George VOUTSADAKIS

CATEGORICAL ABSTRACT ALGEBRAIC LOGIC

WEAKLY REFERENTIAL π-INSTITUTIONS

Abstract. Wójicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wójicki asserts that a logic has a referential semantics if and only if it is selfextensional. A second theorem of Wójicki asserts that a logic has a weakly referential semantics if and only if it is weakly self-extensional. We formulate and prove an analog of this theorem in the categorical setting. We show that a π-institution has a weakly referential semantics if and only if it is weakly self-extensional.

Received 27 November 2015

To Don Pigozzi this work is dedicated on the occasion of his 80th Birthday.

2010 AMS Subject Classification: 03G27

Keywords and phrases: Referential Logics, Selfextensional Logics, Referential Semantics, Referential π-institutions, Selfextensional π-institutions.
1. Introduction

Let $\mathcal{L} = \langle \Lambda, \rho \rangle$ be a logical signature/algebraic type, i.e., a set of logical connectives/operation symbols Λ with attached finite arities given by the function $\rho : \Lambda \to \omega$. Let, also, V be a countably infinite set of propositional variables and T a set of reference/base points. Wójcicki [5] defines a referential algebra A to be an \mathcal{L}-algebra with universe $A \subseteq \{0, 1\}^T$. Such an algebra determines the consequence operation C^A on $\text{Fm}_\mathcal{L}(V)$ by setting, for all $X \cup \{\alpha\} \subseteq \text{Fm}_\mathcal{L}(V)$, $\alpha \in C^A(X)$ iff, for all $h : \text{Fm}_\mathcal{L}(V) \to A$ and all $t \in T$,

$$h(\beta)(t) = 1, \text{ for all } \beta \in X, \text{ implies } h(\alpha)(t) = 1.$$

Moreover, Wójcicki calls a propositional logic $S = \langle \mathcal{L}, C \rangle$, where $C = C^A$, for a referential algebra A, a referential (or referentially truth-functional) propositional logic.

Wójcicki shows in [5] that, given a class K of referential algebras, there exists a single referential algebra A, such that $C^K := \cap_{A \in K} C^K = C^A$. Thence follows that a propositional logic is referential if and only if it is defined by a class of referential algebras.

Given a propositional logic $S = \langle \mathcal{L}, C \rangle$, the Frege or interderivability relation of S (see, e.g., Definition 2.37 of [3]), denoted $\Lambda(S)$, is the equivalence relation on $\text{Fm}_\mathcal{L}(V)$, defined, for all $\alpha, \beta \in \text{Fm}_\mathcal{L}(V)$, by

$$\langle \alpha, \beta \rangle \in \Lambda(S) \iff C(\alpha) = C(\beta).$$

The Tarski congruence $\tilde{\Omega}(S)$ of S (see [3]) is the largest congruence relation on $\text{Fm}_\mathcal{L}(V)$ that is compatible with all theories of S. The Tarski congruence is a special case of the Suszko congruence $\tilde{\Omega}^S(T)$ associated with a given theory T of S, which is defined as the largest congruence on $\text{Fm}_\mathcal{L}(V)$ that is compatible with all theories of S that contain the given theory T (see [2]). In fact, by definition, $\tilde{\Omega}(S) = \tilde{\Omega}^S(C(\emptyset))$, i.e., the Tarski congruence of S is the Suszko congruence associated with the set of theorems of the logic S. Font and Jansana (see p.17 of [3]), extending Blok and Pigozzi’s [1] well-known characterization of the Leibniz congruence $\Omega(T)$ associated with a theory T of a sentential logic, have shown that, for all $\alpha, \beta \in \text{Fm}_\mathcal{L}(V)$,

$$\langle \alpha, \beta \rangle \in \tilde{\Omega}(S) \iff \text{for all } \varphi(p, \bar{q}) \in \text{Fm}_\mathcal{L}(V),
C(\varphi(\alpha, \bar{q})) = C(\varphi(\beta, \bar{q})).$$
Whereas $\tilde{\Omega}(S) \subseteq \Lambda(S)$, for every propositional logic S, the reverse inclusion does not hold in general. A propositional logic is called **selfextensional** in [5] if $\Lambda(S) \subseteq \tilde{\Omega}(S)$. In fact, Wójcicki shows in what has become a fundamental theorem in the theory of referential semantics, Theorem 2 of [5], that a propositional logic is referential if and only if it is self-extensional.

Wójcicki in [6] revisited the equivalence between referentiality and self-extensionality, proving a “weak version” by replacing the entirety of theories (equivalently, the closure operator C) by the set of theorems. More precisely, Wójcicki considers in [6] (see the Theorem in [6]) propositional logics $S = \langle L, C \rangle$, where $C(\emptyset) = C^A(\emptyset)$, for a referential algebra A. We call such logics **weakly referential logics**.

Given a propositional logic $S = \langle L, C \rangle$, the **Leibniz congruence** $\Omega(T)$ of a theory T of S (see [1]) is the largest congruence relation on $\text{Fm}_L(V)$ that is compatible with T. Blok and Pigozzi’s well-known characterization of the Leibniz congruence $\Omega(T)$ (see p. 11 of [1]) asserts that, for all $\alpha, \beta \in \text{Fm}_L(V),$

$$\langle \alpha, \beta \rangle \in \Omega(T) \; \text{iff} \; \text{for all } \varphi(p, \bar{q}) \in \text{Fm}_L(V), \varphi(\alpha, \bar{q}) \in T \; \text{iff} \; \varphi(\beta, \bar{q}) \in T.$$

A propositional logic $S = \langle L, C \rangle$ is called **weakly selfextensional** in [6] if, for all $\alpha, \beta \in \text{Fm}_L(V),$

$$\alpha, \beta \in C(\emptyset) \; \text{implies} \; \langle \alpha, \beta \rangle \in \Omega(C(\emptyset)).$$

In the Theorem of [6], Wójcicki shows that a propositional logic is weakly referential if and only if it is weakly self-extensional.

2. π-Institutions and Closure Systems

Let Sign be a category and $\text{SEN} : \text{Sign} \to \text{Set}$ a Set-valued functor. The **clone of all natural transformations on** SEN (see Section 2 of [8]) is the category U with collection of objects $\{\text{SEN}^\alpha : \alpha \text{ an ordinal}\}$ and collection of morphisms $\tau : \text{SEN}^\alpha \to \text{SEN}^\beta \; \beta$-sequences of natural transformations $\tau : \text{SEN}^\alpha \to \text{SEN}$. Composition of $\langle \tau_i : i < \beta \rangle : \text{SEN}^\alpha \to \text{SEN}^\beta$ with $\langle \sigma_j : j < \gamma \rangle : \text{SEN}^\beta \to \text{SEN}^\gamma$

$$\text{SEN}^\alpha \xrightarrow{\langle \tau_i : i < \beta \rangle} \text{SEN}^\beta \xrightarrow{\langle \sigma_j : j < \gamma \rangle} \text{SEN}^\gamma$$
is defined by
\[
\{ \sigma_j : j < \gamma \} \circ \{ \tau_i : i < \beta \} = \{ \sigma_j(\{ \tau_i : i < \beta \}) : j < \gamma \}.
\]
A subcategory of this category with objects all objects of the form SEN^k,
k < \omega, and such that:

- it contains all projection morphisms \(p^{k,i} : \text{SEN}^k \to \text{SEN}, i < k, k < \omega, \)
 with \(p^{k,i}_\Sigma : \text{SEN}(\Sigma)^k \to \text{SEN} \)
 given by
 \[
 p^{k,i}_\Sigma(\tilde{\phi}) = \phi_i, \text{ for all } \tilde{\phi} \in \text{SEN}(\Sigma)^k,
 \]
- for every family \(\{ \tau_i : \text{SEN}^k \to \text{SEN} : i < l \} \) of natural transformations
 in \(N, \{ \tau_i : i < l \} : \text{SEN}^k \to \text{SEN}^l \) is also in \(N, \)
is referred to as a category of natural transformations on \(\text{SEN}. \)

Consider an algebraic system \(F = (\text{Sign}, \text{SEN}, N) \), i.e., a triple consisting of

- a category \(\text{Sign} \), called the category of signatures;
- a functor \(\text{SEN} : \text{Sign} \to \text{Set} \), called the sentence functor;
- a category of natural transformations \(N \) on \(\text{SEN}. \)

A π-institution based on \(F \) is a pair \(I = (F, C) \), where \(C = \{ C_\Sigma \}_{\Sigma \in |\text{Sign}|} \)
is a closure system on \(\text{SEN} \), i.e., a \(|\text{Sign}| \)-indexed collection of closure operators \(C_\Sigma : \mathcal{P}(\text{SEN}(\Sigma)) \to \mathcal{P}(\text{SEN}(\Sigma)) \),
such that, for all \(\Sigma_1, \Sigma_2 \in |\text{Sign}| \), all \(f \in \text{Sign}(\Sigma_1, \Sigma_2) \) and all \(\Phi \in \text{SEN}(\Sigma_1) \),
\[
\text{SEN}(f)(C_{\Sigma_1}(\Phi)) \subseteq C_{\Sigma_2}(\text{SEN}(f)(\Phi)).
\]

This condition is sometimes referred to as structurality. In this context, \(F \) is also referred to as the base algebraic system. Given a π-institution \(I, \) a theory family \(T = \{ T_\Sigma \}_{\Sigma \in |\text{Sign}|} \)
is a \(|\text{Sign}| \)-indexed collection of subsets \(T_\Sigma \subseteq \text{SEN}(\Sigma) \), closed under \(C_\Sigma \), i.e., such that \(C_\Sigma(T_\Sigma) = T_\Sigma \),
for all \(\Sigma \in |\text{Sign}| \). The collection of all theory families of \(I \) is denoted by \(\text{ThFam}(I) \).
Ordered by signature-wise inclusion, it forms a complete lattice \(\text{ThFam}(I) = (\text{ThFam}(I), \leq) \).

Note, also, that, given a base algebraic system \(F \), the collection of all closure systems based on \(F \) is closed under signature-wise intersections and, hence, forms a complete lattice under the signature-wise ordering \(\leq \):
\[
C^1 \leq C^2 \text{ iff for all } \Sigma \in |\text{Sign}| \text{ and all } \Phi \in \text{SEN}(\Sigma),
C^1_\Sigma(\Phi) \subseteq C^2_\Sigma(\Phi).
\]
3. Referential π-Institutions

We assume a base algebraic system $F = \langle \text{Sign}, \text{SEN}, N \rangle$. Consider also an N-algebraic system $A = \langle \text{Sign}', \text{SEN}', N' \rangle$, i.e., one such that there exists a surjective functor $': N \to N'$, preserving all projection natural transformations and, as a consequence, all arities of the natural transformations involved. We denote by $\sigma': \text{SEN}'^k \to \text{SEN}'$ the natural transformation in N' that is the image of $\sigma: \text{SEN}^k \to \text{SEN}$ in N under $'$.

More specifically, we want to focus on N-algebraic systems $A = \langle \text{Sign}', \text{SEN}', N' \rangle$, where SEN' is a simple subfunctor (having the same domain) of the inverse powerset functor $\text{SEN}' : \text{Sign}' \to \text{Set}$ of a contravariant functor $\text{SEN} : \text{Sign} \to \text{Set}$. For $\Sigma \in |\text{Sign}'|$, the elements of $\text{SEN}'(\Sigma)$ in this context are referred to as Σ-reference or Σ-base points (see, e.g., [9]). An N-morphism $\langle F, \alpha \rangle: \text{SEN} \to \text{SEN}'$ will be viewed as a valuation of sentences of SEN in the following way: For all $\Sigma \in |\text{Sign}|$ and all $\varphi \in \text{SEN}(\Sigma)$, $\varphi \in \text{SEN}(\Sigma)$ is true at $p \in \text{SEN}'(F(\Sigma))$ under $\langle F, \alpha \rangle$ iff $p \in \alpha_{\Sigma}(\varphi)$.

An N-algebraic system of this special form is called a referential N-algebraic system. By slightly abusing terminology, we use the same term to refer to an (interpreted) referential N-algebraic system, which is a pair $\mathcal{A} = \langle A, \langle F, \alpha \rangle \rangle$, with $\langle F, \alpha \rangle: F \to A$ an algebraic system morphism, also referred to as an N-morphism. We sometimes drop the subscript s when referring to the subfunctor to make notation less cumbersome, provided that this is unlikely to cause any confusion.

Let $F = \langle \text{Sign}, \text{SEN}, N \rangle$ be a base algebraic system and $\mathcal{A} = \langle A, \langle F, \alpha \rangle \rangle$ an interpreted referential N-algebraic system. Then \mathcal{A} determines a closure system $C^\mathcal{A}$ on SEN (or on F) according to the following definition:

For all $\Sigma \in |\text{Sign}|$ and all $\Phi \cup \{\varphi\} \subseteq \text{SEN}(\Sigma)$, $\varphi \in C^\mathcal{A}_\Sigma(\Phi)$ iff, for all $\Sigma' \in |\text{Sign}|$, $f \in \text{Sign}(\Sigma, \Sigma')$,

$$\bigcap_{\phi \in \Phi} \alpha_{\Sigma'}(\text{SEN}(f)(\phi)) \subseteq \alpha_{\Sigma'}(\text{SEN}(f)(\varphi))$$

(ϕ and φ, here, are intentionally different).

Proposition 1 (Proposition 1 of [11]). Suppose $F = \langle \text{Sign}, \text{SEN}, N \rangle$ is a base algebraic system and $\mathcal{A} = \langle A, \langle F, \alpha \rangle \rangle$ an interpreted referential N-algebraic system. Then $C^\mathcal{A}$ is a closure system on F.

Since C^A is a closure system on F, the pair $I^A = \langle F, C^A \rangle$ is a π-institution. We call an institution having this form a referential π-institution. Such π-institutions correspond in the theory of categorical abstract algebraic logic (CAAL) to the referential propositional logics of Wójcicki [5].

Let $F = \langle \text{Sign}, \text{SEN}, N \rangle$ be a base algebraic system and $I = \langle F, C \rangle$ a π-institution based on F. We define the Frege equivalence system $\Lambda(I)$ of I (see p. 37 of [7]), also known as the interderivability equivalence system, by setting, for all $\Sigma \in \text{Sign}$ and all $\varphi, \psi \in \text{SEN}(\Sigma)$,

$$\langle \varphi, \psi \rangle \in \Lambda_{\Sigma}(I) \text{ if and only if } C_{\Sigma}(\varphi) = C_{\Sigma}(\psi).$$

The Tarski congruence system $\tilde{\Omega}(I)$ of I ([3] for the universal algebraic notion and [10] for its categorical extension) is the largest N-congruence system on SEN that is compatible with every theory family $T \in \text{ThFam}(I)$.

Clearly, it is always the case that $\tilde{\Omega}(I) \leq \Lambda(I)$. We call the π-institution I self-extensional if $\Lambda(I) \leq \tilde{\Omega}(I)$. In view of the preceding remark, I is self-extensional if and only if $\Lambda(I) = \tilde{\Omega}(I)$.

A generalization to π-institutions of Wójcicki’s Theorem (see Theorem 2 of [5], but, also, Theorem 2.2 of [4] for a complete proof) provides a characterization of referential π-institutions

Theorem 2 (Theorem 8 of [9]). A π-institution $I = \langle F, C \rangle$ is referential if and only if it is self-extensional.

4. Weakly Referential π-Institutions

We assume a base algebraic system $F = \langle \text{Sign}, \text{SEN}, N \rangle$. Recall that for any (interpreted) referential N-algebraic system $A = \langle A, \langle F, \alpha \rangle \rangle$, the pair $I^A = \langle F, C^A \rangle$ is a referential π-institution. We call a π-institution $I = \langle F, C \rangle$ a weakly referential π-institution if, for all $\Sigma \in \text{Sign}$,

$$C_{\Sigma}(\emptyset) = C_{\Sigma}^A(\emptyset),$$

for some referential π-institution I^A. Such π-institutions correspond in the theory of CAAL to the weakly referential propositional logics of Wójcicki [6].
Let \(\mathcal{F} = \langle \text{Sign}, \text{SEN}, N \rangle \) be a base algebraic system and \(\mathcal{I} = \langle \mathcal{F}, C \rangle \) a \(\pi \)-institution based on \(\mathcal{F} \). Let, also \(T \in \text{ThFam}(\mathcal{I}) \). The Leibniz congruence system \(\Omega(T) \) of \(T \) ([1] for the universal algebraic notion and p. 223 of [8] for its categorical extension) is the largest \(N \)-congruence system on \(\text{SEN} \) that is compatible with the theory family \(T \). We denote by \(\text{Thm} = \{ \text{Thm}_\Sigma \}_{\Sigma \in \text{Sign}} \) the theorem family of \(\mathcal{I} \), i.e., \(\text{Thm}_\Sigma = C_\Sigma(\emptyset) \), for all \(\Sigma \in \text{Sign} \).

We call the \(\pi \)-institution \(\mathcal{I} \) weakly self-extensional if, for all \(\Sigma \in \text{Sign} \) and all \(\varphi, \psi \in \text{SEN}(\Sigma) \),

\[
\varphi, \psi \in \text{Thm}_\Sigma \implies \langle \varphi, \psi \rangle \in \Omega(\text{Thm}_\Sigma).
\]

A generalization to \(\pi \)-institutions of Wójcicki’s Theorem (see the Theorem of [6]) provides a characterization of weakly referential \(\pi \)-institutions. This is the main result of the present work, formulated in Theorem 9. The value rests in both furnishing a more detailed proof based on the sketch provided in [6], and, also, in extending the scope of the result to encompass logics formalized as \(\pi \)-institutions. We start with the easy direction.

Proposition 3. If a \(\pi \)-institution \(\mathcal{I} = \langle \mathcal{F}, C \rangle \) is weakly referential, then it is weakly self-extensional.

Proof. Suppose that \(\mathcal{I} \) is weakly referential. Thus, there exists a referential \(N \)-algebraic system \(A \), such that \(C_\Sigma(\emptyset) = C_k^A(\emptyset) \), for all \(\Sigma \in \text{Sign} \). Let \(\Sigma \in \text{Sign} \) and \(\varphi, \psi \in \text{SEN}(\Sigma) \), such that \(\varphi, \psi \in C_\Sigma(\emptyset) = C_k^A(\emptyset) \). This implies that \(C_k^A(\varphi) = C_k^A(\psi) \), i.e., that \(\langle \varphi, \psi \rangle \in A_\Sigma(A^A) \).

Since \(A^A \) is referential, it is self-extensional by Theorem 2. Thus, we get \(\langle \varphi, \psi \rangle \in \Omega(\Sigma^A) \). Therefore, by the characterization theorem of the Tarski Operator in CAAL, Theorem 4 of [10], for all \(\sigma : \text{SEN}^k \to \text{SEN} \) in \(N \), all \(\Sigma' \in \text{Sen} \), all \(f \in \text{Sen}(\Sigma, \Sigma') \) and all \(\bar{\chi} \in \text{SEN}(\Sigma')^k \),

\[
C_k^A(\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi})) = C_k^A(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi})).
\]

Thus, we obtain, for all \(\sigma : \text{SEN}^k \to \text{SEN} \) in \(N \), all \(\Sigma' \in \text{Sen} \), all \(f \in \text{Sen}(\Sigma, \Sigma') \) and all \(\bar{\chi} \in \text{SEN}(\Sigma')^k \),

\[
\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi}) \in \text{Thm}_{\Sigma'} \iff \sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi}) \in \text{Thm}_{\Sigma'}.
\]

This shows that \(\langle \varphi, \psi \rangle \in \Omega(\text{Thm}) \).
Let $I = (F, C)$ be a weakly self-extensional π-institution, with theorem family Thm. Define the family $R = \{ R_\Sigma \}_{\Sigma \in |\text{Sign}|}$ by setting

$$R_\Sigma = \left\{ \sigma \in N : \frac{\sigma_\Sigma(\varphi, \chi)}{\sigma_\Sigma(\psi, \chi)} \varphi, \chi \in \text{SEN}(\Sigma)^k, \varphi, \psi \in \text{Thm}_\Sigma \right\},$$

where, following a common convention in CAAL, when we write $\sigma_\Sigma(\varphi, \chi)$, we mean that φ, ψ may occupy any position in σ and not just the first, as long as they occupy the same position in both the antecedent and the consequent of the rule.

Define on F the operator family $C_{\text{Thm}, R} = \{ C_{\text{Thm}, R} \}_{\Sigma \in |\text{Sign}|}$, such that, for all $\Sigma \in |\text{Sign}|$, $C_{\text{Thm}, R} : P\text{SEN}(\Sigma) \to P\text{SEN}(\Sigma)$ is given, for all $\Phi \cup \{ \varphi \} \subseteq \text{SEN}(\Sigma)$, by

$$\varphi \in C_{\text{Thm}, R}(\Phi) \iff \varphi \text{ is } R_\Sigma\text{-provable from } \Phi \cup \text{Thm}_\Sigma.$$

Then, we can show that $C_{\text{Thm}, R}$ is a closure system on F:

Lemma 4. Let $I = (F, C)$ be a weakly self-extensional π-institution, with theorem family Thm. Then $C_{\text{Thm}, R}$ is a closure system on F.

Proof. By classical proof-theoretic arguments, one shows that $C_{\text{Thm}, R}$ is a closure operator on $\text{SEN}(\Sigma)$, for all $\Sigma \in |\text{Sign}|$. So it suffices to show that $C_{\text{Thm}, R}$ is structural. Suppose that $\Sigma \in |\text{Sign}|$ and $\Phi \cup \{ \varphi \} \subseteq \text{SEN}(\Sigma)$, such that $\varphi \in C_{\text{Thm}, R}(\Phi)$. This means that there exists an $R_\Sigma\text{-proof}$

$$\varphi_0, \varphi_1, \ldots, \varphi_n = \varphi$$

of φ from $\Phi \cup \text{Thm}_\Sigma$. We must show that, for all $\Sigma' \in |\text{Sign}|$, $f \in \text{Sign}(\Sigma, \Sigma')$, $\text{SEN}(f)(\varphi) \in C_{\text{Thm}, R}(\text{SEN}(f)(\Phi))$. Consider the sequence of $\Sigma'\text{-sentences}$

$$\text{SEN}(f)(\varphi_0), \text{SEN}(f)(\varphi_1), \ldots, \text{SEN}(f)(\varphi_n) = \text{SEN}(f)(\varphi).$$

It suffices to show that this is a valid $R_{\Sigma'}\text{-proof}$ of $\text{SEN}(f)(\varphi)$ from hypotheses $\text{SEN}(f)(\Phi) \cup \text{Thm}_{\Sigma'}$. This is accomplished by induction on $0 \leq k \leq n$:

Base: If $k = 0$, then φ_0 must be a Σ-sentence in $\Phi \cup \text{Thm}_\Sigma$. But then, since the theorem family of any π-institution is a theory system, we get that $\text{SEN}(f)(\varphi_0)$ is in $\text{SEN}(f)(\Phi) \cup \text{Thm}_{\Sigma'}$.
Hypothesis: Suppose, for all \(i < k \leq n \), \(SEN(f)(\varphi_i) \) is either in \(SEN(f)(\Phi) \cup \text{Thm}_\Sigma \) or follows from previous sentences in the sequence by a single application of an \(R\Sigma \)-rule.

Step: If \(\varphi_k \) is in \(\Phi \cup \text{Thm}_\Sigma \), then, as in the Base, it follows that \(SEN(f)(\varphi_k) \) is in \(SEN(f)(\Phi) \cup \text{Thm}_\Sigma \). Suppose, finally, that \(\varphi_k \) follows from \(\varphi_i, i < k \), by a single application of an \(R\Sigma \)-rule, i.e., there exists \(\sigma \) in \(N \) and \(\bar{\chi} \in SEN(\Sigma)^p \), such that \(\varphi_i = \sigma(\varphi, \bar{\chi}) \) and \(\varphi_k = \sigma(\psi, \bar{\chi}) \), for some \(\varphi, \psi \in \text{Thm}_\Sigma \). But, then, for the same \(\sigma \) in \(N \) and \(SEN(f)(\bar{\chi}) \in SEN(\Sigma')^p \), we have that \(SEN(f)(\varphi), SEN(f)(\psi) \in \text{Thm}_\Sigma \) and

\[
\begin{align*}
SEN(f)(\varphi_i) &= \sigma(SEN(f)(\varphi), SEN(f)(\bar{\chi})), \\
SEN(f)(\varphi_k) &= \sigma(SEN(f)(\psi), SEN(f)(\bar{\chi})).
\end{align*}
\]

Thus, \(SEN(f)(\varphi_k) \) follows from \(SEN(f)(\varphi_i) \) by an application of the \(R\Sigma \)-rule

\[
\sigma(SEN(f)(\varphi), SEN(f)(\bar{\chi})).
\]

This concludes the proof of structurality of \(C^{\text{Thm}, R} \). \(\square \)

Thus, \(I^{\text{Thm}, R} = \{ F, C^{\text{Thm}, R} \} \) is a \(\pi \)-institution. Let us denote by \(\text{Thm}^R = \{ \text{Thm}_\Sigma^R \}_{\Sigma \in \text{Sign}} \) the theorem system of \(I^{\text{Thm}, R} \). It turns out that the theorem system \(\text{Thm}^R \) coincides with the theorem system \(\text{Thm} \) of \(I \):

Lemma 5. Let \(I = \langle F, C \rangle \) be a weakly self-extensional \(\pi \)-institution, with theorem family \(\text{Thm} \). Then \(\text{Thm} = \text{Thm}^R \).

Proof. Clearly, by the definition of \(C^{\text{Thm}, R} \), \(\text{Thm} \leq \text{Thm}^R \).

For the converse, suppose that \(\Sigma \in |\text{Sign}| \) and \(\varphi \in \text{Thm}_\Sigma^R \). Thus, \(\varphi \in C^{\text{Thm}, R}_\Sigma(\emptyset) \). This means that there exists an \(R\Sigma \)-proof

\[
\varphi_0, \varphi_1, \ldots, \varphi_n = \varphi
\]

of \(\phi \) from \(\text{Thm}_\Sigma \). We show by induction on \(k \leq n \) that \(\varphi_k \in \text{Thm}_\Sigma \).

Base: If \(k = 0 \), then \(\varphi_0 \) must be in \(\text{Thm}_\Sigma \) by hypothesis.

Hypothesis: Suppose that, for all \(i < k \leq n \), \(\varphi_i \in \text{Thm}_\Sigma \).

Step: If \(\varphi_k \in \text{Thm}_\Sigma \), then there is nothing to prove. Otherwise, \(\varphi_k \) follows from \(\varphi_i, i < k \), by an application of an \(R\Sigma \)-rule. Thus, for some \(\sigma \) in \(N \), some \(\bar{\chi} \in SEN(\Sigma)^p \) and some \(\varphi, \psi \in \text{Thm}_\Sigma \),

\[
\varphi_i = \sigma(\varphi, \bar{\chi}), \quad \varphi_k = \sigma(\psi, \bar{\chi}).
\]
By weak selfextensionality of \(\mathcal{I} \), we get \(\langle \varphi, \psi \rangle \in \Omega_\Sigma(\text{Thm}) \). Thus, since \(\Omega(\text{Thm}) \) is a congruence system, \(\langle \varphi_i, \varphi_k \rangle \in \Omega_\Sigma(\text{Thm}) \). Since, by the Induction Hypothesis, \(\varphi_i \in \text{Thm}_\Sigma \), by the compatibility of the Leibniz congruence system, we get \(\varphi_k \in \text{Thm}_\Sigma \).

This shows that \(\varphi \in \text{Thm}_\Sigma \). Therefore \(\text{Thm}^R \subseteq \text{Thm} \).

The next result shows that \(\mathcal{I}^{\text{Thm},R} \) is a self-extensional \(\pi \)-institution. Intuitively speaking, this feature is instilled to the \(\pi \)-institution by virtue of its definition.

Lemma 6. Let \(\mathcal{I} = (F, C) \) be a weakly self-extensional \(\pi \)-institution, with theorem family \(\text{Thm} \). Then \(\mathcal{I}^{\text{Thm},R} \) is a self-extensional \(\pi \)-institution.

Proof. Suppose \(\Sigma \in |\text{Sign}| \) and \(\varphi, \psi \in \text{SEN}(\Sigma) \) are such that

\[
C^{\text{Thm},R}_\Sigma(\varphi) = C^{\text{Thm},R}_\Sigma(\psi).
\]

Then \(\varphi \in C^{\text{Thm},R}_\Sigma(\psi) \). Let \(\sigma : \text{SEN}^k \rightarrow \text{SEN} \) in \(N, \Sigma' \in |\text{Sign}|, f \in \text{Sign}(\Sigma, \Sigma') \) and \(\bar{\chi} \in \text{SEN}(\Sigma')^k \) be fixed but arbitrary. Our goal is to show that \(\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi}) \in C^{\text{Thm},R}_{\Sigma'}(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi})) \). By symmetry, it then follows

\[
C^{\text{Thm},R}_{\Sigma'}(\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi})) = C^{\text{Thm},R}_{\Sigma'}(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi}))
\]

i.e., that \(\mathcal{I}^{\text{Thm},R} \) is self-extensional.

Suppose first that \(\varphi \in \text{Thm}_\Sigma \). Then, \(\psi \in \text{Thm}_\Sigma \) also. Hence \(\text{SEN}(f)(\varphi) \) and \(\text{SEN}(f)(\psi) \) are in \(\text{Thm}_\Sigma \). Therefore, \(\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi}) \) follows by an application of a rule in \(R_{\Sigma'} \) from \(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi}) \). This proves that \(\sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi}) \in C^{\text{Thm},R}_{\Sigma'}(\sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi})) \).

Now we turn to the case where \(\varphi \notin \text{Thm}_\Sigma \). Since \(\varphi \in C^{\text{Thm},R}_\Sigma(\psi) \), there exists an \(R_{\Sigma'} \)-proof

\[
\varphi_0, \varphi_1, \ldots, \varphi_n = \varphi
\]

of \(\varphi \) from premises \(\{ \psi \} \cup \text{Thm}_\Sigma \). Consider the sequence

\[
\varphi'_0, \varphi'_1, \ldots, \varphi'_n,
\]

defined by induction on \(k \leq n \) as follows:

- If \(\varphi_k = \psi \), then \(\varphi'_k = \sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi}) \).
CATEGORICAL ABSTRACT ALGEBRAIC LOGIC

- If \(\varphi_k \in \text{Thm}_\Sigma \), then \(\varphi'_k = \text{SEN}(f)(\varphi_k) \).

- If \(\varphi_k \) follows from \(\varphi_i \), \(i < k \), by an application of the \(R_\Sigma \)-rule \(\tau_{\Sigma}(\zeta, \eta) \), we set:

 - \(\varphi'_k = \text{SEN}(f)(\varphi_k) \), if \(\varphi'_i = \text{SEN}(f)(\varphi_i) \);

 - \(\varphi'_k = \sigma_\Sigma'(\text{SEN}(f)(\varphi_k), \bar{\chi}) \), if \(\varphi'_i = \sigma_\Sigma'(\text{SEN}(f)(\varphi_i), \bar{\chi}) \).

Our goal is to show that this is a valid \(R_\Sigma' \)-proof of \(\sigma_\Sigma'(\text{SEN}(f)(\varphi), \bar{\chi}) \) from premises \(\{ \sigma_\Sigma'(\text{SEN}(f)(\psi), \bar{\chi}) \} \cup \text{Thm}_\Sigma' \). We do this by employing induction on \(k \leq n \) to show that the sequence

\[\varphi'_0, \varphi'_1, \ldots, \varphi'_k \]

is an \(R_\Sigma' \)-proof of \(\varphi'_k \) from premises \(\{ \sigma_\Sigma'(\text{SEN}(f)(\psi), \bar{\chi}) \} \cup \text{Thm}_\Sigma' \).

Base: If \(k = 0 \), we have two cases:

- If \(\varphi_0 = \psi \), then \(\varphi'_0 = \sigma_\Sigma'(\text{SEN}(f)(\psi), \bar{\chi}) \) follows by hypothesis.

- If \(\varphi_0 \in \text{Thm}_\Sigma \), then \(\varphi'_0 = \text{SEN}(f)(\varphi_0) \in \text{Thm}_\Sigma' \) also follows by hypothesis.

Hypothesis: Assume that, for all \(i < k \leq n \),

\[\varphi'_0, \varphi'_1, \ldots, \varphi'_i \]

is a valid \(R_\Sigma' \)-proof of \(\varphi'_i \) from premises \(\{ \sigma_\Sigma'(\text{SEN}(f)(\psi), \bar{\chi}) \} \cup \text{Thm}_\Sigma' \).

Step: If \(\varphi_k = \psi \) or \(\varphi_k \in \text{Thm}_\Sigma \), then we replicate the reasoning in the Base.

Suppose that \(\varphi_k \) follows from \(\varphi_i \), \(i < k \), by an application of the \(R_\Sigma \)-rule \(\tau_{\Sigma}(\zeta, \eta) \), where \(\zeta, \eta \in \text{Thm}_\Sigma \).

- If \(\varphi'_i = \text{SEN}(f)(\varphi_i) \), then \(\varphi'_k = \text{SEN}(f)(\varphi_k) \). Since \(\zeta, \xi \in \text{Thm}_\Sigma \), \(\text{SEN}(f)(\zeta) \), \(\text{SEN}(f)(\xi) \in \text{Thm}_\Sigma' \). Thus, this step in the proof is justified by the fact that

\[
\frac{\varphi'_i}{\varphi'_k} = \frac{\text{SEN}(f)(\varphi_i)}{\text{SEN}(f)(\varphi_k)} = \frac{\tau_{\Sigma'}(\text{SEN}(f)(\zeta), \text{SEN}(f)(\xi))}{\tau_{\Sigma'}(\text{SEN}(f)(\xi), \text{SEN}(f)(\eta))}
\]

is a valid \(R_{\Sigma'} \)-rule.
If \(\varphi'_i = \sigma_{\Sigma'}(\text{SEN}(f)(\varphi_i), \bar{\chi}) \), then \(\varphi'_k = \sigma_{\Sigma'}(\text{SEN}(f)(\varphi_k), \bar{\chi}) \). Once more, since \(\zeta, \xi \in \text{Thm}_{\Sigma} \), we get \(\text{SEN}(f)(\zeta), \text{SEN}(f)(\xi) \in \text{Thm}_{\Sigma'} \). Thus, this step in the proof is justified by the fact that

\[
\frac{\sigma_{\Sigma'}(\text{SEN}(f)(\varphi_i), \bar{\chi})}{\sigma_{\Sigma'}(\text{SEN}(f)(\varphi_k), \bar{\chi})} = \frac{\sigma_{\Sigma'}(\tau_{\Sigma'}(\text{SEN}(f)(\zeta), \text{SEN}(f)^\mu(\eta)), \bar{\chi})}{\sigma_{\Sigma'}(\tau_{\Sigma'}(\text{SEN}(f)(\xi), \text{SEN}(f)^\mu(\eta)), \bar{\chi})}
\]

is a valid \(R_{\Sigma'} \)-rule.

By symmetry, interchanging the roles of \(\varphi, \psi \) in the preceding reasoning, we get that, for all \(\sigma : \text{SEN}^k \to \text{SEN} \) in \(N \), all \(\Sigma' \in |\text{Sign}| \), all \(f \in \text{Sign}(\Sigma, \Sigma') \) and all \(\bar{\chi} \in \text{SEN}(\Sigma')^k \),

\[
C^\text{Thm,} \sigma_{\Sigma'}(\text{SEN}(f)(\varphi), \bar{\chi}) = C^\text{Thm,} \sigma_{\Sigma'}(\text{SEN}(f)(\psi), \bar{\chi}).
\]

By the CAAL characterization theorem of the Tarski congruence system of a \(\pi \)-institution (Theorem 4 of [10]), we get that \((\varphi, \psi) \in \Omega_{\Sigma}(I^\text{Thm,} R) \). This proves that \(I^\text{Thm,} R \) is a selfextensional \(\pi \)-institution.

Corollary 7. Let \(I = (F, C) \) be a weakly self-extensional \(\pi \)-institution, with theorem family \(\text{Thm} \). Then \(I^\text{Thm,} R \) is a referential \(\pi \)-institution.

Proof. By Lemma 6 and Theorem 2 (Theorem 8 of [9]).

Proposition 8. If a \(\pi \)-institution \(I = (F, C) \) is weakly self-extensional, then it is weakly referential.

Proof. Let \(I \) be weakly self-extensional. Denote by \(\text{Thm} \) its theorem family. Construct the \(\pi \)-institution \(I^\text{Thm,} \sigma_{\Sigma'} \) and denote by \(\text{Thm}^R \) its theorem family. By Corollary 7, \(I^\text{Thm,} R \) is referential and, by Lemma 5, \(\text{Thm} = \text{Thm}^R \). Therefore, \(I \) is weakly referential.

Theorem 9. A \(\pi \)-institution \(I = (F, C) \) is weakly referential if and only if it is weakly self-extensional.

Proof. The left-to-right implication is Proposition 3. The right-to-left implication is Proposition 8.
References

School of Mathematics and Computer Science,
Lake Superior State University,
Sault Ste. Marie, MI 49783, USA

gvoutsad@lssu.edu