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Abstract

Threshold agent networks (TANs), a discretized version of threshold or neural

networks, are proposed as alternative platforms to sequential dynamical systems for

modelling computer simulations. It is argued that each model has its own advantages

and disadvantages compared to the other and the choice on each occasion should de-

pend on the particular characteristics of the application at hand. Some results on the

expressive power and the limitations of TANs are presented. Finally, equivalence classes

of TANs that are introduced based on characteristics of their state spaces are studied in

detail and upper bounds are given on their cardinalities.
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1. Introduction

Although modelling and computer simulations of physical phenomena have

a long history of existence and development, it was not but until very recently

[1,2] that the question of modelling computer simulations per se was brought

into the limelight. Sequential dynamical systems (SDSs) were introduced for
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this purpose. A very eloquent description of the reasoning that led to the in-

troduction of SDSs as the most appropriate model for computer simulations is
provided in [7]. Such a model, it is argued, must consist of objects that have a

state and the ability to interact with each other. Interaction is local in the sense

that each object is able to interact only with its ‘‘neighbors’’ rather than with

every other object taking part in the simulation. Neighborhood of the objects is

determined by environmental considerations, i.e., by the space in which the

simulation is supposed to be taking place. These chains of local interactions

result in updating the states of the objects. The updates must occur in some

specified order since updating the state of an object may affect the way the state
of another object is updated and, therefore, the updating order is very relevant

to the outcome of the simulation. This general framework is then specialized to

a digital sequential machine with arbitrary boolean function computers. In this

case the states become vectors of binary digits, one for each object, and the

objects are residing in the space taking the form of vertices of a simple graph

that determines via its adjacency relation the neighborhood relation of the

objects. The local update functions are arbitrary boolean functions, one for

each vertex, that depend only on the values of the vertex itself and of its ad-
jacent vertices. Finally, the order in which the updates represented by these

functions should be applied is given by a permutation of the vertices. There-

fore, the final version of the model is formalized as follows.

Let G ¼ hV ;Ei be a loop-free graph with vertex set V ¼ f1; 2; . . . ; ng and k

the two element field with elements 0 and 1. For each i 2 V , suppose that there
is a function Fi : kn ! kn, that only changes the value of the ith position and

only depends on the ith position and those positions j, such that ðj; iÞ 2 E. The
Fis are the local update functions. Now let p 2 Sn be a permutation of V. p is
called an update schedule. The functions Fi are composed in the order pre-

scribed by p to obtain the function F ðG; pÞ ¼ FpðnÞ 
 Fpðn�1Þ 
 � � � 
 Fpð1Þ: kn ! kn.
We call the function F ðG; pÞ the SDS determined by G, the local update

functions Fi and the update schedule p 2 Sn.
The transition from the higher level description of a computer simulation to

a lower level, very close to the actual implementation of the simulation in a

computer system, has introduced some peculiarities in the SDS model that may

be natural in some contexts but may seem quite unnatural in others. It would
have made perfect sense for many of the characteristics that are considered set

in a certain way in this model to be set differently in another model. Some of

these will now be pointed out. Our goal is to raise some doubts as to whether

SDSs constitute ‘‘the’’ right model for computer simulations or, rather, ‘‘a’’

model that is very useful for modelling some types of simulations, while other

models should be used in other types of simulations. In Section 2, an alter-

native model will be introduced. It will be argued that pluralism in selection is

desirable as long as one has in his arsenal powerful tools in converting from
one model to the other and in combining different models to construct bigger
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ones or using different models to decompose in a structured way bigger and

more complex simulations.
In defining the space of the simulation, i.e., the underlying graph of an

SDS to be a simple undirected graph, the assumption is made implicitly that

if one object affects another object in a simulation then the second object is

necessarily in a position to affect the first. While this is a sound assumption

from the topological viewpoint, it may fail otherwise for several reasons. So it

seems very natural to relax this condition to avoid the enforced symmetry.

The graph should, for many applications, be a digraph rather than an un-

directed graph. A second issue that arises is the type of the functions used as
local update functions. The SDS model allows arbitrary boolean functions to

be used as local update functions. This is consistent with the higher level

point of view since at that level each of the objects will be able to compute

any such function. On the other hand the final component in the global

update function corresponding to that object will have a restricted form due

to the spatial relations in the model and the form of the update schedule. If

the opposite point of view is taken, staying closer to the actual implemen-

tation characteristics of the simulation in an electronic machine, it may be
preferable to use boolean threshold functions as local update functions

rather than arbitrary functions. This has, of course, the disadvantage of being

somewhat restrictive. On the other hand, it has the advantage of narrowing

the class of functions used to a more manageable one and, also, that the class

of threshold functions has been in use in engineering and simulation science

for quite a long time so that results from these fields may be readily pulled

out and used in the present context. Finally, another point of contention is

the sequentiality of the model. SDSs in this respect are taking again the
lower, closer to the machine implementation level. So this assumption is

sound as long as attention is restricted or, at least focused, on the actual

implementation of the simulation in a sequential machine using a language

that follows a sequential model of computation. This assumption, however,

fails if a parallel machine or a distributed system is used for the simulation or

a language that follows an inherently parallel prototype is used to program

the simulation.

These are some of the theoretical reasons that led to the introduction of
threshold agent networks (TANs) as an alternative platform for computer

simulations to the SDS platform. No claim is made that TANs are more

successful or more global than SDSs. It is strongly believed, however, that each

model has its own advantages and disadvantages and each one is more ap-

propriate than the other depending on the nature of the specific application as

was argued above. Having more than one model is not necessarily a drawback.

In fact, in [5] it is shown that there exist natural ways to transform one system

into the other. Thus, under these circumstances the added flexibility in the
initial choice relative to the application at hand is desirable and both models
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may be combined should the need to build or decompose some larger model

arise.

2. Threshold agent networks: the basics

Let G ¼ hV ;Ei be a loop-free graph with vertex set V ¼ f1; 2; . . . ; ng and k
the two element lattice with elements 0 and 1. For each i 2 V , suppose that we
are given a function Fi : kn ! kn, that only changes the value of the ith position

and only depends on the ith position and those positions j, such that ðj; iÞ 2 E.
Call the Fis the local update functions. Now let p 2 Sn be a permutation of V. p
is called an update schedule. The functions Fi are composed in the order pre-

scribed by p to obtain the function F ðG; pÞ ¼ FpðnÞ 
 Fpðn�1Þ 
 � � � 
 Fpð1Þ: kn ! kn.
We call the function F ðG; pÞ the SDS determined by G, the local functions Fi
and the update schedule p 2 Sn. (See [2,7].)

A SDS is said to be positive if all local update functions are monotone, i.e.,

if, for all 16 i6 n, and all x1; . . . ; xn, y1; . . . ; yn 2 k, with xj6 yj, 16 j6 n,

Fiðx1; . . . ; xnÞ6 Fiðy1; . . . ; ynÞ:

It is well known that a boolean function is monotone if and only if it may be

expressed as a term function for a term containing only the operation symbols

0, 1, ^ and _. Thus, an equivalent formulation of this definition would be that

an SDS is positive if all local update functions are expressible as term functions
in the language of boolean algebras without the negation symbol.

As an example consider the graph G with vertex set V ¼ f1; 2; 3; 4g that is

depicted in Fig. 1.

Suppose that the local functions are given by

F1 ¼ x2 � x4; F2 ¼ x1 � x3; F3 ¼ x2 � x4; F4 ¼ x1 � x3;

where by � is denoted the XOR binary operation on f0; 1g, given by the table

Fig. 1. An example of a SDS.
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Suppose also that the update schedule is p ¼ id, the identity permutation on

V.

It is not difficult to see that the resulting SDS is given by

F ðG; pÞðx1; x2; x3; x4Þ ¼ ðx2 � x4; x2 � x3 � x4; x2 � x3; x3 � x4Þ:

Then the following table describes two possible runs of the system, the first

with initial condition ðx01; x02; x03; x04Þ ¼ ð1; 0; 0; 0Þ and the second with initial

condition ðx01; x02; x03; x04Þ ¼ ð1; 1; 0; 0Þ.

A TAN consists of a collection A ¼ fA1; . . . ;Ang of agents, where each agent Ai
is formally an ordered pair Ai ¼ hki; Pii, where ki is an integer, the threshold of

agent i, and Pi � f1; . . . ; ng its output set. Agent i will be ‘‘active’’ at time j if at

least ki agents that have i in their output sets are active at time j� 1. Note that

if ki is negative, then agent i will always be active at time j except if at least �ki
agents that have i in their output sets are active at round j� 1. As a conse-

quence, negative thresholds may be used to model inhibitory as well as stim-
ulatory behavior. Pi, 16 i6 n, is the set of agents that will be affected by agent i

at the end of each time step whenever agent i has been active at the end of the
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previous time step. This dynamical behavior is formally expressed by the

function h : kn ! kn defined as follows: first, given a condition c that an n-tuple
hx1; . . . ; xni 2 kn may or may not satisfy, let vc : k

n ! k be the characteristic

function of c, i.e.,

vcðx1; . . . ; xnÞ ¼
1; if hx1; . . . ; xni satisfies c;
0; otherwise:

�

Then define the functions vi : k
n ! k, 16 i6 n, by

vi ¼
vfjfj:xj¼1 and i2PjgjP kig; if ki P 0;
vfjfj:xj¼1 and i2Pjgj<�kig; if ki < 0:

�

Finally, set

hðx1; x2; . . . ; xnÞ ¼ ðv1ðx1; . . . ; xnÞ; . . . ; vnðx1; . . . ; xnÞÞ;

h is called the dynamics of the TAN. The state of agent i at time step j is the ith

coordinate of the jth state vector. The zeroth state vector is also referred to as

an initial condition. The TAN on the agent set A ¼ fAigi2I will be denoted by A.

A TAN is said to be positive if all thresholds ki, 16 i6 n are nonnegative,
i.e., if, for all 16 i6 n, ki P 0.

As an example consider the following TAN with four agents. The second

column of the table gives each agent�s threshold and the third column gives

each agent�s output set.

The sequence of state vectors for a run of this TAN with initial condition

ð0; 0; 0; 0Þ is given in the following table

x1 x2 x3 x4

0 0 0 0

0 1 0 1

1 1 1 1

1 0 1 0

0 0 0 0
..
.
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The output sets may also be viewed as ordered lists of agent indices that

collectively determine a binary relation E of ‘‘adjacency’’ between the agents:

ði; jÞ 2 E if and only if j 2 Pi:

If this binary relation is converted to a graph representation, then a TAN with

n agents may be equivalently defined as a pair consisting of a directed graph
G ¼ hI ;Ei on jI j ¼ n vertices together with a collection of functions ffigi2I ,
such that fi depends only on Ei ¼ fj 2 I : ðj; iÞ 2 Eg and has the form

fiðxj : j 2 EiÞ ¼
T ð
P

j2Ei xj � kiÞ; if ki P 0;
T ð�

P
j2Ei xj � kiÞ; if ki < 0;

�

where T : R ! R (R denotes the set of real numbers) is such that

T ðuÞ ¼ 1; if uP 0;
0; otherwise:

�

In this formulation, it is easy to see that TANs form a special subclass of

threshold or neural networks, which, in turn, form a special subclass of finite

automata networks [4].

The state space of a TAN A ¼ fAig16 i6 n with dynamics h : kn ! kn is the
directed graph SA ¼ hV ;Ei with vertices all the 2n n-bit sequences (state vectors)

and edges

ðx; yÞ 2 E if and only if y ¼ hðxÞ; for all x; y 2 kn:

Two state spaces SA and SB are isomorphic, denoted SA ffi SB, if they are iso-
morphic as directed graphs.

Let p be a permutation of f1; . . . ; ng. Given a binary sequence x 2 kn, denote
by pðxÞ the sequence hxpð1Þ; xpð2Þ; . . . ; xpðnÞi. The permutation pðSAÞ of a state

space SA ¼ hkn;Ei by p is the directed graph with vertices kn and edge set

fðpðxÞ;pðyÞÞ : ðx; yÞ 2 Eg.

3. On the dynamics of threshold agent networks

In this section, some simple results pertaining to the expressive power of

TANs will be formulated. By expressive power is meant the nature and the

variety of the digraphs over kn that may be produced as state spaces of TANs.

Boolean circuits are used as an auxiliary intermediate step in transforming a

given collection of boolean functions into a suitable TAN whose operation

simulates in some sense the given functions.

First, it is obvious that all those digraphs that are state spaces of TANs
must be graphs of functions, since each is the graph of the dynamics function

of some TAN. That is, the following relation holds, for all state spaces

S ¼ hkn;Ei,
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ðx; yÞ 2 E and ðx; zÞ 2 E imply y ¼ z; for all x; y; z 2 kn:

Using the pigeon-hole principle (or quoting well-known results on finite

dynamical systems, for instance, Section 7.2 in [3]), the following proposition

may be proved. It expresses the simple fact that, starting from an arbitrary

state, any given TAN will eventually reach a uniquely determined finite limit

cycle. This is true, more generally, for all finite dynamical systems.

Proposition 1. For every TAN with agent set A ¼ fAig16 i6 n and for every initial
condition x0, there exist a minimum nonnegative integer s and a minimum posi-
tive integer T, such that the sequence of state vectors xs, sP s, is periodic with
period T.

To illustrate Proposition 1, take the TAN that was described in Section 2. In

that case, it is obvious that s ¼ 0 and T ¼ 4.

In the following theorem, it is shown that any functional relation between

binary vectors of length n may be simulated as a periodic projection onto n
coordinates of an appropriately constructed TAN with at least n agents.

Theorem 2. Let vs, s 2 x, be a sequence of vectors vs ¼ hvs1; . . . ; vsni 2 kn, such
that vs1 ¼ vs2 implies vs1þ1 ¼ vs2þ1, for all s1; s2 2 x. Then, there exist a TAN with
agent set A ¼ fAigi2I , a subset J � I , with jJ j ¼ n, and a positive integer d, such
that

hhxdsj : j 2 Ji : s 2 xi ¼ hvs : s 2 xi;

where by xti is denoted the state of agent Ai at time step t.

Proof. Take the first 2n þ 1 vectors v0; . . . ; v2
n
. Define functions fi : kn ! k,

16 i6 n, by

fiðx1; . . . ; xnÞ ¼ vjþ1i ; if vj ¼ hx1; . . . ; xni; for some 06 j6 2n;
0; otherwise;

�

fi, 16 i6 n is well-defined because of the assumption made about the sequence

vs, s 2 x.
Now construct the boolean circuit C that computes the fis in terms of the

inputs x1; . . . ; xn and has uniform path length d. In other words, all paths from

inputs to outputs of C contain exactly the same number of logical gates. This

can always be done by introducing redundant propagators, if necessary.

Propagators are 1-input-1-output gates that compute the identity function.

This requirement is crucial, since only if it is satisfied, are the outputs of the
circuit guaranteed to simulate correctly every d time steps the given vectors.

Then construct the TAN AðCÞ associated to this boolean circuit. (Rather than

describing the details of this construction formally, we will give an illustration
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of the construction following this proof.) The projection of the state vectors of

this TAN on the set of agents corresponding to the input gates taken every d
time steps will then give the original sequence of vectors vs, s 2 x. �

As an example, consider the following sequence of vectors in k3

0 0 0

0 0 1

0 1 1

0 1 0

0 0 0

..

.

This sequence satisfies the requirement of Theorem 2. Thus, we may construct

the following functions f1, f2, f3: k3 ! k:

We have

f1ðx1; x2; x3Þ ¼ 0; f2ðx1; x2; x3Þ ¼ x1 ^ x3; f3ðx1; x2; x3Þ ¼ x1 ^ x2:

Therefore, the boolean circuit of path length, or depth, 3 of Fig. 2 computes f1,
f2 and f3. Notice the introduction of the propagators 4 and 7 to force uniform

path length 3.

Now the following TAN AðCÞ with 10 agents which are described by the

following table is obtained from the circuit C. To each propagating gate in the

input is assigned threshold 1, to each negation gate threshold )1, to each AND
gate threshold equal to the number of inputs of that gate and to each OR gate
(if there are any) threshold 1. Then the output set of each gate is taken to be the

set of all those gates whose input is wired to the output of that gate. As

mentioned above, it is crucial that all paths from inputs to outputs are of the
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same length in terms of intermediate gates so that the simulation of the circuit

by the resulting TAN be performed correctly.

Running this TAN and taking projections of the state vectors onto the first

three coordinates every three steps will yield the states that we started with. The

following table gives the values of the run with initial condition ð0; 0; . . . ; 0Þ.

Fig. 2. A circuit C computing a given sequence of binary vectors.
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It is interesting to note that the dynamic behavior depicted by the sequence

0 0 0

0 0 1

0 1 1

0 1 0

0 0 0

..

.

is also achievable by the following TAN with just three agents.

But, in general the following negative result is true.

Proposition 3. There exists a sequence vs ¼ hvs1; vs2; vs3i 2 k3, s 2 x, satisfying the
condition vs1 ¼ vs2 implies vs1þ1 ¼ vs2þ1, for all s1; s2 2 x, that is not the state
vector sequence of any TAN with just three agents.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0 0 1

0 0 1 0 1 1 0 0 0 1

0 0 1 0 1 1 1 0 0 1

0 0 1 0 1 1 1 0 1 1

0 1 1 0 1 1 1 0 1 1

0 1 1 0 1 0 1 0 1 1

0 1 1 0 1 0 1 0 1 0

0 1 0 0 1 0 1 0 1 0

0 1 0 0 1 0 0 0 1 0

0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0
..
.

G. Voutsadakis / Appl. Math. Comput. 142 (2003) 521–543 531



Proof. Consider the sequence

0 0 0

0 0 1
1 1 0

1 0 1

0 0 1

..

.

First, since the first state vector (after the initial condition) is ð0; 0; 1Þ, agents 1
and 2 must have positive thresholds, since they would have been active other-

wise, whereas agent 3 must have either 0 or a negative threshold. Now, from

the second state vector ð1; 1; 0Þ we may conclude that both agents 1 and 2 have
thresholds 1 and are in 3�s output set and also that agent 3 must have threshold
)1 and be in its own output set. But this cannot happen as, then, the fourth

step ð1; 0; 1Þ ! ð0; 0; 1Þ could not occur. (Agents 1 and 2, being in 3�s output set
and having thresholds 1, must be active at this step.) �

Theorem 2 may be generalized to obtain the following refinement.

Proposition 4. Let vs, 06 s < m be a finite sequence of vectors vs ¼
hvs1; . . . ; vsni 2 kn. Then, there exist a TAN with agent set A ¼ fAigi2I , a subset
J � I and a positive integer d, such that

hhxdsj : j 2 Ji : 06 s < mi ¼ hvs : 06 s < mi:

Proof. First, append dlog2 me bits to all vectors vs, s < m, to produce the se-

quence of vectors

u0 ¼ v000 . . . 0
u1 ¼ v100 . . . 1
..
.

um�1 ¼ vm�1bdlog2 me . . . b0

where bdlog2 me . . . b0 is the binary representation of m� 1. Now periodically re-

peat these augmented vectors to produce an infinite sequence us, s 2 x, of
vectors of length nþ dlog2 me. Note that this infinite sequence satisfies the

condition us1 ¼ us2 implies us1þ1 ¼ us2þ1, for all s1; s2 2 x. Therefore, Theorem 2

may be applied to obtain a TAN with agents A ¼ fAigi2I , a subset K � I and a
positive integer d > 0, such that hhxdsj : j 2 Ki : s 2 xi ¼ hus : s 2 xi. Then, it is
clear that there exists a subset J � K � I , such that hhxdsj : j 2 Ji : 06 s < mi ¼
hvs : 06 s < mi. �
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As an example, take the sequence of five 2-vectors

00; 01; 11; 00; 10:

Construct the sequence of five 5-vectors

00000; 01001; 11010; 00011; 10100:

Then pass to the infinite sequence

00000; 01001; 11010; 00011; 10100; 00000; 01001; 11010; 00011; 10100; . . .

and follow the construction of the example following Theorem 2.

4. Time dependent SDSs and TANs

In this section time dependent SDSs (TDSDSs) and time dependent TANs

(TDTANs) are introduced. These are generalized versions of SDSs and TANs,

respectively, in which the graphs, local update functions, update schedules and
thresholds and output sets, respectively, are allowed to vary with time. A

special class of TDSDSs, called recursively TDSDSs, is then introduced and,

using the boolean circuit construction, it is shown that the state spaces of SDSs

in this class may be simulated by state spaces of (nontime dependent) TANs.

A TDSDS of order n is a triple

F ¼ hfGðtÞgt2x; fFiðtÞg16 i6 n;t2x; fpðtÞgt2xi:

It consists, first, of a collection of simple graphs fGðtÞ ¼ hV ðtÞ;EðtÞigt2x on the

n vertices f1; 2; . . . ; ng. Second, of a collection of functions fFiðtÞ: 16 i6
n; t 2 xg, with FiðtÞ : kn ! kn, for all i and t, such that FiðtÞ only changes the ith
variable and only depends on the ith variable and the variables j, with

ðj; iÞ 2 EðtÞ. Denote this set by NiðtÞ, i.e., NiðtÞ ¼ fig [ f16 j6 n : ðj; iÞ 2 EðtÞg.
FiðtÞ is the ith local update function at time t. Finally, fpðtÞgt2x is a collection of

permutations of the set f1; . . . ; ng, called the update schedule valid (or in effect)

at time t. All local update functions at time t may be composed according to

the update schedule that is in effect at time t to obtain a time varying function

F ðtÞ ¼ FpðtÞðnÞðtÞ 
 FpðtÞðn�1ÞðtÞ 
 � � � 
 FpðtÞð1ÞðtÞ:

Alternatively, a TDSDS of order n may be viewed as a collection

F ¼ fF ðtÞgt2x of SDSs F ðtÞ ¼ hGðtÞ; fFiðtÞg16 i6 n; pðtÞi, all of them of order n.
A TDTAN of order n consists of a collection of n time dependent agents

A ¼ fAiðtÞg16 i6 n;t2x. Each agent Ai ¼ fAiðtÞgt2x is formally a collection of pairs

AiðtÞ ¼ hkiðtÞ; PiðtÞi, where kiðtÞ is an integer, called the threshold of agent i at
time t, and PiðtÞ � f1; 2; . . . ; ng is a subset of the index set, called the output set
of agent i at time t. As the model runs in discrete time steps indexed by the

natural numbers, agent Ai at time step t will be active at time t provided that he
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belongs to the output sets of at least kiðtÞ agents that were active at time step
t � 1. Note that negative thresholds are also allowed in this case with the in-
tended meaning that if kiðtÞ < 0, agent Ai will always be active at time step t,
unless he belongs to the output sets of at least �kiðtÞ agents that were active at
time step t � 1.

This dynamics is made explicit by the dynamics function

htðx1; . . . ; xnÞ ¼ ðv1ðtÞðx1; . . . ; xnÞ; . . . ; vnðtÞðx1; . . . ; xnÞÞ;

where, for all 16 i6 n, t 2 x,

viðtÞ ¼
vfjfj:xjðtÞ¼1 and i2PjðtÞgjP kiðtÞg; if kiðtÞP 0;
vfjfj:xjðtÞ¼1 and i2PjðtÞgj<�kiðtÞg; if kiðtÞ < 0:

�

The TDTAN with set of agents A and dynamics function ht will be denoted
by A. Time dependence will be clear from context and, thus, no confusion will

hopefully arise.

An alternative description of a TDTAN A would be as a collection

A ¼ fAðtÞgt2x of TANs indexed by the natural numbers (and thought of as
discrete time steps).

A TDSDS F ¼ fFtgt2x is said to be recursively time dependent if there exists a
positive integer w, called the window of F, such that, for every t 2 x, Ft depends
only on the sets fFt�i : 16 i6wg and f~xxðt � iÞ : 16 i6wg.

The following theorem is an easy consequence of the fact that, given a

boolean function on finitely many variables, a boolean circuit may be con-

structed that computes the function and the possibility of constructing a TAN

whose sequence of state vectors, restricted appropriately in time and space,
simulates the operation of the boolean circuit, as was shown in the example

following Theorem 2.

Theorem 5. For every recursive TDSDS F on n vertices and any window w, there
exist a TAN with agent set A ¼ fAigi2I , a subset J � I , with jJ j ¼ n, and a
positive integer d, such that, for every initial condition v0 for F, there exists an
initial condition hx0i : i 2 Ii, such that

hhxdsj : j 2 Ji : s 2 xi ¼ hvs : s 2 xi;

where, as before, by xti is denoted the state of agent Ai at time step t.

Proof. Let F be a recursively TDSDS. First construct the boolean function

B that expresses the recursive dependence of the graph, the local update

functions, the update schedule and the state at time step t on the graphs, the
local update functions, the update schedules and the states at time steps

t � 1; . . . ; t � w. Then construct the boolean circuit CðBÞ that simulates B. Care
must be taken as before so that all paths from inputs to outputs in that boolean
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circuit have uniform length d. Then use the construction in Section 3 to con-

struct the TAN AðCðBÞÞ that simulates the boolean circuit CðBÞ. �

Theorem 5, combined with results from [5], may be used to prove the fol-

lowing.

Corollary 6. For every recursively TDSDS F on n vertices and window w, there
exist an SDS F 0 on m vertices, a subset J � f1; . . . ;mg and a positive integer d,
such that, for every initial condition x0 for F, there exists an initial condition x00

for F 0, such that

hhx0dsj : j 2 Ji : s 2 xi ¼ hxs : s 2 xi:

5. Equivalent and strongly equivalent TANs

In this section notions of equivalence between TANs are introduced based

on characteristics of their state spaces. Then P�oolya�s theory of counting is in-

voked to count the number of equivalence classes into which these equivalence

relations partition the class of all TANs of a specified order. The reader that is
not familiar with P�oolya�s theory of counting is referred to [6] but, for the sake

of completeness, a self-contained introduction is also presented in Appendix A.

5.1. Equivalence and strong equivalence

Two TANs A and B will be said to be equivalent if they have isomorphic

state spaces, i.e., if SA ffi SB.
A very interesting notion intermediate between equivalence and isomor-

phism is the notion of strong equivalence. (By isomorphism here is meant an

isomorphism in the category of TANs. The reader is referred to [8] for a de-

tailed categorical treatment of the networks studied in this paper.) The notion
of a permutation of a state space, that was introduced at the end of Section 2, is

used to describe strong equivalence.

Let A be a TAN with set of agents fAig16 i6 n and state space SA. In addition,
let p be a permutation of f1; . . . ; ng. Recall that, by pðSAÞ is denoted the graph

obtained from SA by permuting the digits of each node according to p. The fact
that, for every permutation p on f1; . . . ; ng, pðSAÞ ffi SA justifies the following

definition of strong equivalence between TANs.

Two TANs A and B with sets of agents A ¼ fAig16 i6 n and B ¼ fBig16 i6m,
respectively, such that Ai ¼ hki; Pii, 16 i6 n, and Bi ¼ hli;Qii, 16 i6m, are
said to be strongly equivalent if m ¼ n and there exists a permutation p of

f1; . . . ; ng, such that pðSAÞ ¼ SB.
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To see that strong equivalence is strictly stronger than equivalence consider

the following two TANs

It is not difficult to check from their state spaces (see Fig. 3) that they are

equivalent but not strongly equivalent.

The following proposition may be easily proven by recalling that an iso-

morphism of TANs [8] provides a permutation of the vertices that preserves the

input–output relations, i.e., satisfies exactly the strong equivalence specification
on the state spaces of the TANs.

Proposition 7. Two isomorphic TANs are strongly equivalent.

5.2. On the number of strong equivalence classes

In this section P�oolya�s theory of counting is applied to obtain an upper
bound on the number of strong equivalence classes of TANs over a fixed di-

graph in terms of the number n of agents in the network (or nodes in the di-

graph) and the elements and number of automorphisms in the automorphism

group of the digraph. It is also shown that, for every n, this upper bound is

tight for the case of TANs with n agents whose digraph is a cycle.

Let A be a TAN with set of agents fAig16 i6 n, Ai ¼ hki; Pii, 16 i6 n, and
dynamics h. Define the labeled digraph of A as the labeled digraph

GðAÞ ¼ hV ;E; li with set of nodes the set f1; . . . ; ng, set of edges the set of all

Fig. 3. The two state spaces of the TANs.
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ði; jÞ 2 V � V , such that j 2 Pi, and labels lðiÞ ¼ ki, for all i 2 V . The digraph of
A is then the graph hV ;Ei.

Suppose that G is the digraph of A. Let AutðGÞ denote the automorphism
group of G and let d denote the maximum indegree of G, i.e.,

d ¼ max
v2V

indegðvÞ:

Note that all negative thresholds in A that are less than )d can be replaced by 0
without affecting the dynamics of the TAN. Also note that all thresholds in A
that are greater than dmay be replaced by d þ 1 without affecting the dynamics

of the TAN either. Thus, to compute strong equivalence classes we need only

consider thresholds in the range f�d;�d þ 1; . . . ; 0; 1; . . . ; d; d þ 1g. It is,

furthermore, a straightforward observation that the number of strongly in-

equivalent TANs with digraph G is at most equal to the number of the different

(up to permutation of the vertices inducing isomorphisms) labelings of the

digraph G with integers in the range �d; . . . ; d þ 1. These are counted by
P�oolya�s formula and they are PAutðGÞð2d þ 2; 2d þ 2; . . .Þ, where PAutðGÞ denotes
the cycle index of the automorphism group of the digraph G.

Hence we have

Theorem 8. Let G ¼ hV ;Ei be a directed graph with d ¼ maxv2V indegðvÞ. There
are at most PAutðGÞð2d þ 2; 2d þ 2; . . .Þ TANs with digraph G that are not strongly
equivalent, where PAutðGÞ denotes the cycle index of the automorphism group of the
digraph G.

As an example, consider the digraph with two vertices 1, 2 and the directed

edges ð1; 2Þ and ð2; 1Þ, hence d ¼ 1. The automorphism group of this digraph

consists of the permutations

1 2

1 2

� �
;

1 2

2 1

� �
:

Thus, PAutðGÞðx1; x2Þ ¼ 1
2
ðx21 þ x2Þ. Therefore the upper bound on the strongly

nonequivalent TANs on the digraph G is PAutðGÞð4; 4Þ ¼ 10. In fact, all 10

possible TANs on this digraph are strongly nonequivalent as shown in Fig. 4.

The idea just employed to obtain the bound on the number of strong

equivalence classes of TANs may be used in conjunction with the generaliza-

tion of P�oolya�s Theorem 14 of Appendix A to obtain an upper bound on the

equivalence classes of TANs. Here, apart from the symmetry group of

the vertices of the graph G of the TAN, another factor that contributes to

having equivalent networks is taken into account. Note that if the num-
bers �d;�d þ 1; . . . ;�1; 0; 1; . . . ; d; d þ 1 are exchanged with the numbers

d; d � 1; . . . ; 1; d þ 1;�1; . . . ;�d; 0, respectively, then, in the state space do-

main two isomorphic state spaces will be obtained by flipping 0�s and 1�s in the
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corresponding sequences. Thus, if the generalization of P�oolya�s theorem is

applied to both the graph G with its group AutðGÞ of automorphisms and to
the set of colors f�d; . . . ; d þ 1g with the group H of symmetries containing

the identity and the permutation

�d �d þ 1 � � � �1 0 1 � � � d d þ 1

d d � 1 � � � 1 d þ 1 �1 � � � �d 0

� �

of order 2, the following bound on the number of equivalence classes of TANs

on G is obtained:

Theorem 9. Let G ¼ hV ;Ei be a directed graph with d ¼ maxv2V indegðvÞ. There
are at most

PAutðGÞ
o

oz1
;
o

oz2
; . . .

� �
expðð2d þ 2Þðz1 þ z2 þ � � �ÞÞjz1¼z2¼���¼0;

TANs with digraph G that are not equivalent, where PAutðGÞ denotes the cycle
index of the automorphism group of the digraph G.

5.3. Sharpness of the strong equivalence bound

The task of showing that the bound established in Theorem 8 is sharp is

taken up in this section. More precisely, let G ¼ hV ;Ei be a directed graph with
d being the maximum indegree of the vertices in V, AutðGÞ the automorphism
group of the digraph G and denote, as before, by PAutðGÞ the cycle index of the
group AutðGÞ. By Theorem 8, there are at most PAutðGÞð2d þ 2; 2d þ 2; . . .Þ

Fig. 4. Strongly nonequivalent TANs on a digraph with 2 vertices.
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TANs that are mutually strongly inequivalent. This is exactly the number

of different labelings of the vertices of G with labels chosen from the
set f�d;�d þ 1; . . . ; d þ 1g that correspond to meaningful assignments of

thresholds to the agents in the TAN. It is now shown that this bound is sharp

for the TANs with underlying digraph the cyclic graph with n vertices, for all n.
This is accomplished by showing that, if two TANs A and B are strongly

equivalent, then there must exist a permutation of the vertices, such that, up to

this permutation, the corresponding vertices must have the same output

functions, i.e., must possess the same thresholds.

To this aim, let A and B be the two TANs with sets of agents A ¼ fAig16 i6 n
and B ¼ fBig16 i6 n, with Ai ¼ hki; Pii and Bi ¼ hli; Pii, 16 i6 n, where

Pi ¼ fi� 1; iþ 1g, 26 i6 n� 1, and P1 ¼ f2; ng, Pn ¼ f1; n� 1g. Let hA : kn !
kn and hB : kn ! kn be the corresponding dynamics. Suppose that A and B are

strongly equivalent. Thus, there exists a permutation p : f1; . . . ; ng !
f1; . . . ; ng, such that, for all 16 i6 n,

hAi ðx1; . . . ; xnÞ ¼ hBpðiÞðxpð1Þ; . . . ; xpðnÞÞ:

But hAi and h
B
pðiÞ only depend on xi�1; xiþ1 and xpði�1Þ; xpðiþ1Þ, respectively, whence,

by slightly abusing notation,

hAi ðxi�1; xiþ1Þ ¼ hBpðiÞðxpði�1Þ; xpðiþ1ÞÞ:

Since these functions are the same, agent i in TAN A must have exactly the

same threshold as agent pðiÞ in TAN B and also p must carry i� 1 and iþ 1 to

the vertices pðiÞ � 1; pðiÞ þ 1, respectively, or vice versa, i.e., it must be an

automorphism of the cycle Cn. Thus, the two strongly equivalent TANs A and
B are in the same equivalence class with respect to automorphisms and labeling

of the underlying digraph of the model, as counted by Theorem 8. This proves

Theorem 10. Let Cn be the cycle with n vertices. There are exactly

PAutðCnÞð6; 6; . . .Þ;

TANs with digraph Cn that are not strongly equivalent, where PAutðCnÞ denotes the
cycle index of the automorphism group of the digraph Cn. Thus, the bound on the
number of strong equivalence classes of TANs provided by Theorem 8 is sharp for
some digraphs with n vertices, for all n.
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Appendix A. P�oolya’s theory of counting

In this appendix we briefly review the main elements of P�oolya�s theory of

counting, that is used heavily in Section 5. The basic theory is introduced in the

first subsection and a generalization is presented in the second. For more de-

tails and an excellent exposition, [6, Chapter 5], is strongly recommended.

A.1. Basic theory

Let D and R be the domain and codomain, respectively, of a set of jRjjDj
functions. Suppose that a weight is assigned to each of the elements in R. If
r 2 R, denote by wðrÞ its weight, which could be either a symbol or a number.

The store enumerator of R is the sum of the weights of the elements in R:

Store enumerator ¼
X
r2R

wðrÞ:

The weight of a function f : D! R, denoted W ðf Þ, is the product of the weights
of the images of the elements in D under f:

W ðf Þ ¼
Y
d2D

wðf ðdÞÞ:

The inventory of a set of functions is the sum of their weights:

Inventory of a set of functions ¼
X

all f in the set

W ðf Þ:

Given a permutation group G on the domain D, the equivalence relation
�G� RD � RD on RD induced by G is the relation defined by

f1 �G f2 iff f1ðdÞ ¼ f2ðpðdÞÞ; for all d 2 D; for some p 2 G:

It is not hard to check that two functions belonging to the same equivalence

class of �G have the same weight. This weight is said to be the weight of the
pattern (equivalence class). The inventory of a set of patterns is the sum of the

weights of the patterns in the set.

Let p be a permutation with b1 cycles of length 1, b2 cycles of length 2, . . ., bk
cycles of length k, and so on. The monomial xb11 x

b2
2 � � � xbkk � � � will be called the

cycle structure representation of p. The cycle index PG of the permutation group
G is the sum of the cycle structure representations of the permutations in G
divided by the number of permutations in G:
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PGðx1; . . . ; xk; . . .Þ ¼
1

jGj
X
p2G

xb11 x
b2
2 � � � xbkk � � �

Theorem 11 (P�oolya). The inventory of the equivalence classes of functions from
domain D to codomain R is

PG
X
r2R

wðrÞ;
X
r2R

wðrÞ2; . . . ;
X
r2R

wðrÞk; . . .
 !

:

Corollary 12. The number of equivalence classes of functions from D to R is

PGðjRj; jRj; . . . ; jRj; . . .Þ:

As an example we illustrate the method for counting the number of ways of
painting the four faces a, b, c and d of the pyramid of Fig. 5 with two colors of

paints x and y.
We set D ¼ fa; b; c; dg, R ¼ fx; yg and wðxÞ ¼ x, wðyÞ ¼ y. The permutation

group for the pyramid is

G ¼ a b c d
a b c d

� �
;

a b c d
b c a d

� �
;
a b c d
c a b d

� �� 	
:

The first permutation has cycle structure representation x41, and the second

and the third x1x3. Thus, the cycle index of the group G is

PGðx1; x2; x3Þ ¼ 1
3
ðx41 þ 2x1x3Þ

and, therefore, the pattern inventory is

1
3
½ðxþ yÞ4 þ 2ðxþ yÞðx3 þ y3Þ� ¼ x4 þ y4 þ 2x3y þ 2x2y2 þ 2xy3:

Fig. 5. The pyramid of the example on P�oolya�s theory.
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Hence, there are eight distinct ways of painting the four faces of the pyramid

with the colors x and y.

A.2. Generalization of P�oolya’s theory of counting

P�oolya�s theorem may be generalized in the following direction. In addition to

the group G of permutations on the domain D we also have a group H of

permutations on the codomain R. Two functions f1 and f2 are now related via

the relation �G;H� RD � RD if there exists a p 2 G and a s 2 H , such that, for all
d 2 D,

sðf1ðdÞÞ ¼ f2ðpðdÞÞ:

Then, the following theorems hold [6, Theorems 5–7].

Theorem 13. The number of equivalence classes of functions from D to R is given
by

1

jGj
1

jH j
X

p2G;s2H
wðp; sÞ;

where wðp; sÞ is the number of functions f, such that sðf ðdÞÞ ¼ f ðpðdÞÞ, for all
d 2 D.

Theorem 14. The number of equivalence classes of functions from D to R is the
value of the expression

PG
o

oz1
;
o

oz2
;
o

oz3
; . . .

� �
� PHðexpðz1 þ z2 þ z3 þ � � �Þ;

expð2ðz2 þ z4 þ z6 þ � � �ÞÞ; expð3ðz3 þ z6 þ z9 þ � � �ÞÞ; . . .Þ;

evaluated at z1 ¼ z2 ¼ z3 ¼ � � � ¼ 0.

As an example we compute the number of ways to distribute five objects two

of which are indistinguishable to four boxes two of which are indistinguishable.

In this case G contains the identity permutation and the permutation that in-

terchanges the two indistinguishable objects and H contains the identity per-

mutation and the permutation that interchanges the two indistinguishable

boxes. Thus,

PG ¼ 1
2
ðx51 þ x31x2Þ and PH ¼ 1

2
ðx41 þ x21x2Þ:

Therefore the number of distinct patterns is
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1

4

o5

oz51

�
þ o3

oz31

o

oz2

�
½expð4ðz1 þ z2ÞÞ þ expð2ðz1 þ z2ÞÞ expð2z2Þ�jz1¼z2¼0

¼ 1

4
ð45 þ 25 þ 43 � 4þ 23 � 4Þ ¼ 336:
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