Logic Journal of IGPL Advance Access published December 22, 2015

Categorical abstract algebraic logic:
skywatching in semilattice systems™

GEORGE VOUTSADAKIST, School of Mathematics and Computer Science,
Lake Superior State University, Sault Sainte Marie, MI 49783, USA.

Abstract

Font and Moraschini established a bijective correspondence between congruences of semilattices with sectionally finite
height and certain special subsets of their universes, called clouds. They provided a characterization of clouds and showed
that the correspondence is given by the Leibniz operator of abstract algebraic logic. We extend the bijection to one between
congruence systems on the semilattice systems of categorical abstract algebraic logic and what we call cloud families. In this
context, the categorical analog of the Leibniz operator plays a similar role. In addition, we show that, even though the exact
analogue of the Font—Moraschini condition fails in general, a more complex variant provides an analogous characterization
of cloud families.
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1 Introduction

In universal algebra a semilattice is an algebra A= (4, -) of type (2), whose operation is idempotent,
commutative and associative. The accompanying partial ordering is defined by a <b if and only if
a-b=a. As, with any partial ordering, the covering relation [2], denoted by <, is defined, for all
a,beA by

a<b iff a<band, forall ced,
a<c<bimplies a=c.

The principal down-set | a [2] (generated by a € A), is defined by
Ja={ced:c<a}l.

The remainder of this section contains some of the notions and the results presented in [4], which
provided the motivation for the developments detailed in this work.

Denoting the subalgebra operator by S, we set C(4)={L € S(A4): L a chain} and define the height
of A by H(A)=max{|L|: L € C(4)}, when this number is finite, in which case 4 is said to be of finite
height.

A semilattice A is said to be of sectionally finite height if, for all a € 4, the principal downset
la has finite height. The class of all semilattices of sectionally finite height, denoted FSL, does not
form a variety because, even though it is closed under subalgebras and homomorphic images, it is
(obviously) not closed under products.

Given a semilattice 4, the height of a€ 4 is H(a)=H(| ).

*To Don Pigozzi this work is dedicated on the occasion of his 80th Birthday.
TE-mail: gvoutsad@lssu.edu

© The Author 2015. Published by Oxford University Press. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
doi:10.1093/jigpal/jzv052

GTOZ ‘€2 Jequiaoe uo 1senb Aq /6io'sfeulnolpio)xo: edbily/:dny woly pepeojumoq


http://jigpal.oxfordjournals.org/

2 CAAL: skywatching in semilattice systems

Given an algebra 4 and a subset F C 4, the Leibniz congruence of F in 4 [1], denoted Q4(F),
is the largest congruence on A that is compatible with F in the sense that

(a,b)eQY(F) and acF imply beF.

In Lemma 3.1 of [4], Font and Moraschini characterize Leibniz congruences in a semilattice 4 = (4, -)
by showing that, for all a,b€ 4, (a,b) € Q4(F) if and only if,

a-ceF ifand onlyif b-ceF, forall ced.

By perceiving F' as a palette assigning to its own elements a certain color and to its complement
in 4 a different colour, Font and Moraschini [4] view Q4(F) as identifying the identically coloured
segments of A and conclude that the cardinality of the quotient A/ Q4(F) counts the number of colour
switches in ascending from bottom to top in a finite chain. This chromatic perspective motivates
their definition of rainbow.

The rainbow R(A) of a semilattice A4 [4] is defined by

R(A)={aeA:H(a) is odd}.

Theorem 3.5 of [4] establishes that in a semilattice of sectionally finite height 4, QA(R(A))= A4,
the identity congruence on A.

A subset ' C A4 in a semilattice of sectionally finite height A is called a cloud (Definition 4.1 of
[4]) if F/ QA(F)=R(A/Q4(F)) and Cl(4) denotes the collection of all clouds of 4. In Theorem 4.2
of [4] it is shown that 4:Cl(4) — Con(A) establishes a bijection between the collection of clouds
of a semilattice with sectionally finite height and the collection of its congruences.

To characterize clouds, Font and Moraschini introduce the height 7{r(a) of an element « in a
semilattice of sectionally finite height 4 relative to a subset /' C 4 by setting

Hr(a)=max{|L/ Q*(FNL)|:LeC({a)}.

Their characterization in Theorem 4.6 of [4] asserts that F' € Cl(4) if and only if L € F and Hp(a)=
H(a/ QAF)), for every ac A.

In Section 2 of the present article, we start by recalling the definition of an algebraic system, of a
sentence family of such a system and by briefly reminding the reader of the concept of the categorical
Leibniz congruence system associated with a sentence family of a given algebraic system. We
specialize this to semilattice systems and we provide a characterization of the Leibniz congruence
system Q4(T) associated with the sentence family 7 in a semilattice system A4 in a way analogous
to the characterization in Lemma 3.1 of [4]. We also define semilattice systems of sectionally finite
height. In Section 3, we introduce rainbow systems and rainbow families and show that, given a
semilattice system A4 of sectionally finite height, its rainbow family R(A) satisfies 24(R(4))= ASEN,
an analogue of Theorem 3.5 of [4]. A counterexample shows that this is not generally true for the
rainbow system R(A), which we take as a motivation for focusing on rainbow families rather than
on rainbow systems for the remainder of our work. We define, next, in Section 4, a cloud family
to be any sentence family whose quotient over its Leibniz congruence system coincides with the
rainbow family of the quotient of the given semilattice system by the Leibniz congruence system
of the sentence family. In Section 5, we introduce a Font-Moraschini type condition to characterize
cloud families. A counterexample, however, shows that this condition, despite being necessary, does
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CAAL: skywatching in semilattice systems 3

not suffice for our purposes. Therefore, we introduce in Section 6 the concept of a spectrum of an
element in a semilattice system of sectionally finite height with respect to a given sentence family
and use it to provide a characterization of cloud families in this more general context.

Motivated by the sky-inspired terminology of [4], we call the application of the Font—Moraschini
Condition, which is successful in the trivial signature semilattice systems (corresponding to univer-
sal algebraic semilattices), felescopy and the more powerful method, based on the new condition,
spectroscopy, which explains also the name spectrum for the concept defined in Section 6 to for-
malize our method in the categorical setting. At the beginning of Section 5, we offer a few more
comments motivating this terminology related to astrophysical observation methods.

2 Semilattice systems
An algebraic system (see, e.g. [5] or the more recent [6]) is a triple A = (Sign, SEN, N) consisting of:

* A category Sign of signatures;

* A functor SEN: Sign — Set giving, for each signature ¥ € |Sign|, the set SEN(X) of X-sentences;

* A category N of natural transformations on SEN; its objects are the finite powers SEN*, k € ,
and the arrows 7:SEN* — SEN‘ are ¢-tuples of natural transformations SEN* — SEN; the
category is assumed to include all projection natural transformations and, also, to be ‘closed
under the formation of tuples’, i.e. given a family {tr’:SEN* — SEN:i < ¢} in N, the natural
transformation (z:i < £): SEN* — SEN¢ must also be in N.

A sentence family (previously termed an axiom family in Categorical Abstract Algebraic Logic
(CAAL)) is simply a collection T'={Ts}xcsign] Of subsets Ty CSEN(X), for all X €|Sign|. We
write SenFam(A) to denote the collection of all sentence families of 4, when A= (Sign, SEN,N).

Let F=(Sign’, SEN’, N”) be an algebraic system, termed the base algebraic system (see, e.g.
Section 2 of [6]). An algebraic system 4 = (Sign, SEN, N) is called an N°-algebraic system if there
exists a surjective functor N” — N that preserves all projection natural transformations and, therefore,
preserves also the arities of all natural transformations in N°. We write o in N to indicate the image in
N ofac’ in N’ under the functor N* — N. We use similar conventions throughout, writing, e.g., o’ for
the image of 0” under N° — N’, when N’ is the category of natural transformations of an N”-algebraic
system A’. Given two N’-algebraic systems 4 = (Sign’, SEN’, N’} and B = (Sign”, SEN",N"), an N"-
(algebraic system) morphism (H,y):4— B consists of

» a functor H :Sign’ — Sign” and
+ a natural transformation y :SEN’— SEN"oH, such that, for all o :SENf — SEN in N°, all
¥ €|Sign’| and all ¢y, ...,¢;_; € SEN'(X),

V(05 (@0, - s Pk-1) = 0415y (V5 (90), -+, Y (Pr-1))-

The N°-morphism (H,y):A— B is said to be surjective if both the functor H (on objects and on
morphisms) and all components of the natural transformation y are surjective.

Let A=(Sign,SEN,N) be an algebraic system and T € SenFam(A4) a sentence family of 4. A
congruence system 6 € ConSys(A) is compatible with 7 if, for all ¥ € |Sign| and all ¢, € SEN(X),

(p,¥)€by and @eTy imply ¢ eTy.

Given a sentence family 7 of A, there always exists a largest congruence system on A4 that is
compatible with T, called the Leibniz congruence system of T on 4 and denoted by Q4(T) (see [5]).
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4 CAAL: skywatching in semilattice systems

The Leibniz operator is the map Q4 : SenFam(4)— ConSys(4). Observe that, by the definition of
compatibility, a congruence system 6 € ConSys(4) is compatible with a sentence family 7" of A4 if
and only if, for all ¥ €|Sign| and all ¢ € SEN(X),

peTs ifandonlyif ¢/05€Tx/05. (D

As a particular case, one obtains that ¢ € T, iff ¢/ Q4(T) € Tz / Q4(T).
Let (H,y):A— B be a surjective N’-morphism. Then it is well-known (see, e.g. Lemma 5.4 of
[5]) that, for all 77 € SenFam(B),

Uy (T =y (Q5T)). 2
Moreover, if @ € ConSys(4), such that 8 < Q4(T), then
QYT /6)=Q(T)/0. 3)

Property (3) follows directly from Property (2): Since 8 < Q4(T), 6 is compatible with T, whence
T=n"'(T/0), where (Isign, ) :A— A /0 is the projection morphism. Thus, since (/sign, ) is surjec-
tive, by Property (2), Q4 T)=Q4(x~1(T/0)) =71 (Q%(T/6)). Now, using again the surjectivity
of {Isign, ), wWe get (3).

Let A= (Sign, SEN, V) be an algebraic system, such that N is a category of natural transforma-
tions generated by a natural transformation e:SEN? — SEN satisfying, for all X €|Sign| and all
9.9, x €SEN(E),

* Idempotency: ex(¢,9)=0;
« Commutativity: ex (¢, V) =ex(V,¢);
* Associativity: ex(¢,ex (Y, x))=ex(es(@, V), x).

Such a natural transformation is called a semilattice operation and we usually write it in infix
notation gexr, etc. We call 4 a semilattice system. Moreover, we define the relation family
<={=<sx}sesign On A4 by setting, for all ¥ € |Sign| and all ¢,y e SEN(X),

(pf):w iff (p.z'(ﬂzgﬂ.

Lemma 1
Given a semilattice system 4= (Sign, SEN,N), the relation family < is a partially order system
(posystem) on A.

Proor. By idempotency of ey, we get that <y is reflexive. By commutativity of ey, we get that
<y is antisymmetric. Finally, using associativity of ey, we derive that <y is also transitive. Thus,
for all X €|Sign|, <y is a partial ordering on SEN(X).

To see that < is a system, i.e., invariant under signature morphisms, assume that X, ¥, € |Sign|,
feSign(¥,,%;) and ¢,y e SEN(X,;), such that ¢ <y, . Then, we get geyx, Yy =¢, whence
SEN(f)(¢ ®x, ¥)=SEN(f)(¢). Since e:SEN?— SEN is a natural transformation, we obtain
SEN(f)(¢) e, SEN(/)(¥) = SEN(/)(¢) and, therefore, SEN(/)(¢) <, SEN(/)(¥). ]

Next, define the relation family <={<y}xcsign] On 4 by letting <5 be the covering relation on
SEN(X) with respect to the partial order <y, for all ¥ €|Sign|. Recall from Section 1 that this
means, for all ¥ € [Sign| and all ¢, € SEN(X),

o=<s¥ iff @<y and, for all x e SEN(X),
@<y x <s ¥ implies p=x.
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In contrast to <, the relation family < may fail to be invariant under Sign-morphisms, i.e. a relation
system. That is, there may exist X, X' €|Sign|, / € Sign(X, ¥), and ¢, € SEN(X), such that

¢=<s ¥ but SEN(f)(¢) ASEN(F (V).

EXAMPLE 2
We exhibit a semilattice system 4= (Sign, SEN, N) for which the relation family < fails to satisfy
the system property.

f 1 _Sky;,
AN 3l (/)
s \\
0 Eﬁ@\

S

1

Consider the semilattice system with Sign as depicted on the left (omitting identity arrows) and
SEN(X), SEN(X’) and SEN(f) as on the right. The semilattice operation e is defined by setting

¢, ifp=y
¢°2W={ 0, ifpEy
the two arguments in the Hasse diagram depicting the orderings. We will adopt the same convention
without explicit mention in all examples considered in the paper. The < family fails to be a system:
Indeed we have 0 <y 1, but SEN(f)(0)= L A5 L =SEN(f)(1).

, and similarly for X’. Thus, the result is assumed to be the minimum of

Given a semilattice system 4, we denote by S(A) the class of all (simple) semilattice subsystems
of A. Simple here refers to the fact that they all have the same signature category as A. Since, all
subsystems we consider in this paper are simple, we will omit this qualifier in the sequel.

A semilattice system 4 = (Sign, SEN, V) is called a chain system if < is a linear order system on
SEN, i.e., for all ¥ €|Sign|, <y is a linear ordering on SEN(X).

Let A= (Sign, SEN, N) be a semilattice system. We call the X -component semilattice and denote
by Ay = (SEN(X), ez ) the ordinary universal algebraic semilattice formed by restricting attention
to the X-component of A. A ¥-chain of 4 is a chain in Ax. The X-height of 4 is hx(4)=H(A4x),
i.e. the maximum number of elements in any ¥-chain of 4, when this number is finite. The height
h(A) of A is defined by

h(A)=max{hx(A): X €|Sign|},

when /4(A) < w. In this case, we say that the semilattice system A has finite height.
Let A= (Sign, SEN, N) be a semilattice system. For ¥ € |Sign| and ¢ € SEN(X), we set

Iz ={¢¥ eSEN(X): ¥ <sz ¢}.

If | 5 ¢ has finite height, for all ¥ € |Sign| and all ¢ € SEN(X), we say that 4 has sectionally finite
height or is a semilattice system of (or with) sectionally finite height (FSL). We denote the class
of all semilattice systems of sectionally finite height by FSL. For a semilattice system A < FSL,
Y €|Sign|, ¢ € SEN(X), we define the height 25(¢) of ¢ as the height of the semilattice | g¢:

hs(@)=H{s9).
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3 Rainbow families

The next lemma provides a characterization of the Leibniz congruence system associated with a
given sentence family in a semilattice system A. It forms an analogue of Lemma 3.1 of [4] and has
its roots, in the universal algebraic side, in [3] and, in the categorical side, in the characterization of
the Leibniz congruence systems provided in [5].

LemmA 3

Let A= (Sign,SEN,N) be a semilattice system and let, also, T € SenFam(A). For all X €|Sign|
and all ¢, ¥ € SEN(X), (¢, ¥) € Q4(T) if and only if, for all £’ € |Sign|, all / € Sign(Z, ') and all
x € SEN(X),

SEN(f)(¢)es x € Tx iff SEN(f)(¢¥)es x € Ts.
Proor. Let us set, for all ¥ €|Sign|,

Ry = {{¢,¥)€SEN(Z)*:SEN(f)(¢)ex x € Tx iff
SEN(f)(¥)es: x € T,
for all X' € |Sign|,f €Sign(X,X’) and x € SEN(X')}

and R={Ry}xesign. The goal is to show that R is a congruence system on 4 compatible with 7" and
that it is the largest such.

* That Ry is an equivalence relation on SEN(X) is obvious.

 To see that Ry is a congruence system, we must show that, if (¢, ¢’) € Ry and (¥, ') € Ry, then
(pes ¥,  es ') € Ry. This is easy to do using the naturality of e, together with associativity
and commutativity. The details are omitted.

* We now show that R={Ryx}s¢|sign| is a system. Let (p,1) € Ry and f € Sign(X, ¥’). Then, for
all X" € |Sign| all g € Sign(X’, X") (see following diagram) and all x € SEN(X”), we have

f

> Ly 9

Z//

SEN(g)(SEN(f)(¢)) es x € T
iff SEN(gf)(¢)es x € Tsr
iff SEN(gf)(V)esr x € Tsr
iff  SEN(g)(SEN()(¥))es: x € s,

whence (SEN(f)(¢), SEN(f)(¥)) €Ryx .
* To see that R is compatible with T, let (¢, V) € Ry and ¢ € Tx. Then, we have

w:w.ZQOETE iff 1//.;(p€T2
iff @.EwETE
iff Y=y esyeTs.

* Finally, to see that R is the largest congruence system compatible with 7', assume that 6 =
{05 }se/sign| 18 a congruence system compatible with 7', ¥ € [Sign| and (¢, ) € f5. Then, for all
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3’ e|Sign|, all f € Sign(X, ') and all x € SEN(X),

(p,¥) €0y implies (SEN(f)(¢), SEN(f)(¥)) €05
implies  (SEN(f)(¢)es' x.SEN(/) (V) o5 x) €65
implies SEN(f)(¢)ex x €Ty
iff SEN(f)('(ﬂ).):/ X € T
implies (@, ¥)€Ry.
This proves that 6 <R.
| |

Recall that, given a semilattice system 4 = (Sign, SEN, N}, we denote by Ay = (SEN(X), ex) the
> -component semilattice of 4. Accordingly, given an F CSEN(X), Q4(F) denotes the ordinary
Leibniz congruence of F' on Ay in the sense of AAL.

COROLLARY 4
Let A= (Sign, SEN, N) be a semilattice system and consider T’ € SenFam(A4). Then, for all ¥ € |Sign|,

QA1) S Q= (Ty).

Proor. By Lemma 3 we have, for all ¥ € [Sign| and all ¢, ¥ € SEN(X), (¢, V) € Q4(T) if and only
if, for all X' €|Sign|, all /' €Sign(X,X’) and all x e SEN(Y"),

SEN(f)(gD).zr X € Tzf iff SEN(f)('Q//).Er X € TE'.
In particular, for all x e SEN(X),
poz x €Tx iff Yog x €Ty,

whence, by Lemma 3.1 of [4], (¢, ¥) € Q*=(T%). [ |

In the following example, it is shown that the inclusion of Corollary 4 may be a proper inclu-
sion. Given an algebraic system 4 = (Sign, SEN,N), we denote by ASEN={AN}5gion the iden-
tity congruence system on 4, i.e., AN ={(p,¢):¢ € SEN(Z)}, for all ¥ €|Sign|, and by V3EN =
{V3FN} 5. ¢ sign the all or nabla congruence system on A, given by V3*N =SEN(X)?, for all © € |Sign|.

EXAMPLE 5
The inclusion of Corollary 4 may be proper. Consider the category Sign shown on the left (again
omitting identity arrows) and the functor SEN shown on the right.

. SEN(f) .
Zl

' TSENG)

Let 75 ={0,1} and 75 ={T}. Then, since SEN(f)(0)=_L ¢ Tsy whereas SEN(f)(1)=T € T/, we
have Q4 = ASFN. On the other hand, we can see that Q4=(Tx) = V3EN, being the largest congruence
on Ay, compatible with 7. Thus, QE(7) G Q**(Ty).
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8 CAAL: skywatching in semilattice systems

Next, we provide an analogue of Corollary 3.2 of [4] in the case of finite chain systems. This will
also offer a flavor of the application of the characterization of Q4(7') established in Lemma 3.

COROLLARY 6

Let A=(Sign, SEN, N) be a chain system, such that SEN(X) is finite, for all ¥ € |Sign|. Let also
T € SenFam(A), ¥ € [Sign| and ¢, ¥ € SEN(X), with ¢ <z . Then (¢, ¥) € Q4(T) iff, for all =’ €
|Sign|, f € Sign(XZ, X),

[SEN(f)(¢). SEN(f ) ()] € Ts
or [SEN(/)(¢). SEN(f)(¥)] S SEN(Z)\ T

Proor. For the left-to-right implication, assume that (p,¥)€Q4(T). Then either SEN(f)(¢),
SEN(f)(¥) € Tz or SEN(f)(¢), SEN(f)(¥) ¢ T'z. Now let x € [SEN(f)(¢), SEN(/)(¥)].
* If SEN(f)(¢), SEN(f)(¢) € Ts/, then

X =SEN(/)(¥)es x 23.(T) SEN(f)(¢)ex x =SEN()(),

whence, since SEN(f)(¢) € T/, by compatibility, x € Ts.
* The case SEN(f)(¢), SEN(f)(¢) ¢ Ts- is similar.

Suppose, conversely, that for all ¥’ € |Sign| and all /' € Sign(Z,X’),

[SEN(f)(¢), SEN(/ ) ()] € T
or [SEN(/)(¢), SEN(f)(¥)] S SEN(Z )\ Ts.

For a given x € SEN(X'), since A4 is a chain system, we have one of the following cases: x <y
SEN(f)(¢) or x € [SEN(f)(¢), SEN(/)(¥)] or SEN(f)(¥) <5’ X.

+ In the first case, since SEN(f)(¢)ex x = x =SEN(f)(¥) ex x, either both SEN(f)(¢)eyx x and
SEN(f)(¢)ex x are in Ty or both outside.
* In the second case,

SEN(f)(¢)es x € Ts: iff SEN(f)(¢)e Ts
iff x € Ty (by hypothesis)
iff SEN(f)(¥)es x €Tx .

¢ In the third case,

SEN(f)(¢)ex x €T, iff SEN(f)(@)e Ts
iff SEN(f)(v)€ Ty (by hypothesis)
iff SEN(f)(y)es x €Ts.

Thus, by Lemma 3, we get that (¢, ¥) € Q4(T). [ |

COROLLARY 7

Let A= (Sign, SEN,N) be a chain system, such that, for all X €|Sign|, SEN(X) is finite, and T €
SenFam(A4). Then Q4(T)= ASEN iff, for all ¥ € |Sign| and all ¢,y € SEN(Z), such that ¢ <5 ¥,
there exists X’ € |Sign| and /" € Sign(X, ¥'), such that, for some x,& € [SEN(/)(¢), SEN(/)(¥)],

x €Ts iff é¢ Ts:.
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Proor. Suppose that Q4(T)= ASEN, Let X €|Sign| and ¢, ¥ € SEN(X), such that ¢ <5 . Clearly,
(@, ) ¢ QL(T). Therefore, by Corollary 6, there exists ¥’ €|Sign| and f € Sign(Z, ¥’), such that
[SEN(f)(¢), SEN(/)(¥)] Z T and [SEN(f)(¢), SEN(f)(¥)] £ SEN(T)\ T . But this is exactly the
statement that there exist x,& € [SEN(f)(¢), SEN(f)(¥)], such that x € Ty, iff & ¢ T's,. Conversely,
if the postulated condition holds, then, by Corollary 6, for all ¥ € |Sign| and all ¢, ¢ € SEN(X), with
Q<5 ¥, (9, ¥) ¢ QA(T). This implies that Q4(T)= AS™N, [ |

Let A=(Sign, SEN, N) be a semilattice system of sectionally finite height. The rainbow system
of A is the family R(A4) ={Rx(A4)}scsign, Where

Rs(d) = {peSEN(X):hs (SEN(f)(¢)) is odd,
for all X' € |Sign|,f €Sign(X,X")}.

Lemma 8
Let A= (Sign,SEN, N) be a semilattice system with sectionally finite height. The rainbow system
R(A) of A is a system in the sense of CAAL, i.e. it is invariant under all signature morphisms.

Proor. Let X €|Sign| and ¢ € Ry (A4). Consider X' € |Sign| and / € Sign(X, X’). The goal is to show
that SEN(f)(¢) e Ry (A). Let X" € |Sign| and g € Sign(X’, X”) as in the following diagram.

f

9 s 9

E//

Since ¢ € Rx(A), hs(SEN(gf)(¢)) is odd. Therefore, since SEN is a functor, s (SEN(g)(SEN(f)(¢)))
is odd. Since g was arbitrary, this proves that SEN(f)(¢) € Rs/(A). [ |

ExAMPLE 9

We show that it is not necessarily the case that, given a semilattice system 4= (Sign, SEN,N) of
sectionally finite height, Q4(9R(A4)) = ASEN.

Indeed, consider the following category Sign of signatures

SEN(f)

/T

2/

<% <3

P
/

0 L

and define SEN as shown on the right. Since
hs/(SEN(f)(0))=hx (SEN(f)(1))=hz(T)=2,

we have 0,1 ¢ %5 (A4). Thus, Ry (4)=40. Since hx(L)=1 and the only outgoing arrow from X’ is
the identity, L € Ry/(A4). Since hx/(T)=2, we get Ry (A)={L}.

Consider the congruence system 6 = {6y,0x}, with 0z = V3*N and 0z = ASEN. This congruence
system on A4 is clearly compatible with 93(4), whence 8 < Q4(93(4)). On the other hand, it is the
largest congruence system compatible with $R(A4), since such a system must necessarily distinguish,
by definition of compatibility, between L € Ry (4) and T ¢ Ry (A4). Hence Q4(94(4)) =6. Therefore,
QA(R(A)) # ASEN,

SEN
5/
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10 CAAL: skywatching in semilattice systems

The preceding example motivates turning attention to rainbow families in place of rainbow sys-
tems, i.e. relaxing the hypothesis of invariance under signature morphisms.

Let 4= (Sign, SEN, N) be a semilattice system of sectionally finite height. The rainbow family
of A is the family R(A4)={Rx(4)}scsign, Where

Rs(A)={p e SEN(XZ):hg(p) is odd}.

ExampLE 10
Note that in Example 9, we have Rx(4)={0} and Ry (4)={Ll}, whence, we actually obtain
QA(R(A))= ASEN is this case.

We next show that it is true in general that the Leibniz congruence system of a rainbow family is
the identity, as illustrated in Example 10.

ProrosiTiON 11
Let A= (Sign, SEN, N) be a semilattice system of sectionally finite height. Then Q4(R(4))= ASEN,

Proor. First, note that Ry (4)="R(Ax), where R(Ax) denotes the rainbow of Ay =(SEN(X), ex)
according to Definition 3.4 of [4]. Thus, by Theorem 3.5 of [4], we get that Q4= (Rx(4)) = ASEN, for
all = € [Sign|. By Corollary 4, we get Q4(R(4)) € Q1>(Rx(A)). Since this holds for all ¥ € [Sign|,
we, finally, get Q4(R(A4))= ASEN, [ |

4 Cloud families

Let A= (Sign, SEN, N) be a semilattice system with sectionally finite height and 7' € SenFam(A). T
is called a cloud family if T/ Q4(T)=R(4/ Q(T)). We set

ClFam(A)={T € SenFam(A4): T is a cloud family}.

If (sign, ) :A— A/ Q*(T) is the projection N-morphism, then, by compatibility of Q*(7) with T,
we get

T=n"Y(T/QUT)=n""(R(4/Q"(T))),

That is cloud families are inverse images of rainbow families under the projection N-morphism of
the semilattice system onto its quotient by the Leibniz congruence system of the cloud family.

LeEmMma 12
Let A=(Sign,SEN,N) be a semilattice system with sectionally finite height and T € ClIFam(A4).
Then, for all ¥ €|Sign| and all ¢ € SEN(X),

peTs iff hx(p/Qa(T))is odd.
Proor. Suppose T € CIFam(A4), X € |Sign| and ¢ € SEN(X). Then, we have
peTs iff ¢/QL(T)eTs/QL(T) (by Equivalence (1))
iff ¢/QLT)eRs(A4/QAT)) (T acloud family)
iff  hxs(p/Q4(T)) is odd,

where the last equivalence follows by the definition of a rainbow family. [ |
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Analogously with the universal algebraic case (Theorem 4.2 of [4]), we now obtain that the
categorical Leibniz operator induces a bijection between the collection CIFam(A) of cloud families
and the collection ConSys(A4) of congruence systems of an FSL A.

THEOREM 13
Let A = (Sign, SEN, N) be a semilattice system with sectionally finite height. Then Q4 : CIFam(A4) —
ConSys(A) is a bijection.

Proor. To show injectivity, suppose that 7', 7" € CIFam(A). Then,
QUT)=QUT") iff R(A/QUT)=R(A/QNT"))

iff T/QAT)=T'"/ QAT
iff T=T".

For surjectivity, let 6 € ConSys(4). Then, we have 4/60 € FSL, whence, by Proposition 11,
QY9 (R(A/0))= ASEN?_ Set T ={Tx}scsign» such that, for all ¥ € |Sign|,

Ty ={p €SEN(E): ¢ /65 € R5(4/6)).
If we denote by (I, 7):= (Isign, ") :A— A/6 the projection N-morphism, taking into account the

commutativity of the Leibniz operator with inverse surjective N-morphisms, formulated in Equation
(2), we get

QUT) = QUr'(R(A4/0)))
= 7 '(QY°(R(4/6)))
— 7 I(ASENE)
= 0.
Hence, Q is also surjective and, therefore, a bijection. [ |

5 When telescopy is not sufficient...

In their Theorem 4.6, Font and Moraschini [4] characterize clouds in semilattices with section-
ally finite height by providing a condition relating heights of elements relative to clouds with their
‘absolute’ heights. In this section, we show that the corresponding condition is necessary, but not suf-
ficient, for cloud families of semilattice systems of sectionally finite height. Moreover, we illustrate,
via example, that this shortcoming involves the inherent limitation of this condition to success-
fully detect and capture what happens in ‘alien localities’, i.e., in other ‘local’ semilattices when one
‘observes’ transformations under change of signatures. This shortcoming is mended in the following
section by devising a necessary and sufficient condition that is able to ‘sense’ these ‘remote signals’
and, thus, to account for local effects of ‘remote phenomena’. Based on both the sky-inspired ter-
minology of [4] and on the aforementioned analogies between observing and capturing local versus
remote features of the structures under consideration, we name, inspired by astrophysical methods
of observation of incremental strength, the local conditions of [4] ‘telescopic’ and the global ones
of the next section, that are powerful enough for the categorical context, ‘spectroscopic’.

Let A=(Sign,SEN,N) be a semilattice system. Given a X-chain Cyx, define A(Cx) to be the
smallest (simple) semilattice subsystem of 4 including Cy, called the sub-semilattice of 4 generated
by C >
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12 CAAL: skywatching in semilattice systems

Given an FSL A= (Sign, SEN,N), T € SenFam(A4), ¥ € |Sign| and ¢ € SEN(X), by analogy with
Definition 4.3 of [4], the X-height of ¢ relative to T is defined by

he(p)=max{|Cx/ Qp P (TNA(Cy))|: Cs C L5},

where |z ¢ refers to the principal downset of ¢ in Ay.
We proceed to establish analogues of the properties shown to hold in the universal algebraic case
in Lemma 4.4 of [4] in this more general context.

LemMma 14
Let A= (Sign,SEN,N) be a semilattice system of sectionally finite height, 7€ SenFam(A4), X
|Sign| and ¢ € SEN(X). Then

hi (@) <hs(p/ QE(T)).

ProOF. Suppose Cs. C | 5@ is such that |Cy / QAT NA(Cx))| =h%(¢). Note that Q4(T)NVACE) s
a congruence system that is compatible with 7NA(Cy). Thus, we obtain Q4(T)NVAC) < Q4C=)(TN
A(Cs)). We now obtain

|Cs/ QT NA(CR))
|Cs /(Q4(T)NVAC)]
hs(¢/ QA(T)).

hi(¢)

INIA

We show, next, that the height of a X-sentence ¢ in an FSL coincides with its height relative to
the rainbow family of the semilattice system.

LEMmA 15
Let A= (Sign,SEN,N) be a semilattice system with sectionally finite height, ¥ €|Sign| and ¢ €
SEN(X). Then

hs(@)=hg P (p).

Proor. Note that we have

Lemma 14

WED (o) 27 ha(p/ QAR(A))
"2 hs(p/ATY)
= hs ().

For the reverse inequality, suppose that 4s(¢p)=4k and consider a X-chain Cy C | 5¢, such that
|Cx|=k, say

ls=p1 <z <5 <s@ 1 <s Py =¢.
Since hx(@p;)=i, for all i=1,...,k, we get that, forall i=1,...,k—1,

Y, €Rx(A) iff @1 ¢Rs(A).
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This shows that |Cy/ Q2™ (R(4)NA(Cs))| =k. Now, we conclude

hs(p) = [Cxl e
|Cx/ Q5T (R(A)NA(Cy))|
hED () (definition of KX ()).

IA

LEmma 16
Let A= (Sign,SEN,N) be a semilattice system with sectionally finite height, 7 € SenFam(A4), ¥ €
|Sign| and ¢ € SEN(X). Then

WL (@)= h ' D) QA(T)).

Proor. Consider a X-chain CyC|ze, such that AL(p)=|Cyx/ Qé(cz)(T NA(Cs))|. We let
0 =QA(T)NVAC>), Then, clearly, Cy /0y is a -chainin A/ Q4(T), such that Cx /05 C | z¢/QL(T).
CLAIM:

A(Cz)/ QUENTNA(C) Z(A(Cx)/6)/ QU (TNA(Cx))/0).

Since § < Q4C=)(TNA(Cy)), by the Second Isomorphism Theorem for algebraic systems (see, e.g.
Theorem 28 of [7]),

A(Cz)/ QUNTNA(Cx)) Z(A(Cx)/0) /(1T NA(Cx))/6).

Moreover, based on the property expressed by Equation (3), we also have QA=)(TNA(Cyx))/0 =
QAP (T NA(Cx))/H). This proves the claim.
Now we are able to conclude:

hi(p) = |Cs/QTNACY))

I(Cx/65)/ 5 (TNA(Cx))/0)]
WL O Q4(T))

(by definition of /> (4/ QA(T))).

IA

For the reverse inequality, assume that Oy is a X-chain in 4/ Q4(T), with Ox C | x¢/Q4(T), such
that

W g (1) =105/ 9T DO T QTN UTINO).
Suppose that Oy is
01/ Q4(T) <5 02/ QD) <5 -+ <z pu1 ) (D) <z 9/ L3(T).
Set Y, =@, 05 ;1105 ---05 @;_1 o5 @;. Consider Cs ={Y,¥>,...,¥r_1,¢}. This is a X-chain in A4,

such that Cy, C | z¢. Define (Isign, ) : A(Cx) — (4/ 24(T))(Qx) as the restriction of (Isign, 72Dy
A—> A/ Q*(T) to A(Cx). Note that, for all i=1,....,k, ¥;/ QE(T)=¢;/ QL(T), i.e. (¢;, V) € QA(T),
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14 CAAL: skywatching in semilattice systems

whence 75 (¥;)=¢;/ Q4(T). Furthermore, by compatibility of Q4(7T) with T, for all £’ |Sign|,
x € Cs, we have x € Ty iff wy/(x) € Ty / QE(T).
Now we are able to conclude:

W D24y
= |0/ Q¥ TN (7 QA(TY N (4) QAT Q)]
=|Cx/ Q2 P (TNA(Cy))l
<hL(g) (by definition of AL (¢)).

ProposiTION 17
Let A= (Sign, SEN, N) be semilattice system with sectionally finite height and 7 € SenFam(A). If
T e CIFam(A4), then

* lyeTy, for all ¥ €|Sign|, and
o hi(p)=hx(p/QL(T)), for all = €|Sign| and all p € SEN().

Proor. Suppose that T eClFam(4). Then T/Q4(T)=R(A4/Q4T)). Since Ly/Qi(T)eRs
(A/ QA(T)), for all X €|Sign|, we get that |y € Ts. For the second condition, note that, for all
Y €|Sign| and all ¢ € SEN(X),

sl QA(T))((/, /Q4A(T)) (by Lemma 15)

— W'D/ QA(T)) (T a cloud family)
= hL(T) (by Lemma 16).

hs(p/Q5(T))

In Part (a) of the following example we provide a counterexample to the converse implication of
that of Proposition 17.

ExampLE 18
We work with the following semilattice system A:

. SEN(f) "

E,
<% <y

"sEN() !

(@) If Tx ={0,1} and Ty ={_L}, then, we get Q4(T)= ASEN (by compatibility, | and T cannot be
identified in ©4,(7) and, then, because of the system property of Q4(7T), 0 and 1 cannot be
identified in Q4(7)). Since, clearly, 1/ Q¥4(T) e Ts/ Q4(T), but 1/ QL(T) ¢ Rx(A4/ QUT)), we
get T/ QA(T)#R(A/QA(T)). Thus, T ={Tsx, Ts'} is not a cloud family of A4.

(b) If Ty ={0} and Ts, ={L}, then, we get Q4(T)=ASEN (by compatibility, no elements can be
identified in Q4(T) since the sentence family 7' has singleton components). Now we have
T/ QUT)=R(A/QA(T)). Thus, T is a cloud family of A.
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(c) If Ts={0} and T ={L, T}, then, we get QL(T)= AN and Q4,(T)= V5N (being the largest
congruence system on A compatible with T). Still, we get T/ Q4(T)=R(4/Q4(T)), whence
T is a cloud family of A4.

(d) If Ty ={1} and Ty ={L, T}, then, we get, as in (c), QL(T)=AFN and QL (T)=VIN.
However, 1/Q4(T)eTs/QY(T), but 1/QLT)¢Rs(A4/QNT)) and, hence,
T/ QAUT)#R(A/QA(T)). Thus, T is not a cloud family of A4.

Since the converse implication of that of Proposition 17 does not hold in general, the analogue
of the characterization of clouds given in Theorem 4.6 of [4] using the categorical Leibniz operator
fails in the case of cloud families. A more complex idea, that of a spectrum of an element relative
to a sentence family, needs to be introduced. However, the following corollary of Theorem 4.6 of
[4] does hold:

CoROLLARY 19
Let A= (Sign,SEN, N) be a semilattice system of sectionally finite height, with Sign a trivial cate-
gory, and T € SenFam(A). Then, T € ClIFam(A4), if and only if

* 1lyeTy, forall ¥ €|Sign|, and
« hL(p)=hs(p/QL(T)), for all = €|Sign| and all ¢ € SEN(Z).

Proor. The left to right implication is established without the triviality restriction on the signature in
Proposition 17. The right to left implication, with the trivial category hypothesis in force, is Theorem
4.6 of [4]. [ |

6 ...Spectroscopy opens the skies

Let A=(Sign,SEN,N) be a semilattice system and 7 € SenFam(A). Define a family of binary
functions €7 ={€L }scsign, Where, for all = €|Sign|, ¢£:SEN(Z)*— {0,1} is given, for all ¢,y €
SEN(X), by

1, ifpelsiffyeT
T _ s @ = =
KE(('O’W)_{ 0, otherwise

We call ¢7 the local coherence with respect to 7 or the T-local coherence function. Define,
similarly, a family of binary functions g7 ={gL}xcsign, Where, for all ¥ €|Sign|, g% :SEN(Z)* —
{0, 1} is given, for all ¢,y € SEN(X), by

1, if SEN(f)((p).z/ X/ (S] Tzf iff SEN(f)('Q//).Er X, (S TZ’7
gl(p, )= for all X’ €|Sign|,f €Sign(X,X’), x' € SEN(X')

0, otherwise

Note that, g7 is the indicator or characteristic function associated with the Leibniz congruence system
of Tin A, i.e.

| L if () e QD)
gg(%l”)—{ 0, otherwise :

We call g7 the global coherence with respect to 7 or the T-global coherence function.
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Denote, as usual, by @ the binary XOR operation. Define ¢, the coherence with respect to T
or the T-coherence, as the family of binary functions ¢’ ={C§}ZE|Sign|, where, for all X € |Sign|,
cL:SEN(Z)*— {0, 1} is given, for all ¢, € SEN(X), by

L@, ) =L5(p, V) Dgr (9, V).

We have the following characterization of ¢7:

Lemma 20
Let A= (Sign, SEN, N) be a semilattice system and consider 7 € SenFam(A). Then, for all X € |Sign|
and all ¢,y € SEN(X),

|1, if(¢peTs iff y €Tx)and (p,¥) ¢ Q22(T)
cg(go,W)_{ 0, otherwise >

Proor. Let ¥ €|Sign| and ¢,y € SEN(X). Note that, by the compatibility property of the Leibniz
congruence system, g% (¢, ¥ )=1 implies ¢L(¢,¥)=1. Therefore, we have

cHlp)=1 iff th(p.v)@gllp.¥)=1
iff  (3(p.9)#85(0.¥)
iff €5(¢,¥)=1and g{(¢,¥)=0.
This immediately yields the displayed characterization. [ |

Let X €|Sign| and consider a finite -chain
C: pi<s@r<g <s@r1<z @G

of length k. Define the coherence vector of C with respect to 7" or the 7-coherence vector of C
as the vector ¢L(C)=(cL(C);: 1 <i<k), where

L(Cyi=cl(npin), i=1,..k—1.

Let < be the lexicographic binary ordering of binary vectors. We define, for all ¥ €|Sign| and all
@ € SEN(X), the spectrum of ¢ with respect to 7 or the 7-spectrum of ¢ by

SpcL(p)=max{cL(C):C/QA(T)C | vp/Q2L(T) a S-chain}.

We conclude by using spectra of elements to provide a characterization of cloud families in FSLs in
what may be viewed as an analogue of Theorem 4.6 of [4] in the categorical multi-signature context.
For any given dimension, we denote by 0=1(0, 0, ...,0), the zero vector of that dimension (which is
left intentionally unspecified, but is determined by the context in which 0 is used).

THEOREM 21
Let A=(Sign,SEN, N) be a semilattice system with sectionally finite height and 7 € SenFam(A4).
Then T € ClIFam(4) if and only if

* 1l yeTy, for all ¥ €|Sign|, and
* Spcl(p)=0, for all ¥ €|Sign| and ¢ € SEN(Z)\{Lx}.
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Proor. Suppose, first, that T ¢ CIFam(A4). Then T/QA(T)#R(T/Q4(T)). Thus, there exists X €
|Sign|, ¢ € SEN(X), such that either ¢ € Tz and hx(¢/Q4(T))is evenor ¢ ¢ T and hs(¢/ Q4(T)) is
odd. Exploiting sectional finiteness, let us choose such a ¢, necessarily ¢ # 1y, such that
hs(p/ Q4(T)) is minimum. Consider a maximal E-chain in | z¢/Q4(T):

L5/ QD) =01/ Q5(T) <z <z o1/ Qe(T) <z o/ QE(T) =/ Q5(T).

Then, we have (g;_1,¢) ¢ Q4(T), whence gL (¢r_1,¢9)=0. On the other hand, since ¢ is of minimum
height satisfying the property

peTs iff hg(go/Q (T)) is even,

we get i €T iff hs (@i I/Q (T)) is odd. Now, if one of ¢, ¢;_; was in Tx and the other
outside Ty, then, by the preceding equivalences, the heights A (¢/Q4(T)) and hx(pr—1/QL(T))
would have the same parity, which would contradict the maximality of the X-chain chosen above
in | 2@/ Q4(T). Therefore, we must have ¢, € T iff € T, i.e. £L(¢4—1,9)=1. This shows that
cL(@r-1,9)=1, whence cL(p)#0. Since C/Q4(T) is a maximal Z-chain in | 5@/ QE(T), we get
Spci(¢) #0.

Suppose, conversely, that there exists X € |Sign|, ¢ € SEN(X), such that Spcg(go) #0. Then, there
exists a maximal Z-chain C/Q4(T)C | s/ Q4(T), say

L5/ Q5(T)=01/Q5(T) <z <z o1/ QD) <z o1/ Q5(T) =/ Q5(T),

such that, for some i <k, c§(g0i, @ir1)=1. By Lemma 20, we get ¢; € Ts iff ¢; 1 € Ts and (¢;, ¢i11) ¢
Q4(T). But, then, either ¥ =¢; or ¥ =¢,,| provides a counterexample for v € T, iff h(/ Q4 (T))
is odd, since, otherwise, the maximality of the chain would again be violated. Therefore, we get that
T/ QUT)£R(A/ QAT)), proving that T ¢ ClFam(A4). [ |

ExampLE 22 (18 Revisited)
Consider again the semilattice system A4 of Example 18,
SEN
| _SEN()
2/

<% <3
00—+
SEN(f)

with Ty ={0,1} and Ts,={Ll}. Recall from Example 18 Part (a) that QA(T)=ASEN. Clearly,
£5£(0,1)=1,g%(0,1)=0, whence cL(0,1)=1 and, therefore, Spcz(l) 1) #0. Thus, T ¢ CIFam(A4),
as was shown by explicit calculation in Example 18.
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State in the Fall of 1993. The meticulousness and skillful presentation of a LOGICIAN was a savory
treat that set a standard that few lectures can surpass. Later, when Don had already become my
Graduate Advisor, I recall the few precious evenings spent at Great Plains Sauce and Dough Co.,
Pizza Kitchens, Hickory Park, and the Mexican scene, Cazador, Carlos O’Kelly’s and Diamond
Dave’s. And a little later, when close to and after graduation, the invitations for the peaceful, quiet,
pleasant and heartwarming evenings at Don’s place on Ontario, over dinner and wine. Life and its
Memories are made worthwhile by these ‘Moments’ and the Associations established through them
with Remarkable and Exemplary Individuals. So it is with a sense of pride in having been his student
and friend, and with Gratefulness and Appreciation that I dedicate this work to him in celebration
of his 80th Birthday and of his Fundamental Contributions to Abstract Algebraic Logic and to
Universal Algebra.

References

[1] W. J. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the American Mathematical
Society, 77, 1989.

[2] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order, 2nd edn, Cambridge
University Press, 2002.

[3] J. M. Font, F. Guzman and V. Verdu. Characterization of the reduced matrices for the
{A, v}-fragment of classical logic. Bulletin of the Section of Logic, 20, 124—128, 1991.

[4] J. M. Font and T. Moraschini. A note on congruences of semilattices with sectionally finite
height. Algebra Universalis, 72, 287-293, 2014.

[5] G. Voutsadakis. Categorical abstract algebraic logic: prealgebraicity and protoalgebraicity.
Studia logica, 85, 217-251, 2007.

[6] G. Voutsadakis. Categorical abstract algebraic logic: referential -institutions. Bulletin of the
Section of Logic, 44, 33-51, 2015.

[7] G. Voutsadakis. Categorical abstract algebraic logic: tarski congruence systems, logical
morphisms and logical quotients. Journal of Pure and Applied Mathematics: Advances and
Applications, 13, 27-73, 2015.

Received 17 April 2015

GTOZ ‘€2 Jequiaoe uo 1senb Aq /6io'sfeulnolpio)xo: edbily/:dny woly pepeojumoq


http://jigpal.oxfordjournals.org/

	1 Introduction
	2 Semilattice systems
	3 Rainbow families
	4 Cloud families
	5 When telescopy is not sufficient...
	6 ...Spectroscopy opens the skies

