruence system for a suitably selected transformation
subsignature N ′ of N . This fact is detailed below.

Let SEN : Sign → Set be a hidden sentence functor over a set of sorts S,
with set of visible sorts V , and N a transformation signature on SEN. Let
NV be the transformation subsignature of N , that apart from the projection
natural transformations, contains only those natural transformations in N
of type s1 . . . sn → s, with s ∈ V .

Proposition 2. Let SEN : Sign → Set be a hidden sentence functor over a
set of sorts S, with set of visible sorts V , and N a transformation signature
on SEN. Then, the N -behavioral equivalence system ≡ on SEN is an NV -
congruence system on SEN.

Proof. During some of the steps in this proof the reader is advised to keep
in mind the notational convention (2). Let τ be in NV of type s1 . . . sn → s,
Σ ∈ |Sign| and φi, ψi ∈ SENsi(Σ), for all i = 1, . . . , n, such that φi ≡si

Σ ψi,
i = 1, . . . , n. The goal is to show that τΣ(~φ) ≡s

Σ τΣ(~ψ). Since φi ≡si
Σ ψi, we

have, for all σ : SENsi ×
∏m

i=1 SENs′i → SENs′ ∈ EN (si), all Σ′ ∈ |Sign|, f ∈
Sign(Σ,Σ′) and all ~χ ∈ ∏m

i=1 SENs′i(Σ
′),

σΣ′(SENs(f)(φi), ~χ) = σΣ′(SENs(f)(ψi), ~χ),
for all i = 1, . . . , n. Thus, for all σ : SENs ×

∏m
i=1 SENs′i → SENs′ ∈ EN (s),

all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′) and all ~χ ∈ ∏m
i=1 SENs′i(Σ

′), we have

σΣ′(SENs(f)(τΣ(~φ)), ~χ)
= σΣ′(τΣ′(SENs1(f)(φ1), SENs2(f)(φ2), . . . , SENsn(f)(φn)), ~χ)
= σΣ′(τΣ′(SENs1(f)(ψ1), SENs2(f)(φ2), . . . ,SENsn(f)(φn)), ~χ)
= · · ·
= σΣ′(τΣ′(SENs1(f)(ψ1), SENs2(f)(ψ2), . . . ,SENsn(f)(ψn)), ~χ)
= σΣ′(SENs(f)(τΣ(~ψ)), ~χ),

which shows that τΣ(~φ) ≡s
Σ τΣ(~ψ).
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5. N- and N£-Congruence Systems

Congruence systems of algebraic systems have been introduced in categorical
abstract algebraic logic to provide suitable analogs of the notion of a congru-
ence on an algebra. Given a congruence system, the quotient of an algebraic
system by the congruence system may be considered. For the particular case
of algebraic systems consisting of functors that are underlying sentence func-
tors of π-institutions, if attention is restricted to logical congruence systems,
then the quotient π-institution may also be considered. If the logical con-
gruence system happens to be a Tarski congruence system, i.e., the largest
logical congruence system that is compatible with the closure system of the
π-institution under consideration, the associated quotient is Tarski-reduced,
in the sense that its own Tarski N -congruence system is the signature-wise
identity congruence system. Considering congruences, congruence systems
and reductions has had a deep influence in the development of both the tra-
ditional and the categorical sides of abstract algebraic logic [4, 14, 35]. In
this section, we provide the foundations for carrying over aspects of these
studies to the behavioral π-institution framework. We are still modeling our
work after the corresponding ideas from the universal algebraic treatment,
presented in [8].

Let SEN : Sign → Set be a multi-sorted sentence functor over a set of
sorts S, with distinguished sort £ of formulas, and N a transformation signa-
ture on SEN. Let ConN (SEN) denote the collection of all N -congruence sys-
tems on SEN. An N£-congruence system θ£ on SEN is a £-reduct of an
N -congruence system on SEN, i.e., it is the sub-collection θ£ = {θ£

Σ}Σ∈|Sign|
of an N -congruence system θ = {θΣ}Σ∈|Sign|, with θΣ = {θs

Σ}s∈S . The collec-
tion of all N£-congruence systems on SEN, will be denoted by ConN

£ (SEN).
There is another way to create an equivalence system on SEN£, that we

are going to explore next. Let N£ be the full subcategory of transforma-
tion signature N with objects only those objects of the form SENk

£, k < ω.
One may then consider the collection ConN£(SEN£) of the N£-congruence
systems on the sentence functor SEN£ : Sign → Set.

It turns out that the N£-congruence systems on SEN form a subclass
of the class of all N£-congruence systems on SEN£. This is proven in the
following proposition.

Proposition 3. Let SEN : Sign → Set be a multi-sorted sentence func-
tor over a set of sorts S, with distinguished sort £ of formulas, and N
a transformation signature on SEN. If θ£ is an N£-congruence system on
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SEN, then it is also an N£-congruence system on SEN£, i.e., ConN
£ (SEN) ⊆

ConN£(SEN£).

Proof. Suppose that θ ∈ ConN (SEN) and consider θ£. Clearly, θ£ is a
family of equivalence relations on SEN£. Moreover, since θ is a congruence
system on SEN, θ£ is preserved by all Sign-morphisms, showing that θ£

is an equivalence system on SEN£. Finally, it is an N£-congruence system
because θ itself is an N -congruence system and all natural transformations
in N£ are natural transformations in N .

We illustrate the fact that the inclusion of Proposition 3 may be a proper
inclusion with a concrete example that may also help illuminate the defini-
tion of N£-congruence system on SEN and of N£-congruence system on
SEN£ and showcase their differences. Consider a set of sorts S = {s,£},
a trivial signature category Sign, with object, say, ?, and a functor SEN,
defined by SENs(?) = SEN£(?) = {0, 1

2 , 1}. Suppose that the category N of
natural transformations on SEN is the category generated by the two nat-
ural transformations ª : SENs × SEN£ → SEN£ and ¬ : SEN£ → SEN£,
given by the following tables:

ª 0 1
2 1

0 0 1 1
2

1
2 0 1 1

2
1 0 1 1

2

¬
0 1
1
2

1
2

1 0

(4)

Then, it is clear that θ¬ = {θ¬? }, with θ¬? ⊆ SEN£(?) × SEN£(?), given by
the partition {{0, 1}, {1

2}} is an N£-congruence system on SEN£, i.e., θ¬ ∈
ConN£(SEN£). However, it is not an N£-congruence system on SEN, i.e.,
there does not exist any N -congruence system θ = {θs, θ£} ∈ ConN (SEN),
such that θ£ = θ¬. This can be easily seen by assuming to the contrary that
such a θ = {θs, θ£} exists. Then, from the fact that 〈0, 1〉 ∈ θ¬? = θ£

? , we
obtain 〈ª(0, 0),ª(0, 1)〉 ∈ θ£

? , i.e., 〈0, 1
2〉 ∈ θ£

? = θ¬? , a contradiction.

Let SEN : Sign → Set be a multi-sorted sentence functor over set of
sorts S, with distinguished sort £, and N a transformation signature on
SEN. A £-sentence family on SEN is a family F = {FΣ}Σ∈|Sign|, where
FΣ ⊆ SEN£(Σ), for all Σ ∈ |Sign|. A £-sentence family is said to be a £-
sentence system on SEN if, for every f ∈ Sign(Σ1, Σ2), SEN£(f)(FΣ1) ⊆
FΣ2 . A £-sentence family, in other words, is a collection of sets of sentences
of sort £, whereas a £-sentence system is a family that is invariant under
the action of signature morphisms.
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An N -congruence system θ on SEN is said to be compatible with
a £-sentence family F if, for every Σ ∈ |Sign| and all φ, ψ ∈ SEN£(Σ),
〈φ, ψ〉 ∈ θ£

Σ and φ ∈ FΣ imply ψ ∈ FΣ. We show that, for every £-sentence
family, there exists a largest N -congruence system on SEN that is compatible
with the family.

Proposition 4. Let SEN : Sign → Set be a multi-sorted sentence functor
over a set of sorts S, with distinguished sort £, and N a transformation
signature on SEN. Let, also, F be a £-sentence family on SEN. Then, there
exists a largest N -congruence system θ on SEN that is compatible with F .

Proof. Let θ = {θΣ}Σ∈|Sign|, with θΣ = {θs
Σ}s∈S , be defined, for all Σ ∈

|Sign|, all s ∈ S and all φ, ψ ∈ SENs(Σ), by 〈φ, ψ〉 ∈ θs
Σ iff, for all σ in

N of type ss1 . . . sm → £, all Σ′ ∈ |Sign|, all f ∈ Sign(Σ, Σ′) and all
~χ ∈ ∏m

i=1 SENsi(Σ
′),

σΣ′(SENs(f)(φ), ~χ) ∈ FΣ′ iff σΣ′(SENs(f)(ψ), ~χ) ∈ FΣ′ .

Note that in defining θ, we used the notational convention (2) in the quantifi-
cation over σ. In other words, we are allowing the argument of sort s in the
sequence of arguments of σ to appear in any-not just in the first-argument
position. We need to show that θ is an N -congruence system on SEN that
is compatible with F and, moreover, that every other congruence system on
SEN compatible with F is included in θ.

That θ is an equivalence family on SEN is straightforward. It is an
equivalence system, since, for all Σ1, Σ2 ∈ |Sign| and f ∈ Sign(Σ1, Σ2), if
〈φ, ψ〉 ∈ θs

Σ1
, then for all σ in N of type ss1 . . . sm → £, all Σ′ ∈ |Sign|, all

g ∈ Sign(Σ1, Σ′) and all ~χ ∈ ∏m
i=1 SENsi(Σ

′),

σΣ′(SENs(g)(φ), ~χ) ∈ FΣ′ iff σΣ′(SENs(g)(ψ), ~χ) ∈ FΣ′ .

Σ1 Σ2
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Thus, for all σ in N of type ss1 . . . sm → £, all Σ′ ∈ |Sign|, all h ∈ Sign(Σ2,
Σ′) and all ~χ ∈ ∏m

i=1 SENsi(Σ
′),

σΣ′(SENs(hf)(φ), ~χ) ∈ FΣ′ iff σΣ′(SENs(hf)(ψ), ~χ) ∈ FΣ′ ,

which shows that

σΣ′(SENs(h)(SENs(f)(φ)), ~χ) ∈ FΣ′ iff
σΣ′(SENs(h)(SENs(f)(ψ)), ~χ) ∈ FΣ′ ,
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proving that 〈SENs(f)(φ),SENs(f)(ψ)〉 ∈ θs
Σ2

. Finally, θ is a congruence
system on SEN, since, for every τ in N of type t1 . . . tk → s, all Σ ∈ |Sign|
and all φi, ψi ∈ SENti(Σ), i = 1, . . . , k, if 〈φi, ψi〉 ∈ θti

Σ, we have that, for all
σ in N of type ss1 . . . sm → £, all Σ′ ∈ |Sign|, all f ∈ Sign(Σ,Σ′) and all
~χ ∈ ∏m

i=1 SENsi(Σ
′),

σΣ′(SENs(f)(τΣ(φ1, . . . , φk)), ~χ) ∈ FΣ′

iff σΣ′(τΣ′(SENt1(f)(φ1), . . . ,SENtk(f)(φk)), ~χ) ∈ FΣ′

iff σΣ′(τΣ′(SENt1(f)(ψ1), . . . ,SENtk(f)(φk)), ~χ) ∈ FΣ′

· · ·
iff σΣ′(τΣ′(SENt1(f)(ψ1), . . . ,SENtk(f)(ψk)), ~χ) ∈ FΣ′

iff σΣ′(SENs(f)(τΣ(ψ1, . . . , ψk)), ~χ) ∈ FΣ′ ,

showing that 〈τΣ(~φ), τΣ(~ψ)〉 ∈ θs
Σ. Compatibility with F is straightforward

by considering the identity natural transformation ι : SEN£ → SEN£ and
the identity signature morphism iΣ : Σ → Σ.

Suppose, next, that η is an N -congruence system on SEN compatible
with the £-sentence family F . Let s ∈ S, Σ ∈ |Sign| and φ, ψ ∈ SENs(Σ),
such that 〈φ, ψ〉 ∈ ηs

Σ. Consider σ in N of type ss1 . . . sm → £, Σ′ ∈ |Sign|,
f ∈ Sign(Σ,Σ′) and ~χ ∈ ∏m

i=1 SENsi(Σ
′). Since η is an N -congruence

system, we get that 〈SENs(f)(φ), SENs(f)(ψ)〉 ∈ ηs
Σ′ . Moreover, by the

congruence property of η, 〈σΣ′(SENs(f)(φ), ~χ), σΣ′(SENs(f)(ψ), ~χ)〉 ∈ η£
Σ′ .

Therefore, by the compatibility property of η,

σΣ′(SENs(f)(φ), ~χ) ∈ FΣ′ iff σΣ′(SENs(f)(ψ), ~χ) ∈ FΣ′ .

Thus, 〈φ, ψ〉 ∈ θs
Σ, showing that η ≤ θ. Hence, θ is the largest N -congruence

system on SEN, that is compatible with F .

The largest N -congruence system that is compatible with a £-sentence
family F on SEN is called the behavioral Leibniz N -congruence system
associated with F and is denoted by ΩN,b(F ) = {ΩN,b

Σ (F )}Σ∈|Sign|, where,
for all Σ ∈ |Sign|, ΩN,b

Σ (F ) = {ΩN,b,s
Σ (F )}s∈S . To avoid carrying around the

triple superscript, when N and b are clear from context, we will simply write
Ωs

Σ(F ) in place of the more accurate ΩN,b,s
Σ (F ).

To provide an example of the definition, let us consider again the trivial
one element category Sign, with object ?, the two-sorted sentence functor
SEN : Sign → Set, with sorts s and £, such that SENs(?) = SEN£(?) =
{0, 1

2 , 1} and the transformation signature N on SEN generated by ª of
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type s£ → £ and ¬ of type £ → £, that were defined by Tables (4). Con-
sider, for instance, the £-sentence family F = {F?}, with F? = {1

2 , 1}.
It is relatively easy to see that ΩN,b

? (F ) = {ΩN,b,s
? (F ), ΩN,b,£

? (F )}, with
ΩN,b,s

? (F ) = ∇SENs
? and ΩN,b,£

? (F ) = ∆SEN£
? . For the latter, notice that

〈0, 1
2〉, 〈0, 1〉 6∈ ΩN,b,£

? (F ), because they consist of elements one of which is
inside and the other outside of F?. Moreover 〈12 , 1〉 6∈ ΩN,b,£

? (F ) either, since
¬1

2 ∈ F? but ¬1 6∈ F?. Thus, no pair outside the diagonal ∆SEN£
? can be in

ΩN,b,£
? (F ). On the other hand, the only nontrivial natural transformations

with an input of sort s and output of sort £ are generated by ª, whose
output is independent of the input of sort s, once the other parameter is
fixed. Thus, all pairs of elements in SENs(?) are in ΩN,b,s

? (F ).

6. Behavioral Protoalgebraicity

In this section, we introduce behaviorally protoalgebraic multi-sorted π-insti-
tutions, taking after the corresponding notion for deductive systems based
on multi-sorted languages, introduced in Section 4 (see Definition 30) of [8].
This notion generalizes the well-known protoalgebraic deductive systems of
Blok and Pigozzi [3]. Our notion also extends the notion of a protoalgebraic
π-institution, that was introduced in [31].

Let SEN : Sign → Set be a multi-sorted sentence functor, as before,
over a set S of sorts, with a distinguished sort £, and N a transformation
signature on SEN. Let, also, I = 〈Sign,SEN£, C〉 be a multi-sorted π-
institution over SEN. The behavioral N -Leibniz operator of I is the
function ΩN,b : ThFam(I) → ConN (SEN) defined, for all T = {TΣ}Σ∈|Sign|,
by letting ΩN,b(T ) be the behavioral Leibniz N -congruence system on SEN
associated with T (see Section 5 for the definition).

A many-sorted π-institution I = 〈Sign,SEN£, C〉 over a multi-sorted
sentence functor SEN, with set of sorts S and a transformation signature N
on SEN, is called behaviorally (semantically) N -protoalgebraic if, for
all T ∈ ThFam(I), all Σ ∈ |Sign| and all φ, ψ ∈ SEN£(Σ),

〈φ, ψ〉 ∈ ΩN,b,£
Σ (T ) implies CΣ(TΣ ∪ {φ}) = CΣ(TΣ ∪ {ψ}).

Let SEN : Sign → Set be a multi-sorted sentence functor over set of
sorts S, with distinguished sort £, and N a transformation signature on
SEN. Let ∆ be a collection of natural transformations δ : SEN£ × SEN£ ×∏m

i=1 SENsi → SEN£ in N . We use the following notation that is borrowed
from [11] and used in a similar categorical context in [32]. For all Σ ∈ |Sign|
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and all φ, ψ ∈ SEN£(Σ), ~χ ∈ ∏m
i=1 SENsi(Σ),

∆Σ(φ, ψ, ~χ) = {δΣ(φ, ψ, ~χ) : δ ∈ ∆},
∆Σ(〈φ, ψ〉) =

⋃

~χ∈∏m
i=1 SENsi (Σ)

∆Σ(φ, ψ, ~χ).

Let I = 〈Sign, SEN£, C〉 be a multi-sorted π institution over a multi-sorted
sentence functor SEN, as above. A collection ∆ of natural transformations
of the form δ : SEN£ × SEN£ ×

∏m
i=1 SENsi → SEN£, where si 6= £ and

si 6= sj , for all i, j = 1, . . . , m, i 6= j, is an N -protoequivalence system
for I if, for all Σ ∈ |Sign|, and all φ, ψ ∈ SEN£(Σ),

(R) ∆Σ(〈φ, φ〉) ⊆ CΣ(∅);
(MP) for every theory family T of I, if

• φ ∈ TΣ and
• ∆Σ′(〈SEN£(f)(φ), SEN£(f)(ψ)〉) ⊆ TΣ′ , for every Σ′ ∈ |Sign| and
all f ∈ Sign(Σ,Σ′),

then ψ ∈ TΣ.

The following theorem abstracts to the behavioral setting Lemma 3.3 of
[31] and to the categorical setting Theorem 33 of [8]. All these results take
after the original characterization result of Blok and Pigozzi [3] (see also
Theorem 1.1.3 of [11]).

Theorem 5. A many-sorted π-institution I = 〈Sign, SEN£, C〉 over a
multi-sorted sentence functor SEN, with set of sorts S with a distinguished
sort £, and with a transformation signature N on SEN, is behaviorally N -
protoalgebraic iff the behavioral N -Leibniz operator ΩN,b is monotone on
ThFam(I) iff ΩN,b,£ is monotone on ThFam(I).

Proof. We only prove the first equivalence of the conclusion. The reader
is invited to check that the proof is still valid with ΩN,b replaced by ΩN,b,£.

Suppose, first, that I is behaviorally N -protoalgebraic. Consider T 1,
T 2 ∈ ThFam(I), with T 1 ≤ T 2. To show that ΩN,b(T 1) ≤ ΩN,b(T 2), it
suffices to show that ΩN,b(T 1) is compatible with T 2. To this end, let Σ ∈
|Sign| and φ, ψ ∈ SEN£(Σ), such that 〈φ, ψ〉 ∈ ΩN,b,£

Σ (T 1) and φ ∈ T 2
Σ.

Then, we have

ψ ∈ CΣ(T 1
Σ ∪ {ψ})

= CΣ(T 1
Σ ∪ {φ}) (since 〈φ, ψ〉 ∈ ΩN,b,£

Σ (T 1))
⊆ CΣ(T 2

Σ ∪ {φ})
= T 2

Σ (since φ ∈ T 2
Σ).
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Thus, ΩN,b(T 1) is compatible with T 2, showing that ΩN,b(T1) ≤ ΩN,b(T 2).
Before engaging with the converse, recall from [31] that, given a theory

family T , Σ ∈ |Sign| and φ ∈ SEN£(Σ), by T [〈Σ,φ〉] is denoted the least
theory family T ′ of I, such that T ≤ T ′ and φ ∈ T ′Σ. Assume that ΩN,b

is monotone on ThFam(I) and consider T ∈ ThFam(I), Σ ∈ |Sign| and
φ, ψ ∈ SEN£(Σ), such that 〈φ, ψ〉 ∈ ΩN,b,£

Σ (T ). Then, by monotonicity,
we obtain that 〈φ, ψ〉 ∈ ΩN,b,£

Σ (T [〈Σ,φ〉]), whence, since φ ∈ T
[〈Σ,φ〉]
Σ , we get,

by compatibility, ψ ∈ T
[〈Σ,φ〉]
Σ = CΣ(TΣ ∪ {φ}). By symmetry, we obtain

CΣ(TΣ ∪ {φ}) = CΣ(TΣ ∪ {ψ}). This proves that I is behaviorally N -
protoalgebraic.

Finally, we show that the existence of an N -protoequivalence system for a
multi-sorted π-institution I implies the behavioral N -protoalgebraicity of I.
It is actually the case for sentential logics that protoalgebraicity is equivalent
to the existence of a universal algebraic version of protoequivalence systems
(see Theorem 1.2.7 of [11]). This result was extended in Theorem 33 of
[8] to characterize behavioral protoalgebraicity. It is well-known that in
the categorical context, the existence of a protoequivalence system implies
protoalgebraicity of a given π-institution, but it has been conjectured that
the converse does not hold in general [31]. Therefore, in the next proposition,
we will extend this one direction to the case of behavioral protoalgebraicity
of multi-sorted π-institutions. We leave the proof of the converse or, more
likely, the discovery of a counterexample for the converse as an open problem.

Proposition 6. Let I = 〈Sign,SEN£, C〉 be a multi-sorted π institution
over a multi-sorted sentence functor SEN, with set of sorts S with a distin-
guished sort £, and N a transformation signature on SEN. If there exists an
N -protoequivalence system ∆ for I, then I is behaviorally N -protoalgebraic.

Proof. Let T ∈ ThFam(I), Σ ∈ |Sign| and φ, ψ ∈ SEN£(Σ), such that
〈φ, ψ〉 ∈ ΩN,b,£

Σ (T ). By the congruence property, for all Σ′ ∈ |Sign|, f ∈
Sign(Σ,Σ′), δ : SEN£ × SEN£ × ∏m

i=1 SENsi → SEN£ in ∆ and ~χ ∈∏m
i=1 SENsi(Σ

′),

〈δΣ′(SEN£(f)(φ), SEN£(f)(ψ), ~χ),
δΣ′(SEN£(f)(φ),SEN£(f)(φ), ~χ)〉 ∈ ΩN,b,£

Σ′ (T ).

By Property (R) of ∆, ∆Σ′(〈SEN£(f)(φ), SEN£(f)(φ)〉) ⊆ CΣ′(∅) ⊆ TΣ′ .
Therefore, by compatibility, ∆Σ′(〈SEN£(f)(φ),SEN£(f)(ψ)〉) ⊆ TΣ′ . Now,
applying Property (MP) of ∆ yields ψ ∈ CΣ(TΣ ∪ {φ}). By symmetry
CΣ(TΣ ∪ {φ}) = CΣ(TΣ ∪ {ψ}), showing that I is behaviorally N -protoal-
gebraic.
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As mentioned before Proposition 6, it has been conjectured, in the case of
the theory of protoalgebraic π-institutions, that the existence of an N -proto-
equivalence system is stronger than N -protoalgebraicity. This contrasts with
the theory of deductive systems, where existence of protoequivalence systems
is equivalent to protoalgebraicity. In fact, in the context of behavioral pro-
toalgebraic deductive systems, Theorem 33 of [8] asserts that, besides the
monotonicity of the behavioral Leibniz operator, behavioral protoalgebraic-
ity may also be characterized by the existence of a protoequivalence system
for the deductive system under consideration. As is pointed out in [8], this
equivalence implies that the class of behaviorally protoalgebraic deductive
systems lies inside the class of protoalgebraic deductive systems. Since, if
a π-institution I is behaviorally N -protoalgebraic, it is not necessarily the
case that there exists an N -protoequivalence system for I, in general the
first link in the chain of implications

Behavioral N -protoalegbraic → Existence of N -protoequivalence
→ N -protoalegbraic

fails in the categorical context, whence the method of proof of [8] cannot
be used in the categorical framework to show that every behaviorally N -
protoalgebraic π-institution is N -protoalgebraic. In fact, at the present
time, we neither have a proof of this statement nor do we know of any
counterexamples.

Open Problem: Is every behaviorally N -protoalgebraic π-institution N£-
protoalgebraic? The same question can be posed, but replacing N -protoal-
gebraicity by N -prealgebraicity, which requires that conditions involving the
Leibniz operator hold only for theory systems of the π-institution, rather
than for all theory families (see [31] for more details).

Let us close this section by providing a multi-sorted π-institution I =
〈Sign, SEN£, C〉 that is not behaviorally N -protoalgebraic, for some trans-
formation signature N on the multi-sorted sentence functor SEN. Let us
consider the language L with two binary connectives ∧,∨ and one unary
connective ¬ and L′ the language with only the two binary connectives ∧,∨.
Let also V be a denumerable set of propositional variables. We recall that,
by Proposition 2.8 of [16], the deductive system S∧,∨ over the language type
L′, that corresponds to the {∧,∨}-fragment of classical propositional calcu-
lus, is not protoalgebraic. We will base the multi-sorted π-institution I on
S∧,∨ and we will use the fact that S∧,∨ is not protoalgebraic to show that
I is not behaviorally N -protoalgebraic. Let Sign be a trivial category with
object, say, ?. Consider a set of sorts {s,£} and let SENs(?) = FmL(V )
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and SEN£(?) = FmL′(V ). Moreover, let N be the transformation signature
that is generated by the two binary operations ∧,∨ : SEN2

£ → SEN£, given,
for all φ, ψ ∈ SEN£(?), by

∧(φ, ψ) = φ ∧ ψ, ∨(φ, ψ) = φ ∨ ψ,

and the unary operation f : SENs → SEN£, such that, for all φ ∈ SENs(?),
f(φ) is the formula that results from φ by dropping all negations, if any,
appearing in φ. These are all well-defined natural transformations on SEN,
since Sign is trivial. Consider the 2-sorted π-institution I = 〈Sign, SEN£,
C〉, whose closure system consists of the closure operator corresponding to
the entailment of S∧,∨. We show that, given a theory family T = {T?} of
I, ΩN,b,£

? (T ) = Ω(T ), where the latter denotes the ordinary Leibniz congru-
ence on FmL′(V ) corresponding to the T? ∈ Th(S∧,∨). In fact, note that,
by the characterization of the behavioral Leibniz N -congruence system in-
cluded in the proof of Proposition 4, we obtain that ΩN,b,£

? (T ) ≤ Ω(T ).
Moreover, since ΩN,b(T ) is an N -congruence system on SEN, ΩN,b,s(T ) ⊆
f−1(ΩN,b,£(T )). From these two inequalities, it follows that ΩN,b(T ) =
{ΩN,b,s(T ),ΩN,b,£(T )}, with ΩN,b,s

? (T ) = f−1(Ω(T )) and ΩN,b,£
? (T ) = Ω(T ).

Thus, the monotonicity of the N -Leibniz operator on the theory families
of I is equivalent to the monotonicity of the Leibniz operator on the theo-
ries of S∧,∨. Since the latter is known not to be monotonic, the former is
also not monotonic, showing, using Theorem 5, that I is not behaviorally
N -protoalgebraic.

7. Behavioral Equivalentiality; Herrmann’s Test

In this final section of the paper we concentrate on providing an analog of
the notion of behavioral equivalentiality for multi-sorted π-institutions. This
notion will take after the syntactic equivalentiality of π-institutions of [33]
and combine it with behavioral equivalentiality [8] to suitably adapt it to
cover multi-sorted π-institutions.

Let I = 〈Sign, SEN£, C〉 be a multi-sorted π-institution over a multi-
sorted sentence functor SEN, with set of sorts S, and N a transformation
signature on SEN. A collection ∆ of natural transformations in N of the
form δ : SEN£ × SEN£ → SEN£ is said to be an N -equivalence system
for I if, for all σ : SENn

£ ×
∏m

i=1 SENsi → SEN£ in N , all T ∈ ThFam(I),
all Σ ∈ |Sign| and all φ, ψ ∈ SEN£(Σ), ~φ, ~ψ ∈ SENn

£(Σ),

(R) ∆Σ(φ, φ) ⊆ CΣ(∅);
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(RP) If, for all i = 1, . . . , n and all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),

∆Σ′(SEN£(f)(φi), SEN£(f)(ψi)) ⊆ TΣ′ ,

then, for all Σ′, Σ′′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), g ∈ Sign(Σ′, Σ′′), ~χ ∈∏m
i=1 SENsi(Σ

′),

∆Σ′′(SEN£(g)(σΣ′(SEN£(f)n(~φ), ~χ)),
SEN£(g)(σΣ′(SEN£(f)n(~ψ), ~χ))) ⊆ TΣ′′ ;

(MP) If φ ∈ TΣ and, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

∆Σ′(SEN£(f)(φ),SEN£(f)(ψ)) ⊆ TΣ′ ,

then ψ ∈ TΣ.

A multi-sorted π-institution I, as above, for which there exists an N -equi-
valence system ∆ is said to be behaviorally (syntactically) N -equiva-
lential. This notion abstracts the notion of a behaviorally equivalential
deductive system, presented in [8], as well as the notion of a syntactically
equivalential π-institution, introduced in [33]. Both notions, in turn, are gen-
eralizations of equivalential logics, first introduced by Prucnal and Wroński
[24], and studied in more detail in the seminal papers of Czelakowski [9, 10]
(see also Chapter 3 of [11]).

Given any collection ∆ of natural transformations in N , as above, and
an sentence family T on SEN£, define ∆(T ) = {∆Σ(T )}Σ∈|Sign| by

∆Σ(T ) = {〈φ, ψ〉 ∈ SEN2
£(Σ) : for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′),

∆Σ′(SEN£(f)(φ), SEN£(f)(ψ)) ⊆ TΣ′}.
Whenever reference to Σ′ and Sign is clear from context, the defining con-
dition will sometimes be abbreviated as (∀f)(∆Σ′(SEN2

£(f)(φ, ψ)) ⊆ TΣ′).
Using the technique employed in the proof of Proposition 36 of [8], we

may show that, for every theory family of a given multi-sorted π-institution
I, the N -congruence system ∆(T ) coincides with ΩN,b,£(T ), provided that
∆ is an N -equivalence system for I.

Proposition 7. Let I = 〈Sign, SEN£, C〉 be a multi-sorted π-institution
over a multi-sorted sentence functor SEN, with set of sorts S with distin-
guished sort £, and N a transformation signature on SEN. Let, also, ∆
be a collection of natural transformations SEN£ × SEN£ → SEN£ in N .
Then ∆ is an N -equivalence system for I iff, for every T ∈ ThFam(I),
∆(T ) = ΩN,b,£(T ).
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Proof. Let Σ ∈ |Sign| and φ, ψ ∈ SEN£(Σ), such that 〈φ, ψ〉 ∈ ∆Σ(T ).
Then, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′), we get that

∆Σ′(SEN£(f)(φ),SEN£(f)(ψ)) ⊆ TΣ′ .

Consider σ ∈ CN
£ (£), of type £s1 . . . sm → £, Σ′, Σ′′ ∈ |Sign|, f ∈ Sign(Σ,

Σ′), g ∈ Sign(Σ′, Σ′′) and ~χ ∈ ∏m
i=1 SENsi(Σ

′). Then, by (RP),

∆Σ′′(SEN£(g)(σΣ′(SEN£(f)(φ), ~χ)),
SEN£(g)(σΣ′(SEN£(f)(ψ), ~χ))) ⊆ TΣ′′ .

Since this holds, for all Σ′′ ∈ |Sign| and all g ∈ Sign(Σ′, Σ′′), we con-
clude from (MP) that, for all Σ′ ∈ |Sign|, all f ∈ Sign(Σ, Σ′) and all
~χ ∈ ∏m

i=1 SENsi(Σ
′),

σΣ′(SEN£(f)(φ), ~χ) ∈ TΣ′ iff σΣ′(SEN£(f)(ψ), ~χ) ∈ TΣ′ .

Therefore, by Proposition 4, 〈φ, ψ〉 ∈ ΩN,b,£
Σ (T ). This shows that ∆(T ) ≤

ΩN,b,£(T ).
To see that the reverse system of inclusions holds, suppose that Σ ∈

|Sign| and φ, ψ ∈ SEN£(Σ), such that 〈φ, ψ〉 ∈ ΩN,b,£
Σ (T ). Then, by the sys-

tem property of ΩN,b(T ), for every Σ′ ∈ |Sign| and all f ∈ Sign(Σ, Σ′), we
have that 〈SEN£(f)(φ),SEN£(f)(ψ)〉 ∈ ΩN,b,£

Σ′ (T ). By the N -congruence
property, for all δ ∈ ∆, we obtain

〈δΣ′(SEN£(f)2(φ, φ)), δΣ′(SEN£(f)2(φ, ψ))〉 ∈ ΩN,b,£
Σ′ (T ).

By the reflexivity of ∆(T ), we get that ∆Σ′(SEN£(f)2(φ, φ)) ⊆ CΣ′(∅) ⊆
TΣ′ . Hence, by the compatibility property of ΩN,b(T ) with T , we obtain that
∆Σ′(SEN£(f)2(φ, ψ)) ⊆ TΣ′ . Since Σ′ ∈ |Sign| and f ∈ Sign(Σ,Σ′) were
arbitrary, we obtain that 〈φ, ψ〉 ∈ ∆Σ(T ). Therefore, ΩN,b,£(T ) ≤ ∆(T ).

Proposition 7 is used in Theorem 8 to prove that behavioral N -equivalen-
tiality implies behavioral N -protoalgebraicity.

Theorem 8. Let I = 〈Sign, SEN£, C〉 be a multi-sorted π-institution over
a multi-sorted sentence functor SEN, with set of sorts S with distinguished
sort £, and N a transformation signature on SEN. If I is behaviorally
N -equivalential, then it is behaviorally N -protoalgebraic.

Proof. Suppose that I is behaviorally N -equivalential. Thus, it has an
N -equivalence system ∆. Let T, T ′ ∈ ThFam(I), such that T ≤ T ′. Then,
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for all Σ ∈ |Sign|,

ΩN,b,£
Σ (T ) = ∆Σ(T ) (by Proposition 7)

= {〈φ, ψ〉 : (∀f)(∆Σ′(SEN£(f)2(φ, ψ)) ⊆ TΣ′)}
⊆ {〈φ, ψ〉 : (∀f)(∆Σ′(SEN£(f)2(φ, ψ)) ⊆ T ′Σ′)}
= ∆Σ(T ′)
= ΩN,b,£

Σ (T ′). (by Proposition 7)

Thus, by Theorem 5, I is behaviorally N -protoalgebraic.

Let I = 〈Sign, SEN£, C〉 be a multi-sorted π-institution over a multi-
sorted sentence functor SEN, with set of sorts S, and N a transformation
signature on SEN. Let, also, ∆ be a collection of natural transformations
in N of the form δ : SEN£ × SEN£ → SEN£. Given Σ0 ∈ |Sign| and
φ, ψ ∈ SEN£(Σ0), define ∆〈Σ0,φ,ψ〉 = {∆〈Σ0,φ,ψ〉

Σ }Σ∈|Sign| by setting, for all
Σ ∈ |Sign|,

∆〈Σ0,φ,ψ〉
Σ = CΣ(

⋃

f∈Sign(Σ0,Σ)

∆Σ(SEN2
£(f)(φ, ψ))).

Using virtually the same proof as that employed in Proposition 14 of
[33], it is not difficult to see that the following holds.

Proposition 9. Let I = 〈Sign, SEN£, C〉 be a multi-sorted π-institution
over a multi-sorted sentence functor SEN, with set of sorts S with distin-
guished sort £, and N a transformation signature on SEN. Let, also, ∆ be a
collection of natural transformations in N of the form δ : SEN£ × SEN£ →
SEN£. Then, for all Σ0 ∈ |Sign| and all φ, ψ ∈ SEN£(Σ0), ∆〈Σ0,φ,ψ〉 is a
theory system of I.

We conclude our exposition by proving an analog in the behavioral con-
text of a well-known lemma due to Herrmann [20] (see also Theorem 3.3.3
of [11]), that provides a characterization of equivalential deductive systems
inside the broader class of protoalgebraic deductive systems. In the present
context, which constitutes a generalization of the one presented in [33] for
π-institutions, Herrmann’s test characterizes behaviorally N -equivalential
multi-sorted π-institutions inside the class of behaviorally N -protoalgebraic
multi-sorted π-institutions.

Theorem 10 (Herrmann’s Test). Let I = 〈Sign,SEN£, C〉 be a multi-sorted
π-institution over a multi-sorted sentence functor SEN, with set of sorts
S with distinguished sort £, and N a transformation signature on SEN.
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Assume that I is behaviorally N -protoalgebraic and let ∆ be a collection of
natural transformations SEN2

£ → SEN£ in N . Then ∆ is an N -equivalence
system for I iff, for all Σ ∈ |Sign|, and all φ, ψ ∈ SEN£(Σ),

∆Σ(φ, φ) ⊆ CΣ(∅) and 〈φ, ψ〉 ∈ ΩN,b,£
Σ (∆〈Σ,φ,ψ〉).

Proof. Suppose that the two conditions of the theorem hold for ∆. By
Proposition 7, it suffices to show that, for every T ∈ ThFam(I), ∆(T ) =
ΩN,b,£(T ).

Suppose, first, that Σ ∈ |Sign|, φ, ψ ∈ SEN£(Σ), such that 〈φ, ψ〉 ∈
∆Σ(T ). This implies, by the definition of ∆(T ), that

(∀f)(∆Σ′(SEN£(f)2(φ, ψ)) ⊆ TΣ′).

Therefore, CΣ′({∆Σ′(SEN£(f)2(φ, ψ)) : f ∈ Sign(Σ, Σ′)}) ⊆ TΣ′ . This
shows that, for all Σ′ ∈ |Sign|, ∆〈Σ,φ,ψ〉

Σ′ ⊆ TΣ′ , i.e., that ∆〈Σ,φ,ψ〉 ≤ T . Thus,
by behavioral N -protoalgebraicity, ΩN,b(∆〈Σ,φ,ψ〉) ≤ ΩN,b(T ), and, since, by
hypothesis, 〈φ, ψ〉 ∈ ΩN,b,£

Σ (∆〈Σ,φ,ψ〉), we obtain that 〈φ, ψ〉 ∈ ΩN,b,£
Σ (T ).

This concludes the proof that ∆Σ(T ) ⊆ ΩN,b,£
Σ (T ). This holding for an

arbitrary Σ ∈ |Sign|, we have ∆(T ) ≤ ΩN,b,£(T ).
Suppose, for the reverse inclusion, that Σ ∈ |Sign|, φ, ψ ∈ SEN£(Σ), such

that 〈φ, ψ〉 ∈ ΩN,b,£
Σ (T ). Then, since ∆ is a subcollection of natural transfor-

mations in N and ΩN,b(T ) is an N -congruence system, we get that, for every
Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), 〈δΣ′(SEN£(f)2(φ, ψ)), δΣ′(SEN£(f)2(φ, φ))〉 ∈
ΩN,b,£

Σ′ (T ), for all δ ∈ ∆. But, by hypothesis,

δΣ′(SEN£(f)2(φ, φ)) ∈ CΣ′(∅) ⊆ TΣ′ ,

for all δ ∈ ∆, whence, by the compatibility property of ΩN,b(T ) with T ,
δΣ′(SEN£(f)2(φ, ψ)) ∈ TΣ′ , for all δ ∈ ∆, i.e., ∆Σ′(SEN£(f)2(φ, ψ)) ⊆ TΣ′ .
Since this holds for arbitrary Σ′ ∈ |Sign| and arbitrary f ∈ Sign(Σ, Σ′), we
obtain that 〈φ, ψ〉 ∈ ∆Σ(T ). Thus, we have ΩN,b,£

Σ (T ) ⊆ ∆Σ(T ). Therefore,
ΩN,b,£(T ) ≤ ∆(T ).

Suppose, conversely, that ∆ is an N -equivalence system for I. Since
the first condition in the statement of the theorem is part of the definition
of an N -equivalence system, it suffices to prove that the second condition
is also satisfied. By Proposition 7, we have that ∆(T ) = ΩN,b,£(T ), for
every theory family T of I. In particular, we obtain that, for all Σ ∈
|Sign|, φ, ψ ∈ SEN£(Σ), ∆Σ(∆〈Σ,φ,ψ〉) = ΩN,b,£

Σ (∆〈Σ,φ,ψ〉). Thus, it suffices
to show that 〈φ, ψ〉 ∈ ∆Σ(∆〈Σ,φ,ψ〉), i.e., that (∀f)(∆Σ′(SEN£(f)2(φ, ψ)) ⊆
∆〈Σ,φ,ψ〉

Σ′ ). This is equivalent to

δΣ′(SEN£(f)2(φ, ψ)) ∈ CΣ′({∆Σ′(SEN£(f)2(φ, ψ)) : f ∈ Sign(Σ,Σ′)}),
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for all δ ∈ ∆, Σ′ ∈ |Sign|, f ∈ Sign(Σ, Σ′). But this is obvious because of
the reflexivity property of C.

We close this section with a comment concerning the dependence of
behavioral N -protoalgebraicity, behavioral N -equivalentiality and existence
of an N -equivalence system on the transformation signature N on the un-
derlying multi-sorted sentence functor SEN of a multi-sorted π-institution
I = 〈Sign, SEN£, C〉. Since N plays in the categorical context the role
of the clone of operations generated by the fundamental operations of an
algebra and only derived operations in that clone are allowed to partici-
pate in determining congruence systems and the natural transformations in
an equivalence system, all the preceding notions are sensitive to the choice
of the transformation signature N . In other words, it might be the case
that a π-institution in the ordinary sense, or a multi-sorted π-institution
in the behavioral sense, is N -protoalgebraic but not N ′-protoalgebraic, or
N -equivalential but not N ′-equivalential, for two different choices of transfor-
mation signatures N and N ′ on its multi-sorted sentence functor. Moreover,
in the behavioral case, it may happen that for the same transformation sig-
nature N on SEN, there exist transformation subsignatures N ′ and N ′′ of
N , such that I is N ′-equivalential and N ′′-equivalential without the cor-
responding equivalence systems being unique up to deductive equivalence.
This happens in the universal algebraic framework even for behaviorally al-
gebraizable deductive systems, as is shown in Section 3.2 of [8], and any
example from that framework may be lifted to obtain a corresponding one
in the categorical framework. Freedom in the choice of the signature in-
troduces this non-uniqueness feature in both frameworks. As is shown in
Theorem 10 of [8], in the context of behaviorally algebraizable deductive
systems, uniqueness is recovered once the subsignature is fixed.
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[24] Prucnal, T., and A. Wroński, An Algebraic Characterization of the Notion of

Structural Completeness, Bulletin of the Section of Logic 3:30–33, 1974.

[25] Reichel, H., Behavioural Validity of Conditional Equations in Abstract Data Types,

In Contributions to general Algebra 3, Proceedings of the Vienna Conference, 1985,

pp. 301–324.
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