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WEAKLY REFERENTIAL 7-INSTITUTIONS

Abstract. Wojcicki introduced in the late 1970s the concept of
a referential semantics for propositional logics. Referential seman-
tics incorporate features of the Kripke possible world semantics
for modal logics into the realm of algebraic and matrix semantics
of arbitrary sentential logics. A well-known theorem of Wajcicki
asserts that a logic has a referential semantics if and only if it is
selfextensional. A second theorem of Wojcicki asserts that a logic
has a weakly referential semantics if and only if it is weakly self-
extensional. We formulate and prove an analog of this theorem in
the categorical setting. We show that a m-institution has a weakly

referential semantics if and only if it is weakly self-extensional.
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1. Introduction

Let £ = (A, p) be a logical signature/algebraic type, i.e., a set of logical
connectives/operation symbols A with attached finite arities given by the
function p: A - w. Let, also, V be a countably infinite set of propositional
variables and 7" a set of reference/base points. Wéjcicki [5] defines a refer-
ential algebra A to be an L-algebra with universe A ¢ {0,1}7. Such an
algebra determines the consequence operation C4 on Fm, (V) by setting,
for all X u{a} cFme(V), a e CA(X) iff, for all h: Fmg(V) - A and all
teT,
h(B)(t) =1, for all Be X, implies h(a)(t)=1.

Moreover, Wéjcicki calls a propositional logic S = (£, C'), where C' = C4, for
a referential algebra A, a referential (or referentially truth-functional)
propositional logic.

Wéjcicki shows in [5] that, given a class K of referential algebras, there
exists a single referential algebra A, such that CK := Ng CK = CA.
Thence follows that a propositional logic is referential if and only if it is
defined by a class of referential algebras.

Given a propositional logic S = (£,C'), the Frege or interderivabil-
ity relation of S (see, e.g., Definition 2.37 of [3]), denoted A(S), is the
equivalence relation on Fm,(V'), defined, for all a;, 8 € Fm,(V'), by

(a, By e A(S) iff C(a)=0C(B).

The Tarski congruence (S) of S (see [3]) is the largest congruence
relation on Fm, (V') that is compatible with all theories of S. The Tarski
congruence is a special case of the Suszko congruence ﬁS(T) associated
with a given theory T of S, which is defined as the largest congruence
on Fm, (V) that is compatible with all theories of S that contain the
given theory T (see [2]). In fact, by definition, Q(S) = Q5(C(@)), i.e., the
Tarski congruence of S is the Suszko congruence associated with the set
of theorems of the logic S. Font and Jansana (see p.17 of [3]), extending
Blok and Pigozzi’s [1] well-known characterization of the Leibniz congruence
Q(T) associated with a theory T of a sentential logic, have shown that, for
all a, 8 € Fmg(V),

(o, B) € Q(S) iff for all p(p,G) € Fmg(V),
Cle(a,q)) = C(e(B,9))-
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Whereas Q(S) € A(S), for every propositional logic S, the reverse inclusion
does not hold in general. A propositional logic is called selfextensional
in [5] if A(S) € Q(S). In fact, Wéjcicki shows in what has become a
fundamental theorem in the theory of referential semantics, Theorem 2 of
[5], that a propositional logic is referential if and only if it is self-extensional.

Wjcicki in [6] revisited the equivalence between referentiality and self-

¢

extensionality, proving a “weak version” by replacing the entirety of the-
ories (equivalently, the closure operator C') by the set of theorems. More
precisely, Wéjcicki considers in [6] (see the Theorem in [6]) propositional
logics S = (£,C), where C(@) = C4(), for a referential algebra A. We
call such logics weakly referential logics.

Given a propositional logic S = (£, C), the Leibniz congruence Q(7")
of a theory T of S (see [1]) is the largest congruence relation on Fm, (V)
that is compatible with T'. Blok and Pigozzi’s well-known characterization
of the Leibniz congruence Q(7") (see p. 11 of [1]) asserts that, for all

«, ﬁ € FmL(V),

(o, B) e QUT) iff for all p(p,q) € Fmp(V),
ela,q)eT iff o(B,q)eT.

A propositional logic S = (£, C') is called weakly selfextensional in [6] if,
for all o, 8 € Fm,(V),

a,fe€C(g) implies (a,B)eQ(C(2)).

In the Theorem of [6], Wéjcicki shows that a propositional logic is weakly
referential if and only if it is weakly self-extensional.

2. mw-Institutions and Closure Systems

Let Sign be a category and SEN : Sign — Set a Set-valued functor. The
clone of all natural transformations on SEN (see Section 2 of [8]) is the
category U with collection of objects {SEN® : « an ordinal} and collection
of morphisms 7 : SEN® - SEN? B-sequences of natural transformations
7:SEN® - SEN. Composition of (7; :i < ) : SEN® — SEN” with (o} : j <
) : SEN” - SENY

(1i 1< B) SENP (oj:7<7)

SEN“ SENY
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is defined by
(oj:j<y)o(mizi<fB)=(o;({ri:i<B)):j<)

A subcategory of this category with objects all objects of the form SEN¥,
k < w, and such that:

e it contains all projection morphisms p®* : SEN* — SEN,i < k, k < w,
with p&’ : SEN(2)* - SEN given by

PE (@) = ¢, for all ¢ e SEN(D)F,

e for every family {7; : SEN* - SEN :4 <[} of natural transformations
in N, (r;:i<1): SEN* - SEN' is also in N,
is referred to as a category of natural transformations on SEN.
Consider an algebraic system F = (Sign, SEN, N}, i.e., a triple con-
sisting of
e a category Sign, called the category of signatures;

e a functor SEN : Sign — Set, called the sentence functor;

e a category of natural transformations N on SEN.

A 7-institution based on F' is a pair Z = (F',C), where C = {Cs } s¢/Sign|
is a closure system on SEN, i.e., a |Sign|-indexed collection of closure
operators Cy; : PSEN(X) - PSEN(X), such that, for all 31,3 € |Sign|, all
f eSign(X;,¥s) and all & < SEN(X,),

SEN(f)(Cs,(®)) € Cs, (SEN(f)(®)).

This condition is sometimes referred to as structurality. In this context,
F is also referred to as the base algebraic system. Given a m-institution
7, a theory family T = {75 }ssign| is a |[Sign|-indexed collection of sub-
sets Ty, € SEN(X), closed under Cy, i.e., such that Cy(Tx) = T, for
all ¥ € |Sign|. The collection of all theory families of Z is denoted by
ThFam(Z). Ordered by signature-wise inclusion, it forms a complete lat-
tice ThFam(Z) = (ThFam(Z), <).

Note, also, that, given a base algebraic system F', the collection of all
closure systems based on F' is closed under signature-wise intersections and,
hence, forms a complete lattice under the signature-wise ordering <:

C'<C? iff for all ¥ ¢|Sign| and all & c SEN(X),
CL(®) c C4(®).
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3. Referential m-Institutions

We assume a base algebraic system F' = (Sign, SEN, N). Consider also an
N-algebraic system A = (Sign’,SEN’, N'), i.e., one such that there exists
a surjective functor ' : N - N’, preserving all projection natural transfor-
mations and, as a consequence, all arities of the natural transformations
involved. We denote by o’ : SEN’* - SEN’ the natural transformation in
N’ that is the image of ¢ : SEN* - SEN in N under ’.

More specifically, we want to focus on N-algebraic systems A = (Sign’,
SENY, N'), where SENY, is a simple subfunctor (having the same domain)
of the inverse powerset functor (’ESEN’ : Sign’ — Set of a contravariant
functor SEN’ : Sign’ - Set°?. For ¥ € [Sign’|, the elements of SEN’(X)
in this context are referred to as Y.-reference or ¥-base points (see, e.g.,
[9]). An N-morphism (F,«) : SEN — SEN’ will be viewed as a valuation
of sentences of SEN in the following way: For all ¥ € |Sign| and all ¢ €
SEN(X), ¢ € SEN(X) is true at p € SEN'(F(X)) under (F,a) iff p €
as(p).

An N-algebraic system of this special form is called a referential N-
algebraic system. By slightly abusing terminology, we use the same term
to refer to an (interpreted) referential N-algebraic system, which is
a pair A= (A, (F,a)), with (F,«a): F - A an algebraic system morphism,
also referred to as an N-morphism. We sometimes drop the subscript
when referring to the subfunctor to make notation less cumbersome, pro-
vided that this is unlikely to cause any confusion.

Let F = (Sign,SEN, N) be a base algebraic system and A = (A, (F,«a))
an interpreted referential N-algebraic system. Then A determines a closure
system C* on SEN (or on F) according to the following definition:

For all X ¢ |Sign| and all ® U {p} ¢ SEN(X), ¢ € C{(®) iff, for all
Y. € |Sign|, f € Sign(X, %),

[ as (SEN(f)(¢)) < as (SEN(f) ()

ped
(¢ and ¢, here, are intentionally different).

Proposition 1 (Proposition 1 of [11]). Suppose F = (Sign,SEN, N)
is a base algebraic system and A = (A,(F,«)) an interpreted referential
N-algebraic system. Then C* is a closure system on F'.
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Since C* is a closure system on F, the pair T4 = (F,C4) is a 7-
institution. We call an institution having this form a referential r-insti-
tution. Such 7w-institutions correspond in the theory of categorical abstract
algebraic logic (CAAL) to the referential propositional logics of Wéjcicki
[5].

Let F = (Sign,SEN, N) be a base algebraic system and Z = (F,C) a
m-institution based on F'. We define the Frege equivalence system A(Z)
of Z (see p. 37 of [7]), also known as the interderivability equivalence
system, by setting, for all ¥ € |Sign| and all ¢, 1) € SEN(X),

(o, ) e Ax(Z) if and only if Cx(p) =Cx(¥)).

The Tarski congruence system (Z) of Z ([3] for the universal algebraic
notion and [10] for its categorical extension) is the largest N-congruence
system on SEN that is compatible with every theory family 7' € ThFam(Z).

Clearly, it is always the case that Q(Z) < A(Z). We call the m-institution
7T self-extensional if A(Z) < Q(Z). In view of the preceding remark, Z is
self-extensional if and only if A(Z) = Q(Z).

A generalization to m-institutions of Wéjcicki’s Theorem (see Theorem
2 of [5], but, also, Theorem 2.2 of [4] for a complete proof) provides a
characterization of referential 7-institutions

Theorem 2 (Theorem 8 of [9]). A w-institution T = (F',C') is referential
if and only if it is self-extensional.

4. Weakly Referential m-Institutions

We assume a base algebraic system F' = (Sign,SEN, N). Recall that for
any (interpreted) referential N-algebraic system A = (A, (F,«)), the pair
TA = (F,C4) is a referential 7-institution. We call a m-institution Z =

(F,C) a weakly referential w-institution if, for all ¥ € [Sign]|,
Cx(2) = C¢(2),

for some referential m-institution Z**. Such m-institutions correspond in the
theory of CAAL to the weakly referential propositional logics of Wéjcicki

[6].
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Let F = (Sign,SEN, N) be a base algebraic system and Z = (F,C) a
m-institution based on F'. Let, also T' € ThFam(Z). The Leibniz con-
gruence system Q(7) of T ([1] for the universal algebraic notion and
p. 223 of [8] for its categorical extension) is the largest N-congruence sys-
tem on SEN that is compatible with the theory family 7. We denote by
Thm = {Thms }s¢[sign| the theorem family of Z, i.e., Thmy, = Cx(2), for
all X € |Sign]|.

We call the m-institution Z weakly self-extensional if, for all X €
|[Sign| and all ¢, € SEN(X),

©,1 € Thmy, implies (p, 1) € Qx(Thmy).

A generalization to m-institutions of Wéjcicki’s Theorem (see the The-
orem of [6]) provides a characterization of weakly referential m-institutions.
This is the main result of the present work, formulated in Theorem 9. The
value rests in both furnishing a more detailed proof based on the sketch
provided in [6], and, also, in extending the scope of the result to encompass
logics formalized as m-institutions. We start with the easy direction.

Proposition 3. If a w-institution Z = (F,C') is weakly referential, then
it is weakly self-extensional.

Proof. Suppose that 7 is weakly referential. Thus, there exists a
referential N-algebraic system A, such that Cx(@) = C4(2), for all ¥ €
|[Sign|. Let ¥ € [Sign| and ¢,¢ € SEN(X), such that p,¢ € Cx(@) =
C¢(2). This implies that Cg(p) = CH (1), ie., that (6,9) € As(TH).
Since Z# is referential, it is self-extensional by Theorem 2. Thus, we get
(6,9) € Qs (T4). Therefore, by the characterization theorem of the Tarski
Operator in CAAL, Theorem 4 of [10], for all o : SEN* - SEN in N, all
>/ ¢ |Sign|, all f € Sign(%,%’) and all ¥ € SEN(X')*,

C5 (o5 (SEN(f) (), X)) = O (o5 (SEN(f) (¢), X))-

Thus, we obtain, for all ¢ : SEN* - SEN in N, all ¥’ ¢ [Sign|, all f €
Sign(X,¥’) and all ¥ € SEN(X)*,

O‘y(SEN(f)((p), )2) € Thmyy iff O'g/(SEN(f)(’(/J), )2) € Thmgr.

This shows that (p,1) € Qx(Thm). mi
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Let Z = (F,C) be a weakly self-extensional m-institution, with theorem
family Thm. Define the family R = { Rx}scjsign| by setting

Ry = {M o in N,y e SEN(Z)F, ¢, 1) € Thmg},
O-E(Tr[}aX)

UE(%)Z)
L. . . UZ(’/)XV
we mean that ,1 may occupy any position in ¢ and not just the first,

where, following a common convention in CAAL, when we write

as long as they occupy the same position in both the antecedent and the
consequent of the rule.

Define on F the operator family CThf = {C’ghm’R}ge‘Sigm, such that,
for all 3 € |Sign|, C'ghm’R : PSEN(X) - PSEN(X) is given, for all u{p} ¢
SEN(X), by

pe Cghm’R(CI)) iff ¢ is Ry-provable from ® U Thmsy..
Then, we can show that CTM® is a closure system on F:

Lemma 4. Let T = (F,C) be a weakly self-extensional m-institution,
with theorem family Thm. Then CTM™R s o closure system on F.

Proof. By classical proof-theoretic arguments, one shows that Cghm’R

is a closure operator on SEN(X), for all ¥ € |Sign|. So it suffices to show
that CTh™R i structural. Suppose that ¥ € [Sign| and ® u {p} ¢ SEN(X),

Thm,R
CE

such that ¢ € (®). This means that there exists an Ry-proof

©Y0,P1y-- - Pn =P

of ¢ from ®UThmy. We must show that, for all 3’ € [Sign|, f € Sign(X,Y’),
SEN(f)(p) € C'g,hm’R(SEN(f)(tID)). Consider the sequence of Y'-sentences

SEN(f)(¢0), SEN(f)(#1), -, SEN(f)(¢n) = SEN(f)(s)-

It suffices to show that this is a valid Ryy-proof of SEN( f)(¢) from hypothe-
ses SEN(f)(®) u Thmy. This is accomplished by induction on 0 < k < n:

Base: If k =0, then g must be a ¥-sentence in ® U Thmy,. But then, since
the theorem family of any w-institution is a theory system, we get
that SEN(f)(¢0) is in SEN(f)(®) u Thmyy.
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Hypothesis: Suppose, for all i < k < n, SEN(f)(p;) is either in SEN(f)(®) u
Thmsy or follows from previous sentences in the sequence by a single
application of an Ryy-rule.

Step: If ¢y is in ®UThmy, then, as in the Base, it follows that SEN(f) (k)
is in SEN(f)(®) u Thmy. Suppose, finally, that ¢ follows from
;1 < k, by a single application of an Rx-rule, i.e., there exists ¢ in
N and y € SEN(X)P, such that ¢; = ox(¢, X) and ¢k = ox (¥, x), for
some @, € Thmy. But, then, for the same o in N and SEN(f)(¥Y) €
SEN(X)?, we have that SEN(f)(¢),SEN(f)(¢) € Thmyy and

SEN(f) (i) = o (SEN(f) (), SEN(f)"(X)),
SEN(f)(¢r) = o5y (SEN(f) (%), SEN(f)?(X))-

Thus, SEN(f)(¢x) follows from SEN(f)(¢;) by an application of the
o (SEN(f) (), SEN(f)(X))
o (SEN(£) (), SEN(£)(X))

This concludes the proof of structurality of CTP™ %, a

Thus, ZTME = (F, TR ig a mr-institution. Let us denote by Thm® =
{Thmg}EqSigm the theorem system of ZTM % Tt turns out that the theo-
rem system Thm® coincides with the theorem system Thm of Z:

Ry-rule

Lemma 5. Let T = (F,C) be a weakly self-extensional m-institution,
with theorem family Thm. Then Thm = Thm®.

Proof. Clearly, by the definition of CT"% Thm < Thm?.

For the converse, suppose that ¥ € [Sign| and ¢ € Thm&. Thus, ¢ €

Cghm’R(Q). This means that there exists an Ry-proof

$0; P13 Pn =P
of ¢ from Thmy. We show by induction on k& <n that ¢ € Thmy.
Base: If k =0, then g must be in Thmy, by hypothesis.
Hypothesis: Suppose that, for all i < k <n, ¢; € Thmsy,.

Step: If ¢ € Thmy, then there is nothing to prove. Otherwise, ¢ follows
from ¢;, i < k, by an application of an Ryx-rule. Thus, for some ¢ in
N, some y € SEN(X)? and some ¢, € Thmy,

Soi:O-E(SO?X)? Sok:O-E(’(vD?)Z)'
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By weak selfextensionality of Z, we get (p,1) € Qx(Thm). Thus,
since (Thm) is a congruence system, (p;, pr) € Qx(Thm). Since,
by the Induction Hypothesis, ¢; € Thmy, by the compatibility of the
Leibniz congruence system, we get ¢ € Thmy.

This shows that ¢ € Thmy,. Therefore Thm® < Thm. O

The next result shows that ZTPf ig 4 self-extensional m-institution.
Intuitively speaking, this feature is instilled to the w-institution by virtue
of its definition.

Lemma 6. Let T = (F,C) be a weakly self-extensional mw-institution,
with theorem family Thm. Then ZTP™R s o selfextensional T-institution.

Proof. Suppose ¥ € |Sign| and ¢, € SEN(X) are such that
hm,R hm,R
Oy () = O™ ().

Then ¢ € Co"™F(y). Let o : SEN* - SEN in N, ¥’ ¢ [Sign|, f ¢
Sign(%,%’) and Y € SEN(X')¥ be fixed but arbitrary. Our goal is to show
that ox/(SEN(f)(¢), %) € Co™ (o5 (SEN(f)(¥),%)). By symmetry, it
then follows

Ci ™ (o5 (SEN(£) (), X)) = C ™ (o5 (SEN(f) (1), X)),

i.e., that ZTh™ R ig self-extensional.

Suppose first that ¢ € Thmy. Then, ¢ € Thmy, also. Hence SEN(f)()
and SEN(f)(v) are in Thmyy. Therefore, ox/(SEN(f)(¢),x) follows by
an application of a rule in Ryy from oy (SEN(f)(%),x). This proves that

o5/ (SEN(f)(9), %) € O™ (o (SEN(S) (#). X))-
Now we turn to the case where ¢ ¢ Thmy. Since ¢ € Cghmﬁ(z/)), there
exists an Ry-proof

0, L1y Pn =P

of ¢ from premises {¢)} U Thmy. Consider the sequence

4 A 4
¢07¢17 .- '790n7
defined by induction on k < n as follows:

o If @ = 1, then @) = o5 (SEN(f)(¥), X)-
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o If ¢}, € Thmy, then ¢} = SEN(f)(¢k).

o If ¢ follows from ;, i < k, by an application of the Ry-rule 222;}3,
we set:

— ¢ = SEN(f) (), if ¢ = SEN(f) ()5
— ¢ = o (SEN(f) (1), X), if ¢ = o (SEN(f) (04), X)-

Our goal is to show that this is a valid Rys-proof of oy (SEN(f)(¢),X)

from premises {os/(SEN(f)(¢),X)} u Thmsy. We do this by employing
induction on k <n to show that the sequence

/ / /
P05 P15 Pk
is an Ryy-proof of ¢} from premises {osy(SEN(f)(¢),x)} U Thmsy.
Base: If k£ =0, we have two cases:

— If @o = 1, then ¢( = ox(SEN(f)(¢), x) follows by hypothesis.

— If po € Thmy, then ¢ = SEN(f)(¢0) € Thmyy also follows by
hypothesis.

Hypothesis: Assume that, for all ¢ < k < n,

! !/ !
Por P19 P
is a valid Ryy-proof of ¢} from premises {os (SEN(f)(), x) juThms.

Step: If ¢ =1 or ¢ € Thmsy, then we replicate the reasoning in the Base.

Suppose that ¢y follows from ¢;, i < k, by an application of the

Ry-rule % where (,7n € Thmy.

— If ¢} = SEN(f)(¢i), then ¢} = SEN(f)(px). Since ¢,§ € Thmy,,
SEN(f)(¢),SEN(f)(&) € Thmyy. Thus, this step in the proof is
justified by the fact that

i _ SEN(f)(pi) _ = (SEN(f)(C),SEN(f)* (1))

¢, SEN(f)(er)  7s/(SEN(f)(€),SEN(f)r(i}))

is a valid Ryy-rule.
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— If ¢ = o/ (SEN(f)(#i),X), then ¢} = os/(SEN(f)(¢r),X)-
Once more, since (,£ € Thmy, we get SEN(f)(¢),SEN(f)(§) €
Thmyy. Thus, this step in the proof is justified by the fact that

osr (SEN(f)(¢i),X) _ os (72 (SEN(£) (), SEN(£)" (7)), X)
os(SEN(f) (), X) oz (me(SEN(f)(£),SEN(f)? (7)), X)

is a valid Rsy-rule.

By symmetry, interchanging the roles of ¢, in the preceding reasoning, we
get that, for all o : SEN* - SEN in N, all ¥/ ¢ |Sign|, all f € Sign(%, %)
and all ¥ € SEN(Z/)¥,

Co ™ (SEN(f) (), X) = Co ™ (SEN(£) (), X)-

By the CAAL characterization theorem of the Tarski congruence system of
a 7-institution (Theorem 4 of [10]), we get that (¢, 1) € Qs (ZT"™ ). This

IThm,R

proves that is a selfextensional m-institution. |

Corollary 7. Let Z = (F,C) be a weakly self-extensional -institution,
with theorem family Thm. Then ZTM™® js ¢ referential m-institution.

Proof. By Lemma 6 and Theorem 2 (Theorem 8 of [9]). o

Proposition 8. If a w-institution T = (F',C) is weakly self-extensional,
then it is weakly referential.

Proof. Let Z be weakly self-extensional. Denote by Thm its theo-
rem family. Construct the m-institution Z™™% and denote by Thm® its
theorem family. By Corollary 7, ZTM™% is referential and, by Lemma 5,
Thm = Thm®. Therefore, T is weakly referential. O

Theorem 9. A w-institution Z = (F,C) is weakly referential if and only
if it is weakly self-extensional.

Proof. The left-to-right implication is Proposition 3. The right-to-left
implication is Proposition 8. m|



CATEGORICAL ABSTRACT ALGEBRAIC LOGIC 103

(1]
2]

3]

[4]

[9]

[10]

[11]

References

W.J. Blok and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathe-
matical Society, Vol. 77, No. 396 (1989)

J. Czelakowski, The Suszko Operator Part 1, Studia Logica 74:1-2 (2003), 181-231.

J.M. Font and R. Jansana, A General Algebraic Semantics for Sentential Logics,
Lecture Notes in Logic, Vol. 332, No. 7 (1996), Springer-Verlag, Berlin Heidelberg,
1996

R. Jansana and A. Palmigiano, Referential Semantics: Duality and Applications,
Reports on Mathematical Logic 41 (2006), 63-93.

R. Wdjcicki, Referential Matrix Semantics for Propositional Calculi, Bulletin of the
Section of Logic 8:4 (1979), 170-176.

R. Wojcicki, More About Referential Matrices, Bulletin of the Section of Logic 9:2
(1980), 93-95.

G. Voutsadakis, Categorical Abstract Algebraic Logic: Full Models, Frege Systems
and Metalogical Properties, Reports on Mathematical Logic 41 (2006), 31-62.

G. Voutsadakis, Categorical Abstract Algebraic Logic: Prealgebraicity and Protoal-
gebraicity, Studia Logica 85:2 (2007), 215-249.

G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential Algebraic Se-
mantics, Studia Logica 101:4 (2013), 849-899.

G. Voutsadakis, Categorical Abstract Algebraic Logic: Tarski Congruence Systems,
Logical Morphisms and Logical Quotients, Journal of Pure and Applied Mathemat-
ics: Advances and Applications 13:1 (2015), 27-73.

G. Voutsadakis, Categorical Abstract Algebraic Logic: Referential w-Institutions,
Bulletin of the Section of Logic 44:1/2 (2015), 33-51.

School of Mathematics and Computer Science,

Lake Superior State University,
Sault Sainte Marie, MI 49783, USA

gvoutsad@lssu.edu



