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Abstract

The notion of subdirect irreducibility in the context of languages without equality, as
presented by Elgueta, is extended in order to obtain subdirect representation theorems for
abstract and reduced classes of structure systems. Structure systems serve as models of first-
order theories but, rather than having universal algebras as their algebraic reducts, they have
algebraic systems in the sense of Categorical Abstract Algebraic Logic. The subdirect
representation theory for partially ordered functors, presented in previous work by the author,
becomes a special case of the theory presented here.

1. Introduction

This paper expands on the effort to adapt notions and results concerning
the ordinary model theory of equality-free first-order logic, based on the
notion of a first-order structure, as developed by Elgueta, Dellunde and
others in the context of Abstract Algebraic Logic (AAL), to the equality-free
first-order logic model theory that is based on the more general notion of an
L-structure system or, more simply, an L-system. The concept of an

L-system was introduced in [25] as a vehicle for transporting results from

the well-developed theory of first-order structures to structures whose
underlying algebraic component is an algebraic system rather than an
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ordinary universal algebra. Algebraic systems, in turn, appeared first in the
context of Categorical Abstract Algebraic Logic (CAAL) in [20], where
sufficient evidence was provided to the effect that, in that context, they are
the “right” algebraic entities to consider in place of ordinary universal
algebras that have been at the focus from the very beginning in AAL.

In the present installment of these ongoing investigations, the focus is on
revisiting and adapting the last part of [9], concerning subdirect irreducibility
of first-order structures and subdirect representability of full and of reduced
classes of structures, to the framework of L-systems. As a consequence, the

present work depends, to a large degree, on the work introducing and
studying protoalgebraic classes of £-systems [28], which was inspired by and

based on the first part of [9]. In previous studies by the author on the same
topic [21, 22, 25, 26, 27], the basic notions were introduced and the basic
results of the theory developed, also inspired by and based on work of
Elgueta [8, 9, 10, 11] and Elgueta and his collaborators [7, 12].

More specifically, in [9], Elgueta, based on his previous work [8], sets out
to develop a theory of subdirect representability for full and for reduced
classes of first-order structures defined without equality. His motivation,
which is very similar to ours, is two-fold. On the one hand, it consists of
abstracting results known previously in the context of the model theory of
universal Horn logic without equality and with one unary predicate symbol,
i.e., in the context of logical matrix models of sentential logics, to the level of
arbitrary equality-free first-order structures. On the other hand, by obtaining
such general results, he aims at expanding the scope of AAL by bringing
under its wings various aspects of the theory that were previously thought to
be outside its realm. Elgueta’s journey brings him, first, to the land of filter
congruences and protoalgebraic structures. A filter congruence on a structure
1s a pair consisting of a filter extension of the structure and of a congruence
on that filter extension. Elgueta provides elegant and convincing arguments
to the effect that filter congruences are the appropriate notions to replace
ordinary universal algebraic congruences in the context of structures, since
they help establish analogs of the well-known homomorphism theorems of
Universal Algebra in that context. Analogs of these theorems, with the
exception of the First Isomorphism Theorem, have also filter versions. In his
quest to find a necessary and sufficient condition to establish a filter version
of the First Isomorphism Theorem and inspired by the work of Blok and
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Pigozzi [2], Elgueta introduces the notion of a protoalgebraic class of
L-structures and provides several interesting characterizations of

protoalgebraic classes, that also serve to tie the theory of structures to
various previous results known for the special case of logical matrices.

Both the notion of a filter congruence and that of a protoalgebraic class of
structures were generalized by the author to cover L-systems in [28]. In the

present work the journey is continued with the treatment of the subdirect
representation theory. The contents of the paper are briefly discussed in the
remainder of this Introduction.

First, a necessary and sufficient condition is established for the subdirect
representability of an L-system in a given class of L-systems. This condition

generalizes both Corollary 3.3 of [9], which gives a necessary and sufficient
condition for the subdirect representability of a structure into a class of
structures, and the subdirect representation theorem for partially ordered
functors of [24]. Then, two notions of subdirect irreducibility are formulated
for L-systems inside a given class, taking after corresponding notions of [9]

from the theory of first-order structures. One of the two notions, that of
subdirect irreducibility, uses reductive L-morphisms, whereas the second,

that of complete subdirect irreducibility, uses reductive L-morphisms with

isomorphic natural transformation components. It is shown that the two
notions coincide when subdirect irreducibility in reduced classes 1s
considered. Complete subdirect irreducibility and subdirect irreducibility are
characterized in terms of meet irreducibility of filter congruence systems in

various partially ordered structures of filter congruence systems. To make
this more precise, recall that, given two L-systems 20 = (SEN, (N, F), Rm>
and B = (SEN, (N, F), R%) over the same underlying L-algebraic system
A = (SEN, (N, F)), B is said to be a filter extension of 2, denoted 2 C ‘B,

if, for every relation symbol r € R, we have that r® < B, Also recall that,
given an L-system 2, as before, by a congruence system on 2l is meant an

N-congruence system 0 on SEN, that is compatible with the relation system

R¥. Moreover, by a filter congruence system on 2l is meant a pair (5, 0),

where A C 9B and 0 is a congruence system on 9. The trivial filter
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2A
congruence system of an L-system 2 is the pair (2, ASEN ). With these
definitions in mind, it is shown that an L£-system 2l is subdirectly irreducible
in a full class K if its trivial filter congruence system is meet irreducible in

the poset Fef () = (Fef (), ©), where

A
Fef () = {(B, ASENy .9l C 9 e 1},

whereas an L-system 2 is completely subdirectly irreducible in a full class

K if its trivial filter congruence system is meet irreducible in the poset
Fey(2) = (Feg(2A), ©), where

Feg() = {(%B, 0y : A C B € K and 6 € Con(B)}.

Furthermore, recalling that by Q(2) is denoted the Leibniz congruence

system of an L-system %I, it is also shown that an L-system 2( is subdirectly

irreducible in the reduction K* of a full class K if its trivial filter congruence

system is meet irreducible in the poset Fek(21) = (Fek(21), ), where

Fek(A) = {(B, 0) € Feg(A): 0 = Q(B)).

Finally, after elaborating on some of the connections between the
different kinds of subdirectly irreducible members of a given class of
L-systems and its reduction, the task of formulating and proving subdirect

representation theorems for L-systems is undertaken. More precisely, given
a full class K of L-systems and an L-algebraic system A, it is shown that, if
Ka, the class of all £-systems in K with underlying L-algebraic system A,
is closed under unions of C-chains, then every L-system in K is isomorphic

to a subdirect product of subdirectly irreducible members of X. This theorem
forms an analog of the Subdirect Representation Theorem for Full Classes of
equality-free first-order structures of Elgueta (Theorem 3.14 of [9]). Finally,

it is shown that, under the same conditions, every L-system in the reduced

class K* is isomorphic to the reduction of a subdirect product of members of

the class KrgrNK", ie., the class of all reduced K-subdirectly irreducible

L-systems.
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For all unexplained categorical definitions and notation, see, e.g., [1, 4,
16]. Two standard references on model theory are the books [5, 15]. For an
overview of the present state of affairs in Abstract Algebraic Logic the reader
is referred to the review article [14], the monograph [13] and the book [6]. For
recent developments on the categorical side of the theory, see [18-20, 23].

2. Subdirect Representability

Let Sign be a category and SEN : Sign — Set a functor. Recall from [23]
that the clone of all natural transformations on SEN is defined to be the

locally small category with collection of objects {SEN® : o an ordinal} and
collection of morphisms 1t:SEN* — SENP B-sequences of mnatural

transformations t; : SEN* — SEN. Composition is defined by

SEN® —(Gii<B  gpNB_ 0i0 gy
(Gjrj<yye(tyi<P)=(c;j({x; :i<B)):j<.

A subcategory N of this category containing all objects of the form SEN* for
k < ®, and all projection morphisms pk’i : SEN* SEN, i <k, k < o,

with p&:SEN(Z)* — SEN(Z) given by
pE(§) = ¢;, for all § e SEN(D)*,

and such that, for every family {r; : SEN* — SEN:i <[} of natural

transformations in N, the sequence (t; : i < ) : SEN* — SEN' is also in N,

is referred to as a category of natural transformations on SEN.

Given a functor SEN : Sign — Set, an n-ary relation family

r={rs }Ze\ sign| on SEN is a | Sign |-indexed collection of n-ary relations

rs = SEN(Z)", for all = €| Sign | The relation family r is called a relation
system if, in addition, for all £;, 5 | Sign | and all f € Sign(Z;, Z,),

SEN(f)n(rZI) < Isg-
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Recall, also, from [25] that a (structure system) language
L = (F, R, p) consists of a category F of natural transformations on a given
set-valued functor SEN : Sign — Set, a nonempty collection R of relation
symbols and an arity function p: R — o, giving the arity of a relation
symbol in R. An L-(structure) system 2 = (SEN* (N¥ F%) R¥) consists
of

e afunctor SEN? : SignQl — Set,

e a category N? of natural transformations on SENQL,
e a surjective functor F*.F— NQ[, that preserves all projections and,

as result, preserves also the arity of all natural transformations and

A

e acollection R* = {r* : r € R} of relation systems on SEN?® indexed

by R, such that r¥ is an n-ary relation system if p(r) = n.

Given two L-systems 2 = (SEN*, (N®, F¥) R%) and B = (SEN®, (N?%,

F?®), R®), an L-(system) morphism (F, a): 2 — B is an L-algebraic
morphism

(F, o) : (SEN* (N¥, F*y) — (SEN® (NP, FPy),
such that ay(i5')  rgs), for all £ e |Sign™ | and all re R (F, 0) is
surjective, denoted (F,a):% —» 9B, if F is surjective and
oy : SEN?(2) — SENZ(F(3)) is surjective, for all T e | Sign® | Moreover,
(F, o) is called strict, denoted (F,a):2A —¢ B, if as(rd)= rF%(Z)’ for all

T el Sign* | and all r € R. Given two L-systems 2 and B, as above, A is

said to be an expansion of 8 and B a contraction of 2l if there exists a

strict surjective L-morphism, also known as a reductive L-morphism,

(F,o): 2% —, B.

Now recall, from, e.g., [28], that a class K of L£-systems is said to be a full
class whenever it is closed under expansions and contains an L£-system with

at least one nonempty relation system. K is said to be an abstract class if it
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is full and closed under contractions. On the other hand, K is called a
reduced class if it contains some nontrivial £-system and all its members

are (Leibniz) reduced L-systems.

Let £ =(F, R, p) be a system language, X be a class of L-systems and

A = (SENQI, (NQI, FQ[), Rm) an L-system not necessarily in K. 2 1s said to

be subdirectly representable in K if it can be subdirectly embedded into a
direct product of members of K. The two lemmas that follow from analogs of
Lemmas 3.1 and 3.2 of [9] and provide a characterization of subdirect
representability of an L-system in a class of £-systems. Given a subdirect

embedding (F,a): 2A HSdHieI%i’ we will denote by (Fi, oci) : A — B, the
composition (Fi, ai) = <Pi, rci) o(F, a),

_ (F,ox)

A

- H;‘c: B;

(Pf<7"i)

B;
where (Pi, ni) : Hie] B; — B, is the projection L£-morphism, for all i € L

Of course (F i, (xi) is a surjective L£-morphism, for all i € I, by the definition

of a subdirect embedding.

Given an L-structure system Ql:(SENQl, (Nm, Fm), RQL>, an

N?.congruence system 9:{92}26\ Sign?| on SEN? is said to be a

congruence system of 2 if, for all r € R, with p(r) =n, all £ €| Sign* |
and all ¢, § € SEN*(2)",

derd and ¢ 6% ¢ imply ¢ e ro.

An L-system B is said to be a filter extension of an L-system 2, denoted

A C B, if, for all r e R, r® <rP. A filter congruence system of 2 is a
pair (2B, 0), where B 1is a filter extension of 20 and 0 is a congruence system

of 8. Given a class K of L-systems, by Fcy(2) is denoted the class of all
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K-filter congruence systems of 2, i.e., all those filter congruence systems

(B, 8) of A, such that Bek, and by FclK(QL) the class of all K-filter
congruence systems (2B, 0) of 2, such that 6 = Q(B), the Leibniz congruence

of B, i.e., its largest congruence system.

Given an L-morphism (F, a) : A — B, by Ker((F, o)) is denoted the
kernel of (F, ), i.e., the collection Ker ((F, o)) = {Kers((F, a))}ze‘ Sign? |
with

Kers ((F, a)) = {(6, ) € SEN*(2)® : az(¢) = az(0))

If (F, o is strict, then Ker((F, ay) is a congruence system of 2. Moreover,

by FKer((F, o)) is denoted the filter kernel of (F, a), i.e., the pair
(71(B), Ker((F, a))), which is a filter congruence system of .

Before proceeding to Lemma 2.1, recall from [28] that, given an L£-system
A = (SENQ[, (NQ[, Fgl), Rgl), by ©®% is denoted the filter congruence system
e% = (2, ASENQ() of 2. Lemma 2.1 provides necessary conditions for an
embedding of an L-system 2[ into the direct product Hie[ B; of
L-systems B;, i € I, in a full class K to be a subdirect representation of 2
in K. A collection of functors F':C — D;,ie 1, is said to be collectively
mono if, for all 2,3, €|C|, Fi(3;) = Fi(5y), for all i e I, implies that
¥, = X, and similarly for morphisms.

Lemma 2.1. Let K be a full class of L-systems, 2 = (SENQ{, (Nm,
F*), R*) an L-system and B; =(SEN® (N%i F®) R®\eX, forall i e I.
If (F, o) : % —q[[,.;B; is a subdirect embedding, then FKer((F', o')) e
Feg(A), forall i € I, and, moreover,

1. (., FRer((F*, a')) = ©* and

2. the pair (H',vy'), given by H'=F' and +v':SEN%/
FKer((F!, o')) — SEN®i o F', defined, for all = < |Sign®|, ¢ ¢ SEN*(2),
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by
v5(0/ FRers(F, a'))) = ak(9)

is a reductive L-morphism (H', y') : 2 / FKer((Fi, oci>) —¢ B;, such that

(a) {H' :i e I} are collectively mono and

(b) yiz is a bijection, for all ¥ € | Sign* |

Proof. Let (F, a): 2 —g[]._;B;, with B; €k, for all ic I, be a
subdirect embedding and set (F!, ol) = (P, n') o (F, a, for all i e I. First,

let us see that ﬂidFKer((Fi,ai)):@m. Suppose that r e R, with

p(r)=n, = e|Sign®| and ¢ e SEN*(2)". Then, if oi($) e rF%i o for all

)

: : - B ~ . .
i € I, we obtain that ay(¢) r}j&jl ', whence § e ¥, since (F, o) is an

1
embedding. Thus, we get that (). ;a" (B;) = 2. Also, for all £ €| Sign
beddi Th h il t i Also, for all Sign®

and all ¢, ¢ € SENQ[(Z), if (¢, @) € ﬂ Ker2(<Fi, ai>), then otiz(d)) = ot%((p),

iel
for all i € I, whence ox(¢) = as(¢p), showing that ¢ = ¢, since (F, a) is

. . A
injective. Therefore, ﬂie 7 Ker((F*, o')) = ASENT " which concludes the proof

that ﬂie] FKer((F", oci)) = o

Since <Fi, ai) : A — B, is a surjective L-morphism, by Corollary 7 of
[28], the pair (F’,y'): Q[/FKer((Fi, oci))—»s B, is a strict surjective
L-morphism with y% a bijection, for all T e | Sign® | and all i € I. This
also shows that FKer((F',a'))e Fcy(2), since X is a full class and %B; K
for all i € I. To see that {Fi :1 e I} are collectively mono, suppose that
%y, 3y €| Sign® |, such that Fi(3)) = Fi(3y), for all iel. Then
F(Z,) = F(Z5), whence ¥; = X, since (F, a) is injective, and similarly for

morphisms.

Lemma 2.2 complements Lemma 2.1 by providing sufficient conditions for

an L-system 2l to be subdirectly embeddable into a direct product Hie 7 B,
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of a collection B,;,i € I, of L-systems. It also provides sufficient conditions
for 20 to be subdirectly representable in a given class X of L-systems that is

closed under contractions.

Lemma 2.2. Let 2 =(SEN, (N, F), Rgl) be an  L-system,
e = &, ei>, iel, filter congruence systems on A and
B; = (SEN', (N', F'), R, i € I, a family of L-systems. If ﬂie[ e = o%,
and there exists a family of reductive L-morphisms (Hi,yi)
: 2[/®i —B;, 1 € I, such that

1. {H' : i e I} are collectively mono and

2. yiz is a bijection, for all £ €| Sign | and all i € I,

then 2 is subdirectly embeddable in the direct product HieI B;.

If, in addition, © e Feg (1), for all i € I, where X is a class closed under
contractions, then 2 is subdirectly representable in K.

Proof. Consider, for all i € I, the projection £-morphisms (Isigns nGi) :
A — Q(/@i. Compose with (H', y'): Ql/®i —»¢ B; to obtain the £-morphisms
(H',y"y: 4 — B;, for all iel Finally, set (K, «) =[]

A — Hiel%i'

o HL Y

I ign, O ’
A ( Sig ™ } mflex
(K, uh\ (H' )
H;.e.' B i i B
, T

As shown in the proof of Proposition 1 of [24],
(K, x) : (SEN, (N, F)) — [[,_; (SEN’, (N', F')) is a subdirect embedding
of the underlying L-algebraic systems. So it suffices to show that (%) is a
subsystem of Hie] %B;. To this end, suppose that r € R, with p(r) = n, and

T €| Sign |, ¢ € SEN(2)". Then we have
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b ndiff (vie 1) (§/ 0k e /) (since ,_, 0 = ©%)
iff (Vi I)(v(6/0%)e ’}ff@)) (since (H',v') : 21/ ©' —B;)
iff (Vi eI)(v4($) e r}?j(z)) (by the definition of (H', y''y)
iff s (§)e rgg;g Bi (by the definition of (K, «))

Thus «(2A) ceq [];.; Bi-

If, now, ® e Feg(2), for all i € I, and K is closed under contractions,

then A/@ ek, for all ie I, whence B, ek and A is subdirectly
representable in K
If Lemma 2.1 and Lemma 2.2 are combined, then the following corollary

may be formulated. It gives a very simple and elegant characterization of the

subdirect representability of an L-system 20 in an abstract class K of
L-systems in terms of the existence of a collection of K-filter congruence

systems on 2 whose meet is the trivial filter congruence system on 2.

Corollary 2.3. Let X be an abstract class of L-systems and 2 be an
L-system. Then 2 is subdirectly representable in K if and only if, there exist
©' € Feg(A),i € 1, such that (),_; 0" = o3,

Corollary 2.3 has the following version when applied to reduced classes of
L-systems. Corollary 2.4 is an analog in the present framework of Corollary

3.4 of [9]. It characterizes the subdirect representability of a reduced
L-system 2 into the reduction K* of an abstract class K of L-systems in

terms of the existence of a collection of K-filter congruence systems on 2 in

the subset Fck(2) of Fey(2), whose meet is the trivial filter congruence

system on £.
Corollary 2.4. Let X be an abstract class of L-systems and A be a
reduced L-system. Then U is subdirectly representable in X* if and only if,

there exist © e Fek(),ie I, such that ﬂie] e = e,
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Proof. Suppose that (F, a) : A —gq[],_;B; with B; eX’, forall i e I.

. . . -1 . .
Take ©' = FKer((F', o)) = (&' (%B;), Ker((F*, a'))). By Lemma 2.1, we
have that the mapping (H’, y') : Ql/FKer((Fi, oci)) —¢ B; 1s a reductive
L-morphism. Therefore, by Theorem 5 of [21], we get that

oty (B:) = v ()

_ yi*l(ASEN‘Bi)
= Ker((Fi, ai))/ FKer ((Fi, ai>)

_ ASENQ‘/Ker«Fi, ai>)'

Thus, denoting by (I, =) : aiil(%i)H»s(xfl(SBi)/Ker((Fi, o')) the natural

projection L-morphism, we have
i1 1,0t
Qa"  (B;)) =n(v" (B;)))

= Q0 ()

_ n—1(ASEN9‘/Ker(<Fi, ai>))

Ker((F', a')).

Therefore, ® e Fck(2). Since, by Lemma 2.1,
e = [FKer((F', a')) = 6%,
iel iel
the left-to-right implication is complete.
Suppose, conversely, that ©' = (A;, Q(A; )y e Fek(A), i e I. Since the

relation system ﬂie 7 Q(2A;) is a congruence system of 2 and 2 is reduced,

2
we get that ﬂie[ 0(2;) = AS*N" | Now apply Lemma 2.2.

As 1s the case when one passes from algebras to first-order structures,

when one passes from [L-algebraic systems to L-systems the role of

congruence systems is assumed by the filter congruence systems.
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3. Notions of Subdirect Irreducibility

In [9], Elgueta explains that, in the context of equality-free languages,
strict epimorphisms of structures behave, to a large extent, like
isomorphisms. This motivates him to consider simultaneously two notions of
subdirect irreducibility; one based on strict epimorphisms and one on
isomorphisms, as is usually done in the context of universal algebras.

In extending the scope of Elgueta’s work, we take into consideration,
besides his approach, some of the guiding principles provided by the
subdirect representation theory for partially ordered functors of [24], which
show that, at the functor level, it is reasonable to only ask for surjectivity
rather than a full isomorphism. The combination of these two approaches
suggests adopting the following definitions as suitable analogs of those of

Elgueta in the present context.
Let K be a class of L-systems and 2A=(SEN% (N* F% R¥ ek a

nontrivial L-system, i.e., such that re oz (SENQ‘ )p(r), for some r € R. U is
said to be (finitely) subdirectly irreducible in X, or simply (finitely)
K-subdirectly irreducible if

(P, my (F, o)
A - By [
iel
with P an isomorphism and ;€K for all ie I (I finite), implies
<Fi, oci) o (P, my : A —4 A; for some i € I.
The L-system 2, on the other hand, is completely subdirectly

irreducible in K or X-completely subdirectly irreducible if
(Foo) : A —gq[ ;. % with ;€K for all  iel, implies
(F' aly: 1 —g A;, with ol a bijection, for all T e | Sign® |, for some i € I.
We write Kgrgr (Kgpsr) for the class of all (finitely) X-subdirectly
irreducible L-systems and Kppgr for the class of all K-completely
subdirectly irreducible L-systems. As a result, Kggr, Krcgr denote,

respectively, the classes of K*-subdirectly irreducible and X*-completely

subdirectly irreducible £-systems.
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The next proposition shows that, for any class K of L-systems, the class
of all X*-completely subdirectly irreducible £-systems and the class of all

K*- subdirectly irreducible £-systems coincide, i.e., that Kgcgr =Kggr, for any

class X.

Proposition 3.1. For every class K of L-systems, Krg =KResI-

Proof. Suppose that AeKpgr and that (F, a): 2% —g[]._; %, with

I,vy (F,a)

A; eX®, iel. Then A -4 A Hielm satisfies the hypothesis of the

i
condition for membership in Kigr, whence, by the hypothesis, there exists
iel, such that (F' o'):%A—»,%A;. Since 2A; is reduced, by the Filter
Homomorphism Theorem 2 of [28], we get that aiZ is an isomorphism, for all

% e|Sign? |, whence 2 e Kjegr.

(P, )y (F,a)

If, conversely, AeKpcgr and 2A -, By Hielmi’

with P an
isomorphism and £; eK*, then, since both A and 9B are reduced, we get,
once more by Theorem 2 of [28], that (P, n) : 2l — B is an isomorphism. (Note

here the assumption that P is an isomorphism.) Therefore

(F, o) (P, m)
A —y H A, satisfies the hypothesis of the condition for

iel °1
membership in Kpegr, which yields that, there exists iel, such that
(F' alyo (P, my: 2 - A;, with oc% a bijection, for all T €| Sign* | Therefore
2 e Kpgr-

On page 234 of [9], a counterexample i1s provided for the claim

Krsr =Kresrs where, of course, K is a nonreduced class of £-structures. The

counterexample takes as K the class of all lattice quasi-ordered sets.
4. Characterizations of Subdirect Irreducibility

Recall from [28] that, given an L-system 2 and a class K of L-systems,

by Fey(2) is denoted the collection of all filter extensions of 2 that are in K,
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1.e.,
Fex(A)={B: AL B ek}
Moreover, Fcy(2) is denoted the collection of all K-filter congruence

systems of 2, i.e., all pairs (%, 0) such that 9 is a K-filter extension of 2

and 0 is a congruence system on 8. Formally,
Feg(2A) = {(B, 0): AC B €K and 6 € Con(B)}.
Let X be a class of L-systems, 2 an L-system and X c Fcg(2). An
element ©eFcy(2) is said to be meet-irreducible in X, if, for all
O ecX,iel, /\id@i = O implies that ©' =@, for some iel. We provide in

this section some results that characterize subdirect irreducibility of

L-systems in terms of meet irreducibility of filter congruence systems in

appropriate partially ordered structures of filter congruence systems. These
results generalize corresponding results of Elgueta [9], which, in turn,
abstract well-known characterizations of subdirectly irreducible universal
algebras via properties of their lattices of congruences.

Theorem 4.1 is an analog of Theorem 3.5 of [9] and characterizes
K-subdirect irreducibility in terms of trivial K-filter congruence systems, i.e.,

in terms of K-filter extensions. Recall, once more from [28] that, given an
L-system 2 =(SEN,(N, F), R), by Fcf(2) is denoted the ASEN _gection of
Fey (), 1.e.,

Fed () = {(B, ASENY . o C 98 e k).

Clearly, this collection forms an isomorphic partially ordered set under
C to the one formed by the collection Fey ().

Theorem 4.1 Let K be a full class of L-systems and
A = (SEN, (N, F), Rm)eK a nontrivial L-system. Then the following

statements are equivalent:

1. QlEKRSI'
2. For all ; = (SEN',(N', F'), R"y e X, i e I, (F, o) : % —eq[[,_; %

implies (Fi,oci) (A —¢ A;, for some iel.
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3. % is meet irreducible in Fcf ().

4. There exists r e R, with p(r) = n, = € | Sign |, ¢ € SEN(2)", such that
berg but pery, forall B e Feyr(A) - (A

Proof. 1—2 This implication is obvious from the definition of

K-subdirect irreducibility.

253 Let @i:(Qli,ASEN)chf(QL), for all iel, and assume that
©% =A\,.;0". Then, by Lemma 2.2, (F,a): 2 HSdHiEIQl/G)i, where
F(z) = Hie] %, for all Xe|Sign|, and similarly for morphisms, and
as(0) = Hidq)/@g, for all e|Sign| and all ¢ SEN(Z). Thus, by the
hypothesis, (Fi, oci) 1A g Ql/@)i, for some i e I, whence 0% =@ and 0% is

meet irreducible in Feg ().

3 >4 Suppose, now, that ®% is meet irreducible in Fef(A) and let
Ao =/\{B e Fer(A):B=2A}. Then 2, =2, whence, there exists re R, such
that 70 =% Thus, since o C DB, for all BeFer(A)—{A}, there exist
s e|Sign| and ¢ € SEN(Z)", such that ¢ery, for all B e Feg(2)-{2A}, but
bert.

4 — 1 Suppose, finally, that there exist r € R, with p(r) = n, £ € | Sign |

and ¢ € SEN(Z)", such that ¢ e ¥, for all B e Fey(2) - {A}, and ¢ ¢ ry.
Assume that
(P, m)y (F, o)

A >y B -y [
el
with P an isomorphism and &; €K, for all tel. Fix iel. Then
<Fi, oci) o(P, my: A — 2A; is a surjective L-morphism. Since K is full,
FKer((F, a') o (P, 1)) € Fey(2). We show that A,_;FKer((F’, o'y o (P, 1))
= (2, Ker((P, n))). Since (F, a): B HSdHiEI 2;, we get, by Lemma 2.1,
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that A, ;FKer ((F', a'))=@%. But, by definition,
FRer((F', o'y o (P, n)) = (FKer((F?, a'))).
This yields
NicrFRer((F*, o'y o (P, m)) = N\ieyn ' (FRer((F', a')))
= (AjerFRer((F', o))
=n'(0%)

= (A, Ker((P, m))).

Now we get 2 = ;.z(a’ o n) 1(A;), whence, by the hypothesis, there
exists i eI, such that 2 =(o'on) (;). Therefore (F,o')o (P, m): A —, A;

is a reductive £L-morphism and 2 e Kgg.

Theorem 4.2 is an analog of Theorem 3.6 of [9] and characterizes

K-complete subdirect irreducibility in terms of K-filter congruence systems.
More precisely, it states that for any full class K of L-systems and any

nontrivial L-system 2 in K, 2l is completely subdirectly irreducible in K if

and only if the trivial filter congruence system ©* is meet irreducible in the

collection Fey(2A) of all K-filter congruence systems on £I.

Theorem 4.2. Let X be a full class of L-systems and 2 X a nontrivial

L-system. Then A eXpegy if and only if © is meet irreducible in Feg(2).

Proof. Suppose, first, that A eKgyegr and let o = &L, 0') e Feg(A),ie 1,
such that A;.;®' =©%. Then, by Lemma 2.2, (F, o) : 2 HSdHiEIQl/Gi,
whence, since 2 €Kpcgr there exists iel, such that (Fi, ai) 1A >y Ql/@i,
with ociE a bijection, for all ¥ € | Sign® | Hence, we have that 0 =02 and

©? is meet-irreducible in Fey(21).

Suppose, conversely, that ®% is meet-irreducible in Fcy () and that

(F,a): A —gq[],_; % Then, by Lemma 2.1, A;;FKer (F, aly)= 0™
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Hence, by the meet-irreducibility of ®% in Fey(2), FKer ((F', a')) = %, for
some el Thus, there exists a reductive homomorphism
(G, B) : %/ FKer((F', a')) -, %;, such that By is a bijection, for all
T el Sign® | Since FKer((F',o'))= 0%, this proves that 2 e Krest-

For reduced classes of L-systems, we have the following analog of

Theorem 3.7 of [9] that uses the set of all Leibniz X-filter congruence

systems. According to Theorem 4.3, a nontrivial reduced L-system 2 is
subdirectly irreducible in the reduction K* of a full class K of L-systems if
and only if its trivial filter congruence system 0% is meet irreducible in the

collection Fcll{(Ql) of all filter congruence systems on 2l of the form (B, Q(B)).

For the proof, recall from Proposition 3.1 that, for every class K of
L-systems, Kgsr =Krest-

Theorem 4.3. Let K be a full class of L-systems and let AeX" a
nontrivial reduced L-system. Then AeKpgr if and only if 0% is meet

irreducible in Fck(2A).

Proof. Suppose, first, that 2 eKhg and O =(2;, Q) e Fek(A),i e I,
such that A;.;0'=0%" Thus, by Lemma 22, there exists
(F,ay: A —q[],_, & /®!. Therefore, since A eKggy, there exists i e I, such
that (Fi,oci):Ql—»s Q[/G)i, which shows that ©' =@% and ©% is meet
irreducible in Fek(2).

If, conversely, ©% is meet irreducible in Fcll((Ql) and
(F,o) : U HSdHiEI 2;, with 2; ek, for all i € I, then we get, on the one
hand, by Lemma 2.1, that /\iEIFKer(<Fi, a')) = ®% and, on the other, since
(F',oly: A — 2A; and ; is reduced, that FKer((F’, o)) e Fck(21). Therefore,
by the hypothesis, there exists i € I, such that FKer((Fi, cxi>) = %, This

shows that (F', o) : A —, 2, is a reductive £-morphism and 2 € Kjgr.
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Finally, the section is concluded with an analog of Theorem 3.8 of [9] that
provides a necessary condition for an L-system to be completely subdirectly

irreducible in terms of the congruence systems of the system rather than its

filter congruence systems.

Theorem 4.4. Let X be a class of L-systems closed under contractions

and A eX a nontrivial L-system. If A € Kpegp, then Con() has a monolith

. i . . i _ SEN% . .

(i.e., for all 0" cCon(),icl, if ﬂide =N , then, there exists i € I,
. 2

such that 0° = ASEN"),

Proof. Suppose that Con(2) has no monolith. Then
2 2
[ (Con(2A) — {ASEN" }) = ASENT,

Hence, by Lemma 2.2, the pair (F,a): %2 HSdHeiASENQ[ 2A/0, with

F(E)=]]Z, forall T €| Sign® |, and similarly for morphisms, and

az(@) =[] ¢/6s,

A
6¢ASEN

for all £ €| Sign | and all ¢ € SEN(Z), is a subdirect embedding. None of

the projection L-morphisms (I, n9> :2A -, A/ 0, however, has injective

A
natural transformation components, since 0 # ASEN , for all 6. Moreover,
since K is closed under contractions, 2/0 €K, for all 0. Therefore, 2 is not

K-completely subdirectly irreducible.

5. Relating the Notions of Subdirect Irreducibility

Recall from [28], that a Lyndon class is a class of £-systems which is full

and closed under subdirect products. Theorem 6 of [27] states that, if K is a
full class, then K is closed under subdirect products if and only if, for every
L-algebraic system A = (SEN, (N, F)), the collection K, of all members of

K with underlying L-algebraic system A, is closed under arbitrary meets.

Recall also from [28] that a class K of L-systems is called protoalgebraic, if
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Q is C- monotone in K, i.e., if, for all £-systems 2A, B € K,
if 20 C B, then Q(A) < Q(B).
By Proposition 3.1, we know that, for every class X of L-systems,

Kkar = Krest- Moreover, by Theorem 4.1, it follows that Kpegr < Kpgr-

In the following lemma, an analog of Lemma 3.9 of [9], it is shown that, if
K is full, the class Krgqy is closed under contractions via reductive

L-morphisms with isomorphic functor components, and that, if K is a

protoalgebraic Lyndon class, it is closed under expansions via reductive

L-morphisms with isomorphic functor components.

Lemma 5.1. Suppose that X is a full class of L-systems and A, B two
L -systems. If B is a contraction of 2 via a reductive L-morphism with an
isomorphic functor component, then A € Kggy implies that B € Kggr. If, in

addition, X is a protoalgebraic Lyndon class, then the converse also holds.

Proof. Suppose, first, that (F, a) : A —, B is a reductive L£-morphism,
with F an isomorphism, and A e Kgrqr. Let B; € Feg(B), i € I, such that
B =(),.;B; Since X is full, o' (B;) € Feg(A), for all i  I. Therefore,
since (F,a) is strict, we get that A=o1(B)= oc_l(ﬂid%i)
= ﬂidofl(%i ). Hence, since 2 e Kpgp, there exists an i € I, such that
2 = o }(B;) and, therefore, using the surjectivity of (F, a) : 2 — B;, we
obtain B = a(A) = a(a"}(B;)) = B;. Thus, by Theorem 4.1, we get that
B e KRSI'

Suppose, conversely, that K 1is a protoalgebraic Lyndon class and
(F,ay : A -, B a reductive L-morphism, with F an isomorphism, and

B € Kgqr- By Theorem 4.1, an L-system in K is K-subdirectly irreducible if

and only if the lattice of all its filter extensions has a monolith. Thus, we

have Fey(8) has a monolith, whence, since, by the Filter Correspondence
Property (Theorem 15 of [28]), Fe(2) = Fex(B), Fey(A) also has a monolith,

and, therefore, 2 € Kggy.
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Once more, if X is not a protoalgebraic Lyndon class, then the last
statement of Lemma 5.1 does not hold in general. Elgueta provides on page

235 of [9] a counterexample to illustrate this.

The following corollary of Lemma 5.1 shows that the class of all reducts

of K-subdirectly irreducible L-systems consists of exactly the reduced

L-systems in Kyg.
Corollary 5.2. If X is a full class of L-systems, then (Kggr)™ = Krgr NK".

Proof. By Lemma 5.1, (Kggr)" < Krgr, whence (Kggr)® < Kper NK*. The

reverse inclusion is obvious.

Lemma 5.3, an analog of Lemma 3.11 of [9], shows that for an abstract
class X of L-systems, the K*-completely subdirectly irreducible members

form a subclass of all the K-completely subdirectly irreducible members.
Lemma 5.3. If K is an abstract class of L-systems, then Kpcs < Krest-

Proof. Suppose that 2 € Kpogr. By Proposition 3.1 and Theorem 4.3,
©% is meet irreducible in Fek(2). Since K is abstract, we get 2 e K. Hence,
by Theorem 4.2, it suffices to show that ®% is meet irreducible in Fey (20).
Suppose, to this end, that ®Q[:/\iel®i, for some collection @' = &, Bi), iel,
of K-filter congruence systems of 2. Define @< = (A, Q(A; ), i € I. We
have that ©% =A;;0>? because A =;,;% and N;.;QY;) is a
congruence system on 2, so that, since 2 is reduced, N;c.; Q;) = ASENQl.
Thus, since ® is meet irreducible in Fcll((Q[), there exists i € I, such that
0% - -2, Hence, since ol < ®i’Q, we get that 0% - o,

The next lemma shows that all completely subdirectly irreducible

members in a full class that contains all trivial £L-systems are reduced.

Lemma 5.4. Let X be a full class of L-systems. If X contains all trivial

L-systems, then every member of Kpegr is reduced.
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Proof. Suppose that A = (SEN, (N, F), RQ[) € Kpest- Then
0% = 0%A A% 2 where, of course, by ©%A is denoted the trivial filter

, ASEN

congruence system %A = (€a ) on the L-system &,, the trivial

L-system on the L-algebraic system reduct A = (SEN, (N, F)) of 2. But,
by hypothesis, % ¢ Fcg(A), whence, by Theorem 4.2, 0% = %2, ie,
() = ASEN and 2 is reduced.

Finally, combining Lemmas 5.3 and 5.4, we obtain the following analog of
Theorem 3.13 of [9]. Its first part states that, for an abstract class X of

L-systems, the K'-subdirectly irreducible L£-systems coincide with the
reduced members of the class of all K-subdirectly irreducible L-systems. Its
second part adds the hypothesis that X contains all trivial L£-systems to
conclude, based on Lemmas 5.3 and 5.4, that the class of all K-completely

subdirectly irreducible members coincides with the subclass of all reduced

members of the class of all K-subdirectly irreducible L-systems.

Theorem 5.5. The following holds, for all classes X of L-systems:

1. If X is abstract, then Kpgy = Kgrgg N K.

2. If X is abstract and contains all trivial L-systems, then Xgpcgr
= Kpgr NK".

Proof. 1. By Proposition 3.1, Kpgr = Kgcgr- Thus, by Lemma 5.3,

K*RSI c KRCSI' Hence, since KRCSI c KRSI? we obtain K*RSI c KRSI n K* The

reverse inclusion is obvious.

2. By Part 1, Proposition 3.1 and Lemmas 5.3 and 5.4, we get that

Krest = Kregr (by Lemmas 5.3 and 5.4)

KRgr (by Proposition 3.1)
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6. Subdirect Representation Theorems

In this section, analogs are provided of Theorems 3.14 and 3.15 of [9] for
the subdirect representability of an L-system in full and in reduced classes

of L-systems, respectively.

Recall that, given a class K of L-systems and an L-algebraic system
A = (SEN, (N, F)), by K is denoted the class of all L-systems in K with
underlying L-algebraic system A.

Theorem 6.1 provides a sufficient condition for the subdirect
representability of a member of a full class X inside the class in terms of the

closure of K5, under unions of C-chains, for every L-algebraic system A.
More precisely, it i1s shown that, if X 1s a full class of L-systems, such that
KA 1is closed under unions of C-chains, for all L£-algebraic systems A, then
every L-system in X is isomorphic to a subdirect product of K-subdirectly
irreducible members. As pointed out in [9], this condition is due essentially to
Mal’cev (see Theorem 3 of the paper “Subdirect Products of Models” in [17]).
Theorem 6.1 (Subdirect Representation for Full Classes). Suppose that
K is a full class of L-systems such that X is closed under unions of
C-chains, for all L-algebraic systems A. Then K < P.y(Krgr), i.e., every

L-system in K is isomorphic to a subdirect product of members of Xpgy.
Proof. Let 2 € X and
I={r (¢ :reR with p(r) = n, § e SEN*(2)" - i2'}.

For every (r, (£, ¢)) € I, choose A € Fey(21), maximal with respect to

(r,(Z, )

oo s . . . .
the condition ¢ ¢ . *® . Such a maximal K-filter extension of 2l exists,

by Zorn’s Lemma, since K, 1is closed under unions of C-chains.

Then we have that Q[<r = 43»:9[. Thus, by Corollary 2.3,

Moreover, by definition and by Theorem 4.1,

(r,(z, o)el
A s H<r, @ el X, (s, By

A is K-subdirectly irreducible, for all {r, (Z, q3>> e I. Hence we obtain

(r, (=, o)
that Ql (S Psd(KRSI )
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Finally, Theorem 6.2, an analog of Theorem 3.15 of [9], is presented, that
provides a sufficient condition for the subdirect representability of a member
of the reduction K* of a full class K inside K*, once more, in terms of the
closure of K5, under unions of C-chains, for every L-algebraic system A.
Theorem 6.2, shows that, if X is a full class of L-systems, such that K, is
closed under unions of C-chains, for all L-algebraic systems A, then every
L-system in X* is isomorphic to the reduction of a subdirect product of

reduced K-subdirectly irreducible members.

Before introducing the statement of the theorem, recall that, given an
operator O on classes of L£-systems, the notation O is used to denote the
operator LO, where L is the operator that takes a class of L-systems and

maps it to the class of all isomorphic copies of the Leibniz reductions of its

members.

Theorem 6.2 (Subdirect Repres. for Reduced Classes). Let X be a full

class of L-systems, such that X is closed under unions of C-chains, for every
L-algebraic system A. Then X' c Piq(Xgrey NK"), i.e., every L-system of K* is
isomorphic to the reduction of a subdirect product of members of Krgy N K.
Proof. By the Filter Homomorphism Theorem (Theorem 2 of [28]), it
suffices to show that, for all A = (SENQ[, (Nm, Fm), RQL) €K, some contraction

of 2, via a reductive £-morphism with an isomorphic functor component, is

subdirectly embeddable into a direct product of L-systems in the class

Krer NK*. Consider, again, the subdirect embedding
(F, o) : A —gq H<r, s Byl Aoy (s, W’ where

I={r, () :reR with p(r) = n, § € SEN*(Z)* - 2},
of the proof of Theorem 6.1, which is such that Ay s, W eKggr, for all

(r,(Z, J))) e I. Consider also the strict £-morphism

Kow: [T Apwa—s 1 Loy
(r. (5 el (ra (5 09el
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. B . . . . A
given by K =1, where I is the identity functor on [] (. (5 el Sign™, and,

for all T | Sign™ | and all 0. e SENQ‘(zm s ) E el

(r, (=, o) (Z, o)

by
M s, dyer T oy () =04, 5,4y (1 & 00 € D,

*

where, of course, (pzkr’ = denotes the reduction of Pir (5, ) in le =By for

all (r, (Z,J))) e I. Since both (F,a) and (K, k) are strict L-morphisms, so is
their composition (K,x)o(F,a), whence, by Lemma 2 of [21],
Ker((K, k) o (F, o)) € Con(). Moreover, the quotient A/Ker((K,«k)o(F,a))

is embeddable into [ r A by the induced £-morphism

L (E, onel Hr, (2, )

G.B: A/ Ker((K, 0o (F o))~ [] 2, 54
(r, (%, ohel

(F,a) (K, k)

> H(;-,(u,&:;)e: At 2.8y i aner Q‘?mz,én

aKer((K.x)o(F.a) G, 3)

(ISignm:

A/Ker({K, k) o (F, cx))

in such a way that (I, x> &My o (G, By : A/ Ker((K, ) o (F, o)) — L. s

is surjective, for all (r, (X, (13)> € I, where by

a, zfr oy [T =
(r, (%, el

2A

(S0 T T (S )

is denoted the natural projection £-morphism, for all (r, (Z, (T)» € I. Therefore

<Ga B> : Ql/Ker((K, K) ° <Fa (X)) >_75111_‘[0‘7 (2’ &)))EI Q’l<r’ <2, (I)))

*

To finish up the proof, note, now, that, since Q[<r = e (Kggr ), for all

<r,(2,$}>e], Corollary 5.2 gives that A7

(r, (=, dy € KRS NK*, for all

(r,(Z, q?» e I, which completes the proof.



62 GEORGE VOUTSADAKIS

The following corollary is now easily derivable from Theorem 6.2.

Corollary 6.3. Let X be an abstract class of L-systems, such that K5 is
closed under unions of C-chains, for every L-algebraic system A. Then the

following hold:
1. If X contains all trivial L-systems, then X* < Piq(Krcsr )
2. If, in addition, X is protoalgebraic, then X* < Pq(Kgcsr )

Proof. Part 1 follows by combining Theorem 6.2 and Lemma 5.5. Part 2
also follows easily by applying Theorem 17 of [28] to Part 1, since all
L-systems in Kpcgr are reduced.

Finally, let us point out, in closing, that Elgueta gives an example on
page 239 of [9] that shows that the subdirect representation theory of first-
order structures gives different results for lattices considered as lattice-
ordered sets from the ones usually obtained in universal algebra, when
lattices are viewed as algebras. This, Elgueta remarks, is simply due to the
fact that the analysis of the structure theory in the context of first-order
structures critically depends on the language that is being used.
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