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Abstract 

In previous work, we have introduced a fully contextualized federated 
ontology language ,-FALCI  based on the well-known description logic 

.ALCI  Inspired by the work of Lukasiewicz on expressive probabilistic 
logics, we augment that work by considering a probabilistic extension of 

,-FALCI  termed .-PFALCI  Although its modules employ a less 

expressive description logic than the rich ( )DSHIF  or ( )DSHOIN  of 

Lukasiewicz and, in particular, do not provide support for concrete 
domains, ALCI-PF  is the first ontology language in the literature to offer 

modularity and contextualization of all logical connectives combined with 
the ability to express probabilistic terminological and default knowledge. 

1. Introduction 

The large amount of data and services that have become available on the world 
wide web have led to the semantic web initiative [4, 15], which aims at making 
information machine-interpretable and services machine-operable so that data 
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discovery, integration and navigation can be enhanced. The precision in the 
definition and the meaning of the terms representing the available information, 
required for succeeding in this goal, is provided by organizing them into ontologies. 
Ontologies are knowledge bases that typically cover a specific domain of expertise. 
Different ontologies may cover related domains with partially overlapping, or 
interdependent, information, but are typically developed independently of each 
other. One of the most widely used languages for ontology construction is OWL 
[39]. Ontology languages are based on description logics [1], which, typically, are 
decidable fragments of first-order logic or various other decidable extensions with 
additional constructs that are used to enrich expressivity without compromising 
decidability [7]. The basic building blocks of a description logic are concepts and 
roles. Concepts represent classes of individuals in the domain of discourse and roles 
represent relationships between individuals. The most elementary statements that are 
encoded in a description logic knowledge base and on which we will focus in this 
paper are subsumption relationships between concepts. 

In various applications of description logics in the semantic web, the need arises 
to express uncertain or imprecise information and to reason about it. In this direction 
a body of work has focused on integrating fuzzy representation and reasoning into 
ontology languages (see, e.g., [40-42]). On the other hand, an alternative approach is 
to use probabilistic methods to represent and reason about uncertain information on 
the web. This has been explored extensively in the area of logic programs (see, e.g., 
[32]) and various researchers have advocated and treated the introduction of 
probabilistic features in knowledge representation [26-29, 34] and ontology 
engineering [13, 14, 48, 37, 16, 35, 10, 11]. 

Typically, development of ontologies in the semantic web is occurring 
autonomously by independent contributors, each of whom addresses a different area 
of expertise. But the ontology modules that are constructed in this federated fashion 
are not entirely disjoint. They may cover related or partially overlapping domains, 
e.g., biology, medicine, pharmacology. In order to avoid reconstructing the same 
terminology and repeating parts of an already existing ontology, tools have been 
developed that allow an ontology developer to reuse concepts and definitions from 
other ontology modules. The theoretical study on the foundations of ontology 
languages that allow this feature has led to the development of several possible 
platforms that may be used for selectively reusing parts of other ontology modules in 
the development of a new ontology. These modular ontology languages include 
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distributive description logics [5, 19], E -connections [24], semantic importing [36], 
semantic binding [49] and package-based description logics [2, 3]. A slightly 
different approach that also has as its main goal partial reuse of available knowledge 
is based on the notion of conservative extensions [20, 23, 22]. Of particular interest 
to us, since it will form the foundation for our studies in this paper, is the framework 
of federated, fully-contextualized description logics that was introduced recently in 
[47, 44]. Apart from enabling the user to partially reuse information by importing 
concepts and roles from different modules, it also recognizes the need to 
contextualize information. This need arises because imported terms from other 
modules may be interpreted differently depending on the context in which they are 
being reused. Context as a key concept in reasoning in AI has been studied before in 
[8, 9] and, more specifically, in the area of ontology languages in [6, 17, 18]. The 
additional recognition of the need to reason with imprecise or fuzzy information in 
this federated setting has recently led to the formulation of a federated reasoning 
framework [46], where instead of a two-valued semantics, an arbitrary certainty 
lattice may be used, as was done previously in the single-module setting in [42]. 

In the present work, we introduce probabilistic terminological axioms in the 
federated fully-contextualized description logic ALCI-F  to obtain the probabilistic 

federated description logic .-PFALCI  We follow in this endeavor the leads from the 

pioneering work of Lukasiewicz [34], where probabilistic analogs of the very 
expressive description logics ( )DSHIF  and ( )DSHOIN  were introduced and 

studied in detail. Because this is, to the best of our knowledge, the first attempt at the 
creation of a relatively expressive modular description logic with probabilistic 
features, we opted for a rather simplified version of the description logic used, as 
compared with the powerful logics used in [34]. More expressive DLs and a more 
general framework will be studied in future work. Our framework has the following 
three limitations when comparing the underlying language used with those of 
Lukasiewicsz: First, ALCI  is significantly less expressive than either ( )DSHIF  

or ( ).DSHOIN  Second, we do not treat concrete domains as does Lukasiewicz. 

Finally, we restrict our attention only to terminological axioms. Despite these 
simplifications our innovation relies on several features that are introduced 
collectively for the first time in an ontology language. First, our language is modular. 
That is, its semantics handles readily interactions between various modules that are 
developed independently on the web. Second, in each of these modules, all logical 
connectives are contextualized. Each logical connective has a local meaning that is 
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transferred across modules via image domain relations. Finally, several of the nice 
probabilistic features of Lukasiewicz’s approach pertaining to default and 
probabilistic terminological axioms still hold in the distributed context, despite the 
limited expressivity of the underlying description logic. 

2. A Quick Review of ALCI  and ALCI-F  

2.1. ALCI  basics 

Recall, e.g., from [1], that the description logic ALCI  consists of role 
expressions and concept expressions that are built starting from two disjoint 
collections of concept names C  and role names ,R  using the top and bottom 
concepts, negation, conjunction, disjunction, value and existential restriction (for 
concepts) and inverse roles. More precisely, if A is a concept name and C, D are 
concept expressions, then 

CRDCDCCA .,,,,,, ∀⊥ ��¬F  and CR.∃  

are concept expressions, where R is a role expression, i.e., a role name R or of the 

form ,−R  with R a role name. The set of role expressions is denoted by R̂  and the 

set of concept expressions by .Ĉ  A subsumption in ALCI  is a formula of the form 

,DC �  where C, .Ĉ∈D  An ontology T (also known as knowledge base (KB) or 

TBox) is a finite set of subsumptions. This language is provided a formal semantics 

as follows: An interpretation for T is a pair ,, III ⋅Δ=  where IΔ  is a nonempty 

set, called the domain of the interpretation, and I⋅  is a function, that assigns to each 

concept name C a set II Δ⊆C  and to each role name R a set ,ΔIII ×Δ⊆R  

such that IIF Δ=  and .∅=⊥I  One uses the recursive nature of the concept 

expressions to extend the function I⋅  over all role and concept expressions as 

follows: Let ( ) ( ) ,−− = II RR  the inverse relation of ,IR  for every ,R∈R  and, 

for all concept expressions C,  D and role expressions R, 

– ( ) ;\ III CC Δ=¬  

– ( ) ;III DCDC ∩=�  

– ( ) ;III DCDC ∪=�  
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– ( ) { ( ) (( ) )};implies,:. IIIII CyRyxyxCR ∈∈Δ∈∀Δ∈=∀  

– ( ) { ( ) (( ) )}.,:. IIII RyxCyxCR ∈∈∃Δ∈=∃  

The interpretation I  satisfies the subsumption DC �  iff .II DC ⊆  An 

interpretation I  is a model of the KB T if it satisfies every subsumption in T. A KB 
T is said to be consistent or satisfiable if it has a model, whereas a concept 

expression Ĉ∈C  is said to be satisfiable with respect to, or relative to, T if T has 

a model ,I  such that .∅≠IC  

2.2. F-ALCI  basics 

In this section, we revisit the basic definitions concerning the syntax and 
semantics of the modular ontology language F-ALCI  that was introduced in [47]. 
This language will constitute one of the basic underlying components of the 
probabilistic counterpart that will be presented in the following sections. 

A directed acyclic graph EVG ,=  is given, whose vertices represent 

modules of a federated ontology and whose edges correspond to direct importing 
relations between the modules. In other words, if ( ) ,, Eji ∈  then module j may 

import concept names, role names and logical connectives from module i. Note that 
F-ALCI  is the first modular ontology language that supports contextualization of 
all logical connectives, rather than just logical negation, as was done in previous 
proposals [5, 25, 3]. The language of the i-th module in F-ALCI  consists of a set of 

role expressions iR̂  and concept expressions ,ˆ
iC  that are built starting from 

disjoint collections of concept names iC  and role names ,iR  for each module 

.Vi ∈  The i-th role expressions are of the form R or ,−R  where 

( ) .,, EijR j ∈∈ R  The i-th concept expressions are built recursively by 

CRDCDCCA jjjjjj .,,,,,, ∀⊥ ¬F  and ,.CRj∃  

where ,jA C∈  C, jiD CC ˆˆ ∩∈  and ,ˆˆ
jiR RR ∩∈  for ( ) ., Eij ∈  An i-subsumption 

in ALCI-F  is a formula of the form ,DC �  where C, .ˆ
iD C∈  An ontology 

{ } ViiTT ∈=  (also known as knowledge base (KB) or TBox) is a V-indexed 

collection of finite sets iT  of i-subsumptions. The language is provided a formal 
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semantics as follows: An interpretation for T is a pair { } { }( ) ,, , EjiijVii r ∈∈= II  

where III ⋅Δ= ,i  is a local interpretation and ji
ijr Δ×Δ⊆  is an image-domain 

relation. The local interpretations ii
i ⋅Δ= ,I  consist of a nonempty local domain 

iΔ  and an interpretation function ,i⋅  that assigns to each i-concept name C a set 
iiC Δ⊆  and to each i-role name R a set ,iiiR Δ×Δ⊆  such that ii

i Δ=F  and 

.∅=⊥i
i  One uses the recursive nature of the concept expressions to extend the 

functions i⋅  over all i-role and i-concept expressions as follows: 

First, we introduce some notation. For a binary relation ,jir Δ×Δ⊆  iX Δ⊆  

and ,iiS Δ×Δ⊆  we set 

( ) { ( ) ( )( )},,:: ryxXxyXr j ∈∈∃Δ∈=  

( ) {( ) ( )( ) ( ) ( )( )}rwyzxSyxwzSr jj ∈∈∃Δ×Δ∈= ,,,,:,:  

to denote the images of X and S under the binary relation r. 

Let ( ) ( ) ,−− = ii RR  for every ,jR R∈  ( ) ., Eij ∈  Then, for every jA C∈  

and all concept expressions C, jiD CC ˆˆ ∩∈  and role expressions ,ˆˆ
jiR RR ∩∈  

with ( ) ,, Eij ∈  

– ( )j
ji

i
j r Δ=F  and ;∅=⊥i

j  

– ( );j
ji

i ArA =  

– ( ) ( );\ jj
ji

i
j CrC Δ=¬  

– ( ) ( );jj
ji

i
j DCrDC ∩=  

– ( ) ( );jj
ji

i
j DCrDC ∪=  

– ( ) ({ ( ) (( ) )});implies,:. jjjj
ji

i
j CyRyxyxrCR ∈∈Δ∈∀Δ∈=∀  

– ( ) ({ ( ) (( ) )}).,:. jjj
ji

i
j RyxCyxrCR ∈∈∃Δ∈=∃  
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The interpretation I  satisfies the i-subsumption DC �  as witnessed by module i 

iff .ii DC ⊆  An interpretation I  satisfies, or is a model of, the KB { } ViiTT ∈=  if 

it satisfies every i-subsumption in iT  as witnessed by i, for all .Vi ∈  A KB T is said 

to be consistent or satisfiable if it has a model .I  On the other hand, an i-concept 

expression iC Ĉ∈  is said to be satisfiable as witnessed by i with respect to, or 

relative to, T if T has a model ,I  such that .∅≠iC  Finally, a collection 

{ } ,Vii ∈= EE  where ,ˆ
ii CE ⊆  is satisfiable relative to (or with respect to) T if, 

there exists an interpretation I  (which is a model of T ), such that 

{ } ,: ∅≠∈ i
i CC E∩  for all .Vi ∈  When T is empty, we say that E  is satisfiable 

omitting the reference relative to the empty TBox. Note that, because we are 
assuming that all local domains of every model are nonempty, satisfiability of 
{ } Vii ∈E  relative to T is equivalent to the satisfiability of { } ,Viii ∈FE ∪  relative to 

T. 

3. The Probabilistic Extension of ALCI-F  

To introduce the syntax of ,-PFALCI  we define first the concept of conditional 

constraint. It was given in [31] and forms a cornerstone in the definitions of both 
( )DSHIF-P  and ( )DSHOIN-P  in [34]. To define the semantics of the new 

probabilistic language involving conditional constraints, the notion of lexicographic 
entailment, introduced by Lehmann in [30] in the context of default reasoning from 
conditional knowledge bases, will be employed. This type of reasoning has also been 
employed in the context of probabilistic default reasoning in [33, 32] and in the 
definition of the semantics of both P- ( )DSHIF  and P- ( )DSHOIN  in [34]. 

3.1. Syntax 

Roughly speaking, a ALCI-PF  knowledge base or ALCI-PF  ontology is a 

collection of PTboxes { } ,ViiPT ∈  each of which is an ordinary module of an 

ALCI-F  knowledge base along with axioms for terminological probabilistic 

knowledge and default knowledge. An example of an ordinary ALCI-F -ontology 

follows. 

Example 1. Consider an ontology T with two modules. Module 1T  consists of 
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information regarding the insurance status of the personnel at a given university. It 
has a concept corresponding to insured personnel and also one corresponding to 
fully insured and one corresponding to partially insured personnel: 

FullyInsured � Insured 

PartiallyInsured � Insured 

PartiallyInsured � 1¬ FullyInsured 

Module ,2T  on the other hand, consists of information about the titles of the 

personnel, i.e., their role in the university structure. It contains concepts for lecturers, 
faculty, male and female lectures and imports the concept Insured from 1T  (equality 

between two concept expressions stands for subsumption in both directions): 

MaleLecturer � Lecturer 

FemaleLecturer = Lecturer 22¬  MaleLecturer 

Lecturer � Faculty 

Faculty � Insured 

Let iB  be a finite nonempty set of basic classification i-concepts, which are i-

concept expressions C in ,-FALCI  i.e., .ˆ
ii CB ⊆  These are the concepts that will 

be used in conditional constraints to define terminological probabilistic relationships. 
They will also be used in the semantics of ALCI-PF  to obtain finite sets of worlds. 

A classification i-concept is defined by recursion starting from basic classification 
i-concepts as follows: 

– Every basic classification i-concept iB∈φ  is a classification i-concept. 

– If φ, ψ are classification i-concepts, then ,,, ψφψφφ iii ¬  are also 

classification i-concepts. 

The collection of all classification i-concepts is denoted by .ˆ
iB  

An i-conditional constraint is an expression of the form ( ) [ ],, ulφ|ψ  where φ, 

ψ are classification i-concepts and l, [ ]1,0∈u  are reals in the unit interval. This 

constraint formally expresses the statement that the conditional probability of ψ 
given φ lies between l and u. 
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As Lukasiewicz observes in [34], the use of classification concepts rather than 
of only basic classification concepts adds flexibility, reduces the number of worlds 
that need to be considered in the semantics and brings the framework closer to 
probabilistic lexicographic entailment in probabilistic default reasoning [33, 32]. 

Example 2. Assume that all three 1-concept names that we have seen in 
Example 1, together with another one (that we have not used yet) HasDental, with 
the intended meaning that member employees have dental insurance, are basic 
classification 1-concepts. The terminological probabilistic knowledge “generally, 
insured personnel are fully insured with probability at least 0.8”, i.e., “typically, a 
randomly chosen insured employee is fully insured with probability of at least 0.8” 
can be expressed by the conditional constraint 

(FullyInsured|Insured)[0.8, 1]. 

On the other hand, the terminological default knowledge “generally, insured 
personnel have dental insurance” can be expressed by 

(HasDental|Insured)[1, 1] 

and the default knowledge “generally, partially insured personnel do not have dental 
insurance” by 

( 1¬ HasDental|PartiallyInsured)[1, 1]. 

This is different from the strict terminological knowledge “all insured employees 
have dental insurance”, which is expressed by the concept subsumption Insured 

� HasDental. The difference lies in the way these two assertions are handled 

when used to draw conclusions. More details on this point will come later. 

To illustrate our modular approach, we consider also some basic classification 
2-concepts and some 2-conditional constraints. Alongside Faculty and 
Lecturer, the imported 1-concept name FullyInsured and another 2-concept 
name, that we have not met yet, DoesResearch, are basic-classification 2-
concepts. Here we have the default knowledge 

(DoesResearch|Faculty) [1, 1] 

( 2¬ DoesResearch|Lecturer) [1, 1] 

(FullyInsured|Faculty) [1, 1] 

and the terminological probabilistic knowledge 

(FullyInsured|Lecturer)[0.7, 1]. ~ 
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A ALCI-PF -knowledge base or ALCI-PF -ontology { } Vii ∈= PTPT  is a 

collection of PTBoxes ,,PT iii PT=  where iT  is the i-TBox of an ALCI-F  

knowledge base { } ViiTT ∈=  and iP  is a finite set of i-conditional constraints. iP  

encodes both probabilistic terminological knowledge and terminological default 
knowledge. In particular, a specific i-conditional constraint ( ) [ ]ul,φ|ψ  has the 

intended meaning that “generally, if ( )aφ  holds, then ( )aψ  holds with probability at 

least l and at most u”, for every randomly chosen individual ( )a  in the domain of 
discourse. 

3.2. Semantics 

In this section, the key concepts of consistency and lexicographic entailment for 
a ALCI-PF  knowledge base will be introduced. The inspiration comes from the 

work of Lehmann [30] on lexicographic entailment in default reasoning from 
conditional knowledge bases. Lukasiewicz used this notion to define lexicographic 
entailment in probabilistic default reasoning in [33, 32] and, more recently, in [34] to 
obtain lexicographic entailment for his probabilistic description logics. We rely on 
his latest work to develop the semantics for our framework. 

Our goal in reasoning with ALCI-PF  is to define new terminological 

probabilistic knowledge from a given ALCI-PF  knowledge base =PT  
{ } ., Viii PT ∈  To perform this reasoning, contextual inconsistencies inside each 

PTBox iii PT ,PT =  have to be resolved. For instance, if the PTBox 2PT  includes 

the probabilistic default statements 

(DoesResearch|Faculty)[1, 1] 

( 2¬ DoesResearch|Lecturer)[1, 1], (1) 

then an inconsistency is created, given the strict terminological knowledge axiom 

Lecturer � Faculty. Following [34], we use the maximum specificity rule to 

resolve such inconsistencies. This rule stipulates that more specific information is 
preferred over less specific one. Since “lecturers do not generally conduct research” 
is more specific than “faculty do in general conduct research”, the first probability 
statement in (1) will be ignored to resolve this inconsistency. 

More generally, the specificity of each conditional constraint in each 
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probabilistic box iP  is analyzed and this analysis leads to establishing a preference 

relation between all subsets of ,iP  which extends to a preference relation between 

all probabilistic interpretations. This relation is the one that will be used to resolve 
inconsistencies and draw conclusions whenever possible, i.e., in all cases when the 
knowledge base is consistent. 

World models and probabilistic models. Given a collection ,ˆ
iCE ⊆  denote 

by Ei¬  the set { }.: EE ∈φφ= ii ¬¬  Let { } ViiII ∈=  be a collection of sets of basic 

classification i-concepts, such that ( ){ } Viiiii II ∈\B¬∪  is satisfiable.1 I is called a 

world relative to { } .Vii ∈= BB  The set of all worlds relative to B  will be denoted 

by .BI  Since, for all ,Vi ∈  ,ω<iB  we also have that .ω<BI  

Example 3. Consider the knowledge base K that was discussed in the previous 
examples. We have that 

{ },1 HasDental edFullyInsur nsuredPartiallyI Insured ,,,=B  

{ }.2 chDoesResear edFullyInsur Lecturer Faculty ,,,=B  

Clearly, every { },, 21 III =  with ,11 B⊆I  ,22 B⊆I  yields a world relative to .B  

Thus, in this example, there are 44 22 ⋅  worlds relative to .B  ~ 

Given a world { } ViiII ∈=  and an ALCI-F  knowledge base { } ,ViiTT ∈=  I 

satisfies T or I is a model of T, written ,TI B  if ( ){ } Viiiii II ∈\B¬∪  is satisfiable 

relative to T. I satisfies a basic classification i-concept iB∈φ  or I is a model of φ, 

denoted by ,φiI B  if .iI∈φ  Satisfaction of classification i-concepts by worlds is 

defined by extending the definition inductively over Boolean connectives in the 
usual way. 

The following proposition is an analog of Proposition 4.8 of [34] and shows that 
an ALCI-F  knowledge base { } ViiTT ∈=  is satisfiable iff it has a world model.  

                                                      
1Recall that this means that there exists an interpretation { } { }( ) ,, , EjiijVii r ∈∈= II  such 

that { ( )} ,\: ∅≠∈ iiii
i IICC B¬∪∩  for all .Vi ∈  
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Proposition 1. Let { } ,Vii ∈= BB  ,∅≠iB  be a family of finite sets of basic 

classification i-concepts and { } ViiTT ∈=  an ALCI-F  knowledge base. T has a 

model { } { }( ) ,, , EjiijVii r ∈∈= II  with ,, ii
i ⋅Δ=I  ,Vi ∈  iff T has a world 

model { } ViiII ∈=  relative to .B� 

Proof. Suppose, first, that { } { }( ) EjiijVii r ∈∈= ,,II  is a model of =T  

{ } ,ViiT ∈  with ,, ii
i ⋅Δ=I  .Vi ∈  Recall that we are assuming that ,∅≠Δi  for 

all .Vi ∈  Let, for each ,Vi ∈  .i
ia Δ∈  Define { },: i

iii aI φ∈∈φ= B  .Vi ∈  

Then { } ViiII ∈=  is a world relative to B  that is also a model of T. If, conversely, T 

has a world model { } ,BI∈= ∈ViiII  then { ( )} Viiiii II ∈\B¬∪  is satisfiable 

relative to T, whence T is a fortiori satisfiable. 

A probabilistic interpretation Pr is a probability function on the set of all 
worlds BI  over the set B  of basic classification concepts, i.e., a mapping 

[ ],1,0:Pr →BI  such that ( )∑ ∈
=

BII I .1Pr  Pr satisfies an ALCI-F  knowledge 

base { } ViiTT ∈=  or Pr is a model of T, denoted ,Pr TB  if, for all ,BI∈I  such 

that ( ) .,0Pr TII B>  As far as satisfaction of conditional constraints goes, we set it 

up as follows: The probability of a classification i-concept φ in a probabilistic 
interpretation Pr, denoted ( ),Pr φi  is defined by 

( ) ( ){ }∑ φ=φ .:PrPr ii II B  

Furthermore, for all classification i-concepts φ and ψ, such that ( ) ,0Pr >φi  we set 

( ) ( )
( ) .

Pr
Pr

Pr
φ
ψφ

=φ|ψ
i

ii
i


 

Pr satisfies an i-conditional constraint ( ) [ ]ul,φ|ψ  or Pr is a model of ( ) [ ],, ulφ|ψ  

denoted ( ) [ ],,Pr uli φ|ψB  if ( ) 0Pr =φi  or ( ) [ ].,Pr uli ∈φ|ψ  Pr satisfies a set of 

i-conditional constraints iF� or Pr is a model of ,iF� written ,Pr ii F�B  if ,Pr FiB  

for all .iF F�∈  Finally, if { } Vii ∈= F�F  is a collection of sets of i-conditional 

constraints for ,Vi ∈  we write FBPr  to signify that ,Pr iiF�B  for all .Vi ∈  
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In Proposition 2, an analog of Proposition 4.9 of [34] in the federated setting, it 
is shown that an ALCI-F  knowledge base { } ViiTT ∈=  is satisfiable if and only if it 

has a probabilistic model. 

Proposition 2. Let { } Vii ∈= BB  be a collection of nonempty sets of basic 

classification concepts and { } ViiTT ∈=  be an ALCI-F  knowledge base. T has a 

model { } { }( ) ,, , EjiijVii r ∈∈= II  with ,, ii
i ⋅Δ=I  ,Vi ∈  if and only if it has a 

probabilistic model Pr on .BI  

Proof. Suppose that T has a model { } { }( ) ., , EjiijVii r ∈∈= II  By Proposition 

1, T has a world model { } .ViiII ∈=  Define ( ) 1Pr =I  and ( ) ,0Pr =′I  for all 

,BI∈′I  with .II ≠′  Then Pr is a probabilistic model of T on .BI  Suppose, 

conversely, that T has a probabilistic model Pr on .BI  Then, there exists ,BI∈I  

such that ( ) .0Pr >I  Since ,Pr TB  this implies that .TI B  Hence, again by 

Proposition 1, T has a model { } { }( ) ., , EjiijVii r ∈∈= II  

z-partitions and consistency. A probabilistic interpretation Pr verifies an                    
i-conditional constraint ( ) [ ]ul,φ|ψ  if ( ) 1Pr =φi  and ( ) [ ]uli ,Pr ∈ψ  (see also [33, 

32]). On the other hand, Pr falsifies ( ) [ ]ul,φ|ψ  if ( ) 1Pr =φi  and ( ) [ ].,Pr uli φ|ψH  

A collection { } Vii ∈= F�F  of sets of conditional constraints tolerates an                             

i-conditional constraint ( ) [ ]ul,φ|ψ  under an ALCI-F  knowledge base { } ,ViiTT ∈=  

or ( ) [ ]ul,φ|ψ  is tolerated under T by ,F  if F∪T  has a model that verifies 

( ) [ ]., ulφ|ψ  

Example 4. We illustrate, using our previous examples, ways in which 
tolerance of an i-conditional constraint by a collection of sets of conditional 
constraints may fail. We consider again the ALCI-F  TBox { }21, TTT =  of Example 

1 and we set 

( ) ( ){ },1][1,  1],[0.8,1 Insured|HasDentalInsured|edFullyInsur=F�  

( )[ ] ( )[ ]{ }1,1,1,12 Faculty | edFullyInsurFaculty | chDoesResear=F�  

and { }., 21 F�F�F =  Assume, for the sake of obtaining a contradiction that =1F          

1(¬ HasDental|PartiallyInsured) [1, 1] is tolerated under T by .F� Let Pr 

be a probabilistic model of F∪T  that verifies .1F  Then 1Pr (PartiallyInsured) 
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= 1 and 1Pr ( 1¬ HasDental) = 1. But, since 

PartiallyInsured � Insured ,1T∈  

1Pr (PartiallyInsured) = 1 implies that 1Pr (Insured) = 1, whence, since 

(HasDental|Insured) [ ] 11,1 F�∈  and Pr is a model of ,F� 1Pr (HasDental) = 

1. This clearly contradicts 1Pr ( 1¬ HasDental) = 1. Therefore, 1F  is not tolerated 

under T by .F� 

Similarly, it is easily seen that =2F  ( 2¬ DoesResearch|Lecturer) [1, 1] 

is not tolerated under T by F  because, if one assumes that a person is a lecturer, 
then they are clearly faculty, who are assumed, in general, to perform research and 
this would contradict the information that lecturers, in general, do not do research. If, 
on the other hand, our sets of conditional constraints included the more specific 
information represented by 1F  and 2F  as opposed to the facts that insured people, in 

general, have dental insurance and faculty, in general, do research, respectively, then 
the more general information would be tolerated by the more specific pieces of 
information. ~ 

Concerning tolerance, it is not difficult to see that the following proposition, 
relating tolerance with the existence of a probabilistic model, which is due 
essentially to Lukasiewicz [34], holds: 

Proposition 3. An i-conditional constraint ( ) [ ]ul,φ|ψ  is tolerated under an 

ALCI-F  knowledge base { } ViiTT ∈=  by a collection { } Vii ∈= F�F  of sets of 

conditional constraints iff there exists a probabilistic model Pr of ,F ′∪T  where 
{ } ,Vii ∈′=′ FF  with 

( ) [ ] ( ) [ ]{ }

⎩
⎨
⎧ =|φφ|ψ

=′
.,

,,1,1,,
otherwise

ijiful

j

ii
j F

FF�
F

∪
 

Proof. Suppose, first, that ( ) [ ]ul,φ|ψ  is tolerated under T by .F  Thus, by 
definition, F∪T  has a model Pr verifying ( ) [ ]., ulφ|ψ  Hence ( ) 1Pr =φi  and 

( ) [ ].,Pr uli ∈ψ  But then ( ) ( )
( ) ( ) 1Pr

Pr
Pr

Pr =φ=
φ

=|φ i
ii

iii
ii F

F
F


 and also ( ) =φ|ψiPr   

( )
( ) ( ) ( ) [ ].,PrPr

Pr
Pr

uliii
i

ii ∈ψ=ψφ=
φ
ψφ




 Therefore, Pr is a probabilistic model 

of .F ′∪T  For the converse we follow the reverse steps. 
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A ALCI-PF  knowledge base { } ,PTPT Vii ∈=  with ,,PT iii PT=  is 

consistent if 

 (i) { } ViiTT ∈=  is satisfiable; 

(ii) There exist ,0≥ik  ,Vi ∈  and ordered partitions ( )i
k

i
i

PP ...,,0  of ,iP  such 

that each ,i
jP  ,...,,0 ikj =  is the set of all ( )i

j
i

i PPPF 10\ −∈ ∪"∪  that are 

tolerated under T by ( ),\ 10 −jPPP ∪"∪  where 

( ) { ( )} .\\ 1010 Vi
i
j

i
ij PPPPPP ∈−− = ∪"∪∪"∪  

(In case, for some ,Vi ∈  ,ikj >  we set .)∅=i
jP  

The ordered partitions ( )i
k

i
i

PP ...,,0  are unique if they exist. Taking after [34], 

the term z-partition of { } Vii ∈= PTPT  will be used to refer to these partitions. 

Intuitively speaking, the z-partition enables one to resolve contextual inconsistencies 
by selecting more specific conditional constraints over less specific ones, as was 
demonstrated in Example 4. 

Example 5. Consider again the TBox { }21, TTT =  of Example 1 and the PBox 

{ }21, PPP =  discussed in Example 2. It is not difficult to see that T is satisfiable 

and that there exists a unique z-partition ( ),, 1
1

1
01 PPP = ( ),, 2

1
2

02 PPP =  given by 

( ) [ ]{ },:, 1
1
0 Insured=φ∈φ|ψ= PulP  

( ) [ ]{ }1,11
1

1 nsuredPartiallyIHasDental|= ¬P  

and 

( ) [ ]{ },1,1\ 22
2

0 LecturerchDoesResear |= ¬PP  

( ) [ ]{ }.1,12
2

1 LecturerchDoesResear |= ¬P  

Thus, the knowledge base { }21 PT,PTPT =  is consistent. Note that, in the 

construction of the z-partition of ,2P  the 2-conditional constraint 

( ) [ ]1,7.0LectureredFullyInsur |  

is in the first block; it is tolerated under T by P, even though 2P  contains the “more 

general” piece of information (FullyInsured|Faculty)[1, 1]. ~ 
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Lexicographic entailment. Let { } Viii PT ∈= ,PT  be a consistent ALCI-PF  

knowledge base, with z-partition {( ) }.:...,,0 ViPP i
k

i
i

∈  We follow [34] in first 

defining a lexicographic preference relation on probabilistic interpretations and, 
then, a lexicographic entailment for sets of conditional constraints under PTBoxes. 

Given two probabilistic interpretations Pr and ,rP ′  Pr is said to be 

lexicographically preferable or lex-preferable to rP ′  if, for all ,Vi ∈  there exists 

{ },...,,1,0 ii kj =  such that 

{ } { }FPFFPF i
i
ji

i
j ii

BB rP:Pr: ′∈>∈  and 

{ } { } ,rP:Pr: FPFFPF i
i

li
i

l BB ′∈=∈  for all .ii klj ≤<  

The lex-preference relation implements the idea of preferring more specific sets 
of conditional constraints to less specific ones. This is used to resolve contextual 
inconsistencies when drawing conclusions. 

A probabilistic interpretation Pr, satisfying an F-ALCI  knowledge base 
{ } ViiTT ∈=  and a collection { } Vii ∈= F�F  of sets of conditional constraints is a 

lexicographically minimal or lex-minimal model of F∪T  if no model of F∪T  
is lex-preferable to Pr. 

An i-conditional constraint ( ) [ ]ul,φ|ψ  is a lexicographic-consequence or lex-

consequence of a collection of sets of conditional constraints { } Vii ∈= F�F  under a 

PTBox PT, written ( ) [ ]uli ,lex φ|ψCF  under PT if ( ) [ ],,Pr uli ∈ψ  for every lex-

minimal model Pr of ,F ′∪T  where { } ,Vii ∈′=′ FF  with 

 
( )[ ]{ }

⎪⎩

⎪
⎨
⎧ =|φ

=′
otherwise.,

,if,1,1

j

ii
j

ij

F

FF�
F

∪
 (2) 

An i-conditional constraint ( ) [ ]ul,φ|ψ  is a tight lexicographic-consequence 

or tight lex-consequence of { } Vii ∈= F�F  under PT, written ( ) [ ]uli ,tlex φ|ψCF  

under PT if l and u are, respectively, the infimum and supremum of ( )ψiPr  subject 

to all lex-minimal models Pr of ,F ′∪T  with F ′  as in Equation (2). 

Note that [ ] [ ]0,1, =ul  when no such models exist. Moreover, we stipulate that 
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( )[ ]uli ,lex φ|ψCF  and ( )[ ]1,0tlex φ|ψiCF  under PT, for all F  and all ( )[ ]ul,φ|ψ  

in case PT is an inconsistent PTBox. 

Example 6. Consider again the knowledge base PT with TBox introduced in 
Example 1 and PBox introduced in Example 2. The analysis performed in Examples 
4 and 5, together with the definition of lex-preference and lex-consequence, show 
that, for any three probabilistic interpretations Pr, rP ′  and ,rP ′′  such that 

(a) ,Pr PB  

(b) ( )[ ] ( )[ ]{ },1,1,1,1\rP FacultychDoesResearInsuredHasDental ||′ PB  

(c) ( )[ ]{ ,1,1\rP 1 nsuredPartiallyI|HasDental¬PB′′  

( )[ ]}.1,12 Lecturer|chDoesResear¬  

Pr is lex-preferable to both rP ′  and rP ′′  and rP ′  is lex-preferable to .rP ′′  Thus, 
according to lex-preference, any probabilistic interpretation Pr, as above, will be 
preferred to ,rP ′  resulting in the more specific 1-conditional constraint 

( )[ ] 1
11 1,1 P∈| nsuredPartiallyIHasDental¬  

to be preferred in reasoning over the more general 1-conditional constraint 

(HasDental|Insured) [ ] .1,1 1
0P∈  Similar comments apply in comparing the 

more specific 2-conditional constraint 

( 2¬ DoesResearch|Lecturer) [ ] 2
11,1 P∈  

with the more general 2-conditional constraint (DoesResearch|Faculty) 

[ ] .1,1 2
0P∈  These choices will be used when deriving lex-consequences to resolve 

conflicts involving default information. ~ 

An i-conditional constraint F is a lex-consequence of a PTBox PT, denoted 

,PT lex FiC  if Fi
lexC∅  under PT. F is a tight lex-consequence of PT, denoted 

,PT tlex FiC  if Fi
tlexC∅  under PT. 

An analog of Theorem 4.18 of [34] provides a characterization of lexicographic 
entailment for a set of conditional constraints under a PTBox in terms of 
satisfiability and logical entailment of conditional constraints under an ALCI-F  

knowledge base. We introduce some additional definitions to prepare the 
groundwork for formulating this analog. 
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Given an ALCI-F  knowledge base { } ViiTT ∈=  and a V-indexed collection 

{ } Vii ∈= F�F  of sets of conditional constraints, F∪T  is satisfiable if there exists 

a model of .F∪T  An i-conditional constraint ( ) [ ]ul,φ|ψ  is a logical consequence 

of ,F∪T  denoted ( ) [ ],, ulT i φ|ψBF∪  if each model of F∪T  is also a model 

of ( )[ ]., ulφ|ψ  ( )[ ]ul,φ|ψ  is a tight logical consequence of ,F∪T  denoted 

( ) [ ],, ulT t
i φ|ψBF∪  if l and u are, respectively, the infimum and supremum of 

( )φ|ψiPr  subject to all models Pr of ,F∪T  with ( ) .0Pr >φi  

Let { } ViiPP ∈=  be the PBox of a PF-ALCI  knowledge base { } .PTPT Vii ∈=  

An indexed subfamily { } ViiQQ ∈=  with ,ii PQ ⊆  ,Vi ∈  denoted ,PQ ≤  is 

lexicographically-preferable or lex-preferable to { } ,ViiQQ ∈′=′  with ,PQ ≤′  if, 

for all ,Vi ∈  there exists { },...,,1,0 ii kj ∈  such that 

– i
ji

i
ji ii

PQPQ ∩∩ ′>  and 

– ,i
li

i
li PQPQ ∩∩ ′=  for all ,ii klj ≤<  

where {( ) }ViPP i
k

i
i

∈:...,,0  is the z-partition of PT. Q is lexicographically-

minimal or lex-minimal in { } ,Ik
kSS ∈= { } ,Vi

k
i

k SS ∈= ,PS k ≤  if SQ ∈  and 

no SQ ∈′  is lex-preferable to Q. 

Theorem 1. Let { } Viii PT ∈= ,PT  be a consistent PTBox, { } Vii ∈= F�F  be a 

family of sets of conditional constraints and φ, ψ two i-classification concepts. 
Consider the collection Q  of all lex-minimal elements in the set of all ,PQ ≤  such 

that F ′∪∪ QT  is satisfiable, where { } Vii ∈′=′ FF  is given by Equation (2). 

1. If ,∅=Q  then ( ) [ ]0,1tlex φ|ψiCF  under PT. 

2. If ,∅≠Q  then ( ) [ ]uli ,tlex φ|ψCF  under PT, where ll ′= min  and 

,max uu ′=  subject to ( )[ ]ulQT i
t
i ′′|ψ′ ,FF ∪∪  and .Q∈Q  

Proof. The proof is very similar to the proof of Theorem 4.18 of [34] (see page 
878). 
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1. If ,∅=Q  then F ′∪∪ QT  is not satisfiable, for any .PQ ≤  Thus, 

F ′∪T  is not satisfiable. This shows that ( ) [ ]0,1tlex φ|ψiCF  under PT. 

2. Let .∅≠Q  Then Pr is a lex-minimal model of F ′∪T  iff (i) Pr is a model 
of F ′∪T  and (ii) { }{ } Viiiii FPF ∈∈ BPr:  is a lex minimal element in the set of 

all ,PQ ≤  such that F ′∪∪ QT  is satisfiable. This shows that Pr is a model of 

,F ′∪∪ QT  for some .Q∈Q  

4. A Modified ALCI-P  

In the remainder of the paper, we formulate some inference problems 
concerning ALCI-PF  knowledge bases. Our goal is to reduce these problems to 

corresponding problems for non-federated probabilistic knowledge bases and, then, 
use already known procedures from [34] (or slightly modified versions) in order to 
solve them. Apart from the obvious algorithmic advantage, we also get the side-
benefit of being able to pinpoint the algorithmic complexity of the federated 
problems, based on the complexities of the unimodule versions. The unfortunate fact 
is that the probabilistic description logic that results by restricting the logic P-

( ),DSHIF  as presented in [34], by adopting as its underlying description logic 

ALCI  and by disregarding its assertional part, does not serve exactly our goal. 
Intuitively, this happens because the world models in the semantics of P- ( )DSHIF  

are based in a single set of basic classification concepts, whereas, our reduction will 
necessitate the existence of multiple sets of basic classification concepts. For this 
reason, in this section, we present a single module probabilistic language ALCI-P  

by slightly generalizing the semantics of the probabilistic terminological and 
terminological default knowledge given in [34]. This modified version will be 
appropriate for accommodating the sound and complete reductions of the inference 
problems for .-PFALCI  Furthermore, we introduce the main problems that we will 

consider in .-PALCI  They are the same as those of Lukasiewicz [34], but refer to 

the modified semantics. Finally, we argue that these problems may be solved with 
algorithms virtually identical to the ones provided by Lukasiewicz and, as a result, 
maintain the same computational complexities. 

4.1. Syntax and semantics 

Since in the federated language ALCI-PF  we deal only with PTBoxes, we 
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restrict our attention in this section to ALCI-P  knowledge bases with only PTBoxes 

of the form .,PT PT=  We assume that among the ALCI  concept names, there 

are V  names ,iF  ,Vi ∈  whose extensions, intuitively, will represent the parts of 

the local domains of a ALCI-PF  interpretation corresponding to the various 

modules, when combined into a single large domain. The TBox T is an ordinary 
ALCI  TBox and the semantics concerning the ALCI-P  roles, concepts and TBox 

axioms is exactly the ordinary semantics of ,ALCI  with the only exception that an 

ALCI  model III ⋅Δ= ,  must satisfy ,∅≠IFi  for all .Vi ∈  To construct the 

PBox, fix a collection { } Vii ∈C  of nonempty sets of basic classification concepts or 

basic c-concepts, which are concepts in ,ALCI  such that ,TC i ∈F�  for every 

., ViC i ∈∈ C  These will be the sets of relevant concepts for defining probabilistic 

relationships. This is the main deviation from the languages in [34], which have one 
set of basic classification concepts. We adopt this modification, as explained 
previously, because we would like to use ALCI-P  to simulate ,-PFALCI  which 

employs multiple sets of basic classification concepts each of which is used to 
classify probabilistic relationships between concepts appearing in a corresponding 
module of a federated ontology. Accordingly, we also obtain V  sets of 

classification concepts or c-concepts. These are defined recursively by taking 
negations, conjunctions and disjunctions starting from the corresponding set of basic 
c-concepts. We also construct conditional constraints of V  types, each using 

corresponding c-concepts. Thus, a conditional constraint of type i is one of the 
form ( ) [ ],, ulφ|ψ  where φ, ψ are c-concepts from the i-th set and l, [ ].1,0∈u  We 

denote by P a finite set of conditional constraints (possibly of many types), called a 
PBox. A PTBox PT ,PT =  consists of an ALCI  TBox T together with a PBox 

P. For our purposes a probabilistic knowledge base and a PTBox coincide, since 
we do not consider individuals and, as a result we do not consider either classical 
ABoxes or PABoxes in the sense of [34]. 

To accommodate the multiplicity of the sets of basic classification concepts, the 
notion of a world in the semantics must be modified as compared to the standard one 
of [34]. Namely, a world is a collection of sets { } ,ViiII ∈=  with ,iiI C⊆  such 

that the concept CC iii ICIC ¬\C∈∈   is satisfiable, for all .Vi ∈  The set of all 

worlds is denoted by .CI  A world I is said to satisfy an ALCI  TBox T or to be a 
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model of T, written ,TI B  if there exists a model III ⋅Δ= ,  of T, such that 

∩ ∩∩
i iiIC IC∈ ∈

∅≠Δ
\

,\
C

III CC  for all .Vi ∈  A world { } ViiII ∈=  satisfies 

a basic classification concept iC∈φ  if .iI∈φ  This notion can be extended in the 

usual way over classification concepts of type i. 

It can be shown, now, using the modified definitions that were introduced above 

that an ALCI  TBox T has a model III ⋅Δ= ,  iff it has a world model 

{ } .ViiII ∈=  

A probabilistic interpretation Pr is a probability function on ,CI  as in the 

ordinary case [34]. It satisfies an ALCI  TBox T or is a model of T if ,TI B  for all 

I, such that ( ) .0Pr >I  Moreover, for a classification concept φ of type i, we have 

( ) ( ){ }∑ φ=φ BII :PrPr  and, for two classification concepts φ, ψ of type i, such that 

( ) ,0Pr >φ  we define ( ) ( )
( ) .

Pr
PrPr

φ
ψφ

=φ|ψ
  Then Pr satisfies or is a model of a 

conditional constraint ( ) [ ]ul,φ|ψ  of type i, written ( ) [ ],,Pr ulφ|ψB  if ( ) 0Pr =φ  

or ( ) [ ].,Pr ul∈φ|ψ  This notion extends to satisfiability of a set of conditional 

constraints, possibly consisting of constraints of more than one types. 

A probabilistic interpretation is said to verify a conditional constraint 
( ) [ ]ul,φ|ψ  if ( ) 1Pr =φ  and ( ) [ ].,Pr ul∈ψ  A set F  of conditional constraints 

(possibly of various types) is said to tolerate a conditional constraint ( ) [ ]ul,φ|ψ  

under an ALCI  TBox T if F∪T  has a model that verifies ( ) [ ]., ulφ|ψ  These 

concepts help in defining the notion of consistency for a P-ALCI  PTBox, which is 
a slightly modified version of the one given in Section 4.2.3 of [34]. A PT-Box 

PT ,PT =  is consistent if T is satisfiable (i.e., has a model; recall that the ,iF  

,Vi ∈  must have nonempty extensions in the model) and there exists an ordered 

partition ( )kPP ...,,0  of P, such that each iP  is the set of all j
i
j PPF 1

0\ −
=∈ ∪  that 

are tolerated by j
i
j PP 1

0\ −
=∪  under T. The ordered partition ( )kPP ...,,0  is unique, 

if it exists, and, following [34], we call it the z-partition of PT and define 

{ },typeofis: iFPFP j
i
j ∈=  for all .,...,,1 Vikj ∈=  
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To define lexicographic entailment, we fix a consistent ALCI-P  PTBox 

.,PT PT=  Thus, there exists a z-partition ( )kPP ...,,0  of PT. A probabilistic 

interpretation Pr is said to be lexicographically preferable or lex-preferable to a 
probabilistic interpretation rP ′  if, for every ,Vi ∈  there exists ,ij  ,0 kji ≤≤  

such that { } { }FPFFPF i
j

i
j ii

BB rP:Pr: ′∈>∈  and { } =∈ FPF i
l BPr:  

{ } ,rP: FPF i
l B′∈  for all .klji ≤<  A probabilistic interpretation Pr, that 

satisfies T and a set F  of conditional constraints (of possibly various types) is a 
lexicographically minimal or lex-minimal model of F∪T  if no model of F∪T  

is lex-preferable to Pr. A conditional constraint ( ) [ ]ul,φ|ψ  of type i is a 

lexicographic consequence or lex-consequence of a set F  of conditional 

constraints under a PTBox PT, denoted ( ) [ ]ul,lex φ|ψCF  under PT, if 

( ) [ ]ul,Pr ∈ψ  for every lex-minimal model Pr of ( ) [ ]{ }.1,1FF |φ∪∪T  The 

conditional constraint ( ) [ ]ul,φ|ψ  of type i is a tight lexicographic consequence or 

tight lex-consequence of a set F  of conditional constraints under a PTBox PT, 

denoted ( ) [ ]ul,lex
tight φ|ψCF  under PT, if l and u are, respectively, the infimum 

and supremum of ( )ψPr  subject to all lex-minimal models Pr of ∪∪ FT  

( ) [ ]{ }.1,1F|φ  For inconsistent PTBoxes PT, we define ( ) [ ]ul,lex φ|ψCF  and 

( ) [ ]0,1lex
tight φ|ψCF  under PT, for all sets of conditional constraints F  and all 

conditional constraints ( ) [ ]., ulφ|ψ  Finally, a conditional constraint F is a lex-

consequence of a PTBox PT, denoted ,PT lex FC  if FlexC∅  under PT and F is 

a tight lex-consequence of PT, denoted ,PT lex
tight FC  if Flex

tightC∅  under PT. 

Along the lines of the characterization of lexicographic entailment for a set of 
conditional constraints under a PTBox in terms of satisfiability and logical 
entailment for a set of conditional constraints under a classical knowledge base that 
was provided in [34] (Theorem 4.18), one may give a characterization for the 
modified language ,-PALCI  presented in this section. Given an ALCI  TBox T and 

a set of conditional constraints F  of possibly various types, F∪T  is satisfiable if 

a model of F∪T  exists. Again, such a model in the present context is assumed to 

assign nonempty extensions to all ., Vii ∈F  A conditional constraint ( ) [ ]ul,φ|ψ  
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of type i is a logical consequence of ,F∪T  denoted ( ) [ ],, ulT φ|ψBF∪  if           

each model of F∪T  is also a model of ( ) [ ]., ulφ|ψ  The conditional              

constraint ( ) [ ]ul,φ|ψ  is a tight logical consequence of ,F∪T  denoted 

( ) [ ],,tight ulT φ|ψBF∪  if l and u are, respectively, the infimum and the 

supremum of ( )φ|ψPr  subject to all models Pr of ,F∪T  with ( ) .0Pr >φ  Let 

PT ,PT =  be a consistent ALCI-P  PTBox, where ( )kPP ...,,0  denotes the                 

z-partition of PT and ,i
jP  ,Vi ∈  kj ...,,1=  are as before. A subset PQ ⊆  is 

lexicographically preferable or lex-preferable to PQ ⊆′  if, for every ,Vi ∈  

there exists a { },...,,0 kji ∈  such that i
j

i
j ii

PQPQ ∩∩ ′>  and =i
lPQ ∩  

,i
lPQ ∩′  for all .klji ≤<  Q is lexicographically minimal or lex-minimal in 

( )PPS ⊆  if S∈Q  and no S∈′Q  is lex-preferable to Q. Analogously to 

Theorem 4.18 of [34], we obtain for our modified language ALCI-P  that for a 

consistent PTBox ,,PT PT=  a set F  of conditional constraints of possibly 

various types and two c-concepts φ, ψ of type i, if Q  is the set of all lex-minimal 

elements in the set of all ,PQ ⊆  such that ( ) [ ]{ }1,1FF |φ∪∪∪ QT  is 

satisfiable, then 

– if ( )[ ]0,1, lex
tight φ|ψ∅= CFQ  under PT; 

– if ,∅≠Q  then ( ) [ ]ul,lex
tight φ|ψCF  under PT, where ll ′= min  and =u  

,max u′  respectively, subject to ( )[ ]{ } ( )[ ]ulQT ′′|ψ|φ ,1,1 tight FBFF ∪∪∪  and 

.Q∈Q  

4.2. ALCI-P  problems of interest 

Concerning the modified language ,-PALCI  whose syntax and semantics we 

presented in the previous subsection, we would like to revisit the following two 
computational problems, assuming that all reals in [0, 1] considered are taken to be 
rational and denoting the set of rational numbers by :Q  

PTBox Consistency (PTCON): Decide whether a given PTBox ,,PT PT=  is 

consistent. 

Tight Lexicographic Entailment (TLEXENT): Given a PTBox ,,PT PT=  a 
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finite set F  of conditional constraints (of possibly various types) and two c-concepts 

φ and ψ of type i, compute l, [ ] ,1,0 Q∩∈u  such that ( ) [ ]ul,lex
tight φ|ψCF  under 

PT. 

Lukasiewicz [34] shows that the problems PTCon and TLEXENT for his           
version of the language ALCI-P  (in fact for his languages ( )DSHIF-P  and 

( ),-P DSHOIN  based on the (non-probabilistic) description logics ( )DSHIF  and 

( ),DSHOIN  respectively, which are significantly more expressive than )ALCI  

can be reduced to the following two problems: 

Satisfiability (SAT): Given an ALCI  knowledge base T and a finite set F  of 
conditional constraints, decide whether F∪T  is satisfiable. 

Tight Logical Entailment (TLOGENT): Given an ALCI  knowledge base T, a 
finite set F  of conditional constraints and a c-concept ψ, compute [ ] ,1,0, Q∩∈ul  

such that ( ) [ ].,tight ulT FBF |ψ∪  

In fact, Lukasiewicz presents in Subsection 5.2 of [34] algorithms that reduce 
both PTCON and TLEXENT for his description logics ( )DSHIF-P  and 

( )DSHOIN-P  to algorithms for SAT and TLOGENT for ( )DSHIF-P  and 

( ),-P DSHOIN  respectively. Some of his ideas are borrowed from [33] and [21]. 

His algorithms apply also to the modified language ,-PALCI  that we presented in 

the previous subsection, that contains neither ABoxes nor PABoxes. We emphasize, 
however, that satisfiability for the modified ALCI-P  language refers to the 

existence of a model that satisfies the additional stipulation concerning satisfiability 
of all ,iF  ,Vi ∈  and the modified semantics. The following result allows us to 

estimate the number of instances of SAT and TLOGENT that one has to solve in order 
to obtain solutions of given instances of PTCON and TLEXENT. 

Theorem 2 (Theorem 5.4 (a) and (c) of [34]). 

(a) An algorithm that solves PTCON uses ( )2PO  instances of SAT. 

(b) An algorithm that solves TLEXENT uses ( )PO 2  instances of SAT and 

TLOGENT. 

SAT and TLOGENT, on the other hand, can be handled by reductions to deciding 
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TBOX satisfiability in ,ALCI  deciding the solvability of systems of linear 
constraints and computing the optimal value of linear programs exactly as is the case 
for SAT and TLOGENT for ( )DSHIF-P  and ( )DSHOIN-P  in [34]. 

As far as SAT is concerned, it is reducible to deciding TBOX satisfiability in 
ALCI  and whether a system of linear constraints in solvable. First, the set of 
possible worlds { }TIIR BI C :∈=  is computed, using satisfiability CI  times to 

decide whether there exists a model I  of T, such that ∩ ∩∩
i iiIC IC

CC
∈ ∈

Δ
\

\
C

III  

,∅≠  for all .Vi ∈  Then the following result, an analog of Theorem 5.5 of [34] for 
our modified language, applies: 

Theorem 3. Let T be an ALCI  TBox and F  be a finite set of conditional 
constraints of possibly various types. Let { }.: TIIR BI C∈=  Then F∪T  is 

satisfiable iff the system of linear constraints 

( ) ( )[ ]

( ) ( )[ ]

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

∈≥=

<∈φ|ψ≥−+
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∑
∑ ∑
∑ ∑

∈

φψ∈ φψ∈

φψ∈ φψ∈

Rr rr

rRr rRr rr

rRr rRr rr

Rryy

uulyuuy

lulylly
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,1,,,01

,0,,,01

, ,

, ,

F

F

B B

B B

� �

� �

¬

¬

 

 (3) 
over the variables ,ry  ,Rr ∈  is solvable. 

As far as TLOGENT is concerned, it is reducible to deciding TBOX satisfiability 
in ALCI  and computing the optimal values of two linear programs. The following 
result, an analog of Theorem 5.7 of [34], details the situation. 

Theorem 4. Let T be an ALCI  TBox, F  be a finite set of conditional 
constraints of possibly various types and ψ be a c-concept of type i. Assume that 

F∪T  is satisfiable and let { }.: TIIR BI C∈=  Then l and u, such that 

( ) [ ]ulT ,tight FBF |ψ∪  are given, respectively, by the optimal values of the 

following linear programs over the variables ,ry  :Rr ∈  

minimize ∑ ψ∈ BrRr ry
,

 subject to the linear constraints (3) 

maximize ∑ ψ∈ BrRr ry
,

 subject to the linear constraints (3). 
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It should be fairly obvious from the work accomplished in [34] (see Theorems 
6.3 and 6.4) that the following result applies concerning the complexity of the 
problems SAT, PTCON, on the one hand, and TLOGENT, TLEXENT, on the other: 

Theorem 5. (a) SAT and PTCON are in EXP when F∪T  and PT, respectively, 

are defined in ;-ALCIP  

(b) TLOGENT and TLEXENT are in FEXP, when F∪T  and ,PT F∪  

respectively, are defined in .-ALCIP  

5. Reduction from Federated to Unimodule Problems 

We start this section by introducing the computational problems that are of 
interest when reasoning with a ALCI-PF  knowledge base. We assume, once more 

that all reals in [0, 1] considered are rational. Following [34], we would like to study 
the following decision and computation problems in the framework of ALCI-PF  

knowledge bases: 

Federated PTBOX Consistency (FPTCON): Decide whether a given PT-BOX 
{ } ,PTPT Vii ∈=  with ,,PT iii PT=  is consistent. 

Federated Tight Lexicographic Entailment (FTLEXENT): Given a PT-BOX 
{ } ,PTPT Vii ∈=  with ,,PT iii PT=  a finite collection { } Vii ∈= F�F  of sets of 

conditional constraints and two i-classification concepts φ and ψ, compute l, 

[ ] ,1,0 Q∩∈u  such that ( ) [ ]uli ,tlex φ|ψCF  under PT. 

Our strategy for solving these two problems is to reduce them to the 
corresponding unimodule problems PTCON and TLEXENT for the language 

,-PALCI  that were introduced in the previous section. Since algorithms for solving 

these problems can be easily extracted as modifications of the algorithms for the 
corresponding problems for the languages ( )DSHIF-P  and ( ),-P DSHOIN  

presented in [34], our reduction will provide a solution for the federated case. 
Moreover, based on the complexities of the unimodule problems, we can provide 
estimates for the corresponding complexities of the federated versions. 

More precisely, we provide a reduction of a given instance of the federated 
PTBOX consistency or the federated tight lexicographic entailment problem to an 
instance of the corresponding unimodule problem. Then, we apply the method of 



PROBABILISTIC FEDERATED ALCI  157 

Lukasiewicz, using the algorithms involving SAT and TLOGENT, to obtain a solution 
for the original problem. Our task is to show how, given an instance α of either           

the FPTCON or the FTLEXENT problem, we can obtain an instance sα  of the 
corresponding problem for ,-PALCI  such that 

– for FPTCON, α is consistent if and only if sα  is consistent and 

– for FTLEXENT, l, [ ] Q∩1,0∈u  are solutions of α if and only if l, u are 

solutions of .sα  

This will prove the decidability of FPTCON and FTLEXENT and will allow us to 
draw conclusions on their complexities based on the complexities of the 
corresponding problems for .-PALCI  

Let { } Vii ∈= PTPT  be a ALCI-PF  PTBOX, with .,PT iii PT=  Taking after a 

similar construction, presented in [47], we construct a unimodule PTBOX =sPT  
ss PT ,  as follows: 

The signature of sPT  is the union of the local signatures of the modules 
together with a global top ,F  a global bottom ,⊥  local top concepts ,iF  for all 

,Vi ∈  and, finally, a collection of new role names { }( ) ,, EjiijR ∈  whose extensions 

in ALCI-P  interpretations will be used, roughly speaking, to simulate the image-

domain relations of the federated interpretations. Formally, 

( ) ( ) { } { } { ( ) }∪ ∪∪∪∪
i

ijiii
s EjiRni .,:1,,PTSig ∈≤≤⊥= FFRC  

To construct the unimodule TBOX sT  and the unimodule PBOX ,sP  given the 

federated PTBOX PT, we first introduce a mapping ,#i  which translates i-concept 

expressions C of the federated instance to concept expressions ( )Ci#  of the 

unimodule counterpart, and serves to maintain the compatibility of the concept 

domains. It is defined by induction on the structure of iC Ĉ∈  (for ijRji ,=  is 

assumed to be interpreted as the identity on iΔ  in any interpretation and, as a result, 
may be omitted from the following translation): 

– ( ) ,# CCi =  if ;iC C∈  
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– ( ) ( ),.## CRC jjii
−∃=  if ;ˆ

ijC CC ∩∈  

– ( ) ( ( ) );#.# jjjiji DRD F¬¬ −∃=  

– ( ) ( ( ) ( )),##.# EDRED jjjiji 		 −∃=  where =	  or ;=	  

– ( ) ( ( ( ( )))),.#....# DRRRRDR jkjkjjiji ∃∃∃∃=∃ −−  for ;−∈ kkR RR ∪  

– ( ) ( ( ( ( )))),.#....# DRRRRDR jkjkjjiji ∀∀∀∃=∀ −−  for .−∈ kkR RR ∪  

Having defined ,#i  we show how various axioms derived from the structure of 

PT are added to :sT  

– For each ii CC FC �,∈  is added to .sT  

– For each ,iR R∈  iF  is stipulated to be the domain and range of R, i.e., 

iR FF .−∀�  and iRFF .∀�  are added to .sT  

– For each new role name ,ijR  iF  is stipulated to be its domain and jF  to be 

its range, i.e., iijR FF .−∀�  and jijR FF .∀�  are added to .sT  

– For each ,iTDC ∈�  ( ) ( )DC ii ## �  is added to .sT  

Finally, various axioms derived from the conditional constraints in PT, using the 

transformations ,#i ,Vi ∈  are added to :sP  

– For every basic i-classification concept φ, the concept expression ( )φi#  is 

added as a basic classification concept of type i of .PT s  Moreover, iF  is declared 

to be a basic classification concept of type i of .PTs  This defines the collection 

{ } Vi
s
i

s
∈= BB  of sets s

iB  of basic classification concepts of type i of .PT s  

– For each i-conditional constraint ( ) [ ]ul,φ|ψ  in ,iP  the conditional constraint 

( ( ) ( )) [ ]ulii ,## φ|ψ  is added to .sP  

Applying these definitions, we may obtain an instance of PTCON, given an 
instance of FPTCON. On the other hand, considering instances of the problem 



PROBABILISTIC FEDERATED ALCI  159 

FTLEXENT, the collection { } Vii ∈= F�F  of sets of conditional constraints is 

translated to the collection sF  by including, for every i-conditional constraint 

( ) [ ]ul,φ|ψ  in ,iF� the conditional constraint ( ( ) ( )) [ ]ulii ,## φ|ψ  of type i in .sF  

We also translate the additional i-conditional constraint ( ) [ ],, ulφ|ψ  that is given in 

the instance of the problem, to the conditional constraint ( ( ) ( )) [ ]ulii ,## φ|ψ  of 

type i. 

Example 7. In this example, we illustrate the reduction defined in this section 
by transforming the PTBOX ,PT,PTPT 21=  defined in Examples 1 and 2 using 

the language ,-PFALCI  to the corresponding PTBOX sss PT ,PT =  over the 

language .-PALCI  

The general axioms included in sT  are: 

Insured 1F�  Faculty 2F�  

FullyInsured 1F�  Lecturer 2F�  

PartiallyInsured 1F�  MaleLecturer 2F�  

 FemaleLecturer 2F�  

112.FF −∀R�  212.FF R∀�  

The axioms in sT  that are induced by the axioms in 1T  and 2T  are, respectively, 

FullyInsured �  Insured 

PartiallyInsured �  Insured 

PartiallyInsured � ¬FullyInsured 1F�  

MaleLecturer � Lecturer 

FemaleLecturer = Lecturer  (¬MaleLecturer 2F ) 

Lecturer � Faculty 

Faculty � −∃ 12R .Insured 

Finally, the axioms in sP  that are induced by the axioms in 1P  and 2P  are, 

respectively, 
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(FullyInsured|Insured)[0.8, 1] 

(HasDental|Insured)[1, 1] 

(¬HasDental 1F | PartiallyInsured)[1, 1] 

 

(DoesResearch|Faculty)[1, 1] 

(¬DoesResearch 2F |Lecturer)[1, 1] 

( −∃ 12R .FullyInsured|Faculty)[1, 1]  

( −∃ 12R .FullyInsured|Lecturer) [0.7, 1] ~ 

In the next section we show that the reduction ℜ  is sound and complete for 
both FPTCON and FTLEXENT. For FPTCON, this means that PT is consistent if and 

only if sPT  is consistent. On the other hand, for FTLEXENT, it means that l, ∈u  

[ ] ,1,0 Q∩  are such that ( ) [ ]uli ,tlex φ|ψCF  under PT if and only if they are such 

that ( ( ) ( )) [ ]ulii
s ,##lex

tight φ|ψCF  under .PT s  

6. Soundness and Completeness 

6.1. Soundness and completeness for FPTCON 

In this section, we present the soundness and completeness proofs of the 
translations from the federated problem FPTCON to the corresponding unimodule 
problem PTCON for ,-PALCI  the modified version of the problem studied for 

( )DSHOIN-P  and ( )DSHIF-P  in [34]. More precisely, we aim to show that 

{ } ,PTPT Vii ∈=  with ,,PT iii PT=  is consistent if and only if sss PT ,PT =  is 

consistent. To some degree, we rely on the proofs of soundness and completeness of 
a reduction from ALCI-F  to ,ALCI  that were presented in [47] (see also [44]). 

Recall that a ALCI-P  knowledge base PT ,  is consistent if 

 (i) T is satisfiable and 

(ii) there exists an ordered partition ( )kPP ...,,0  of P, such that each iP  with 

{ }ki ...,,1,0∈  is the set of all ( )10\ −∈ iPPPF ∪"∪  that are tolerated under T 

by ( ).\ 10 −iPPP ∪"∪  
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On the other hand, as defined before, { } Viii PT ∈= ,PT  is consistent if 

 (i) { } ViiTT ∈=  is consistent; 

(ii) There exist ,0≥ik  ,Vi ∈  and ordered partitions ( )i
k

i
i

PP ...,,0  of ,iP  such 

that each ,...,,0, i
i
j kjP =  is the set of all ( )i

j
i

i PPPF 10\ −∈ ∪"∪  that are 

tolerated under T by ( ),\ 10 −jPPP ∪"∪  where 

( ) { ( )} .\\ 1010 Vi
i
j

i
ij PPPPPP ∈−− = ∪"∪∪"∪  

(In case, for some ,Vi ∈  ,ikj >  we set ).∅=i
jP  

Suppose that { } ViiTT ∈=  is a F-ALCI  knowledge base, { } Vii ∈= B�B  a 

collection of sets of basic classification concepts, and { } Vii ∈= F�F  a collection of 

sets of conditional constraints. Consider the ALCI  knowledge base ,sT  the 

collection { } Vi
s
i

s
∈= BB  of sets of basic classification concepts and the set of 

conditional constraints .sP  

To each world { } ViiII ∈=  in BI  there corresponds a world { } ,Vi
s
i

s II ∈=  

with ( ){ },:# ii
s
i II ∈φφ=  in .sB

I  Conversely, to every world { } ViiII ∈=  in 

,sB
I  there corresponds a world { } ,Ii

d
i

d II ∈=  with ( ){ },#: iii
d
i II ∈φ∈φ= B�  

in .BI  Obviously, by definition, ,II ds =  for every ,sI
B
I∈  and ,II sd =  for 

every .BI∈I  

Let [ ]1,0:Pr →BI  be a probabilistic interpretation on .BI  Define :Pr s  

[ ]1,0→sB
I  by setting ( ) ( ),PrPr II ss =  for all .BI∈I  Clearly, sPr  is a 

probabilistic interpretation on .sB
I  

Lemma 1. If [ ]1,0:Pr →BI  is a probabilistic model of ,F∪T  then 

[ ]1,0:Pr →s
s

B
I  is a probabilistic model of .ssT F∪  Moreover, for every basic 

i-classification concept ,iB�∈φ  we have ( ) ( )( ).#PrPr φ=φ i
s

i  
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Proof. The fact that TI B  iff ss TI B  follows from the Soundness and 

Completeness Theorem of [45]. Furthermore, we have 

( ) ( ){ }∑ φ=φ ii II B:PrPr  

{ ( ) ( )}∑ φ= i
sss II #:Pr B  

( )( ).#Pr φ= i
s  

This also shows that, if I is a model of ,F  then sI  is a model of .sF  

Let [ ]1,0:Pr →sB
I  be a probabilistic interpretation on .sB

I  Define 

[ ]1,0:Pr →BI
d  by setting ( ) ( ),PrPr II dd =  for all .sI

B
I∈  Clearly, dPr  is a 

probabilistic interpretation on .BI  

Lemma 2. If [ ]1,0:Pr →sB
I  is a probabilistic model of ,ssT F∪  then 

[ ]1,0:Pr →BI
d  is a probabilistic model of .F∪T  Moreover, for every basic                 

i-classification concept ,iB�∈φ  we have ( ) ( )( ).#PrPr φ=φ i
d
i  

Proof. Very similar to the proof of Lemma 1. 

We continue the process of proving the soundness and completeness of the 

reduction sPTPT →  for FPTCON by showing that the notion of tolerance in the 
federated case and that in the unimodule case are very tightly related. The following 
lemma expresses this connection precisely. 

Lemma 3. A collection { } Vii ∈= F�F  of sets of conditional constraints 

tolerates an i-conditional constraint ( ) [ ]ul,φ|ψ  under an ALCI-F  knowledge 

base { } ViiTT ∈=  if and only if sF  tolerates ( ) ( )( )[ ]ulii ,## φ|ψ  under .sT  

Proof. Suppose, first, that { } Vii ∈= F�F  tolerates ( ) [ ]ul,φ|ψ  under =T  

{ } .ViiT ∈  Then F∪T  has a model [ ],1,0:Pr →BI  that verifies ( ) [ ],, ulφ|ψ  i.e., 

such that ( ) 1Pr =φi  and ( ) [ ].,Pr uli ∈ψ  Let { } Vi
s
i

s
∈= BB  be the collection of sets 

of basic classification concepts of ,PT s  on which sF  is based. Then, by Lemma 1, 
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the function [ ],1,0:Pr →s
s

B
I  defined by ( ) ( ),PrPr II ss =  is a probabilistic model 

of .ssT F∪  Under this model we have ( )( ) ( ) 1Pr#Pr =φ=φ ii
s  and ( )( ) =ψi

s #Pr  

( ) [ ].,Pr uli ∈ψ  Thus, sF  tolerates ( ) ( )( ) [ ]ulii ,## φ|ψ  under .sT  

Suppose, conversely, that sF  tolerates the conditional constraint of type 

( ) ( )( )[ ]uli ii ,## φ|ψ  under .sT  Then there exists a probabilistic model sB
I:Pr  

[ ]1,0→  of ,ssT F∪  that verifies ( ) ( )( ) [ ].,## ulii φ|ψ  Then, by Lemma 2, the 

function [ ]1,0:Pr →BI
d  is a probabilistic model of ,F∪T  such that ( ) =φd

iPr  

( )( ) 1#Pr =φi  and ( ) ( )( ) [ ].,#PrPr uli
d
i ∈ψ=ψ  Hence, F  tolerates ( ) [ ]ul,φ|ψ  

under T. 

Taking into account the definitions concerning the relevant notions for 

ALCI-P  and ,-PFALCI  to show that PT is consistent if and only if sPT  is 

consistent, it suffices to show the following: 

Lemma 4. There exist ,0≥ik  ,Vi ∈  and ordered partitions ( )i
k

i
i

PP ...,,0  of 

,iP  such that each ,i
jP  ,...,,0 ikj =  is the set of all ( )i

j
i

i PPPF 10\ −∈ ∪"∪  

that are tolerated under T by ( ),\ 10 −jPPP ∪"∪  where 

( ) { ( )} ,\\ 1010 Vi
i
j

i
ij PPPPPP ∈−− = ∪"∪∪"∪  

if and only if there exists an ordered partition ( )s
k

s PP ...,,0  of ,sP  such that each 
s

iP  with { }ki ...,,1,0∈  is the set of all ( )s
i

ss PPPF 10\ −∈ ∪"∪  that are 

tolerated under sT  by ( ).\ 10
s

i
ss PPP −∪"∪  

Proof. Suppose, first, that there exist ,0≥ik  ,Vi ∈  and ordered partitions 

( )i
k

i
i

PP ...,,0  of ,iP  such that each ,...,,0, i
i
j kjP =  is the set of all ∈F  

( )i
j

i
i PPP 10\ −∪"∪  that are tolerated under T by ( ),\ 10 −jPPP ∪"∪  where 

( ) { ( )} .\\ 1010 Vi
i
j

i
ij PPPPPP ∈−− = ∪"∪∪"∪  Let iVi kk ∈= max:  and set =s

jP  

{ ( ) ( )( )[ ] ( )[ ] }∪
Vi

i
jii Pulul

∈
∈φ|ψφ|ψ ,,:,##  for ,...,,0 kj =  where ,∅=i

jP  for 
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all .ikj >  We must show that each ,s
iP  { },...,,1,0 ki ∈  is the set of all 

( )s
i

ss PPPF 10\ −∈ ∪"∪  that are tolerated under sT  by ( ).\ 10
s

i
ss PPP −∪"∪  

This follows from Lemma 3. 

Conversely, assume there exists an ordered partition ( )s
k

s PP ...,,0  of ,sP  such 

that each s
iP  with { }ki ...,,1,0∈  is the set of all ( )s

i
ss PPPF 10\ −∈ ∪"∪  that 

are tolerated under sT  by ( ).\ 10
s

i
ss PPP −∪"∪  Then, set, for all Vi ∈  and all 

,...,,1,0 kj =  

{( )[ ] ( ) ( )( )[ ] }.,##:, s
jiii

i
j PulPulP ∈φ|ψ∈φ|ψ=  

Moreover, let { }.:max ∅≠= i
ji Pjk  Then, by Lemma 3, the ordered partitions 

( )i
k

i
i

PP ...,,0  of iP  are such that each ,i
jP ,...,,0 ikj =  is the set of all ∈F  

( )i
j

i
i PPP 10\ −∪"∪  that are tolerated under T by ( ),\ 10 −jPPP ∪"∪  where 

( ) { ( )} .\\ 1010 Vi
i
j

i
ij PPPPPP ∈−− = ∪"∪∪"∪  

Lemma 4 immediately yields 

Theorem 6 (Soundness and Completeness of ℜ  for PTCON). Let =PT  

{ } Vii ∈PT  be a ALCI-PF  knowledge base. PT is consistent if and only if sPT  is 

consistent. 

6.2. Soundness and completeness for FTLEXENT 

In this subsection, we prove the soundness and completeness of the translation 
from the federated FTLEXENT problem to the corresponding problem for .-PALCI  

More precisely, we show that, given a PTBOX { } ,,PT Viii PT ∈=  a finite collection 

{ } Vii ∈= F�F  of sets of conditional constraints and two i-classification concepts φ 

and ψ, the set of rational numbers [ ] ,1,0, Q∩∈ul  that satisfy ( ) [ ]uli ,tlex φ|ψCF  

under PT, is the same with that of the rational numbers [ ] ,1,0, Q∩∈ul  satisfying 

( ) ( )( ) [ ]ulii
s ,##lex

tight φ|ψCF  under .PTs  The fact that these two subsets of Q  

coincide shows that the algorithm developed in [34] for solving TLexEnt in the 
context of ( )DSHIF-P  and ( ),-P DSHOIN  appropriately adjusted to solve 
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TLEXENT for the modified language ,-PALCI  that we presented in Section 4, may 

be used to also solve an instance of FTLEXENT. It also helps in providing a 
complexity estimate for the federated problem based on the corresponding 
complexity for the unimodule problem. 

Given a finite collection { } Vii ∈= F�F  of sets of conditional constraints and an 

i-classification concept φ, let us define the collection ( ) { ( )} ,Vii ∈φ=φ F�F  by 

( )
( )[ ]{ }⎩

⎨
⎧

=|φ

≠
=φ

.if,1,1

,if,

ij

ij

ii

j
j

FF�

F�
F�

∪
 

Moreover, in the unimodule setting, given a finite collection F  of conditional 
constraints, of possibly various types, and a classification concept φ of type i, let (see 
also [34]) ( ) ( ) [ ]{ }.1,1FF�F� |φ=φ ∪  

Note that ( )( ) ( )( ) [ ]{ }1,1## FF�F |φ=φ i
s

i
s ∪  whereas ( ) ∪�F�F ss =φ  

( )( ) [ ]{ }.1,1# ii F� |φ  Because of the added stipulation adopted in our semantics that 

every interpretation of a federated ontology must have nonempty local domains and 
the fact that the extension of ( )φi#  in any interpretation is a subset of the i-th 

domain, the interpretation of the two conditional constraints appearing in the 
singleton sets above coincide in any probabilistic model. More formally, in the 
following technical lemma it is shown that these two sets of conditional constraints 
have identical probabilistic models. 

Lemma 5. Let { } Vii ∈= PTPT  be a ALCI-PF  knowledge base, { } Vii ∈= F�F  

be a collection of sets of conditional constraints and φ be an i-classification concept. 

A function [ ]1,0:Pr →sB
I  is a probabilistic model of ( )( )φi

s #F  iff it is a 

probabilistic model of ( ) .sφF  

Proof. Taking into account the forms of the two sets of conditional constraints, 
the following string of equalities proves the lemma: 

( )( ) ( )( )
( )F

F
F�

Pr
#Pr

#Pr
φ

=|φ i
i  

( )( )φ= i#Pr  
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( )( )
( )i

ii
F

F
Pr

#Pr φ
=  

( )( ).#Pr ii F|φ=  

The third equality follows from the fact that the interpretation of ( )φi#  is stipulated 

to be a subset of the interpretation of iF  in any model of the translation of PT and 

from the fact that our models are assumed to have nonempty local domains. 

In Lemmas 6 and 7 it is shown that a probabilistic interpretation is a lex-
minimal model of a federated knowledge base iff its unimodule counterpart is a lex-
minimal model of the reduction of the federated knowledge base. This is the last 
auxiliary step on the road to proving Theorems 7 and 8, which establish the 
soundeness and completeness of the given reduction from the problem FTLEXENT 
for a ALCI-PF  PTBOX to the problem TLEXENT for a ALCI-P  PTBOX. 

Lemma 6. Suppose that { } ViiTT ∈=  is an ALCI-F  knowledge base and 

{ } Vii ∈= F�F  is a collection of finite sets of conditional constraints. If →BI:Pr  

[ ]1,0  is a lex-min model of ,F∪T  then [ ]1,0:Pr →s
s

B
I  is a lex-min model of  

.ssT F∪  

Proof. We prove the statement by contraposition. Suppose that →s
s

B
I:Pr  

[ ]1,0  is not a lex-min model of .ssT F∪  Thus, there exists a model sB
I:rP ′  

[ ]1,0→  of ssT F∪  that is lex-preferable to .Pr s  But then, by Lemma 1 and the 

definitions of lex-preference, [ ]1,0:rP →′ BI
d  is a model of ,F∪T  which is 

lex-preferable to .PrPr =sd  This shows that [ ]1,0:Pr →BI  is not a lex-min 

model of .F∪T  

Lemma 7. Suppose that { } ViiTT ∈=  is an ALCI-F  knowledge base and =F  

{ } Vii ∈F�  is a collection of finite sets of conditional constraints. If →sB
I:Pr  

[ ]1,0  is a lex-min model of ,ssT F∪  then [ ]1,0:Pr →BI
d  is a lex-min model 

of .F∪T  

Proof. Very similar to the proof of Lemma 6. 

Theorem 7. Suppose that { } Viii PT ∈= ,PT  is a ALCI-PF  knowledge base, 
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{ } Vii ∈= F�F  is a collection of finite sets of conditional constraints and φ, ψ are 

two i-classification concepts. Then ( ) [ ]uli ,lex φ|ψCF  under PT if and only if 

( ) ( )( ) [ ]ulii
s ,##lex φ|ψCF  under .PT s  

Proof. Suppose, first, that ( )[ ]uli ,lex φ|ψCF  under PT. Then ( ) [ ],,Pr uli ∈ψ  

for every lex-min model Pr of ( ).φF∪T  Assume, for the sake of obtaining a 

contradiction, that ( ) ( )( )[ ]ulii
s ,##lex φ|ψIF  under .PT s  Thus, there exists a 

lex-min model rP ′  of ( ) ,ssT φF∪  such that ( )( ) [ ].,#rP uli ∉ψ′  By Lemmas 2, 5 

and 7, drP ′  is a lex-min model of ( ),φF∪T  such that ( ) ( )( ) =ψ′=ψ′ i
dsd

i #rPrP  

( )( ) [ ].,#rP uli ∉ψ′  But this is a contradiction. 

The proof of the converse statement is very similar, but uses Lemmas 1 and 6 in 
place of Lemmas 2 and 7, respectively. 

Theorem 8. Let { } Viii PT ∈= ,PT  be a ALCI-PF  PTBox, { } Vii ∈= F�F  be a 

collection of finite sets of conditional constraints and φ, ψ be two i-classification 

concepts. Then it is the case that ( ) [ ]uli ,tlex φ|ψCF  under PT if and only if 

( ) ( )( ) [ ]ulii
s ,##lex

tight φ|ψCF  under .PT s  

Proof. Obvious from Theorem 7. 

6.3. Algorithmic significance and complexities 

In this subsection, we examine the significance of the reductions from the 
federated problems FPTCON and FTLEXENT to the corresponding unimodule 
problems, that were presented in the previous subsections. In Section 4, it was 
shown, based on the algorithms provided by Lukasiewicz [34] for the expressive 
probabilistic description logics ( )DSHIF-P  and ( ),-P DSHOIN  that both PTCON 

and TLEXENT are decidable for our version of the language .-PALCI  Thus, our 

reductions show that both problems FPTCON and FTLEXENT for ALCI-PF  are also 

decidable. In fact, it is not much more difficult, based on Theorems 6 and 8, to show, 
using Theorems 6.3 and 6.4 of [34], that FPTCON is complete for exponential time 
and that FTLEXENT is complete for FEXP, the class corresponding to exponential 
time for problems that output a value. We formally state these results in the next 
theorem: 
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Theorem 9. FPTCON is complete for EXP and FTLEXENT is complete for 
FEXP. 

Proof. Since FPTCON and FTLEXENT were reduced in Theorems 6 and 8, 
respectively, to the corresponding unimodule problems in polynomial time, and, by 
Theorem 5 (an adaptation of Theorems 6.3 and 6.4 of [34]), these problems are in 
EXP and FEXP, respectively, we know that FPTCON and FTLEXENT are in EXP and 
FEXP, respectively. Hardness for both problems is inherited from the fact that 
deciding the satisfiability of a knowledge base with arbitrary TBoxes in ALCI  is 
complete for EXP (see [38, 43]). 

Summary 

In this paper, inspired by the work of Lukasiewicz on expressive probabilistic 
description logics [34], we have introduced the federated probabilistic description 
language .-PFALCI  This language is, to the best of our knowledge, the first 

language presented in the literature that combines three desirable features: 

– modularity, so as to support autonomous but interrelated ontology 
development in the semantic web; 

– contextualization of all logical connectives so that meaning depends on the 
module where a definition is provided; 

– probabilistic features that support probabilistic terminological and default 
terminological reasoning. 

Probabilistic treatment of both terminological and assertional knowledge was 
presented for the description logics ( )DSHIF-P  and ( )DSHOIN-P  in [34]. On 

the other hand, a federated description logic ,-FALCI  based on ,ALCI  supporting 

contextual connectives, was introduced in [47]. Since in the present work, we make 
a first attempt at integrating all these features into a single language, we opted to 
keep the language rather simple. Instead of a more expressive description logic, we 
based our language on ALCI  and chose to deal only with TBoxes and probabilistic 
terminological and terminological default knowledge rather than incorporating also 
ABoxes and assertional probabilistic statements. 

These extensions, which are very desirable for obvious reasons, are left as goals 
for future work. 
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