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Abstract 

The notion of subdirect irreducibility in the context of languages without equality, as 
presented by Elgueta, is extended in order to obtain subdirect representation theorems for 
abstract and reduced classes of structure systems. Structure systems serve as models of first-
order theories but, rather than having universal algebras as their algebraic reducts, they have 
algebraic systems in the sense of Categorical Abstract Algebraic Logic. The subdirect 
representation theory for partially ordered functors, presented in previous work by the author, 
becomes a special case of the theory presented here. 

1. Introduction 

This paper expands on the effort to adapt notions and results concerning 
the ordinary model theory of equality-free first-order logic, based on the 
notion of a first-order structure, as developed by Elgueta, Dellunde and 
others in the context of Abstract Algebraic Logic (AAL), to the equality-free 
first-order logic model theory that is based on the more general notion of an 

structure-L  system or, more simply, an system.-L  The concept of an 
system-L  was introduced in [25] as a vehicle for transporting results from 

the well-developed theory of first-order structures to structures whose 
underlying algebraic component is an algebraic system rather than an 
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ordinary universal algebra. Algebraic systems, in turn, appeared first in the 
context of Categorical Abstract Algebraic Logic (CAAL) in [20], where 
sufficient evidence was provided to the effect that, in that context, they are 
the “right” algebraic entities to consider in place of ordinary universal 
algebras that have been at the focus from the very beginning in AAL. 

In the present installment of these ongoing investigations, the focus is on 
revisiting and adapting the last part of [9], concerning subdirect irreducibility 
of first-order structures and subdirect representability of full and of reduced 
classes of structures, to the framework of systems.-L  As a consequence, the 
present work depends, to a large degree, on the work introducing and 
studying protoalgebraic classes of systems-L  [28], which was inspired by and 
based on the first part of [9]. In previous studies by the author on the same 
topic [21, 22, 25, 26, 27], the basic notions were introduced and the basic 
results of the theory developed, also inspired by and based on work of 
Elgueta [8, 9, 10, 11] and Elgueta and his collaborators [7, 12]. 

More specifically, in [9], Elgueta, based on his previous work [8], sets out 
to develop a theory of subdirect representability for full and for reduced 
classes of first-order structures defined without equality. His motivation, 
which is very similar to ours, is two-fold. On the one hand, it consists of 
abstracting results known previously in the context of the model theory of 
universal Horn logic without equality and with one unary predicate symbol, 
i.e., in the context of logical matrix models of sentential logics, to the level of 
arbitrary equality-free first-order structures. On the other hand, by obtaining 
such general results, he aims at expanding the scope of AAL by bringing 
under its wings various aspects of the theory that were previously thought to 
be outside its realm. Elgueta’s journey brings him, first, to the land of filter 
congruences and protoalgebraic structures. A filter congruence on a structure 
is a pair consisting of a filter extension of the structure and of a congruence 
on that filter extension. Elgueta provides elegant and convincing arguments 
to the effect that filter congruences are the appropriate notions to replace 
ordinary universal algebraic congruences in the context of structures, since 
they help establish analogs of the well-known homomorphism theorems of 
Universal Algebra in that context. Analogs of these theorems, with the 
exception of the First Isomorphism Theorem, have also filter versions. In his 
quest to find a necessary and sufficient condition to establish a filter version 
of the First Isomorphism Theorem and inspired by the work of Blok and 



CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: … 39 

Pigozzi [2], Elgueta introduces the notion of a protoalgebraic class of 
structures-L  and provides several interesting characterizations of 

protoalgebraic classes, that also serve to tie the theory of structures to 
various previous results known for the special case of logical matrices. 

Both the notion of a filter congruence and that of a protoalgebraic class of 
structures were generalized by the author to cover systems-L  in [28]. In the 
present work the journey is continued with the treatment of the subdirect 
representation theory. The contents of the paper are briefly discussed in the 
remainder of this Introduction. 

First, a necessary and sufficient condition is established for the subdirect 
representability of an system-L  in a given class of systems.-L  This condition 
generalizes both Corollary 3.3 of [9], which gives a necessary and sufficient 
condition for the subdirect representability of a structure into a class of 
structures, and the subdirect representation theorem for partially ordered 
functors of [24]. Then, two notions of subdirect irreducibility are formulated 
for systems-L  inside a given class, taking after corresponding notions of [9] 
from the theory of first-order structures. One of the two notions, that of 
subdirect irreducibility, uses reductive morphisms,-L  whereas the second, 
that of complete subdirect irreducibility, uses reductive morphisms-L  with 
isomorphic natural transformation components. It is shown that the two 
notions coincide when subdirect irreducibility in reduced classes is 
considered. Complete subdirect irreducibility and subdirect irreducibility are 
characterized in terms of meet irreducibility of filter congruence systems in 
various partially ordered structures of filter congruence systems. To make 

this more precise, recall that, given two systems-L  〉〉〈〈= AA RF ,,SEN, N  

and 〉〉〈〈= BB RF ,,SEN, N  over the same underlying algebraic-L  system 
B,,SEN, 〉〉〈〈= FNA  is said to be a filter extension of ,A  denoted ,BA  

if, for every relation symbol ,Rr ∈  we have that .BA rr ≤  Also recall that, 
given an ,system- AL  as before, by a congruence system on A  is meant an 

congruence-N  system θ  on SEN, that is compatible with the relation system 

.AR  Moreover, by a filter congruence system on A  is meant a pair ,, 〉θ〈B  
where BA  and θ  is a congruence system on B.  The trivial filter 
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congruence system of an Asystem-L  is the pair ., SEN 〉Δ〈
A

A  With these 
definitions in mind, it is shown that an Asystem-L  is subdirectly irreducible 
in a full class K  if its trivial filter congruence system is meet irreducible in 

the poset ( ) ( ) ,,Fc 〉〈= ΔΔ AA KKFc  where 

( ) { },:,Fc SEN KK ∈〉Δ〈=Δ BABA
A

 

whereas an Asystem-L  is completely subdirectly irreducible in a full class 
K  if its trivial filter congruence system is meet irreducible in the poset 

( ) ( ) ,,Fc 〉〈= AA KKFc  where 

( ) { ( )}.Conand:, BBABA ∈θ∈〉θ〈= KKFc  

Furthermore, recalling that by ( )AΩ  is denoted the Leibniz congruence 
system of an ,system- AL  it is also shown that an Asystem-L  is subdirectly 

irreducible in the reduction ∗K  of a full class K  if its trivial filter congruence 

system is meet irreducible in the poset ( ) ( ) ,,Fc 〉〈= AA ll
KKFc  where  

( ) { ( ) ( )}.:Fc,Fc BABA Ω=θ∈〉θ〈= KK
l  

Finally, after elaborating on some of the connections between the 
different kinds of subdirectly irreducible members of a given class of 

systems-L  and its reduction, the task of formulating and proving subdirect 
representation theorems for systems-L  is undertaken. More precisely, given 
a full class K  of systems-L  and an algebraic-L  system ,A  it is shown that, if 

,AK  the class of all systems-L  in K  with underlying algebraic-L  system ,A  
is closed under unions of chains,-  then every system-L  in K  is isomorphic 
to a subdirect product of subdirectly irreducible members of K.  This theorem 
forms an analog of the Subdirect Representation Theorem for Full Classes of 
equality-free first-order structures of Elgueta (Theorem 3.14 of [9]). Finally, 
it is shown that, under the same conditions, every system-L  in the reduced 

class ∗K  is isomorphic to the reduction of a subdirect product of members of 

the class ,RSI
∗KK I  i.e., the class of all reduced ysubdirectl-K  irreducible 

systems.-L  
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For all unexplained categorical definitions and notation, see, e.g., [1, 4, 
16]. Two standard references on model theory are the books [5, 15]. For an 
overview of the present state of affairs in Abstract Algebraic Logic the reader 
is referred to the review article [14], the monograph [13] and the book [6]. For 
recent developments on the categorical side of the theory, see [18-20, 23]. 

2. Subdirect Representability 

Let Sign be a category and SEN : Sign → Set a functor. Recall from [23] 
that the clone of all natural transformations on SEN is defined to be the 

locally small category with collection of objects { }ordinalan:SEN αα  and 

collection of morphisms βατ SENSEN: →  sequences-β  of natural 

transformations SEN.SEN: →ατi  Composition is defined by 

γ〉γ<σ〈β〉β<τ〈α ⎯⎯⎯⎯⎯ →⎯⎯⎯⎯⎯⎯ →⎯ SENSENSEN :: ji ji  

( ) .:::: 〉γ<〉β<τ〈σ〈=〉β<τ〈〉γ<σ〈 jiij ijij o  

A subcategory N of this category containing all objects of the form kSEN  for 

,ω<k  and all projection morphisms ,,,SENSEN:, ω<<→ kkip kik  

with ( ) ( )∑∑Σ SENSEN:, →kikp  given by 

( ) ,,
i

ikp φ=φΣ

r
 for all ( ) ,SEN k∑∈φ

r
 

and such that, for every family { }lik
i <τ :SENSEN: →  of natural 

transformations in N, the sequence lk
i li SENSEN:: →〉<τ〈  is also in N, 

is referred to as a category of natural transformations on SEN. 

Given a functor ,:SEN SetSign →  an n-ary relation family 

{ } Sign∈ΣΣ= rr  on SEN is a indexed-Sign  collection of n-ary relations 

( ) ,SEN nr Σ⊆Σ  for all .Sign∈Σ  The relation family r is called a relation 

system if, in addition, for all Sign∈ΣΣ 21,  and all ( ),, 21 ΣΣ∈ Signf  

( ) ( ) .SEN 21 ΣΣ ⊆ rrf n  
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Recall, also, from [25] that a (structure system) language 
〉ρ〈= ,, RFL  consists of a category F of natural transformations on a given 

set-valued functor ,:SEN SetSign →  a nonempty collection R of relation 

symbols and an arity function ,: ωρ →R  giving the arity of a relation 

symbol in R. An ( ) systemstructure-L 〉〉〈〈= AAAAA RF ,,,SEN N  consists 
of 

• a functor ,:SEN SetSign →AA  

• a category AN  of natural transformations on ,NSE A  

• a surjective functor ,: AA NF →F  that preserves all projections and, 
as result, preserves also the arity of all natural transformations and 

• a collection { }RrrR ∈= :AA  of relation systems on ASEN  indexed 

by R, such that Ar  is an n-ary relation system if ( ) .nr =ρ  

Given two systems-L  〉〉〈〈= AAAAA RF ,,,SEN N  and ,,SEN BBB N〈〈=  

,, 〉〉 BB RF  an ( ) BA →:,- 〉α〈FmorphismsystemL  is an algebraic-L  
morphism 

,,,SEN,,SEN:, 〉〉〈〈〉〉〈〈〉α〈 BBBAAA FFF NN →  

such that ( ) ( ),
BA
ΣΣΣ ⊆α Frr  for all ASign∈Σ  and all .Rr ∈  〉α〈 ,F  is 

surjective, denoted ,:, BA \〉α〈F  if F is surjective and 

( ) ( )( )ΣΣαΣ FBA SENSEN: →  is surjective, for all .ASign∈Σ  Moreover, 

〉α〈 ,F  is called strict, denoted ,:, BA sF  →〉α〈  if ( ) ( ),
BA
ΣΣΣ =α Frr  for all 

ASign∈Σ  and all .Rr ∈  Given two Asystems-L  and ,B  as above, A  is 
said to be an expansion of B  and B  a contraction of A  if there exists a 
strict surjective morphism,-L  also known as a reductive ,-morphismL  

.:, BA sF \〉α〈  

Now recall, from, e.g., [28], that a class K  of systems-L  is said to be a full 
class whenever it is closed under expansions and contains an system-L  with 

at least one nonempty relation system. K  is said to be an abstract class if it 
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is full and closed under contractions. On the other hand, K  is called a 
reduced class if it contains some nontrivial system-L  and all its members 
are (Leibniz) reduced systems.-L  

Let 〉ρ〈= ,, RFL  be a system language, K  be a class of systems-L  and 

〉〉〈〈= AAAAA RF ,,,SEN N  an system-L  not necessarily in .K  A  is said to 
be subdirectly representable in K  if it can be subdirectly embedded into a 
direct product of members of .K  The two lemmas that follow from analogs of 
Lemmas 3.1 and 3.2 of [9] and provide a characterization of subdirect 
representability of an system-L  in a class of systems.-L  Given a subdirect 

embedding 〉α〈 ,F : ∏∈Ii i ,sd BA Z  we will denote by i
iiF BA →:, 〉α〈  the 

composition ,,,, 〉α〈〉π〈=〉α〈 FPF iiii o  

 

where ∏∈〉π〈 Ii ii
iiP BB →:,  is the projection morphism,-L  for all I.i ∈  

Of course 〉α〈 iiF ,  is a surjective morphism,-L  for all ,Ii ∈  by the definition 
of a subdirect embedding. 

Given an structure-L  system ,,,,SEN 〉〉〈〈= AAAAA RFN  an 

congruence-AN  system { } ASign∈ΣΣθ=θ  on ASEN  is said to be a 

congruence system of A  if, for all ,Rr ∈  with ( ) ,nr =ρ  all ASign∈Σ  

and all ( ) ,SEN, nΣ∈ϕφ Arr
 

A
Σ∈φ r

r
  and  ϕθφ Σ

rr n   imply  .AΣ∈ϕ rr  

An Bsystem-L  is said to be a filter extension of an ,system- AL  denoted 

,BA  if, for all ., BA rrRr ≤∈  A filter congruence system of A  is a 
pair ,, 〉θ〈B  where B  is a filter extension of A  and θ is a congruence system 
of B.  Given a class K  of ,systems-L  by ( )AKFc  is denoted the class of all 
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filter-K  congruence systems of ,A  i.e., all those filter congruence systems 

〉θ〈 ,B  of ,A  such that ,K∈B  and by ( )Al
KFc  the class of all filter-K  

congruence systems 〉θ〈 ,B  of ,A  such that ( ),BΩ=θ  the Leibniz congruence 
of ,B  i.e., its largest congruence system. 

Given an ,:,morphism- BA →〉α〈FL  by ( )〉α〈 ,Ker F  is denoted the 
kernel of ,, 〉α〈F  i.e., the collection ( ) { ( )} ,,Ker,Ker ASign∈ΣΣ 〉α〈=〉α〈 FF  

with 

( ) { ( ) ( ) ( )}.:SEN,,Ker 2 ϕα=φαΣ∈〉ϕφ〈=〉α〈 ΣΣΣ
AF  

If 〉α〈 ,F  is strict, then ( )〉α〈 ,Ker F  is a congruence system of .A  Moreover, 
by ( )〉α〈 ,FKer F  is denoted the filter kernel of ,, 〉α〈F  i.e., the pair 

( ) ( ) ,,Ker,1 〉α〈α〈 − FB  which is a filter congruence system of A.  

Before proceeding to Lemma 2.1, recall from [28] that, given an system-L  

,,,,SEN 〉〉〈〈= AAAAA RFN  by AΘ  is denoted the filter congruence system 

〉Δ〈=Θ
A

AA SEN,  of A.  Lemma 2.1 provides necessary conditions for an 

embedding of an Asystem-L  into the direct product ∏
∈Ii iB  of 

,,systems- Iii ∈BL  in a full class K  to be a subdirect representation of A  

in .K  A collection of functors ,,: IiF i
i ∈DC →  is said to be collectively 

mono if, for all ,, 21 C∈ΣΣ  ( ) ( ),21 Σ=Σ ii FF  for all ,Ii ∈  implies that 
,21 Σ=Σ  and similarly for morphisms. 

Lemma 2.1. Let K  be a full class of ,-systemsL  ,,SEN AAA N〈〈=  

〉〉 AA RF ,  an system-L  and ,,,,SEN K∈〉〉〈〈= iiii RFi
BBBBB N  for all .Ii ∈  

If ∏∈〉α〈 Ii iF BA sd:, Z  is a subdirect embedding, then ( ) ∈〉α〈 iiF ,FKer  

( ),Fc AK  for all ,Ii ∈  and, moreover, 

1. ( ) AΘ=〉α〈∈
ii

Ii F ,FKerI  and 

2. the pair ,, 〉γ〈 iiH  given by ii FH =  and ASEN:iγ  

( ) ,SEN,FKer iii FF i oB→〉α〈  defined, for all ( ),SEN, Σ∈φ∈Σ AASign  



CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: … 45 

by 

( ( )) ( ),,FKer φα=〉α〈φγ ΣΣΣ
iiii F  

is a reductive morphism-L ( ) ,,FKer:, is
iiii FH BA \〉α〈〉γ〈  such that 

(a) { }IiHi ∈:  are collectively mono and 

(b) i
Σγ  is a bijection, for all .ASign∈Σ  

Proof. Let ,:, sd∏∈〉α〈 Ii iF BA Z  with ,K∈iB  for all ,Ii ∈  be a 

subdirect embedding and set ,,,, 〉α〈〉π〈=〉α〈 FPF iiii o  for all .Ii ∈  First, 

let us see that ( ) .,FKer AΘ=〉α〈∈
ii

Ii FI  Suppose that ,Rr ∈  with 

( ) ,nr =ρ  ASign∈Σ  and ( ) .SEN nΣ∈φ Ar
 Then, if ( )

( )
,i

iF
i rB

ΣΣ ∈φα
r

 for all 

,Ii ∈  we obtain that ( ) ( ) ,∏ ∈
ΣΣ ∈φα Ii i

Fr
Br

 whence ,BΣ∈φ r
r

 since 〉α〈 ,F  is an  

embedding. Thus, we get that ( ) .
1

ABi =α∈

−
I Ii

i  Also, for all ASign∈Σ   

and all ( ),SEN, Σ∈ϕφ A  if ( ),,Ker, 〉α〈∈〉ϕφ〈 ∈ Σ
ii

Ii FI  then ( ) ( ),ϕα=φα ΣΣ
ii  

for all ,Ii ∈  whence ( ) ( ),ϕα=φα ΣΣ  showing that ,ϕ=φ  since 〉α〈 ,F  is 

injective. Therefore, ( ) ,,Ker SENAΔ=〉α〈∈
ii

Ii FI  which concludes the proof 

that ( ) .,FKer AΘ=〉α〈
∈

ii
Ii FI  

Since i
iiF BA \:, 〉α〈  is a surjective morphism,-L  by Corollary 7 of 

[28], the pair ( ) is
iiii FF BA \〉α〈〉γ〈 ,FKer:,  is a strict surjective 

morphism-L  with i
Σγ  a bijection, for all ASign∈Σ  and all .Ii ∈  This 

also shows that  ( ) ( ),Fc,FKer AK∈〉α〈 iiF  since K  is a full class and K∈iB  

for all .Ii ∈  To see that { }IiF i ∈:  are collectively mono, suppose that 

,, 21
ASign∈ΣΣ  such that ( ) ( ),21 Σ=Σ ii FF  for all .Ii ∈  Then 

( ) ( ),21 Σ=Σ FF  whence ,21 Σ=Σ  since 〉α〈 ,F  is injective, and similarly for 
morphisms. 

Lemma 2.2 complements Lemma 2.1 by providing sufficient conditions for 
an Asystem-L  to be subdirectly embeddable into a direct product ∏∈Ii iB  
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of a collection ,, Iii ∈B  of .systems-L  It also provides sufficient conditions 

for A  to be subdirectly representable in a given class K  of systems-L  that is 
closed under contractions. 

Lemma 2.2. Let 〉〉〈〈= AA RF ,,SEN, N  be an system,-L  

,,, Iii
i

i ∈〉θ〈=Θ A  filter congruence systems on A  and 

,,,,,SEN IiRF iiii
i ∈〉〉〈〈= NB  a family of systems.-L  If ,AΘ=Θ∈I Ii

i  

and there exists a family of reductive morphisms-L  〉γ〈 iiH ,  

,,: Iiis
i ∈Θ BA \  such that 

1. { }IiHi ∈:  are collectively mono and 

2. i
Σγ  is a bijection, for all Sign∈Σ  and all ,Ii ∈  

then A  is subdirectly embeddable in the direct product .∏∈Ii iB  

If, in addition, ( ),Fc AK∈Θi  for all ,Ii ∈  where K  is a class closed under 

contractions, then A  is subdirectly representable in .K  

Proof. Consider, for all ,Ii ∈   the projection :,Imorphisms- 〉π〈 Θi
SignL  

.iΘAA→  Compose with is
iiiH BA \Θ〉γ〈 :,  to obtain the morphisms-L  

,:, i
iiH BA →〉γ′〈  for all .Ii ∈  Finally, set :,:, 〉γ′〈=〉κ〈 ∏ ∈

ii
Ii HK  

.∏∈Ii iBA →  

   
As shown in the proof of Proposition 1 of [24], 

∏∈ 〉〉〈〈〉〉〈〈〉κ〈 Ii
iii FFK ,,SEN,SEN,:, NN →  is a subdirect embedding 

of the underlying algebraic-L  systems. So it suffices to show that ( )Aκ  is a 

subsystem of .∏∈Ii iB  To this end, suppose that ,Rr ∈  with ( ) ,nr =ρ  and 

( ) .SEN, nΣ∈φ∈Σ
r

Sign  Then we have 
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A
Σ∈φ r

r
 iff ( ) ( ) ( )I

r

Ii
ii i

rIi ∈
Θ

ΣΣ Θ=Θ∈Θφ∈∀ AA since  

iff ( ) ( ( )
( )

) ( )is
iii

H
ii HrIi i

i BAB \Θ〉γ〈∈Θφγ∈∀
ΣΣΣ :,since

r
 

iff ( ) ( ( )
( )

) ( )〉γ′〈∈φγ′∈∀
ΣΣ

ii
H

i HrIi i
i ,ofdefinitionthebyBr

 

iff ( ) ( ) ( )〉κ〈∈φκ ∏
ΣΣ
∈ ,ofdefinitiontheby. Kr Ii i

K
Br

  

Thus ( ) .sd ∏∈⊆κ Ii iBA  

If, now, ( ),Fc AK∈Θi  for all ,Ii ∈  and K  is closed under contractions, 

then ,K∈ΘiA  for all ,Ii ∈  whence K∈iB  and A  is subdirectly 
representable in K.  

If Lemma 2.1 and Lemma 2.2 are combined, then the following corollary 
may be formulated. It gives a very simple and elegant characterization of the 
subdirect representability of an Asystem-L  in an abstract class K  of 

systems-L  in terms of the existence of a collection of filter- K  congruence 
systems on A  whose meet is the trivial filter congruence system on A.  

Corollary 2.3. Let K  be an abstract class of systems-L  and A  be an 
.-systemL  Then A  is subdirectly representable in K  if and only if, there exist 

( ) ,,Fc Iii ∈∈Θ AK  such that I Ii
i

∈ Θ=Θ .A  

Corollary 2.3 has the following version when applied to reduced classes of 
systems.-L  Corollary 2.4 is an analog in the present framework of Corollary 

3.4 of [9]. It characterizes the subdirect representability of a reduced 
Asystem-L  into the reduction ∗K  of an abstract class K  of systems-L  in 

terms of the existence of a collection of filter- K  congruence systems on A  in 

the subset ( )Al
KFc  of ( ),Fc AK  whose meet is the trivial filter congruence 

system on A.  

Corollary 2.4. Let K  be an abstract class of systems-L  and A  be a 

reduced .-systemL  Then A  is subdirectly representable in ∗K  if and only if, 

there exist ( ) ,,Fc Iili ∈∈Θ AK  such that I Ii
i

∈ Θ=Θ .A  
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Proof. Suppose that ∏∈〉α〈 Ii iF BA sd:, Z  with ,∗∈ KiB  for all .Ii ∈  

Take ( ) ( ) ( ) .,Ker,,FKer
1

〉〉α〈α〈=〉α〈=Θ
− ii

i
iiii FF B  By Lemma 2.1, we 

have that the mapping ( ) is
iiii FH BA \〉α〈〉γ〈 ,FKer:,  is a reductive 

morphism.-L  Therefore, by Theorem 5 of [21], we get that 

( ( )) ( ( ))i
i

i
i BB Ωγ=γΩ

−− 11
 

( )ii BSEN1
Δγ=

−
 

( ) ( )〉α〈〉α〈= iiii FF ,FKer,Ker  

( ).,KerSEN 〉α〈Δ=
iiFA

 

Thus, denoting by ( ) ( ) ( )〉α〈αα〉π〈
−− ii

i
i

si
i F ,Ker:,I

11
BB \  the natural 

projection morphism,-L  we have 

 ( ( )) ( ( ( )))i
i

i
i BB

111 −
γπΩ=αΩ −−

 

( ( ( )))i
i B

11 −
γΩπ= −  

( ( ) )〉α〈− Δπ=
iiF ,KerSEN1 A

 

( ).,Ker 〉α〈= iiF  

Therefore, ( ).Fc Ali
K∈Θ  Since, by Lemma 2.1, 

( ) ,,FKer AΘ=〉α〈=Θ
∈∈

ii

IiIi

i FII  

the left-to-right implication is complete. 

Suppose, conversely, that ( ) ( ) .,Fc, Iil
ii

i ∈∈〉Ω〈=Θ AAA K  Since the 

relation system ( )I Ii i∈ Ω A  is a congruence system of A  and A  is reduced, 

we get that ( ) .SENAA Δ=Ω∈I Ii i  Now apply Lemma 2.2. 

As is the case when one passes from algebras to first-order structures, 
when one passes from algebraic-L  systems to systems-L  the role of 
congruence systems is assumed by the filter congruence systems. 
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3. Notions of Subdirect Irreducibility 

In [9], Elgueta explains that, in the context of equality-free languages, 
strict epimorphisms of structures behave, to a large extent, like 
isomorphisms. This motivates him to consider simultaneously two notions of 
subdirect irreducibility; one based on strict epimorphisms and one on 
isomorphisms, as is usually done in the context of universal algebras. 

In extending the scope of Elgueta’s work, we take into consideration, 
besides his approach, some of the guiding principles provided by the 
subdirect representation theory for partially ordered functors of [24], which 
show that, at the functor level, it is reasonable to only ask for surjectivity 
rather than a full isomorphism. The combination of these two approaches 
suggests adopting the following definitions as suitable analogs of those of 
Elgueta in the present context. 

Let K  be a class of systems-L  and K∈〉〉〈〈= AAAAA RF ,,,SEN N  a 

nontrivial system,-L  i.e., such that ( ) ( ),SEN rr ρ≠ AA  for some .Rr ∈  A  is 
said to be (finitely) subdirectly irreducible in ,K  or simply (finitely) 

ysubdirectl-K  irreducible if 

,
,
sd

,
∏
∈

〉α〈〉π〈

Ii
i

FP
ABA Z\  

with P an isomorphism and ,K∈iA  for all Ii ∈  (I finite), implies 

is
ii PF AA \:,, 〉π〈〉α〈 o  for some .Ii ∈  

The ,system- AL  on the other hand, is  completely subdirectly 
irreducible in K  or completely-K  subdirectly irreducible if 

∏∈〉α〈 Ii iF ,:, sd AA Z  with ,K∈iA  for all ,Ii ∈  implies 

,:, is
iiF AA\〉α〈  with i

Σα  a bijection, for all ,ASign∈Σ  for some .Ii ∈  

We write ( )RFSIRSI KK  for the class of all (finitely) ysubdirectl-K  
irreducible systems-L  and RCSIK  for the class of all completely-K  

subdirectly irreducible systems.-L  As a result, ,RSI
∗K  ∗

RCSIK  denote, 

respectively, the classes of ysubdirectl-∗K  irreducible and completely-∗K  
subdirectly irreducible systems.-L  
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The next proposition shows that, for any class K  of systems,-L  the class 

of all completely-∗K  subdirectly irreducible systems-L  and the class of all 

-∗K subdirectly irreducible systems-L  coincide, i.e., that ,RSIRCSI
∗∗ = KK  for any 

class .K  

Proposition 3.1. For every class K  of ,-systemsL  .RCSIRSI
∗∗ = KK  

Proof. Suppose that ∗∈ RSIKA  and that ,:, sd∏ ∈〉α〈 Ii iF AA Z  with 

,∗∈ KiA  .Ii ∈  Then ,
,
sd

,
∏∈

〉α〈〉ι〈

Ii i
FI

s AAA Z\  satisfies the hypothesis of the 

condition for membership in ,RSI
∗K  whence, by the hypothesis, there exists 

,Ii∈  such that .:, is
iiF AA\〉α〈  Since iA  is reduced, by the Filter 

Homomorphism Theorem 2 of [28], we get that i
Σα  is an isomorphism, for all 

,ASign∈Σ  whence .RCSI
∗∈ KA  

If, conversely, ∗∈ RCSIKA  and ,
,
sd

,
∏ ∈

〉α〈〉π〈

Ii i
FP

s ABA Z\  with P an 

isomorphism and ,∗∈ KiA  then, since both A  and B  are reduced, we get, 

once more by Theorem 2 of [28], that BA→:, 〉π〈P  is an isomorphism. (Note 
here the assumption that P is an isomorphism.) Therefore 

∏ ∈

〉π〈〉α〈

Ii i
PF

AA
,,

sdZ  satisfies the hypothesis of the condition for 

membership in  ,RCSI
∗K  which yields that, there exists ,Ii∈  such that 

,:,, is
ii PF AA\〉π〈〉α〈 o  with i

Σα  a bijection, for all .ASign∈Σ  Therefore 

.RSI
∗∈ KA  

On page 234 of [9], a counterexample is provided for the claim 
,RCSIRSI KK =  where, of course, K  is a nonreduced class of .structures-L  The 

counterexample takes as K  the class of all lattice quasi-ordered sets. 

4. Characterizations of Subdirect Irreducibility 

Recall from [28] that, given an system-L  A  and a class K  of ,systems-L  

by ( )AKFe  is denoted the collection of all filter extensions of A  that are in ,K  
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i.e., 
( ) { }.Fe KK ∈= BA:BA  

Moreover, ( )AKFc  is denoted the collection of all filter-K  congruence 

systems of ,A  i.e., all pairs 〉θ〈 ,B  such that B  is a filter-K  extension of A  
and θ  is a congruence system on B.  Formally, 

( ) { ( )}.andFc BBA:BA Con, ∈θ∈θ= KK  

Let K  be a class of Asystems,-L  an system-L  and ( ).Fc AK⊆X  An 
element ( )AKFc∈Θ  is said to be meet-irreducible in X, if, for all 

,, IiXi ∈∈Θ Θ=Θ∈
i

Ii∧  implies that ,Θ=Θi  for some .Ii∈  We provide in 
this section some results that characterize subdirect irreducibility of 

systems-L  in terms of meet irreducibility of filter congruence systems in 
appropriate partially ordered structures of filter congruence systems. These 
results generalize corresponding results of Elgueta [9], which, in turn, 
abstract well-known characterizations of subdirectly irreducible universal 
algebras via properties of their lattices of congruences. 

Theorem 4.1 is an analog of Theorem 3.5 of [9] and characterizes 
subdirect-K  irreducibility in terms of trivial filter-K  congruence systems, i.e., 

in terms of filter-K  extensions. Recall, once more from [28] that, given an 

system-L  ,,,SEN, 〉〉〈〈= RFNA   by ( )AΔ
KFc  is denoted the section-SENΔ  of 

( ),Fc AK i.e., 

( ) { }.:,Fc SEN KK ∈〉Δ〈=Δ BABA  

Clearly, this collection forms an isomorphic partially ordered set under 
 to the one formed by the collection ( ).Fe AK  

Theorem 4.1 Let K  be a full class of systems-L  and 

K∈〉〉〈〈= AA RF ,,SEN, N  a nontrivial system.-L  Then the following 
statements are equivalent: 

1. .RSIK∈A  

2. For all ∏∈〉α〈∈∈〉〉〈〈= Ii i
iiii

i FIiRF AAA sd:,,,,,,SEN ZKN  

implies ,:, is
iiF AA\〉α〈  for some .Ii∈  
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3. AΘ  is meet irreducible in ( ).Fc AΔ
K  

4. There exists ,Rr∈  with ( ) ( ) ,SEN,, nnr Σ∈φ∈Σ=ρ
r

Sign  such that 
A
Σ∉φ r

r
 but ,BΣ∈φ r

r
 for all ( ) { }.Fe AAB −∈ K  

Proof. 21 →  This implication is obvious from the definition of 
subdirect-K  irreducibility. 

32 →  Let ( ),Fc, SEN AA Δ∈〉Δ〈=Θ Ki
i  for all ,Ii∈  and assume  that 

.iIi Θ=Θ ∈∧A   Then, by Lemma 2.2, ,:, sd∏ ∈ Θ〉α〈 Ii
iF AA Z  where 

( ) ,∏ ∈ Σ=Σ IiF  for all ,Sign∈Σ  and similarly for morphisms, and 

( ) ,i
Ii Σ∈Σ Θφ=φα ∏  for all Sign∈Σ  and all ( ).SEN Σ∈φ  Thus, by the 

hypothesis, ,:, i
s

iiF Θ〉α〈 AA\  for some ,Ii∈  whence iΘ=ΘA  and AΘ  is 

meet irreducible in ( ).Fc AΔ
K  

43 →  Suppose, now, that AΘ  is meet irreducible in ( )AΔ
KFc  and let 

{ ( ) }.:Fe0 ABABA ≠∈= K∧  Then ,0 AA ≠  whence, there exists ,Rr∈  such 

that .0 AA rr ≠  Thus, since ,0 BA  for all ( ) { },Fe AAB −∈ K  there exist 

Sign∈Σ  and ( ) ,SEN nΣ∈φ
r

 such that ,BΣ∈φ r
r

 for all ( ) { },Fe AAB −∈ K  but 

.AΣ∉φ r
r

 

14 →  Suppose, finally, that there exist ,Rr∈  with ( ) Sign∈Σ=ρ ,nr  

and ( ) ,SEN nΣ∈φ
r

 such that ,BΣ∈φ r
r

 for all ( ) { },Fe AAB −∈ K  and .AΣ∉φ r
r

 
Assume that 

,
,
sd

,
∏
∈

〉α〈〉π〈

Ii
i

FP
s ABA Z\  

with P an isomorphism and ,K∈iA  for all  .Ii∈  Fix .Ii∈  Then 

i
ii PF AA \:,, 〉π〈〉α〈 o  is a surjective morphism.-L  Since K  is full, 

( ) ( ).Fc,,FKer AK∈〉π〈〉α〈 PF ii o  We show that ( )〉π〈〉α〈∈ ,,FKer PF ii
Ii o∧  

( ) .,Ker, 〉〉π〈〈= PA  Since ,:, sd∏∈
〉α〈 Ii iF ABZ  we get, by Lemma 2.1, 
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that ( ) .,FKer BΘ=〉α〈∈
ii

Ii F∧  But, by definition, 

( ) ( ( )).,FKer,,FKer 1 〉α〈π=〉π〈〉α〈 − iiii FPF o  
This yields 

( ) ( ( ))〉α〈π=〉π〈〉α〈 −
∈∈

ii
Ii

ii
Ii FPF ,FKer,,FKer 1∧∧ o  

( ( ))〉α〈π= ∈
− ii

Ii F ,FKer1 ∧  

( )BΘπ= −1  

( ) .,Ker, 〉〉π〈〈= PA  

Now we get ( ) ( ),1
i

i
Ii AA −

∈ πα= oI  whence, by the hypothesis, there 

exists ,Ii∈  such that ( ) ( ).1
i

i AA −πα= o  Therefore is
ii PF AA\:,, 〉π〈〉α〈 o  

is a reductive morphism-L  and .RSIK∈A  

Theorem 4.2 is an analog of Theorem 3.6 of [9] and characterizes 
complete-K  subdirect irreducibility in terms of filter-K  congruence systems. 

More precisely, it states that for any full class K  of systems-L  and any 

nontrivial Asystem-L  in ,K  A  is completely subdirectly irreducible in K  if 

and only if the trivial filter congruence system AΘ  is meet irreducible in the 
collection ( )AKFc  of all filter-K  congruence systems on .A  

Theorem 4.2. Let K  be a full class of systems-L  and K∈A  a nontrivial 

system.-L  Then RCSIK∈A  if and only if AΘ  is meet irreducible in ( ).Fc AK  

Proof. Suppose, first, that RCSIK∈A  and let ( ) ,,Fc, Iii
i

i ∈∈〉θ〈=Θ AA K  

such that .AΘ=Θ∈
i

Ii∧  Then, by Lemma 2.2, ,:, sd
i

IiF Θ〉α〈 ∏ ∈ AA Z  

whence, since RCSIK∈A  there exists ,Ii∈  such that ,:, i
s

iiF Θ〉α〈 AA\  

with i
Σα  a bijection, for all .ASign∈Σ  Hence, we have that AΘ=Θi  and 

AΘ  is meet-irreducible in ( ).Fc AK  

Suppose, conversely, that AΘ  is meet-irreducible in ( )AKFc  and that 

.:, sd∏ ∈〉α〈 Ii iF AA Z  Then, by Lemma 2.1, ( ) .,FKer AΘ=〉α〈∈
ii

Ii F∧  
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Hence, by the meet-irreducibility of AΘ  in ( ) ( ) ,,FKer,Fc AA Θ=〉α〈 iiFK  for 
some I.i∈  Thus, there exists a reductive homomorphism 

( ) ,,FKer:, is
iiFG AA \〉α〈〉β〈  such that Σβ  is a bijection, for all 

.ASign∈Σ  Since ( ) ,,FKer AΘ=〉α〈 iiF  this proves that .RCSIK∈A  

For reduced classes of systems,-L  we have the following analog of 
Theorem 3.7 of [9] that uses the set of all Leibniz filter-K  congruence 
systems. According to Theorem 4.3, a nontrivial reduced system-L  A  is 

subdirectly irreducible in the reduction ∗K  of a full class K  of systems-L  if 

and only if its trivial filter congruence system AΘ  is meet irreducible in the 

collection ( )Al
KFc  of all filter congruence systems on A  of the form ( ) ., 〉Ω〈 BB  

For the proof, recall from Proposition 3.1 that, for every class K  of 
systems,-L  .RCSIRSI

∗∗ = KK  

Theorem 4.3. Let K  be a full class of systems-L  and let ∗∈ KA  a 

nontrivial reduced system.-L  Then ∗∈ RSIKA  if and only if AΘ  is meet 

irreducible in ( ).Fc Al
K  

Proof. Suppose, first, that ∗∈ RSIKA  and ( ) ( ) ,,Fc, Iil
ii

i ∈∈〉Ω〈=Θ AAA K  

such that .AΘ=Θ∈
i

Ii∧  Thus, by Lemma 2.2, there exists 

.:, sd
i

IiF Θ〉α〈 ∏ ∈ AA Z  Therefore, since ,RSI
∗∈ KA  there exists ,Ii∈  such 

that ,:, i
s

iiF Θ〉α〈 AA\  which shows that AΘ=Θi  and AΘ  is meet 

irreducible in ( ).Fc Al
K  

If, conversely, AΘ  is meet irreducible in ( )Al
KFc  and 

,:, sd∏ ∈〉α〈 Ii iF AA Z  with ,∗∈ KiA  for all ,Ii ∈  then we get, on the one 

hand, by Lemma 2.1, that ( ) AΘ=〉α〈∈
ii

Ii F ,FKer∧  and, on the  other, since 

i
iiF AA\:, 〉α〈  and iA  is reduced, that ( ) ( ).Fc,FKer AliiF K∈〉α〈  Therefore, 

by the hypothesis, there exists ,Ii ∈  such that ( ) .,FKer AΘ=〉α〈 iiF  This 

shows that is
iiF AA \:, 〉α〈  is a reductive morphism-L  and .RSI

∗∈ KA  
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Finally, the section is concluded with an analog of Theorem 3.8 of [9] that 
provides a necessary condition for an system-L  to be completely subdirectly 
irreducible in terms of the congruence systems of the system rather than its 
filter congruence systems. 

Theorem 4.4. Let K  be a class of systems-L  closed under contractions 

and K∈A  a nontrivial .-systemL  If ,RCSIK∈A  then ( )ACon  has a monolith 

(i.e., for all ( ) ,, IiConi ∈∈θ A  if ,SENAΔ=θ∈I Ii
i  then, there exists ,Ii ∈  

such that ).SENAΔ=θi  

Proof. Suppose that ( )ACon  has no monolith. Then 

( ( ) { })I .SENSEN AA
A Δ=Δ−Con  

Hence, by Lemma 2.2, the pair ∏ Δ≠θ θ〉α〈 A AA SEN ,:, sdZF  with 

( ) ,∏Σ=ΣF  for all ,ASign∈Σ  and similarly for morphisms, and 

( ) ,
SEN
∏
Δ≠θ

ΣΣ θφ=φα
A

 

for all Sign∈Σ  and all ( ),SEN Σ∈φ  is a subdirect  embedding. None of 

the projection morphisms-L  ,:I, θ〉π〈 θ AA s\  however, has injective 

natural transformation components, since ,SENAΔ≠θ  for all .θ  Moreover, 
since K  is closed under contractions, ,K∈θA  for all .θ  Therefore, A  is not 

completely-K  subdirectly irreducible. 

5. Relating the Notions of Subdirect Irreducibility 

Recall from [28], that a Lyndon class is a class of systems-L  which is full 
and closed under subdirect products. Theorem 6 of [27] states that, if K  is a 
full class, then K  is closed under subdirect products if and only if, for every 

algebraic-L  system ,,SEN, 〉〉〈〈= FNA  the collection ,AK  of all members of 

K  with underlying algebraic-L  system ,A  is closed under arbitrary meets. 
Recall also from [28] that a class K  of systems-L  is called protoalgebraic, if 
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Ω  is - monotone in ,K  i.e., if, for all systems-L ,, K∈BA  

if ,BA  then ( ) ( ).BA Ω≤Ω  

By Proposition 3.1, we know that, for every class K  of ,systems-L  

.RCSIRSI
∗∗ = KK  Moreover, by Theorem 4.1, it follows that .RSIRCSI KK ⊆  

In the following lemma, an analog of Lemma 3.9 of [9], it is shown that, if 
K  is full, the class RSIK  is closed under contractions via reductive 

morphisms-L  with isomorphic functor components, and that, if K  is a 
protoalgebraic Lyndon class, it is closed under expansions via reductive 

morphisms-L  with isomorphic functor components. 

Lemma 5.1. Suppose that K  is a full class of systems-L  and BA,  two 

L -systems. If B  is a contraction of A  via a reductive morphism-L  with an 

isomorphic functor component, then RSIK∈A  implies that .RSIK∈B  If, in 

addition, K  is a protoalgebraic Lyndon class, then the converse also holds. 

Proof. Suppose, first, that BA sF \:, 〉α〈  is a reductive morphism,-L  
with F  an isomorphism, and .RSIK∈A  Let ( ) ,,Fe Iii ∈∈ BB K  such that 

.iIi BB I ∈=  Since K  is full, ( ) ( ),Fe1 AB K∈α−
i  for all .Ii ∈  Therefore, 

since 〉α〈 ,F  is strict, we get that ( ) ( )iIi BBA I ∈
−− α=α= 11  

( ).1
iIi B−

∈ α= I  Hence, since ,RSIK∈A  there exists an ,Ii ∈  such that 

( )iBA 1−α=  and, therefore, using the surjectivity of ,:, iF BA \〉α〈  we 

obtain ( ) ( ( )) .1
ii BBAB =αα=α= −  Thus, by Theorem 4.1, we get that 

.RSIK∈B  

Suppose, conversely, that K  is a protoalgebraic Lyndon class and 
BA sF \:, 〉α〈  a reductive morphism,-L  with F an isomorphism, and 

.RSIK∈B  By Theorem 4.1, an system-L   in K  is ysubdirectl-K  irreducible if 
and only if the lattice of all its filter extensions has a monolith. Thus, we 
have ( )BKFe  has a monolith, whence, since, by the Filter Correspondence 
Property (Theorem 15 of [28]), ( ) ( ) ( )ABA KKK FeFeFe ,≅  also has a monolith, 
and, therefore, .RSIK∈A  
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Once more, if K  is not a protoalgebraic Lyndon class, then the last 
statement of Lemma 5.1 does not hold in general. Elgueta provides on page 
235 of [9] a counterexample to illustrate this. 

The following corollary of Lemma 5.1 shows that the class of all reducts 
of ysubdirectl-K  irreducible systems-L  consists of exactly the reduced 

systems-L  in .RSIK  

Corollary 5.2. If K  is a full class of ,-systemsL  then ( ) .RSIRSI
∗∗ = KKK I  

Proof. By Lemma 5.1, ( ) ,RSIRSI KK ⊆∗  whence ( ) .RSIRSI
∗∗ ⊆ KKK I  The 

reverse inclusion is obvious. 

Lemma 5.3, an analog of Lemma 3.11 of [9], shows that for an abstract 

class K  of systems,-L  the completely-∗K  subdirectly irreducible members 

form a subclass of all the completely-K  subdirectly irreducible members. 

Lemma 5.3. If K  is an abstract class of ,-systemsL  then .RCSIRCSI KK ⊆∗  

Proof.  Suppose that .RCSI
∗∈ KA  By Proposition 3.1 and Theorem 4.3, 

AΘ  is meet irreducible in ( ).Fc Al
K  Since K  is abstract, we get .K∈A  Hence, 

by Theorem 4.2, it suffices to show that AΘ  is meet irreducible in ( ).Fc AK  

Suppose, to this end, that ,i
Ii ΘΘ ∈∧=A  for some collection ,,, Iii

i
i ∈〉θ〈=Θ A  

of filter-K  congruence systems of .A  Define ( ) .,,, Iiii
i ∈〉Ω〈=Θ Ω AA  We 

have that Ω
∈ ΘΘ ,i

Ii∧=A  because iIi AA ∈= I  and ( )iIi AΩ∈I  is a 

congruence system on ,A  so that, since A  is reduced, ( ) .SENAA Δ=Ω∈ iIiI  

Thus, since AΘ  is meet irreducible in ( ),Fc Al
K  there exists ,Ii ∈  such that 

., ΩΘ=Θ iA  Hence,  since ,,ΩΘ≤Θ ii  we get that .iΘ=ΘA  

The next lemma shows that all completely subdirectly irreducible 
members in a full class that contains all trivial systems-L  are reduced. 

Lemma 5.4. Let K  be a full class of systems.-L  If K  contains all trivial 

systems,-L  then every member of RCSIK  is reduced. 
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Proof. Suppose that .,,SEN, RCSIK∈〉〉〈〈= AA RFN  Then 

,, ΩΘΘ=Θ AEA ∧A  where, of course, by AEΘ  is denoted the trivial filter 

congruence system 〉Δ〈=Θ SEN,: AA EE  on the system-L  ,AE  the trivial 

system-L  on the algebraic-L  system reduct 〉〉〈〈= F,SEN, NA  of A.  But, 

by hypothesis, ( ),Fc AAE
K∈Θ  whence, by Theorem 4.2, ,,ΩΘ=Θ AA  i.e., 

( ) SENΔ=Ω A  and A  is reduced. 

Finally, combining Lemmas 5.3 and 5.4, we obtain the following analog of 
Theorem 3.13 of [9]. Its first part states that, for an abstract class K  of 

systems,-L  the ysubdirectl-∗K  irreducible systems-L  coincide with the 

reduced members of the class of all ysubdirectl-K  irreducible systems.-L  Its 

second part adds the hypothesis that K  contains all trivial systems-L  to 

conclude, based on Lemmas 5.3 and 5.4, that the class of all completely-K  

subdirectly irreducible members coincides with the subclass of all reduced 
members of the class of all ysubdirectl-K  irreducible systems.-L  

Theorem 5.5. The following holds, for all classes K  of :-systemsL  

1. If K  is abstract, then .RSIRSI
∗∗ = KKK I  

2. If K  is abstract and contains all trivial ,-systemsL  then RCSIK  

.RSI
∗= KK I  

Proof. 1. By Proposition 3.1, .RCSIRSI
∗∗ = KK  Thus, by Lemma 5.3, 

.RCSIRSI KK ⊆∗  Hence, since ,RSIRCSI KK ⊆  we obtain .RSIRSI
∗∗ ⊆ KKK I  The 

reverse inclusion is obvious. 

2. By Part 1, Proposition 3.1 and Lemmas 5.3 and 5.4, we get that 

∗= RCSIRCSI KK  (by Lemmas 5.3 and 5.4) 

∗= RSIK  (by Proposition 3.1) 

.RSI
∗= KK I  (by Part 1) 
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6. Subdirect Representation Theorems 

In this section, analogs are provided of Theorems 3.14 and 3.15 of [9] for 
the subdirect representability of an system-L  in full and in reduced classes 
of ,systems-L  respectively. 

Recall that, given a class K  of systems-L  and an algebraic-L  system 
,,SEN, 〉〉〈〈= FNA  by AK  is denoted the class of all systems-L  in K  with 

underlying algebraic-L  system .A  

Theorem 6.1 provides a sufficient condition for the subdirect 
representability of a member of a full class K  inside the class in terms of the 
closure of AK  under unions of ,chains-  for every algebraic-L  system .A  
More precisely, it is shown that, if K  is a full class of ,systems-L  such that 

AK  is closed under unions of ,chains-  for all algebraic-L  systems ,A  then 
every system-L  in K  is isomorphic to a subdirect product of ysubdirectl-K  
irreducible members. As pointed out in [9], this condition is due essentially to 
Mal’cev (see Theorem 3 of the paper “Subdirect Products of Models” in [17]). 

Theorem 6.1 (Subdirect Representation for Full Classes). Suppose that 
K  is a full class of systems-L  such that AK  is closed under unions of 

,-chains  for all algebraic-L  systems .A  Then ( ),RSIsd KK P⊆  i.e., every 
system-L  in K  is isomorphic to a subdirect product of members of .RSIK  

Proof. Let K∈A  and 

{ RrrI ∈〉〉φΣ〈〈= :,,
r

 with ( ) ( ) }.SEN, AA
Σ−Σ∈φ=ρ rnr nr

 

For every ,,, Ir ∈〉〉φΣ〈〈
r

 choose ( ),Fe,, AA K∈〉〉φΣ〈〈
r

r  maximal with respect to 

the condition .,, 〉〉φΣ〈〈
Σ∉φ

rr rr
A

 Such a maximal filter-K  extension of A  exists, 

by Zorn’s Lemma, since AK  is closed under unions of chains.-  
Then we have that .,,,, AA =〉〉φΣ〈〈∈〉〉φΣ〈〈

rrI rIr  Thus, by Corollary 2.3, 

.,, ,,sd∏ ∈〉〉φΣ〈〈 〉〉φΣ〈〈Ir r
r rAA Z  Moreover, by definition and by Theorem 4.1, 

〉〉φΣ〈〈
r

,,rA  is ysubdirectl-K  irreducible, for all .,, Ir ∈〉〉φΣ〈〈
r

 Hence we obtain 

that ( ).RSIsd KP∈A  
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Finally, Theorem 6.2, an analog of Theorem 3.15 of [9], is presented, that 
provides a sufficient condition for the subdirect representability of a member 

of the reduction ∗K  of a full class K  inside ,∗K  once more, in terms of the 
closure of AK  under unions of ,chains-  for every algebraic-L  system .A  
Theorem 6.2, shows that, if K  is a full class of ,systems-L  such that AK  is 

closed under unions of ,chains-  for all algebraic-L  systems ,A  then every 

system-L  in ∗K  is isomorphic to the reduction of a subdirect product of 

reduced ysubdirectl-K  irreducible members. 

Before introducing the statement of the theorem, recall that, given an 

operator O  on classes of ,systems-L  the notation ∗O  is used to denote the 

operator ,LO  where L  is the operator that takes a class of systems-L  and 
maps it to the class of all isomorphic copies of the Leibniz reductions of its 
members. 

Theorem 6.2 (Subdirect Repres. for Reduced Classes). Let K  be a full 
class of ,-systemsL  such that AK  is closed under unions of ,-chains  for every 

algebraic-L  system .A  Then ( ),RSIsd
∗∗∗ ⊆ KKK IP  i.e., every system-L  of ∗K  is 

isomorphic to the reduction of a subdirect product of members of .RSI
∗KK I  

Proof. By the Filter Homomorphism Theorem (Theorem 2 of [28]), it 

suffices to show that, for all ,,,,SEN K∈〉〉〈〈= AAAAA RFN  some contraction 

of ,A  via a reductive morphism-L  with an isomorphic functor component, is 
subdirectly embeddable into a direct product of systems-L  in the class 

.RSI
∗KK I  Consider, again, the subdirect embedding 

,:, ,, ,,sd ∏ ∈〉〉φΣ〈〈 〉〉φΣ〈〈〉α〈 Ir rF r rAA Z  where 

{ RrrI ∈〉〉φΣ〈〈= :,,
r

 with ( ) ( ) },SEN, AA
Σ−Σ∈φ=ρ rnr nr

 

of the proof of Theorem 6.1, which is such that ,RSI,, K∈〉〉φΣ〈〈
r

rA  for all 

.,, Ir ∈〉〉φΣ〈〈
r

 Consider also the strict morphism-L  

,:,
,,

,,
,,

,, ∏∏
∈〉〉φΣ〈〈

∗
〉〉φΣ〈〈

∈〉〉φΣ〈〈
〉〉φΣ〈〈〉κ〈

Ir
rs

Ir
rK

r
r

r
r AA →  
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given by ,I=K  where I is the identity functor on ,,,∏ ∈〉〉φΣ〈〈 Ir
r ASign   and, 

for all ASign∈Σ 〉〉φΣ〈〈
r

,,r  and all ( ) ,,,,SEN ,,,, Irrr ∈〉〉φΣ〈〈Σ∈ϕ 〉〉φΣ〈〈〉〉φΣ〈〈

r
rr A  

by 

( ) ,,,:,,,,,, 〉∈〉〉φΣ〈〈ϕ〈=ϕΣ∏ ∗
〉〉φΣ〈〈〉〉φΣ〈〈〉〉∈φΣ〈〈

κ IrrrIr
rr rrr  

where, of course, ∗
〉〉φΣ〈〈ϕ
r

,,r  denotes the reduction of 〉〉φΣ〈〈ϕ
r

,,r  in ,,,
∗

〉〉φΣ〈〈
r

rA  for 

all .,, Ir ∈〉〉φΣ〈〈
r

 Since both 〉α〈 ,F  and 〉κ〈 ,K  are strict  morphisms,-L  so is 

their composition ,,, 〉α〈〉κ〈 FK o  whence, by Lemma 2 of [21], 
( ) ( ).,,Ker AConFK ∈〉α〈〉κ〈 o  Moreover, the quotient ( )〉α〈〉κ〈 ,,Ker FK oA  

is embeddable into ∏ ∈〉〉φΣ〈〈
∗

〉〉φΣ〈〈Ir r
r r

,, ,,A  by the induced morphism-L  

( ) ,,,Ker:,
,,

,,∏
∈〉〉φΣ〈〈

∗
〉〉φΣ〈〈〉α〈〉κ〈〉β〈

Ir
rFKG

r
ro AA →  

 

in such a way that ( ) ∗
〉〉φΣ〈〈

〉〉φΣ〈〈 〉α〈〉κ〈〉β〈〉π〈 r
r

oo ,,
,, ,,Ker:,I, r

r FKG AA →  

is surjective, for all ,,, Ir ∈〉〉φΣ〈〈
r

 where by 

∗
〉〉φΣ〈〈

∈〉〉φΣ〈〈

∗
〉〉φΣ〈〈

〉〉φΣ〈〈 ∏〉π〈 r
r

r
r

,,
,,

,,
,, :I, r

Ir
r

r AA →  

is denoted the natural projection morphism,-L  for all .,, Ir ∈〉〉φΣ〈〈
r

 Therefore 

( ) .,,Ker:, ,, ,,sd∏ ∈〉〉φΣ〈〈
∗

〉〉φΣ〈〈〉α〈〉κ〈〉β〈 Ir rFKG r ro AA Z  

To finish up the proof, note, now, that, since ( ) ,RSI,,
∗∗

〉〉φΣ〈〈 ∈ Kr
rA  for all 

,,, Ir ∈〉〉φΣ〈〈
r

 Corollary 5.2 gives that ,RSI,,
∗∗

〉〉φΣ〈〈 ∈ KK Ir
rA  for all 

,,, Ir ∈〉〉φΣ〈〈
r

 which completes the proof. 
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The following corollary is now easily derivable from Theorem 6.2. 

Corollary 6.3. Let K  be an abstract class of ,-systemsL  such that AK  is 

closed under unions of ,-chains  for every algebraic-L  system A. Then the 

following hold: 

1. If K  contains all trivial ,-systemsL  then ( ).RCSIsd KK ∗∗ ⊆ P  

2. If, in addition, K  is protoalgebraic, then ( ).RCSIsd KK P⊆∗  

Proof. Part 1 follows by combining Theorem 6.2 and Lemma 5.5. Part 2 
also follows easily by applying Theorem 17 of [28] to Part 1, since all 

systems-L  in RCSIK  are reduced. 

Finally, let us point out, in closing, that Elgueta gives an example on 
page 239 of [9] that shows that the subdirect representation theory of first-
order structures gives different results for lattices considered as lattice-
ordered sets from the ones usually obtained in universal algebra, when 
lattices are viewed as algebras. This, Elgueta remarks, is simply due to the 
fact that the analysis of the structure theory in the context of first-order 
structures critically depends on the language that is being used. 
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