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Given a π-institution I, a hierarchy of π-institutions I(n) is constructed, for n ≥ 1. We call I(n) the n-th order
counterpart of I. The second-order counterpart of a deductive π-institution is a Gentzen π-institution, i. e. a
π-institution associated with a structural Gentzen system in a canonical way. So, by analogy, the second order
counterpart I(2) of I is also called the “Gentzenization” of I. In the main result of the paper, it is shown that
I is strongly Gentzen, i. e. it is deductively equivalent to its Gentzenization via a special deductive equivalence,
if and only if it has the deduction-detachment property.
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1 Introduction

Categorical abstract algebraic logic [28] is the area of abstract algebraic logic (see [13] for an excellent overview)
that abstracts ideas and results developed in the universal algebraic framework of deductive systems and sentential
logics [12, 11] to the categorical framework of institutions and π-institutions [15, 16, 10]. This abstraction
includes incorporating the substitution operations in the language in the form of morphisms, rather than treating
them in the metalanguage, as is done in the classical universal algebraic framework. Inclusion of morphisms
allows treating logics over multiple signatures and logics with quantifiers in a very systematic, rather than ad-hoc,
way (see [29, 30] for a detailed explanation of the advantages of this approach). Equational and first-order logic,
the main two paradigms in this framework, have been algebraized using the categorical method in [33] and [35],
respectively, and an investigation into the nature of their categorical algebraic counterparts has been carried out
in [32, 34]. The process of algebraization of deductive systems of Blok and Pigozzi [3], that was later adapted to
cover various other logics (for instance [19, 20, 21, 12, 23, 1]), has been generalized in [28] (see also [29, 30])
to the categorical process of algebraization of π-institutions. At both levels one of the key notions is the notion
of equivalence. Equivalence of k-deductive systems was introduced in [4] and was the inspirational force behind
the development of the notion of deductive equivalence of π-institutions [28, 29]. This notion is also based on
ideas developed in the institution domain, especially different forms of institution morphisms (see [15, 16, 18]
for an overview).

The development of these algebraization frameworks gave a solid basis on which to study the correspondence
between metalogical properties and algebraic properties. In the universal algebraic side, this direction of abstract
algebraic logic is widespread and may be found in the study of various properties, for instance, in [5, 9, 12], a
detailed study of the deduction-detachment property for deductive systems is undertaken. Some other examples
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include [7] that studies the amalgamation property and [8] on the Maehara interpolation property. On the categor-
ical algebraic side, some properties of institutions and π-institutions have been studied in the literature before the
development of the categorical algebraization process [27]. However, a systematic study inside this framework
was initiated in [31]. Several metalogical properties were introduced in that paper and they were all shown to be
stable under deductive equivalence. One of these properties was the deduction-detachment property, which had
been investigated extensively before in the deductive system framework in [5, 9, 12] and will also be the focus in
this paper.

On a different direction, investigations on extending the Blok-Pigozzi framework to the algebraization of
Gentzen systems were initiated in [24, 25] and a systematic and complete account, exploiting the Tarski congru-
ence of an abstract logic, has been presented in [12]. It turns out that this investigation of second-order deduction,
as the deductive apparatus of Gentzen systems is sometimes thought of intuitively, provides new insights and
helps in understanding several properties of deductive systems. Most notably, it has been of great importance
in understanding some of the properties of non protoalgebraic deductive systems (those in the lowest end of the
algebraic hierarchy but still amenable to algebraic logic techniques [13]), which are not so easily understood in
the first-order deductive system framework.

Motivated by the considerations presented above, given an institution I, its n-th order counterpart I(n), n ≥ 2,
is defined and the relation of its deductive power with that of I in the special case when I has the deduction-
detachment property is investigated. In the main result of the paper it is shown that having the deduction-
detachment property is equivalent to I(n) being deductively equivalent to I via a special deductive equivalence,
for all n ≥ 2.

2 Higher order counterparts

For all categorical concepts and unexplained categorical notation the reader is referred to any of [2], [6] or [22].
A π-institution (see [10]) I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉 is a triple consisting of

(i) a category Sign, whose objects are called signatures and whose morphisms are called assignments;

(ii) a functor SEN : Sign −→ Set from the category of signatures to the category of small sets, giving, for
each Σ ∈ |Sign|, the set of Σ-sentences SEN(Σ) and mapping an assignment f : Σ1 −→ Σ2 to a substitution
SEN(f) : SEN(Σ1) −→ SEN(Σ2);

(iii) a mapping CΣ : P(SEN(Σ)) −→ P(SEN(Σ)), for each Σ ∈ |Sign|, called Σ-closure, such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1 (A)) ⊆ CΣ2(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2), A ⊆ SEN(Σ1).
A family

{CΣ : P(SEN(Σ)) −→ P(SEN(Σ))}Σ∈|Sign|

will be referred to as a closure system on SEN if it satisfies (iii)(a) – (d) above.
It is well-known that given an institution I, a π-institution π(I) results by taking the semantic closure relations

of I as the closure relations of π(I) (see [10]). Therefore the abundance of examples of institutions in the
literature (see, for instance, [15, 16, 17, 26, 29, 30, 31]) immediately yields, via this construction, many important
examples of logics formulated as π-institutions. We will not present any more examples here.

In what follows, let P denote the power set functor and ·2 denote the Cartesian square functor. Also by capital
Greek letters, like Γ, ∆, Φ, will be denoted ordered pairs of subsets of sentences and by the same letter with the
subscripts 1 and 2 will be denoted the first and second subset in the pair, respectively. In other words, we will
always have Γ = 〈Γ1,Γ2〉, etc. By capital boldfaced Greek letters, like Γ, ∆, Φ, will be denoted collections of
pairs of subsets. This follows a similar convention adopted for sequents and sets of sequents of Gentzen systems
in [14].
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Given a π-institution I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉, define the π-institution

I(2) = 〈Sign, SEN(2), {C(2)
Σ }Σ∈|Sign|〉

as follows:
1. SEN(2) = (P ◦ SEN)2,

2. C(2)
Σ : P(P(SEN(Σ))2) −→ P(P(SEN(Σ))2) is defined, for all Σ ∈ |Sign|, by Γ ∈ C

(2)
Σ (Φ) if and only

if, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

SEN(f)(Φ2) ⊆ CΣ′ (SEN(f)(Φ1)) for all Φ = 〈Φ1,Φ2〉 ∈ Φ
implies SEN(f)(Γ2) ⊆ CΣ′(SEN(f)(Γ1)).

Sometimes, the last condition of 2. will be abbreviated to

SEN(f)(Φ) ⊆ CΣ′ implies SEN(f)(Γ) ∈ CΣ′ .

Proposition 2.1 Let I be a π-institution. Then I(2) is also a π-institution.

P r o o f. It is obvious that SEN(2) = PSEN2 : Sign −→ Set is a functor. Also, for

C(2) : P(PSEN2) −→ P(PSEN2),

we may prove conditions (iii)(a) – (d) of the definition of a π-institution.
(iii)(a) Suppose that Φ = 〈Φ1,Φ2〉 ∈ Φ ⊆ PSEN(Σ)2. Then, if Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) are such that

SEN(f)(Φ) ⊆ CΣ′ , then it is obvious that SEN(f)(Φ) ∈ CΣ′ .

(iii)(b) Now suppose that Γ ∈ C
(2)
Σ (C(2)

Σ (Φ)). Thus, for every Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

if SEN(2)(f)(C(2)
Σ (Φ)) ⊆ CΣ′ , then SEN(2)(f)(Γ) ∈ CΣ′ .

Let Σ′′ ∈ |Sign|, g ∈ Sign(Σ,Σ′′) be such that SEN(2)(g)(Φ) ⊆ CΣ′′ . Then SEN(2)(g)(C(2)
Σ (Φ)) ⊆ CΣ′′ ,

whence SEN(2)(g)(Γ) ∈ CΣ′′ .

(iii)(c) Let Φ ⊆ Ψ and suppose Γ ∈ C
(2)
Σ (Φ). Then, if Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) are such that

SEN(2)(f)(Ψ) ⊆ CΣ′ ,

then SEN(2)(f)(Φ) ⊆ CΣ′ , whence SEN(2)(f)(Γ) ∈ CΣ′ , and, therefore, C(2)
Σ (Φ) ⊆ C

(2)
Σ (Ψ).

(iii)(d) Suppose that Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2), Φ ⊆ SEN(2)(Σ1). Let Γ ∈ C
(2)
Σ1

(Φ). Now suppose
that Σ′ ∈ |Sign|, g ∈ Sign(Σ2,Σ′),

Σ1 Σ2
�f

gf
�

�
�
��

Σ′
�

g

such that SEN(2)(g)(SEN(2)(f)(Φ)) ⊆ CΣ′ . Then we have SEN(2)(gf)(Φ) ⊆ CΣ′ , whence we obtain

SEN(2)(gf)(Γ) ∈ CΣ′ ,

i. e. SEN(2)(g)(SEN(2)(f)(Γ)) ∈ CΣ′ , and, therefore, SEN(2)(f)(Γ) ∈ C
(2)
Σ2

(SEN(2)(f)(Φ)).

Observe that, for all Σ ∈ |Sign|, Φ ∪ {ϕ} ⊆ SEN(Σ),

ϕ ∈ CΣ(Φ) implies 〈Φ, {ϕ}〉 ∈ C
(2)
Σ (∅).

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



Math. Log. Quart. 51, No. 6 (2005) / www.mlq-journal.org 573

Lemma 2.2 Let I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. The closure system of I(2) satisfies the
following properties:

1. 〈Φ,Φ〉 ∈ C
(2)
Σ (∅), for all Φ ⊆ SEN(Σ).

2. 〈Γ ∪ ∆,Φ〉 ∈ C
(2)
Σ ({〈Γ,Φ〉}), for all Γ,∆,Φ ⊆ SEN(Σ).

3. 〈Γ,∆〉 ∈ C
(2)
Σ ({〈Γ,Φ〉, 〈Γ ∪ Φ,∆〉}), for all Γ,∆,Φ ⊆ SEN(Σ).

4. 〈Γ, {δ}〉 ∈ C
(2)
Σ (Φ), for all δ ∈ ∆, implies 〈Γ,∆〉 ∈ C

(2)
Σ (Φ), for all Σ ∈ |Sign|, Γ,∆ ⊆ SEN(Σ) and

Φ ⊆ PSEN(Σ)2.

P r o o f. All four properties follow directly from the definition of the closure system C(2) and the properties
of the closure system C.

In this context, we will usually denote a pair Φ = 〈Φ1,Φ2〉 ∈ SEN(2)(Σ) by Φ1 
Σ Φ2. Furthermore, if
Φ1 = ∅, we will write 
Σ Φ2. If it so happens that Φ1 or Φ2 is a single sentence, we will follow common
practice to omit parentheses, thus identifying the singleton set with the single element that it contains. Moreover,
instead of Φ ∈ C

(2)
Σ (Φ) we will sometimes use the notation Φ |∼Σ Φ. With this notation the first three properties

in Lemma 2.2 take the following forms, recognizable as generalized forms of the structural rules of Axiom,
Weakening and Cut, respectively, of Gentzen calculi:

Axiom |∼Σ Φ 
Σ Φ,

Weakening Γ 
Σ Φ |∼Σ Γ, ∆ 
Σ Φ,

Cut Γ 
Σ Φ, Γ,Φ 
Σ ∆ |∼Σ Γ 
Σ ∆.

Using the construction of I(2) out of I we may further define inductively

I(1) = I, I(n+1) = (I(n))(2) for all n ≥ 1.

I(n) is said to be the n-th order counterpart of I.

3 Deductive and Gentzen π-institutions

Recall from [29, 30] the definition of the deductive institution associated with the 1-deductive system
S = 〈L, 
S〉.

Let L be a language type and S = 〈L,
S〉 a deductive system over L, i. e. 
S ⊆ P(FmL(V )) × FmL(V )
is a structural consequence operator on the set FmL(V ) of L-formulas with variables in V . We construct the
π-institution IS = 〈SignS , SENS , {CΣ}Σ∈|SignS |〉 as follows:

(i) SignS is the one-object category with object V and morphisms all assignments f : V−⇁ V , i. e. set maps
f : V −→ FmL(V ). The identity morphism is the inclusion iV : V −→ FmL(V ). Composition g ◦ f of two
assignments f and g is defined by g ◦ f = g∗f , where g∗ : FmL(V ) −→ FmL(V ) denotes the substitution
extending the assignment g.

(ii) SENS : SignS −→ Set maps V to FmL(V ) and f : V−⇁ V to f∗ : FmL(V ) −→ FmL(V ). It is easy to
see that SENS is a functor.

(iii) CV : P(FmL(V )) −→ P(FmL(V )) is the standard closure operator CS : P(FmL(V )) −→ P(FmL(V ))
associated with the deductive system S, i. e.

CV (Φ) = {ϕ ∈ FmL(V ) : Φ 
S ϕ} for all Φ ⊆ FmL(V ).

CV , defined in this way, satisfies the conditions imposed in the definition of a π-institution. Thus, IS is a
π-institution. It will be called the deductive π-institution associated with the deductive system S. See [30] for
more details. Note that the same exact construction works for general k-deductive systems in the sense of Blok
and Pigozzi [4].

c© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



574 G. Voutsadakis: Gentzen π-institutions and the deduction-detachment property

Again, let L be a language type and G be a structural Gentzen system, i. e. a pair G = 〈L, |∼G〉, where |∼G
is a structural consequence relation on the collection of sequents of formulas Seq(FmL(V )), that, in addition,
satisfies the structural rules

1. ∅ |∼G ϕ 
 ϕ, for all ϕ ∈ FmL(V ),

2. Γ 
 ϕ |∼G Γ, ψ 
 ϕ, for all Γ ∪ {ϕ, ψ} ⊆ FmL(V ), and

3. {Γ 
 ϕ,Γ, ϕ 
 ψ} |∼G Γ 
 ψ, for all Γ ∪ {ϕ, ψ} ⊆ FmL(V ).
See e. g. [12] for more details on Gentzen systems and some of their important applications in abstract algebraic
logic. The Gentzen π-institution IG = 〈SignG , SENG , {CΣ}Σ∈|SignG |〉 associated with the Gentzen system G is
defined as follows:

(i) SignG is identical with SignS , defined above.

(ii) SENG : SignG −→ Set maps V to P(FmL(V ))2, the collection of all pairs of sets of L-formulas with vari-
ables in V , and f : V−⇁ V to P(f∗)2 : P(FmL(V ))2 −→ P(FmL(V ))2, i. e. the application of the mapping f∗

to a pair of sets of L-formulas is done “element-wise”. It is easy to see that SENG is a functor.

(iii) Finally, CV : P(P(FmL(V ))2) −→ P(P(FmL(V ))2) is the closure operator associated with the Gentzen
system G in the following way: for all Φ ⊆ P(FmL(V ))2,

CV (Φ) = {Ψ = 〈Ψ1,Ψ2〉 ∈ P(FmL(V ))2 :
⋃

Φ∈Φ{Φ1 
 ϕ : ϕ ∈ Φ2} |∼G Ψ1 
 ψ, for all ψ ∈ Ψ2}.

CV , defined in this way, satisfies the conditions imposed in the definition of a π-institution. Thus, IG is a
π-institution.

If we term a π-institution a Gentzen π-institution if it is of the form IG , for some Gentzen system G, then it is
not very difficult to see that

Proposition 3.1 Given a deductive system S = 〈L,
S〉, the second-order counterpart I(2)
S of the π-institution

IS associated with S is a Gentzen π-institution.

Because of Proposition 3.1, the second order counterpart I(2) of an arbitrary given institution I may also be
called, by analogy with deductive π-institutions, the Gentzenization of I.

4 Gentzenization and the deduction-detachment property

In this section we prove the main theorem of the paper which may be viewed either as a characterization of
those π-institutions that are equivalent to their Gentzenizations in terms of the deduction-detachment property or,
equivalently, as a characterization of those π-institutions having the deduction-detachment property in terms of
being deductively equivalent to their Gentzenizations.

A π-institution I is said to be essentially Gentzen or essentially second order if it is deductively equivalent
(see [29]) to its Gentzenization, written I �
 I(2). If, in addition, the interpretation 〈F, α〉 : I −→ I(2)

witnessing the deductive equivalence has F = ISign, the identity signature functor, and αΣ(ϕ) = {
Σ ϕ}, for
all Σ ∈ |Sign|, ϕ ∈ SEN(Σ), and the adjoint equivalence 〈F,G, η, ε〉 : Sign −→ Sign is the identity, then I is
said to be strongly Gentzen.

Recall from [31] that a π-institution I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉 is said to have the deduction-detach-
ment property if there exists a natural transformation E : PSEN2 −→ PSEN, called a deduction-detachment or
implication system, such that, for all Σ ∈ |Sign|, and all Φ ∪ Γ ∪ ∆ ⊆ SEN(Σ),

Φ ⊆ CΣ(Γ ∪ ∆) iff EΣ(∆,Φ) ⊆ CΣ(Γ).

It is shown next that, for any π-institution, having the deduction-detachment property is equivalent to being
strongly Gentzen.

Theorem 4.1 A π-institution I is strongly Gentzen if and only if it has the deduction-detachment property.
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P r o o f. Suppose, first, that I has the deduction-detachment property with the deduction-detachment system
E : PSEN2 −→ PSEN. Let F,G : Sign −→ Sign be the identity functors F = G = ISign. Recall that
SEN(2) = PSEN2 and define the natural transformations α : SEN −→ P(PSEN2) by

αΣ(ϕ) = {
Σ ϕ} for all Σ ∈ |Sign|, ϕ ∈ SEN(Σ),

and β : PSEN2 −→ PSEN by

βΣ(Φ 
Σ Ψ) = EΣ(Φ,Ψ) for all Σ ∈ |Sign|, Φ,Ψ ⊆ SEN(Σ).

It is not difficult to check that α is a natural transformation: Indeed for f ∈ Sign(Σ1,Σ2), ϕ ∈ SEN(Σ1), we
have

SEN(Σ2) P(SEN(Σ2))2�
αΣ2

SEN(Σ1) P(SEN(Σ1))2�αΣ1

�

SEN(f)

�

P(SEN(f))2

and

αΣ2(SEN(f)(ϕ)) = {
Σ2 SEN(f)(ϕ)}P(SEN(f))2(
Σ1 ϕ)P(SEN(f))2(αΣ1(ϕ)).

β is a natural transformation, sinceE is, by hypothesis. Obviously,F andG, being identities, are part of a natural
equivalence with identity unit and counit and, therefore, to prove that I and I(2) are deductively equivalent, it
suffices by a result of [29] to show the following relations, for all Σ ∈ |Sign|:
(1) ϕ ∈ CΣ(Φ) implies αΣ(ϕ) ⊆ C

(2)
Σ (αΣ(Φ)) for all Φ ∪ {ϕ} ⊆ SEN(Σ).

(2) C
(2)
Σ (Φ) = C

(2)
Σ (αΣ(βΣ(Φ))) for all Φ = 〈Φ1,Φ2〉 ∈ PSEN(Σ)2.

For (1), we need to show that if ϕ ∈ CΣ(Φ), then 
Σ ϕ ∈ C
(2)
Σ (
Σ Φ). Suppose Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)

are such that SEN(f)(Φ) ⊆ CΣ′(∅). Then, since ϕ ∈ CΣ(Φ), we get SEN(f)(ϕ) ∈ CΣ′(SEN(f)(Φ)), whence
SEN(f)(ϕ) ∈ CΣ′(SEN(f)(Φ)) ⊆ CΣ′(∅), as required.

For (2) we need to show that, for all Φ = 〈Φ1,Φ2〉 ∈ PSEN(Σ)2, C(2)
Σ (Φ) = C

(2)
Σ (
Σ EΣ(Φ1,Φ2)). We

have, for all Γ = 〈Γ1,Γ2〉 ∈ PSEN(Σ)2,

Γ ∈ C
(2)
Σ (Φ) iff SEN(f)(Φ2) ⊆ CΣ′(SEN(f)(Φ1))

implies SEN(f)(Γ2) ⊆ CΣ′ (SEN(f)(Γ1)), for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)
iff EΣ′(SEN(f)(Φ1), SEN(f)(Φ2)) ⊆ CΣ′(∅)

implies SEN(f)(Γ2) ⊆ CΣ′ (SEN(f)(Γ1)), for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)

iff

PSEN(Σ′)2 PSEN(Σ′).�
EΣ′

PSEN(Σ)2 PSEN(Σ)�EΣ

�

PSEN(f)2

�

PSEN(f)

SEN(f)(EΣ(Φ1,Φ2)) ⊆ CΣ′ (∅) implies SEN(f)(Γ2) ⊆ CΣ′ (SEN(f)(Γ1)), for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),
if and only if Γ1 
Σ Γ2 ∈ C

(2)
Σ (
Σ EΣ(Φ1,Φ2)). Therefore C(2)

Σ (Φ) = C
(2)
Σ (
Σ EΣ(Φ1,Φ2)).

Suppose, conversely, that I and I(2) are deductively equivalent π-institutions via the interpretations

〈ISign, α〉 : I −→ I(2),

where αΣ(ϕ) = {
Σ ϕ}, for all Σ ∈ |Sign|, ϕ ∈ SEN(Σ), 〈ISign, β〉 : I(2) −→ I and the identity natural
equivalence. Then define the natural transformationE : PSEN2 −→ PSEN by

EΣ(∆,Φ) = βΣ(∆ 
Σ Φ) for all Σ ∈ |Sign|, ∆,Φ ⊆ SEN(Σ).
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It suffices now to show that E : PSEN2 −→ PSEN is a natural transformation and that, for all Σ ∈ |Sign|, and
all Φ ∪ Γ ∪ ∆ ⊆ SEN(Σ),

Φ ⊆ CΣ(Γ ∪ ∆) iff EΣ(∆,Φ) ⊆ CΣ(Γ).

The naturality of E, i. e. the commutativity of the diagram

PSEN(Σ2)2 PSEN(Σ2)�
EΣ2

PSEN(Σ1)2 PSEN(Σ1)�EΣ

�

PSEN(f)2

�

PSEN(f)

for all Σ1,Σ2 ∈ |Sign| and all f ∈ Sign(Σ1,Σ2), follows from the naturality of β. Finally, for the deduction-
detachment property, it is first shown that

(3) Φ ⊆ CΣ(Γ ∪ ∆) iff ∆ 
Σ Φ ∈ C
(2)
Σ (
Σ Γ).

Suppose that Φ ⊆ CΣ(Γ ∪ ∆) and that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), we have SEN(f)(Γ) ⊆ CΣ′ (∅).
Then, we have, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), that SEN(f)(Γ∪∆) ⊆ CΣ′(SEN(f)(∆)), whence we have

SEN(f)(Φ) ⊆ CΣ′(SEN(f)(Γ ∪ ∆)) ⊆ CΣ′(SEN(f)(∆)),

whence ∆ 
Σ Φ ∈ C
(2)
Σ (
Σ Γ).

Suppose that ∆ 
Σ Φ ∈ C
(2)
Σ (
Σ Γ). Thus, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

(4) if SEN(f)(Γ) ⊆ CΣ′(∅), then SEN(f)(Φ) ⊆ CΣ′ (SEN(f)(∆)).

Now suppose that, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), we have SEN(f)(Γ ∪ ∆) ⊆ CΣ′ (∅). Therefore,
SEN(f)(Γ) ⊆ CΣ′(∅), whence, by (4), SEN(f)(Φ) ⊆ CΣ′(SEN(f)(∆)), and, hence,

SEN(f)(Φ) ⊆ CΣ′(SEN(f)(∆)) ⊆ CΣ′ (SEN(f)(Γ ∪ ∆)) ⊆ CΣ′(∅).
Thus 
Σ Φ ∈ C

(2)
Σ (
Σ Γ ∪ ∆), i. e. αΣ(Φ) ⊆ C

(2)
Σ (αΣ(Γ ∪ ∆)) and, therefore, Φ ⊆ CΣ(Γ ∪ ∆).

Now, we have, for all Σ ∈ |Sign|, and all Φ ∪ Γ ∪ ∆ ⊆ SEN(Σ),

Φ ⊆ CΣ(Γ ∪ ∆) iff ∆ 
Σ Φ ∈ C
(2)
Σ (
Σ Γ) (by (3))

iff ∆ 
Σ Φ ∈ C
(2)
Σ (αΣ(Γ))

iff βΣ(∆ 
Σ Φ) ⊆ CΣ(βΣ(αΣ(Γ)))
iff EΣ(∆,Φ) ⊆ CΣ(Γ).

Theorem 4.2 If a π-institution I has the deduction-detachment property, then the Gentzenization of I also
has the deduction-detachment property.

P r o o f. If I has the deduction-detachment property, then, by Theorem 4.1, I is strongly Gentzen, whence it
is deductively equivalent to its Gentzenization I(2). Therefore, by [31, Theorem 2.17], we get that I(2) also has
the deduction-detachment property.

By induction on n, the following may be obtained from Theorem 4.2.

Corollary 4.3 If a π-institution I has the deduction-detachment property, then the n-th order counterpart I(n)

of I also has the deduction-detachment property, for all n ≥ 2.

Now the following theorem is a consequence of Theorem 4.1 and it provides a criterion for collectively testing
all n-th order counterparts with respect to the deduction-detachment property.

Theorem 4.4 A π-institution I is strongly Gentzen if and only if I(n) has the deduction-detachment property,
for every n ≥ 1.

P r o o f. This follows directly by combining Theorem 4.1 with Corollary 4.3.
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5 Open problem

It would be very interesting to investigate if there exists a metalogical property of a π-institution, similar to having
the deduction-detachment property, that is equivalent to it being essentially, rather than strongly, Gentzen. We
conjecture that an even more relaxed form of the deduction-detachment property than ours may be what is needed
in that case.
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