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REMARKS ON CLASSIFICATIONS AND ADJUNCTIONS

GEORGE VOUTSADAKIS

Jon Barwise and Jerry Seligman introduced the category of classifications and infomor-
phisms to model information theoretical concepts and information flow processes. This is
the dual category of the category of Chu spaces introduced by Michael Barr and Peter
Chu and studied extensively by Vaughan Pratt, Gordon Plotkin and others at Stanford. It
is also very closely related to the theory of institutions introduced in a different context
by Joseph Goguen and Rod Burstall. Here some aspects of the theory are reviewed and
some adjunctions between the category of classifications and other related categories are
studied from a more abstract point of view.

1. Introduction.

Chu spaces were introduced in a purely categorical context by Peter Chu
as the self-dual “completion” Chu(V, k) of a symmetric monoidal closed
category V with pullbacks possessing a distinguished object k. An account of
the construction is given in the appendix of [1]. In [2] Chu spaces were used
to provide constructive models of linear logic [9]. [15] gives a very readable
tutorial and reviews the most interesting and important recent developments in
the theory of Chu spaces.

In a different context, Barwise and Seligman [4] offered a theoretical
framework for the study of information flow between the components of a dis-
tributed information system. They called the basic structure upon which their
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framework is developed a classification. Classifications are exactly the same
objects as Chu spaces but mappings between classifications, so-called infomor-
phisms, point in the reverse direction that mappings between the correspond-
ing Chu spaces. Thus, the category of classifications is the dual category of the
category of Chu spaces. However, both categories are self-dual and, thus, clas-
sifications and Chu spaces form isomorphic categories. Barwise and Seligman
pointed this out in [4] in the phrase “one could look at this book as an applica-
tion of Chu spaces and Chu transformations to a theory of information.”

In yet another context pertaining to the logics underlying the specification
of programming languages, Goguen and Burstall [10, 11] introduced the notion
of an institution to formalize the concept of a multisignature logical system.
Institutions are much more complex structures than Chu spaces but it is worth
pointing out that, if one restricts to trivial signature institutions, i.e., institutions
whose signature category is the trivial one-object category, then one obtains
a Chu space and institution morphisms between such institutions correspond
to Chu morphisms. Thus the category of Chu spaces can be embedded in
the category of institutions. In the few years passed since their introduction,
institutions have been used in many contexts. The references [12, 13, 6, 7] are
pointers in the recent computer science and model theoretical literature where
institutions have played a central role.

In all aforementioned treatments categories and functors play a prominent
role. As a consequence, investigating adjunctions between these and related
categories that reveal the relationships between them is very important. Many
adjunctions pertaining to the category of classifications were provided in [4].
In [8] some of these were revisited and some of the relationships between the
category of classifications and related categories clarified. In this paper this
work is briefly reviewed and some further relationships are established and
investigated.

In Section 2, the definition of a classification and that of a state space
are provided. Extensional classifications are those whose types are completely
determined by their extensions, i.e., by the sets of tokes that they satisfy.
These form a reflective subcategory of the category of classifications. A
natural adjunction between classifications and state spaces, given in [4], is
also reviewed here. Section 3 revisits the connection between this adjunction
and the Boolean closure of a given classification. This is in some sense the
minimal classification that extends the original one and possesses natural
operations of negation, conjunction and disjunction on its types. Section 4
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continues along the same lines but views classifications and, thus, Chu spaces
as well, from a more “abstract” point of view. Classifications are really binary
relations and state spaces are really set maps. A new category, the category of
partitions, a subcategory of the category of functions, is introduced and several
natural functors between this and the category of functions are introduced and
studied. This brings the development close to a point in which a question
posed in [8] may be investigated and answered. A functor between extensional
classifications and partitions was introduced in [8] and the question of whether
it has a left adjoint was asked. This functor in the present treatment is a
composite of two left adjoints followed by a right adjoint. Hence the fact that
it possesses a left adjoint is not immediate. However, it will be proved that it
does have a left adjoint, which is given by the composite of the adjoints of its
factors.

The “abstraction” that is supported in the last section of the paper is
encouraged by the fact that Chu spaces, classifications and other related
structures are much closer to the mathematical foundations than one is led
to believe by their names and their disguises for different applications in
computer science. It is therefore desirable that one take a step back and
investigate some of their properties in the proper foundational setting and then
return to the specific applications where these may be put to further use.

2. Background.

Some basic notions that are needed to understand the main results in this
paper are presented in this section. For details on the categorical definitions
the reader is referred to any of [14, 5, 3]. For a detailed development of
classifications and their dual Chu spaces [4] and [15], respectively, may be
used as the guiding sources and as pointers to other related references in the
literature.

A classification A = 〈
A, A, |=A 〉 is a triple consisting of a set 
A =
typ(A) of types, a set A = tok(A) of tokens and a relation |=A⊆ A × 
A.

Given two classifications A = 〈
A, A, |=A 〉, B = 〈
B, B, |=B 〉, a
classification morphism (or infomorphism) f : A→B from A to B is a pair
of set maps f̂ : typ(A)→typ(B) and f̌ : tok(B)→tok(A), such that, for all
α ∈ typ(A) and all b ∈ tok(B),

f̌ (b) |=A α if and only if b |=B f̂ (α).
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Classifications with infomorphisms between them form a category, called
the category of classifications. This category will be denoted by REL since its
objects are, simply, binary relations from the set of tokens to the set of types.
(See Section 4, where this “abstract” point of view is adopted.)

Given a classification A = 〈
A, A, |=A 〉 and α ∈ 
A, a ∈ A, define

tokA(α) = {a ∈ A : a |=A α} and typA(a) = {α ∈ 
A : a |=A α}.
Then, the equivalence relations ≡A and ∼=A are defined on 
A and A,

respectively, by

α ≡A β if and only if tokA(α) = tokA(β)

and
a ∼=A b if and only if typA(a) = typA(b).

The classification A is called extensional if ≡A= �
A , the identity relation
on 
A. By EREL is denoted the full subcategory of REL with objects all
extensional classifications.

Given an arbitrary classification A = 〈
A, A, |=A 〉 the structure

Ext(A) = 〈
A/≡A, A, |=≡A 〉,
where

a |=≡A α/≡A if and only if a |=A α, for all a ∈ A, α ∈ 
A,

is an extensional classification. Moreover, given an infomorphism f : A→B
between two classifications A = 〈
A, A, |=A 〉, B = 〈
B, B, |=B 〉, the pair
Ext( f ) = 〈Ext( f̂ ),Ext( f̌ )〉, where Ext( f̂ ) : 
A/≡A→
B/≡B is defined by

Ext( f̂ )(α/≡A) = f̂ (α)/≡B, for all α ∈ 
A,

and Ext( f̌ ) : B→A by

Ext( f̌ )(b) = f̌ (b), for all b ∈ B,

is an infomorphism from Ext(A) to Ext(B).

These definitions of Ext on classifications and infomorphisms make Ext
a functor from REL to EREL. Furthermore, Ext : REL→EREL is a left
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adjoint to the inclusion functor Inc : EREL→REL, i.e., the full subcategory
EREL of extensional classifications is a reflective subcategory of the category
REL of classifications.

REL −→←−Ext

Inc
EREL

A state space S is an object in the category Mor(SET) of arrows in the
category SET of small sets and a state space morphism f : S → T from
a state space S to a state space T is an arrow in the category Mor(SET)

from the object S to the object T, i.e., a pair of arrows 〈 f̌ , f̂ 〉 in SET, with
f̌ : dom(S)→dom(T) and f̂ : cod(S)→cod(T), such that the following
diagram commutes

Let S be a state space. Then the triple

Evt(S) = 〈P(cod(S)), dom(S), |=Evt(S) 〉,
where |=Evt(S)⊆ dom(S) × P(cod(S)) is defined by

s |=Evt(S) T if and only if S(s) ∈ T , for all s ∈ dom(S), T ⊆ cod(S),

is a classification. Moreover, if f : S→T is a state space morphism,
then Evt( f ) : Evt(T)→Evt(S), defined as the pair of morphisms 〈 ˆEvt( f ),

ˇEvt( f )〉, with ˆEvt( f ) : P(cod(T))→P(cod(S)), given by

ˆEvt( f )(Y ) = f̂ −1(Y ), for all Y ⊆ cod(T),

and ˇEvt( f ) : dom(S)→dom(T), given by

ˇEvt( f )(x) = f̌ (x), for all x ∈ dom(S),

is an infomorphism from the classification Evt(T) to the classification Evt(S).
Evt, defined as above on state spaces and state space morphisms, is a

contravariant functor Evt : FCT→RELop between the category of state spaces
FCT = Mor(SET) and the category of classifications. Here FCT denotes
the category of state spaces, since its objects are, simply, set mappings or
functions. Again, Section 4 goes back to the roots stripping the objects of FCT
from the fancier name state spaces1.

1 It is worth noting that, if a relation |=A⊆ A×
A is replaced by its characteristic function
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On the other hand, given a classification A = 〈
A, A, |=A 〉, the function
Sp(A) : A→P(
A), where

Sp(A)(a) = typA(a), for all a ∈ A,

is a state space. Moreover, if f : A→B is an infomorphism from the
classification A to the classification B, then Sp( f ) : Sp(B)→Sp(A), defined
to be the pair 〈 ˇSp( f ), ˆSp( f )〉, with ˇSp( f ) : B→A, given by

ˇSp( f )(b) = f̌ (b), for all b ∈ B,

and ˆSp( f ) : P(
B)→P(
A), given by

ˆSp( f )(�) = f̂ −1(�), for all � ⊆ 
B,

is a state space morphism.

Sp, defined as above on classifications and infomorphisms is a contravari-
ant functor Sp : REL→FCTop between the category of classifications and the
category of state spaces2.

THEOREM 1 ([4], Proposition 8.22) The functor Evt : FCT→RELop is a
contravariant right adjoint to the contravariant functor Sp : REL→FCT op.

REL −→←−Sp

Evt
FCT

op

3. Boolean Classifications.

Let A = 〈
A, A, |=A 〉 be a classification. The disjunctive power of A
is the classification ∨A = 〈P(
A), A, |=∨A 〉, where

a |=∨A � if and only if a |=A γ, for some γ ∈ �,

for all a ∈ A, � ⊆ 
A. Moreover, given an infomorphism f = 〈 f̂ , f̌ 〉 :
A→B, the pair ∨ f = 〈∨̂ f , ∨̌ f 〉, where ∨̂ f : P(
A)→P(
B) is given by

∨̂ f (�) = f̂ (�), for all � ⊆ 
A,

and ∨̌ f : B→A, given by

∨̌ f (b) = f̌ (b), for all b ∈ B,

χ|=A : A × 
A→2, then Evt sends a function S : S1→S2 to the function χ∈ ◦ (S × 12S2 ) :
S1 × 2S2→2, where by 2 is denoted the 2-element set {0, 1}.

2 Note that, similarly, Sp sends a relation χ|=A : A × 
A→2 to the curry cur(χ|=A ) :
A→2
A .
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is also an infomorphism from the disjunctive power ∨A of A to the disjunctive
power ∨B of B.

∨, whose action is defined above on classifications and infomorphisms, is
an endofunctor on REL.

Similarly, the conjunctive power of A is the classification ∧A =
〈P(
A), A, |=∧A 〉, where

a |=∧A � if and only if a |=A γ, for all γ ∈ �,

for all a ∈ A, � ⊆ 
A. Moreover, given an infomorphism f = 〈 f̂ , f̌ 〉 :
A→B, the pair ∧ f = 〈∧̂ f , ∧̌ f 〉, where ∧̂ f : P(
A)→P(
B) is given by

∧̂ f (�) = f̂ (�), for all � ⊆ 
A,

and ∧̌ f : B→A, given by

∧̌ f (b) = f̌ (b), for all b ∈ B,

is also an infomorphism from the conjunctive power ∧A of A to the conjunc-
tive power ∧B of B.

∧, whose action is defined above on classifications and infomorphisms,
is, like ∨, an endofunctor on REL.

Finally, the negation of A is the classification ¬A = 〈
A, A, |=¬A 〉,
with

a |=¬A α if and only if a �|=A α, for all a ∈ A, α ∈ 
A.

In this case also, given an infomorphism f = 〈 f̂ , f̌ 〉 : A→B, the pair
¬ f = 〈¬̂ f , ¬̌ f 〉, where ¬̂ f : 
A→
B is given by

¬̂ f (α) = f̂ (α), for all α ∈ 
A,

and ¬̌ f : B→A, given by

¬̌ f (b) = f̌ (b), for all b ∈ B,

is also an infomorphism from the negation ¬A of A to the negation ¬B of B.

¬, whose action is defined above on classifications and infomorphisms, is
an involution endofunctor on REL.

A classification A is said to admit disjunction if the identity map i A :
A→A can be extended to an infomorphism d : ∨A→A. In this case d̂ :
P(
A)→
A is called a disjunction on A, sometimes denoted by ∨.

Similarly, A admits conjunction if the identity map i A : A→A can be
extended to an infomorphism c : ∧A→A and, in this case, ĉ : P(
A)→
A
is called a conjunction on A and is denoted by ∧.
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Finally, A admits negation if i A : A→A can be extended to an infomor-
phism n : ¬A→A. In this case, n̂ : 
A→
A is called a negation on A and
is denoted by ¬.

A classification is said to be Boolean if it admits disjunction, conjunction
and negation.

The following theorem ([4], Proposition 7.7) characterizes Boolean clas-
sifications

THEOREM 2. A classification A is Boolean if and only if, for every set X
of tokens closed under ∼=A, there is a type α, such that X = typA(α).

There is a natural construction that produces a Boolean classification out
of an arbitrary given classification A. The Boolean closure of A, denoted by
Boole(A), is the classification

Boole(A) = 〈P(P(
A)), A, |=Boole(A) 〉,
where

a |=Boole(A) G if and only if typA(a) ∈ G,

for all a ∈ A,G ⊆ P(
A).

THEOREM 3. ([4], Proposition 7.10) Given a classification A, the oper-
ations of union, intersection and complementation are a disjunction, conjunc-
tion and negation, respectively, on Boole(A).

It is not difficult to see that, for any classification A, Boole(A) =
Evt(Sp(A)). Thus, in view of Theorem 1, the following holds

COROLLARY 4. ([4], Corollary 8.24) Let A be a classification and S a
state space. Every infomorphism f : A→Evt(S) has a unique extension to an
infomorphism f ∗ : Boole(A)→Evt(S).

More precisely, f ∗ = Evt( f ), where f : S→Sp(A) is the unique
state space morphism provided by the adjunction of Theorem 1 that makes
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the following triangle commute, where ηA : A→Evt(Sp(A)) is the unit of
that adjunction.

4. Abstract Classification Theory.

In this section the categories and the adjunctions that were described in the
previous two sections are viewed from a more abstract perspective. This point
of view has two advantages over the more “concrete” classification viewpoint.
On the one hand it simplifies notation and terminology and brings the develop-
ment closer to the foundations. And on the other it makes the context suitable
for potential application to other areas and to possible generalizations.

A relation from a set A to a set 
 is, as usual, a subset R ⊆ A × 
. A
relation morphism f : R1→R2 from a relation R1 ⊆ A1 × 
1 to a relation
R2 ⊆ A2 ×
2 is a pair f = 〈 f̌ , f̂ 〉 of set maps f̌ : A2→A1 and f̂ : 
1→
2,

such that, for all a2 ∈ A2, σ1 ∈ 
1,

(1) f̌ (a2)R1σ1 if and only if a2 R2 f̂ (σ1).

This condition may be expressed pictorially by the following diagram

Notice that this notion of a relation morphism is different from the one
that is usually used in typed first-order logic and other logical contexts. A
morphism there would be a covariant pair of arrows 〈ǧ : A1→A2, ĝ :

1→
2〉, such that, for every a1 ∈ A1 and σ1 ∈ 
1, a1 R1σ1 implies
ǧ(a1)R2ĝ(σ1). It is however very similar to the morphisms in institutions [10,
11] and the reader familiar with institutions will recognize in (1) an alias of the
institutional satisfaction condition. A survey of the different kinds of institution
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morphisms that have been used in the literature and some of their relationships
has been presented in [13].

Relations with relation morphisms between them form a category, the
category of relations. This is our familiar category REL (whence the name),
since classifications are simply relations, the domain A of a relation R ⊆ A×


corresponding to the set of tokens and the codomain 
 to the set of types. R
itself corresponds to the classification relation and infomorphisms are the same
as relation morphisms. Abstract classification theory is understood to mean the
categorical study of the category REL of relations and other related categories.

By a function is meant a set morphism S : S1→S2 from some set S1 to
some set S2. A function morphism f : S1→S2 from a function S1 : S11→S12

to a function S2 : S21→S22 is a pair of morphism f = 〈 f̌ , f̂ 〉, with
f̌ : S11→S21 and f̂ : S12→S22, such that the following diagram commutes

Functions with function morphisms between them form a category, the
category of functions, which is well-known in category theory as the category
of arrows in SET. This is our familiar category FCT, since, in fact, state spaces
are, simply, functions in SET.

A partition is a collection of disjoint nonempty subsets of a set A whose
union is A. Such a partition may also be viewed as a set A with an equivalence
relation ∼=A on A, whose equivalence classes are the blocks of the partition.
We take a hybrid point of view and denote a partition on A, that determines
the equivalence relation ∼=A and is determined by it, by A/∼=A. A partition
morphism f : A/∼=A→B/∼=B from a partition A/∼=A to a partition B/∼=B is
a function f : A→B, such that, for all a1, a2 ∈ A,

a1
∼=A a2 implies f (a1) ∼=B f (a2),

i.e., f (∼=A) ⊆ ∼=B. Partitions with partition morphisms between them form
a category, a subcategory of the category FCT of functions, the category of
partitions, denoted by PAR.

Recall that Theorem 1 has given an adjunction 〈Sp, Evt, η, ε〉 :
REL→FCTop.
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REL −→←−Sp

Evt
FCT

op

The functor Sp : REL→FCTop maps a relation R ⊆ A × 
 to the function
Sp(R) : A→P(
), with

Sp(R)(a) = {σ ∈ 
 : a Rσ }, for all a ∈ A,

and maps a given relation morphism f = 〈 f̌ , f̂ 〉 : R1→R2, where R1 ⊆
A1 × 
1 and R2 ⊆ A2 × 
2, to the function morphism Sp( f ) = 〈 f̌ , f̂ −1〉 :
Sp(R2)→Sp(R1).

The functor Evt : FCT→RELop maps a function S : S1→S2 to the
relation Evt(S) ⊆ S1 × P(S2), where

s1Evt(S)T if and only if S(s1) ∈ T ,

for all s1 ∈ S1, T ⊆ S2 and a given function morphism f : S1→S2 from a
function S1 : S11→S12 to a function S2 : S21→S22 to the relation morphism
Evt( f ) = 〈 ˇEvt( f ), ˆEvt( f )〉 : Evt(S2)→Evt(S1), with

ˇEvt( f ) : S11→S21; ˇEvt( f ) = f̌

and

ˆEvt( f ) : P(S22)→P(S12); ˆEvt( f ) = f̂ −1.

The unit of this adjunction is the natural transformation η : IREL→Evt ◦
Sp that is defined, for all R ⊆ A × 
, by ηR : R→Evt(Sp(R)), with
ηR = 〈η̌R, η̂R〉, such that

η̌R : A→A; η̌R = i A,

and

η̂R : 
→P(P(
)); η̂R(σ ) = {X ⊆ 
 : σ ∈ X }, for all σ ∈ 
.

This is a well-defined relation morphism since



REMARKS ON CLASSIFICATIONS AND ADJUNCTIONS 61

aEvt(Sp(R)){X ⊆ 
 : σ ∈ X } iff Sp(R)(a) ∈ {X ⊆ 
 : σ ∈ X }
iff {σ ∈ 
 : a Rσ } ∈ {X ⊆ 
 : σ ∈ X }
iff σ ∈ {σ ∈ 
 : a Rσ }
iff a Rσ.

η is a natural transformation since, for all relation morphisms f : R1→R2,

where R1 ⊆ A1 × 
1 and R2 ⊆ A2 × 
2, the following diagram commutes

Commutativity is shown as follows:

f̌ ( ˇηR2(a2)) = f̌ (a2)

= ˇEvt(Sp( f ))(a2)

= ˇηR1(
ˇEvt(Sp( f ))(a2))

and
ˆηR2( f̂ (σ1)) = {X ⊆ 
2 : f̂ (σ1) ∈ X }

= {X ⊆ 
2 : σ1 ∈ f̂ −1(X )}
= {X ⊆ 
2 : f̂ −1(X ) ∈ {X ⊆ 
1 : σ1 ∈ X }}
= ˆEvt(Sp( f ))({X ⊆ 
1 : σ1 ∈ X })
= ˆEvt(Sp( f ))( ˆηR1(σ1)).

The counit of the adjunction is the natural transformation ε : IFCT→Sp ◦
Evt that is defined, for all S : S1→S2, by εS : S→Sp(Evt(S)), with
εS = 〈ε̌S, ε̂S〉, such that

ε̌S : S1→S1; ε̌S = iS1,

and

ε̂S : S2→P(P(S2)); ε̂S(s) = {X ⊆ S2 : s ∈ X }, for all s ∈ S2.

This is a well-defined function morphism since, for all s1 ∈ S1,
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ε̂S(S(s1)) = {X ⊆ S2 : S(s1) ∈ X }
= Sp(Evt(S))(s1)

= Sp(Evt(S))(ε̌S(s1)).

ε is a natural transformation since, for all function morphisms f : S1→S2,

where S1 : S11→S12 and S2 : S21→S22, the following diagram commutes

Commutativity is shown as follows. For all s1 ∈ S11,

ˇεS2( f̌ (s1)) = f̌ (s1)

= ˇSp(Evt( f ))(s1)

= ˇSp(Evt( f ))( ˇεS1(s1))

and, for all s ∈ S12,

ˆεS2( f̂ (s)) = {X ⊆ S22 : f̂ (s) ∈ X }
= {X ⊆ S22 : s ∈ f̂ −1(X )}
= {X ⊆ S22 : s ∈ ˆEvt( f )(X )}
= ˆEvt( f )

−1
({Y ⊆ S12 : s ∈ Y })

= ˆSp(Evt( f ))({Y ⊆ S12 : s ∈ Y })
= ˆSp(Evt( f ))( ˆεS1(s)).

Finally, it is not difficult to check that, for all R ⊆ A ×
 and S : S1→S2, the
following triangles commute
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Now we set out to provide an adjunction 〈Fct, Prt, ν, μ〉 : PAR→FCT
from the category PAR of partitions to the category FCT of functions.

PAR −→←−Fct

Prt
FCT

Let S : S1→S2 be a function. Define

Prt(S) = S1/∼=S = {S−1(s) : s ∈ Im(S)}.
Moreover, given a function morphism f : S1→S2, where S1 : S11→S12 and
S2 : S21→S22, define the partition morphism Prt( f ) : S11/∼=S1→S21/∼=S2 by

Prt( f )(s1) = f̌ (s1), for all s1 ∈ S11.

This is well-defined since, for all s1, s ′
1 ∈ S11,

s1
∼=S1 s ′

1 iff S1(s1) = S1(s ′
1)

implies f̂ (S1(s1)) = f̂ (S1(s ′
1))

iff S2( f̌ (s1)) = S2( f̌ (s ′
1))

iff f̌ (s1) ∼=S2 f̌ (s ′
1).

Prt defined as above on functions and function morphisms is a functor Prt :
FCT→PAR from the category FCT of functions to the category PAR of
partitions.

Next, let A/∼=A be a partition. Define Fct(A/∼=A) to be the natural
quotient map qA : A→A/∼=A. Further, given a partition morphism f :
A/∼=A→B/∼=B, define a function morphism Fct( f ) : qA→qB by Fct( f ) =
〈 ˇFct( f ), ˆFct( f )〉, where ˇFct( f ) : A→B is given by ˇFct( f ) = f and

ˆFct( f ) : A/∼=A→B/∼=B is given by

ˆFct( f )(a/∼=A) = f (a)/∼=B, for all a ∈ A.

This is well defined since a1
∼=A a2 implies f (a1) ∼=B f (a2), for all

a1, a2 ∈ A. It is a function morphism since, for all a ∈ A,
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ˆFct( f )(qA(a)) = ˆFct( f )(a/∼=A)

= f (a)/∼=B

= qB( f (a))

= qB( ˇFct( f )(a)).

The functor Prt : FCT→PAR is a right adjoint to Fct : PAR→FCT.

There is actually an underlying coreflection that can be uncovered by identi-
fying a partition with its quotient map. The unit of the adjunction is the nat-
ural transformation ν : IPAR→Prt ◦ Fct, such that, for all partitions A/∼=A,

νA/∼=A : A/∼=A→A/∼=A is the identity function

νA/∼=A = i A.

The counit of the adjunction is the natural transformation μ : Fct◦Prt→IFCT,

defined, for all functions S : S1→S2 by μS : q∼=S→S, where μS = 〈μ̌S, μ̂S〉,
with

μ̌S : S1→S1; μ̌S = iS1

and

μ̂S : S1/∼=S→S2; μ̂S(s1/∼=S) = S(s1), for all s1 ∈ S1.

This is well defined since, for all s1 ∈ S1,

S(iS1(s1)) = S(s1) = μ̂S(s1/∼=S) = μ̂S(q∼=S(s1)).

It is a natural transformation since, for all function morphisms f : S1→S2,

with S1 : S11→S12 and S2 : S21→S22 and f = 〈 f̌ , f̂ 〉, the following diagram
commutes
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f̌ ( ˇμS1
(s1)) = f̌ (s1)

= ˇFct(Prt( f ))(s1)

= ˇμS2
( ˇFct(Prt( f ))(s1))

and
f̂ ( ˆμS1

(s1/∼=S1
) = f̂ (S1(s1))

= S2( f̌ (s1))

= ˆμS2
( f̌ (s1)/∼=S2

)

= ˆμS2
( ˆFct(Prt( f ))(s1)).

Finally, it is not difficult to see that the adjunction triangles commute, since all
morphisms below reduce to identities

The adjunction just described was to be expected since the functor Prt, that
maps a given function to the induced partition of its domain “forgets” all the
information that is carried along by the codomain of the function.

Collecting all adjunctions defined up to this point we obtain the following
diagram of adjunctions. The arrows are pointing to the directions of the left
adjoint functors which come first in the labelings

ERLop → RELop → FCT← PAR〈Inc, Ext〉 〈Sp, Evt〉 〈Fct, Prt〉

Now, it is not difficult to check that the composite contravariant functor
Prt ◦ Sp : REL→PARop from the category of relations to the opposite
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category of partitions corresponds, under appropriate identifications, to the
functor U : REL→FCT, defined in Theorem 35 of [8]. However, since this
composition is a composition of a left adjoint with a right adjoint functor,
this does not immediately yield any adjunction in the present setting. So it
does not immediately verify the conjecture made in [8] (after the statement
of Proposition 36) that the functor U must have a left adjoint. However, it is
shown below that U does indeed have a left adjoint.

Specifically, we consider the functor Qnt : ERL→PARop which is
defined as follows: Given an extensional relation R ⊆ A × 
, define the
partition Qnt(R) = A/∼=R, where ∼=R ⊆ A × A is the equivalence relation on
A defined by

a1
∼=R a2 iff {σ ∈ 
 : a1 Rσ } = {σ ∈ 
 : a2 Rσ }, for all a1, a2 ∈ A.

Moreover, given two extensional relations R1 ⊆ A1 × 
1 and R2 ⊆ A2 × 
2

and a relation morphism f = 〈 f̌ , f̂ 〉 : R1→R2, define the partition morphism
Qnt( f ) : A2/∼=R2→A1/∼=R1 by Qnt( f ) = f̌ . This is well defined, since, for
all a1, a2 ∈ A2, with a1

∼=R2 a2, we have, for all σ ∈ 
1,

f̌ (a1)R1σ iff a1 R2 f̂ (σ )

iff a2 R2 f̂ (σ )

iff f̌ (a2)R1σ,

i.e., f̌ (a1)R1 f̌ (a2). Qnt : ERL→PARop, as defined above on extensional
relations and relation morphisms is a functor3 .

On the other hand, given a partition A/∼=A, define the extensional relation
Erl(A/∼=A) ⊆ A ×P(A/∼=A), by stipulating that, for all a ∈ A, X ⊆ A/∼=A,

a Erl(A/∼=A) X iff a/∼=A ∈ X .

Erl(A/∼=A) is extensional, since, for all X,Y ⊆ A/ ∼=A, if X �= Y, then there
exists a/∼=A ∈ X − Y or a/∼=A ∈ Y − X . But then {a ∈ A : a/∼=A ∈
X } �= {a ∈ A : a/∼=A ∈ Y }, i.e., {a ∈ A : aErl(A/∼=A)X } �= {a ∈
A : aErl(A/∼=A)Y }. Finally, given a partition morphism f : A/∼=A→B/∼=B,

define the relation morphism Erl( f ) : Erl(B/∼=B)→Erl(A/∼=A), by Erl( f ) =
〈 ˇErl( f ), ˆErl( f )〉, where ˇErl( f ) : A→B is given by ˇErl( f ) = f and ˆErl( f ) :

3 With regards to Footnote 2, note that, if the function χR : A × 
→2 is the characteristic
function of an extensional relation R, then cur(χR) : A→2
 may be neither an epi nor a mono.
For instance, if A = {a, b} and 
 = {0, 1}, with χR : (a, 0), (b, 0) %→ 0, (a, 1), (b, 1) %→ 1,
then R is extensional but cur(χR) is neither an epi nor a mono.
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P(B/∼=B)→P(A/∼=A) by

ˆErl( f )(Y ) = {a/∼=A : f (a)/∼=B ∈ Y }, for all Y ⊆ B/∼=B.

This is well defined, since, on the one hand f (∼=A) ⊆ ∼=B and on the other,
for all a ∈ A and Y ⊆ B/∼=B,

f (a)Erl(B/∼=B)Y iff f (a)/∼=B ∈ Y

iff a/∼=A ∈ ˆErl( f )(Y )

iff a Erl(A/∼=A) ˆErl( f )(Y ).

It is now shown that Erl : PAR→RELop is a left adjoint to Qnt :
REL→PARop. To this end we exhibit an adjunction 〈Erl, Qnt, λ, χ〉 :
PAR→RELop. The unit λ of the adjunction is the natural transformation
λ : IPAR→Qnt ◦ Erl, such that, for all partitions A/∼=A,

λA/∼=A : A/∼=A→A/∼=A; λA/∼=A = i A.

The counit is the natural transformation χ : IERL→Erl ◦ Qnt, such that, for
all extensional relations R ⊆ A × 
, χR = 〈χ̌R, χ̂R〉, where

χ̌R : A→A; χ̌R = i A

and

χ̂R : 
→P(A/∼=R); χ̂R(σ ) = {a/∼=R : a Rσ }, for all σ ∈ 
.

This is well defined since, on the one hand a1
∼=R a2 iff, for all σ ∈ 
, a1 Rσ

iff a2 Rσ, and on the other, for all a ∈ A, σ ∈ 
,

χ̌R(a)Rσ iff a Rσ

iff a/∼=R ∈ χ̂R(σ )

iff a Erl(Qnt(R)) χ̂R(σ ).

It is a natural transformation since, for all relation morphisms f = 〈 f̌ , f̂ 〉 :
R1→R2 from R1 ⊆ A1 × 
1, R2 ⊆ A2 × 
2,
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ˇχR1(
ˇErl(Qnt( f ))(a2)) = ˇErl(Qnt( f ))(a2)

= f̌ (a2)

= f̌ ( ˇχR2(a2))

and

ˆErl(Qnt( f ))( ˆχR1(σ1)) = ˆErl(Qnt( f ))({a1/∼=R1 : a1 R1σ1})
= {a2/∼=R2 : f̌ (a2)/∼=R1 ∈ {a1/∼=R1 : a1 R1σ1}}
= {a2/∼=R2 : f̌ (a2)R1σ1}
= {a2/∼=R2 : a2 R2 f̂ (σ1)}
= ˆχR2( f̂ (σ1)).

Finally, to see that the quadruple forms an adjunction, the following triangles
must be shown to commute, for all partitions A/∼=A and all extensional
relations R ⊆ A × 
,

We have, for the first, for all a ∈ A,

Qnt(χR)(λQnt(R)(a)) = Qnt(χR)(a)

= a

= iQnt(R)(a)
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and, for the second, for all a ∈ A,

Ěrl(λA/∼=A)(χ̌Erl(A/∼=A)(a)) = Ěrl(λA/∼=A)(a)

= λA/∼=A(a)

= i A(a)

= ǐErl(A/∼=A)

and, for all X ⊆ A/∼=A,

χ̂Erl(A/∼=A)(Êrl(λA/∼=A)(X )) = χ̂Erl(A/∼=A)({a/∼=A: λA/∼=A(a)/
∼=A ∈ X })

= {a/∼=A : a/∼=A ∈ {a/∼=A : a/∼=A ∈ X }}
= X

= îErl(A/∼=A)(X ).
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