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MANUEL ANTÓNIO MARTINS†, CIDMA - Department of Mathematics,
University of Aveiro, Aveiro, Portugal

GEORGE VOUTSADAKIS‡, School of Mathematics and Computer Science,
Lake Superior State University, Sault Sainte Marie, MI 49783, USA

Abstract
We show how various modal systems considered by Malinowski as extensions of classical propositional calculus may
be obtained as fibrings of classical propositional calculus and corresponding implicative modal logics, using the fibring
framework for combining logics of Fernández and Coniglio. Taking advantage of this construction and known results of
Malinowski, we draw some useful conclusions concerning some limitations of the fibring process. Finally, Malinowski’s
constructions are extended to obtain some modal extensions of arbitrary equivalential logics in the context of abstract algebraic
logic. These are studied with respect to their algebraic character.
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1 Introduction

The research presented in this paper is related to three different developments in mathematical logic.
First, it uses the framework of fibring of logical systems, as presented by Fernández and Coniglio in
[11], as a means of combining logical systems. It is shown that the modal systems of Malinowski [18],
which were originally defined as structural deductive systems with a given set of theorems, including
all classical tautologies, and closed under modus ponens, can be obtained as fibrings of classical
propositional logic with appropriately defined modal implicative logics. Theorems 4 and 5 of Section
4 are results asserting these relationships for the modal systems �E and �K of Malinowski (these are
denoted by SE and SK, respectively, in this article). The goal of these results, besides providing
additional examples of the usefulness and broad applicability of the fibring process, is to study
this process with respect to the Leibniz (algebraic) hierarchy of logics, as developed over the past
several years by many researchers in the field of abstract algebraic logic, see, e.g. [3, 8, 12, 14]. More
precisely, in [11], it has been shown that fibring is possible inside the categories of protoalgebraic
[2] and equivalential [6, 7] deductive systems. Moreover, in [16] the authors consider combinations
of algebraizable logics.

In Section 5, we extend the constructions of Malinowski to apply not only to extensions of
classical propositional calculus, but, also, of any arbitrary equivalential logic S in the sense of
abstract algebraic logic, that has the deduction detachment theorem with respect to an implication
system forming part of its equivalence system. For instance, classical propositional calculus falls
under this framework, since it has the deduction–detachment theorem with respect to {x→y} as well
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as being equivalential with respect to the equivalence system {x→y,y→x}. Such systems have been
studied and characterized both in terms of their intrinsic properties and in terms of their algebraic
character and their equivalent algebraic semantics in [9]. In the main result of Section 5 and one
of the main results of the article, Theorem 11, one of the theorems of Malinowski (Theorem II.4
of [18]) asserting that �K is equivalential is extended to show that a similarly defined logic over an
arbitrary equivalential deductive system with the deduction–detachment theorem (and not just over
classical propositional calculus) is equivalential.

Finally, in the results that are presented in Section 6, we show that, even though the results of [11]
seem to present a satisfactory state of affairs when fibring of protoalgebraic logics is considered,
they have some drawbacks when it comes to fibring equivalential logics.

A more detailed review of the results of Fernández and Coniglio [11] that will be used in this
article appears in Section 3. Malinowski’s constructions [18] of some of his equivalential modal
systems are described in some detail in Section 2. Finally, for all unexplained categorical notions
and accompanying notation, the reader is encouraged to consult any of the standard references in
general category theory [1, 4, 17].

2 The systems of Malinowski

A sentential language L=〈�,ρ〉 consists of a set� of at most countably many finitary connectives
together with an arity function ρ :�→ω, assigning to every connective λ∈� its arity ρ(λ).

Let V be a countably infinite fixed set of propositional variables. The set FmL(V ) of formulas
of type L (or L-formulas) over the set of variables V is defined as the smallest set, such that

1. V ⊆FmL(V ),
2. if λ∈�, with ρ(λ)=n, φ1,...,φn ∈FmL(V ), then λ(φ1,...,φn)∈FmL(V ).

The structure of an algebra can be introduced on FmL(V ) by associating with each n-ary λ∈�
an n-ary operation λFmL(V ) on FmL(V ) defined by λFmL(V )(φ1,...,φn)=λ(φ1,...,φn). The resulting
algebra FmL(V )=〈FmL(V ),LFmL(V )〉 is in fact the absolutely free L-algebra over the set V . An
endomorphism h :FmL(V )−→FmL(V ) is called a substitution.

A sentential logic S =〈L,CS〉 consists of a sentential language L and a structural consequence
operation CS :P(FmL(V ))→P(FmL(V )) on the set of L-formulas, i.e. such that, for all �,�⊆
FmL(V ),

1. �⊆CS (�);
2. CS (�)⊆CS (�), if �⊆�;
3. CS (CS (�))=CS (�);
4. h(CS (�))⊆CS (h(�)), for every substitution h.

Moreover, we say that S is finitary if

CS (�)=
⋃

�⊆ω�

CS (�),

where ⊆ω denotes the finite subset relation.
A formula φ is called a theorem of S if φ∈CS (∅). The set of all theorems is denoted by Thm(S).

A set T of formulas is called a theory of S if it is closed under the consequence operation, that
is, if CS (T )⊆T . The set of all theories of S is denoted by Th(S). The set Th(S) forms a complete
lattice Th(S)=〈Th(S),∩,∨S〉 (which is algebraic whenever S is finitary), where the meet operation
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is the intersection and the join operation is defined in the following way: for any T ,T ′ ∈Th(S),
T ∨S T ′ =⋂{R∈Th(S) :T ∪T ′ ⊆R}. The largest theory is the set FmL(V ) and the smallest theory
is the set Thm(S). It is not difficult to see that T ∨S T ′ =CS (T ∪T ′). A theory T of S is finitely
axiomatized if T =CS (�) for some finite �⊆FmL(V ).

An inference rule is a pair 〈�,φ〉 (
also written as

�

φ

)
where � is a finite set of formulas (the

premises of the rule) and φ is a single formula (the conclusion of the rule). An axiom is an
inference rule with �=∅, i.e. a pair 〈∅,φ〉, usually just denoted by φ. The rules of this type are
called Hilbert-style rules of inference. We say that a rule 〈�,φ〉 holds in S if φ∈CS (�).

Let Ax be a set of axioms and IR a set of inference rules. We say that a formula φ is directly
derivable from a set � of formulas by or via the inference rule 〈�,ψ〉 if there is a substitution h
such that h(ψ)=φ and h(�)⊆�.

We say that ψ is derivable from � by the set Ax and the set IR, in symbols ��Ax,IRψ , if there
is a proof of ψ from � based on Ax and IR, i.e. a finite sequence of formulas, ψ0,...,ψn−1 such
that ψn−1 =ψ , and for each i<n one of the following conditions hold:

1. ψi ∈�,
2. ψi is a substitution instance of a formula in Ax, or
3. ψi is directly derivable from {ψj : j< i} by one of the inference rules in IR.

The pair 〈L,�Ax,IR〉 is called a deductive system (or simply a logic) with the set of axioms Ax
and the set of inference rules IR.

A deductive system gives rise to a finitary sentential logic by defining the consequence operation
by φ∈CAx,IR(�) iff ��Ax,IR φ, for all �∪{φ}⊆FmL(V ). This identification will be used in some
examples.

In general, a pair 〈Ax,IR〉 of axioms and inference rules such that CS =CAx,IR is called a pre-
sentation or an axiomatization of S. If both the set of axioms and the set of inference rules are
finite then 〈Ax,IR〉 is called a finite presentation. Of course, a deductive system may have many
axiomatizations. However, for any finitary sentential logic S =〈L,CS〉, there is always an obvious
axiomatization, namely

Ax = {φ :φ∈CS (∅)}
IR = {〈�,φ〉 :φ∈CS (�) and � finite}.

Let ∧ be a binary operation symbol, either primitive or derived, i.e. defined by an L-term. We
say that S =〈L,CS〉 has the Property of Conjunction (PC) with respect to ∧, if for every φ,ψ ∈
FmL(V ),

CS (φ∧ψ)=CS (φ,ψ),

i.e. if ∧ behaves like the ordinary classical conjunction. The following are well known characteri-
zations of a logic having the conjunction property with respect to ∧ (see, e.g. [12]).

1. The logic S has the (PC) iff, for every S-theory T and all formulas φ,ψ ∈FmL(V ), φ∧ψ ∈T
iff φ∈T and ψ ∈T .

2. The logic S has the (PC) iff the following rules hold in S:

φ∧ψ
φ

,
φ∧ψ
ψ

and
φ,ψ

φ∧ψ .
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A logic S is called protoalgebraic if there exists a set E(x,y) of formulas in FmL(V ) in two
variables x,y, called an implication system or a protoalgebraizator, such that

1. E(x,x)⊆CS (∅); (Reflexivity)
2. y∈CS (x,E(x,y)). (Modus Ponens or Detachment)

The logic S is called (finitely) equivalential if there exists a (finite) set E(x,y), as above, called an
equivalence system, such that E(x,y) is an implication system and, in addition,

3. E(y,x)⊆CS (E(x,y)); (Symmetry)
4. E(x,z)⊆CS (E(x,y),E(y,z)); (Transitivity)
5. For every λ∈�, with ρ(λ)=n, E(λ(x0,...,xn−1),λ(y0,...,yn−1))⊆

CS (E(x0,y0),...,E(xn−1,yn−1)). (Replacement)

Given two sentential logics S =〈L,CS〉 and S ′ =〈L,CS ′ 〉 over the same language type L, S ′ is
called a strengthening of S, in symbols S ≤S ′, if, for all 
⊆FmL(V ), CS (
)⊆CS ′ (
). Such a
strengthening S ′ of S is said to be axiomatic if there exists a set �⊆FmL(V ), such that, for all

⊆FmL(V ),

CS ′ (
)=CS (�∪
).

Malinowski [18] states the following results concerning equivalential logics and their
strengthenings:

PROPOSITION 1 (Corollary I.12 of [6])
If S is an equivalential logic, then so is every strengthening S ′ of S. Moreover, every equivalence
system for S is also an equivalence system for S ′.

PROPOSITION 2 ([19])
Let S =〈L,CS〉 be a logic and let E1(x,y),E2(x, y)⊆FmL(V ).

(i) If CS (E1(x,y))=CS (E2(x,y)), then E1(x,y) is an equivalence system for S iff so is E2(x,y).
(ii) If E1(x,y),E2(x,y) are equivalence systems for S, then CS (E1(x,y))=CS (E2(x,y)).

For the proof of the following proposition see Corollary I.7 of [18].

PROPOSITION 3
Let S be a finitary equivalential logic and E(x,y) an equivalence system for S. If S ′ is a finitary finitely
equivalential strengthening of S, then there exists a finite E′(x,y)⊆E(x,y), that is an equivalence
system for S ′.

Next, we recall the definitions of the classical and normal modal systems of Malinowski, since
they constitute the starting points of our own investigations relating modalized logics with the fibring
process of Fernández and Coniglio [11] and, also, with some of the levels of the Leibniz hierarchy
in abstract algebraic logic [8, 14] (more precisely, with protoalgebraic [2] and equivalential logics
[6, 7]).

Let L be the language {∨,∧,¬} (with ∨ and ∧ binary and ¬ unary) and L� the language
{�,∨,∧,¬} (with � unary). Consider a set 
 of formulas over L and a set IR of rules of infer-
ence over L� (which might include axioms as a special case of rules). We denote by Sb(
,IR)
the least substitution invariant set of formulas in the language L�, that includes 
 and is closed
under the inference rules in IR. Now set φ→ψ :=¬φ∨ψ and φ↔ψ := (φ→ψ)∧(ψ→φ), for all
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φ,ψ ∈FmL�
(V ), and define the following:

CL = the least substitution invariant set in L� that contains
all classical tautologies

(MP)
φ,φ→ψ

ψ
(Modus Ponens)

(RE)
φ↔ψ

�φ↔�ψ
(Extensionality)

(NR)
φ

�φ
(Necessitation)

(K) �(φ→ψ)→ (�φ→�ψ) (Gödel’s Axiom)

Finally, let

E = Sb(CL,(MP),(RE))
K = Sb(CL,(K),(MP),(NR))

By a modal system L is understood any substitution invariant set of L�-formulas containing all
classical tautologies and closed under (MP). A modal system L is called classical if E⊆L and L is
closed under (MP) and (RE). A modal system L is called normal if K⊆L and L is closed under
(MP) and (NR). In the literature, an equivalent definition of normal modal logic has also been used,
in which Gödel’s axiom (K) is replaced by the so called Kripke’s axiom (K′) �(φ∧ψ)↔ (�φ∧�ψ)
(see [13, 15]).

If L is a modal system, SL =〈L�,CL〉 denotes the finitary sentential logic with the modal system
L as its set of axioms and modus ponens (MP) as its only inference rule. This logic SL is denoted by
�L in [18]. Another finitary sentential logic, stronger than �L, which is very often considered in this
setting is L→,�, having the same axioms as �L but with two inference rules (MP) and (NR) (cf. [8]).
A useful property of both of these sentential logics, when L is normal, is the following meta-rule:

φ∈C(�) implies �φ∈C(��).

Malinowski proves in [18] that the logic SE (denoted by �E) is not equivalential. He achieves this
by showing that the logic

RE=Sb(E,(MP),(NR),(RE)),

which is such that SRE is a strengthening of SE, is not equivalential and, then, taking into account
Proposition 1. This, in turn, he proves by showing that its class of reduced matrices is not closed
under submatrices, a property known to hold for equivalential logics [6] (see, also, [8]).

Finally, in another interesting result, Malinowski shows that the logic SK ( �K in [18]) is equiv-
alential, with the infinite set {�n(x↔y) :n∈ω} as its equivalence system (�nα is an abbreviation for
the formula ��···�α, in which the modal operator � appears n times). Moreover, it is not finitely
equivalential, i.e. it does not possess any finite equivalence system. This latter result is obtained,
using Proposition 3, by first showing that the logic ST, where

T=Sb(K,(T),(K),(MP),(NR)),
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with

(T) �φ→φ,

is not finitely equivalential, since, clearly, ST is a strengthening of SK.

3 Fibring à la Fernández and Coniglio

Fernández and Coniglio define in [11] fibring of logics by revisiting previous ideas on categorical
fibring (see, e.g. [20] and [5]). In this section we review this setting since, in the next section, it will
be shown that the modal logics of Malinowski discussed in Section 2 can be obtained as special
cases of fibred logics. Moreover, in Section 5, it will be shown that some more abstractly defined
modal systems, which we call generalized modal systems and which are originally axiomatically
defined, may also be obtained as combinations of underlying deductive systems and appropriate
sentential modal systems via the fibring method.

Before proceeding further, it would be appropriate to emphasize here the fact that, even though
the framework of Fernández and Coniglio, employed in [11], is adequate for our goals in the present
work, it is but a very special instance of a much more general and powerful framework for the
combination of logical systems via fibring perceived as an abstract categorial construction as outlined
carefully in [20].

The reader should also be informed at this point that, in order to avoid an unpleasant shift of
notation as compared with that of Section 2, we slightly modify the original notation of [11] in order
to present the material in [18] and [11], in which slightly different notations were originally used,
under a unified common notation.

The underlying category Sig of signatures (or sentential languages) over which fibring is sup-
posed to take place has objects signatures, i.e. ω-indexed families of connectives �k , k ∈ω, where
the set �k contains the k-ary connectives of L={�k}k∈ω. Morphisms in Sig are mappings from
one signature to another that preserve the arities of the connectives. A logic S =〈L,�〉 over a sig-
nature L is a finitary and structural consequence relation �⊆P(FmL(V ))×FmL(V ) on the set of
formulas FmL(V ) that are formed by using variables from a fixed denumerable set V and the connec-
tives from the signature L. The category Cons of logics has as objects all logics and as morphisms
f : 〈L,�〉→〈L′,�′〉 Sig-morphisms f :L→L′, such that the induced function f̂ :FmL(V )→FmL′ (V )
is a translation, i.e. it satisfies

��φ implies f̂ (�)�′ f̂ (φ), for all �∪{φ}⊆FmL(V ).

Since the category Cons is small cocomplete (see [11]), one may take the coproduct S�S ′ of two
logics S and S ′ in Cons. The resulting logic is termed the unconstrained fibring of the constituent
logics S and S ′. This construction results in a new logical system in which, intuitively speaking, no
connectives of S and S ′ are intended to be identified. For our own purposes, however, and the studies
in the subsequent section, more interesting is the constrained fibring of two logics in the category
Cons. In this type of fibring, the intention is to have some of the connectives of the constituent
logics identified in the fibred logic resulting from the process. We describe this type of fibring in
some detail and also refer the reader to the original exposition in Section 3 of [11], as well as to the
dissertation [10].

Let C and D be two categories and F :C→D a functor. An F-costructured morphism with
codomain d ∈|D|, is a pair 〈c,f 〉, where c∈|C| and f :F(c)→d is in D. A cocartesian lifting of
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an F-costructured morphism 〈c,f 〉 is a morphism f ∗ :c→c′ in C, such that F(f ∗)= f and such that
the following universal property is satisfied:

For every g :c→c′′ in C, and every h :d →F(c′′) in D, such that h◦f =F(g),

c c′�f ∗

g
�

�
�
��

c′′
�
h∗

F(c) d�f

F(g)
�

�
�
��

F(c′′)
�
h

there exists a unique h∗ :c′ →c′′ in C, such that F(h∗)=h and h∗ ◦f ∗ =g.
The functor F is called a cofibration if every F-costructured morphism admits a cocartesian

lifting.
In [11], it is shown that the natural forgetful functor N :Cons→Sig (that forgets the consequence

relation and keeps only the signature of the logic) is a cofibration and the constrained fibring of
two logics S and S ′ constrained by the sharing D, where D is a diagram formed by two given
monomorphisms j : L̄→N (S) and j′ : L̄→N (S ′) in Sig,

N (S) L̄� j
N (S ′)�j′

is the codomain S�D S ′ of the cocartesian lifting of the coequalizer q :N (S�S ′)→ L̂ in Sig of the
diagram

L̄ N (S�S ′)�N (i)◦j
�

N (i′)◦j′

where i :S →S�S ′ and i′ :S ′ →S�S ′ are the canonical injections of the coproduct in Cons of S
and S ′.

A more intuitive description of the main idea of this process, also borrowed from [11], is as
follows: At the start, two logics S =〈L,�〉 and S ′ =〈L′,�′〉 are given, together with a signature L̄
and two monomorphisms j : L̄→L and j′ : L̄→L′, which are used to enforce the identification of
some of the connectives in the two signatures L and L′. Then, the coproduct S�S ′, with canonical
injections i :S →S�S ′ and i′ :S ′ →S�S ′, and the coequalizer q :L�L′ → L̂ is considered in Sig.
The object L�L′ =N (S�S ′) is in the image of the cofibration N , whence, there exists a cocartesian
lifting q∗ :S�S ′ → Ŝ of the N -costructured morphism 〈S�S ′,q〉. This logic Ŝ is defined to be the
fibring of the logics S and S ′ as constrained by the diagram

L L̄� j L′�j′

4 The systems of Malinowski as fibred logics

In this section, the framework described in Section 3 is used to show how the modal logics studied by
Malinowski in [18] and discussed in Section 2 may be obtained as fibrations starting from classical
propositional calculus and appropriately selected modal implicative logics.

Keeping with the notation used in Section 3, we consider the three signatures LCPC ={∧,∨,→,¬},
LE′ ={→,�} and L→ ={→} (where, of course, ∧,∨,→ are binary and ¬ and � are unary).
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Over the signatures LCPC and LE′ we consider, respectively, classical propositional calculus SCPC =
〈LCPC,�CPC〉 and SE′ =〈LE′ ,�E′ 〉, where E′ =Sb(CL′,(MP),(RE)′), where CL′ is the least substitu-
tion invariant set over the signature LE′ containing all classical {→}-tautologies and closed under

(RE)′
φ→ψ, ψ→φ

�φ→�ψ
.

Finally, let j :L→ →LCPC and j′ :L→ →LE′ be the signature morphisms that inject → as a binary
connective into the signatures LCPC and LE′ , that both contain → as a binary connective.

In the next proposition, it is shown that the logical system SE of Malinowski (i.e. �E in the notation
of [18]) is the fibring of the two logics SCPC and SE′ constrained by the identification of → in the
two signatures LCPC and LE′ .

PROPOSITION 4
The constrained fibring S∗

E =〈L∗
E,�∗

E〉 of the two logics SCPC =〈LCPC,�CPC〉 and SE′ =〈LE′ ,�E′ 〉
constrained by the sharing

LCPC L→� j LE′�j′

coincides with the modal logic SE =〈LE,�E〉 of Malinowski.

PROOF. The following is a coequalizer diagram in Sig,

j′
�

�
�
��

{∧,∨,→,¬}

{→}

j

�
�

�
��

{→,�}

i′

�
�

�
��

{∧,∨,→,¬,→′,�}

i
�

�
�
��

{∧,∨,→,¬,�}�q

where q maps all symbols to themselves and →′ q�→→, which shows that L∗
E =LE.

Let 
∪{φ}⊆FmLE (V ). We must show that 
�Eφ iff 
�∗
Eφ.

1. Assume, first, that 
�Eφ. Because of the definition of �E, to see that 
�∗
Eφ, it suffices to

show that E⊆Thm(S∗
E), the set of theorems of S∗

E, and that �∗
E is closed under (MP).

Since �∗
E is substitution invariant in the fibred signature, for the first demonstration, it suffices

to show that CL,(MP) and (RE) are all rules of Thm(S∗
E).

• That CL⊆Thm(S∗
E) follows from CL⊆Thm(SCPC), the fact that all morphisms involved are

translations and that all logics involved are structural in their respective signatures.
• To see that Thm(S∗

E) is closed under (MP), suppose that φ,ψ ∈FmLE (V ), with φ→ψ,φ∈
Thm(S∗

E). Then, since Thm(S∗
E) is closed under all substitution instances of rules of SCPC, in

particular the corresponding modus ponens in CPC, we get that ψ ∈Thm(S∗
E).

• Finally, to show that Thm(S∗
E) is also closed under (RE), suppose that φ,ψ ∈FmLE (V ),

with φ↔ψ ∈Thm(S∗
E). Then φ→ψ and ψ→φ are in Thm(S∗

E), whence, since Thm(S∗
E) is

closed under all substitution instances of rules in E′, in particular of the rule (RE)′, we get that
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�φ→�ψ and �ψ→�φ are in Thm(S∗
E). But Thm(S∗

E) is also closed under all substitution
instances of rules in SCPC, whence we obtain that �φ↔�ψ ∈Thm(S∗

E), which shows that
Thm(S∗

E) is closed under (RE).
Finally, �∗

E is closed under (MP), since this closure property is inherited both by SCPC and by
SE′ , given the structurality of all logics involved.

2. Assume, conversely, that 
�∗
Eφ. Because of the construction of �∗

E, to see that 
�Eφ we
reason categorically as follows: First, by applying the coproduct property in Cons, we get
the following morphism [f ,g] :SCPC �SE′ →SE, where f :SCPC →SE and g :SE′ →SE are the
translations injecting SCPC and SE′ , respectively, to the stronger logic SE of Malinowski:

SE

f

�
�

�
�

�
��

SCPC SCPC �SE′�i SE′� i′

�

[f ,g] g

�
�

�
�

�
�	

Then, by applying the universal mapping property of the cocartesian lifting q∗ :SCPC �SE′ →S∗
E

of the coequalizer q :LCPC �LE′ →LE to the pair of morphisms [f ,g] :SCPC �SE′ →SE and
iLE :LE →N (SE) in Sig, we get

SCPC �SE′ S∗
E

�q∗

[f ,g]
�

�
�

�
��

SE

�

i∗LE

LCPC �LE LE
�q

N ([f ,g])
�

�
�

�
��

LE

�

iLE

the morphism i∗LE
:S∗

E →SE in Cons, such that N (i∗LE
)= iLE and making the triangle on the left

commute. The fact that this morphism is a translation in Cons yields the desired conclusion.

It should be remarked here, for the benefit of the interested reader, that there is an alternative
proof of Proposition 4 that does not rely directly on the categorical definition of a cofibration. It
is based, instead, on a characterization, given in Fernández’ thesis (Teorema 2.4.27 in Capítulo
2, page 54 of [10]), of the specific form that the codomain S ′ =〈L′,�′〉 of the cocartesian lifting
of an N -costructured morphism (S,f ) of a logic S =〈L,�〉 assumes in the specific context of the
categories Sig, Cons and the forgetful functor N :Cons→Sig. According to this characterization,
the codomain S ′ of the cocartesian lifting is characterized by the following properties:

• The signature L′ is f (L);
• The consequence relation �′ is the smallest element in the lattice of consequence relations on

FmL′ (V ), such that f̂ is a translation.

Therefore, the alternative proof, alluded to above, consists of showing that �E is the smallest con-
sequence relation on the signature {∧,∨,→,¬,�} that makes q̂ a translation.
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10 Modalization and the Leibniz hierarchy

We consider, next, the signatures LCPC, LK′ ={→,�} and L→ ={→}. Over the signatures LCPC

and LK′ , we consider, respectively, classical propositional calculus SCPC, as before, and SK′ =
〈CK′ ,�K′ 〉, where K′ =Sb(CL′,(K)′,(MP),(NR)), where CL′ is the least substitution invariant set
on LK′ containing all classical {→}-tautologies, and

(K)′ �(φ→ψ)→ (�φ→�ψ).

Finally, let j :L→ →LCPC and j′ :L→ →LK′ be the signature morphisms that inject → as a binary
connective into the signatures LCPC and LK′ , that both contain → as a binary connective.

PROPOSITION 5
The constrained fibring S∗

K =〈L∗
K,�∗

K〉 of the two logics SCPC =〈LCPC,�CPC〉 and SK′ =〈LK′ ,�K′ 〉
constrained by the sharing

LCPC L→� j LK′�j′

coincides with the modal logic SK =〈LK,�K〉 of Malinowski.

PROOF. This proof is very similar to the proof of Proposition 4. So the details will be omitted.

5 Generalized modal systems

Let S =〈L,CS〉 be a sentential logic with (PC) with respect to ∧, i.e. such that CS (φ∧ψ)=CS (φ,ψ),
for all φ,ψ ∈FmL(V ). Assume that S is protoalgebraic with a finite implication system I (x,y) and,
also, finitely equivalential, with finite equivalence system E(x,y)= I (x,y)∪I (y,x). Let L� =L∪{�},
where � is a unary connective.

Given a set 
 of formulas in FmL(V ) and a family IR of rules of inference over L� (which may
include axioms as a special case), let Sb(
,IR) denote the least substitution invariant set of formulas
in the language L�, that includes 
 and is closed under the inference rules in IR. Define further

BS = the least substitution invariant set in L� that contains
all S-theorems

(I-MP)
φ,I (φ,ψ)

ψ
(I-Modus Ponens)

(E-RE)
E(φ,ψ)

E(�φ,�ψ)
(E-Extensionality)

(NR)
φ

�φ
(Necessitation)

(I-K) I (�I (φ,ψ),I (�φ,�ψ))

Note that (E-RE) stands for the finite set of rules
E(φ,ψ)

ε(�φ,�ψ)
, for all ε(x,y)∈E(x,y), and, similarly,

(I-K) represents a finite set of schemes, namely, ε(�
∧

I (φ,ψ),
∧

I (�φ,�ψ)), for all ε(x,y)∈ I (x,y).
Finally, let

ES = Sb(BS,(I-MP),(E-RE))
KS = Sb(BS,(I-K),(I-MP),(NR))
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We note that for the study involving KS that is to follow, under the hypothesis that S has the
Deduction–Detachment Theorem with respect to I (see Definition 9 for the precise meaning), axiom
(I-K) above could be equivalently replaced by a generalized version of Kripke’s axiom:

(I-K′) E(�(φ∧ψ),�φ∧�ψ),

where, as before, (I-K′) represents the finite set of schemes ε(�(φ∧ψ), �φ∧�ψ), for all ε(x,y)∈
E(x,y).

A generalized modal system based on S is a substitution invariant set of L�-formulas containing
all formulas in BS and closed under (I-MP). In case S is clear from context, explicit reference to
S might be omitted. A generalized modal system L is called basic if ES ⊆L and L is closed under
(I-MP) and (E-RE). A generalized modal system L is called normal if KS ⊆L and L is closed under
(I-MP) and (NR). If L is a generalized modal system, SL =〈L�,CL〉 denotes the sentential logic
having L as its set of axioms and (I-MP) as its unique rule of inference.

It is clear that every modal system in the sense of Malinowski [18] is a generalized modal system
and that, moreover, if the base system S is taken to be the classical propositional calculus SCPC, then
basic and normal generalized modal systems correspond to classical and normal modal systems in
the sense of [18], respectively. Moreover, since the intuitionistic propositional calculus does satisfy
all the hypotheses imposed on our base system S, modal intuitionistic systems, analogous to the
classical systems of Malinowski, also fall under the purview of the framework studied here. Finally,
relying once more on Malinowski’s results, it is immediate that the logic SES is not equivalential in
general. In fact, by Corollary II.3 of [18], we get:

COROLLARY 6
The logic SES is not equivalential in general.

We would also like to mention an alternative generalization of the framework of Malinowksi
that is actually a further abstraction of the system SL presented above. Assuming that S is finitely
axiomatizable and starting from a generalized modal system L (based on S), we define Ss

L =〈L�,Cs
L〉

to be the sentential logic having L as its set of axioms and as its rules of inference all rules of inference
of S together with (I-MP). First, note that, since classical propositional calculus may be formalized
with modus ponens as its only rule of inference (the same actually holds for all logics considered in
Proposition 10 and Theorem 11, by results of [9]; see discussion before Proposition 10), both SL and
Ss

L specialize in these particular cases to the logics considered by Malinowski. Therefore, it is not
necessary for those results related to Malinowski’s modalization of classical propositional calculus
to consider the additional abstraction encompassed by Ss

L. On the other hand, it seems to be the
case that, even though SL itself cannot be obtained as a fibred logic along the lines of Proposition
4, an analogue of Proposition 4 does indeed hold for Ss

L. In fact in Proposition 7, we sketch how
our generalized modal logics Ss

L may be obtained as fibrations, starting from the underlying logical
system S =〈L,CS〉, having the (PC) with respect to ∧, and from some appropriately selected modal
generalized implicative logics. In addition to satisfying the (PC) with respect to ∧, we assume that
S is protoalgebraic with a finite implication system I (x,y) and finitely equivalential, with the finite
equivalence system E(x,y)= I (x,y)∪I (y,x). We assume that LI is the least subsignature of L, that
includes all the primitive connectives adequate to express the formulas in the implication system I .
Under this notation, the term ‘modal generalized implicative logics’ in this context will refer to a
logic over the signature LI ∪{�}.

Turning to a more detailed account, consider the three signatures L, LI and LE′ =LI ∪{�}. Over
the signatures L and LE′ we consider, respectively, the sentential logic S =〈L,�〉 and SE′ =〈LE′ ,�E′ 〉,
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12 Modalization and the Leibniz hierarchy

where E′ =Sb(ThmI (S),(MP),(RE)′), where ThmI (S) is the least substitution invariant set over the
signature LE′ containing all S-theorems over LI , and closed under

(RE)′
I (φ,ψ), I (ψ,φ)

ε(�φ,�ψ)
, for all ε∈ I .

Finally, let j :LI →L and j′ :LI →LE′ be the signature morphisms that inject all the connectives of
LI into the signatures L and LE′ , respectively, that both contain those connectives.

In the next proposition, it is shown that the generalized modal logic Ss
ES defined above is the

fibring of the two logics S and SE′ constrained by the identification of all the primitive connectives
of L in LI in the two signatures L and LE′ . Proposition 7 is an extension of Proposition 4 for modal
logics based on an arbitrary sentential logic S (satisfying the appropriate hypotheses) rather than
just on SCPC. We also mention, without formulating it in detail, that an analogue of Proposition 5
along the lines of Proposition 7 also holds.

PROPOSITION 7
The constrained fibring S∗

ES =〈L∗
�,�∗

ES 〉 of the two logics S =〈L,�〉 and SE′ =〈LE′ ,�E′ 〉 constrained
by the sharing

L LI
� j LE′�j′

coincides with the generalized modal system Ss
ES =〈L�,�s

ES 〉.
PROOF. The following is a coequalizer diagram in Sig,

j′
�

�
�
��

L

LI

j

�
�

�
��

LE

i′

�
�

�
��

L�LI �{�}

i
�

�
�
��

L�
�q

where q maps all symbols to themselves and injects every distinct copy of a connective in LI into
its original progenitor in L. It is, therefore, easy to see that L∗

� =L�. As mentioned in the remark
following the proof of Proposition 4, it now suffices to show that the logic Ss

ES is the smallest
L�-logic that makes q̂ a translation, i.e. that satisfies

��S�SE′ φ implies q̂(�)�Ss
ES q̂(φ),

for all �∪φ∈FmL�LI �{�}(V ). We omit the details, but invite the reader to notice that, for q̂ to be a
translation the postulated closure of the logic Ss

L, not just under (I-MP), but, rather, under all rules
of inference of S is necessary. That is, it would not be sufficient to consider SL for this role.

In the next result, we show that a normal generalized modal system satisfies a form of a general
necessitation meta-rule that is also satisfied by any classical normal modal logic.
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PROPOSITION 8
Let S =〈L,CS〉 be a sentential logic with (PC) with respect to ∧. Suppose that S has a finite
implication system I (x,y) and an equivalence system E(x,y)= I (x,y)∪I (y,x) and that SL =〈L�,CL〉
is a normal generalized modal system over S. Then, for all �∪{φ}⊆FmL(V ),

φ∈CL(�) implies �φ∈CL(��).

PROOF. By the definition of SL, if φ∈CL(�), there exists a proof φ0,...,φn =φ of φ from hypotheses
�, such that, for all i≤n, φi is in �, φi is in L or φi follows from {φ0,...,φi−1} by an application of
(I-MP). We show by induction, that �φ0,...,�φn =�φ is a valid proof of �φ from hypotheses ��.

For the base case, if φ0 ∈�, then �φ0 ∈�� and, if φ0 ∈L, �φ0 ∈L, since L is closed under (NR).
Assume, as the induction hypothesis, that �φ0,...,�φi−1 is a valid proof from hypotheses ��.

If φi ∈�, then �φi ∈��. If φi ∈L, then, since L is closed under (NR), we get that �φi ∈L. Finally,
if φi follows from {φ0,...,φi−1} by (I-MP), we have that I (φ,φi)∪{φ}⊆{φ0,...,φi−1}, for some
φ∈FmL�

(V ). Thus, taking into account that I (�I (φ,φi),I (�φ, �φi))⊆KS ⊆L, we get that

I (�I (φ,φi),I (�φ,�φi)), �I (φ,φi), �φ

have already been proven, whence, applying (I-MP) twice, �φi is also provable from
hypotheses ��.

In our final result, we show that, under some mild assumptions that are satisfied, e.g. by SCPC, the
techniques of [18] can be employed to show that, for every basic finitely equivalential system S, with
a finite equivalence E(x,y), over a language L with conjunction ∧, the logic SKS is equivalential
with equivalence system {�nE(x,y) :n∈ω}. Here �nE(x,y) stands for the formula �n

∧
E(x,y) :=

�n
∧
ε∈E(x,y)ε(x,y). Of course, SKS is not finitely equivalential in general, since the special case

considered in [18] does not have this property.

DEFINITION 9
A logic S =〈L,�S〉 is said to have the deduction–detachment theorem (DDT) with respect to a
set I (x,y) of L-formulas in two variables x,y if, for all 
∪{φ,ψ}⊆FmL(V ),


,φ�S ψ iff 
�S I (φ,ψ). (1)

The left-to-right implication of this equivalence forms the deduction theorem and the converse is
the detachment property or modus ponens with respect to I (x,y).

In establishing Proposition 10 and Theorem 11, we will be working with a sentential logic S
that will be assumed to have (PC) with respect to a binary ∧, to possess the DDT with respect to
a finite implication system I (x,y) and to be finitely equivalential with equivalence system E(x,y)=
I (x,y)∪I (y,x). By Lemma 62 of [9], such logics are Fregean and it follows, further, by Theorem
61 of [9], that they are also regularly algebraizable. Since the availability of the connective ∧ with
respect to which S has the (PC) and the finiteness of I imply that S has the DDT with respect to a
single formula, Theorem 63 of [9] completely determines the logic S as an axiomatic extension of
a given logical system having three axioms and modus ponens as its only rule of inference. Finally,
Theorem 66 of [9] asserts that S is strongly regularly algebraizable, i.e. belongs to the highest level
in the abstract algebraic (Leibniz) hierarchy of sentential logics and Theorem 68 of [9] characterizes
its equivalent algebraic semantics, i.e. the class of algebras serving, in the sense of abstract algebraic
logic, as its equivalent class of algebras, which, by strong algebraizability, is always a variety and
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14 Modalization and the Leibniz hierarchy

not just a quasi-variety (the default case). For more details on these important connections with the
field of abstract algebraic logic we refer the reader to [9], since a further exposition would lead to
a significant detour.

PROPOSITION 10
Let S =〈L,�S〉 be a logic over a language L with a binary conjunction ∧. Assume that S has the
deduction-detachment theorem with respect to a finite implication system I (x,y) and that it is finitely
equivalential with equivalence system E(x,y)= I (x,y)∪I (y,x). Then for all �∪{φ}⊆FmL(V ), such
that |�|<ω, we have

��S φ implies ��SKS φ.

PROOF. Indeed, we have

��S φ iff �S I (�,φ) (S has the (DDT))
implies �SKS I (�,φ) (Thm(S)⊆Thm(SKS ))
implies ��SKS φ (by (I-MP))

Here, we are implicitly assuming an order in �, say � :={ψ0,...,ψn−1}, and I (�,φ) stands for
I (ψ0,...,I (ψn−1,φ)...).

THEOREM 11
Let S =〈L,�S〉 be a logic over a language L with a binary conjunction ∧. Assume that S has the
deduction-detachment theorem with respect to a finite implication system I (x,y) and that it is finitely
equivalential with equivalence system E(x,y)= I (x,y)∪I (y,x). Then, the logic SKS is equivalential
with infinite equivalence system {�nE(x,y) :n∈ω}.
PROOF. Besides the Equivalence (1), since, by hypothesis, E(x,y) is an equivalence system for S,
the following five properties also hold for S:

1. �S E(x,x);
2. E(x,y)�S E(y,x);
3. E(x,y),E(y,z)�S E(x,z);
4. E(x0,y0),...,E(xn−1,yn−1)�S E(λ(�x),λ(�y)), for every n-ary λ∈�;
5. x,E(x,y)�S y.

Consequently, by Proposition 10, we have

1. �SKS E(x,x);
2. E(x,y)�SKS E(y,x);
3. E(x,y),E(y,z)�SKS E(x,z);
4. E(x0,y0),...,E(xn−1,yn−1)�SKS E(λ(�x),λ(�y)), for every n-ary λ∈�;

By applying Proposition 8 we have that these four conditions also hold for the sentential logic SKS

with the system {�nE(x,y) :n∈ω} in place of E(x,y). Note that, by clause 4 above, the replacement
condition holds for λ∈�. To show that it also holds for �, it suffices to prove that, for all n∈ω,

{�kE(x,y) :k ∈ω}�SKS �nE(�x,�y).
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First, by applying (I-K′) and (I-MP), we get �E(x,y)�SKS E(�x,�y). Then, by applying repeatedly
Proposition 8, we get, for all n∈ω,

{�kE(x,y) :k ∈ω}�SKS �nE(�x,�y).

Finally, since (I-MP) is a rule of SKS , we have

x,{�nE(x,y) :n∈ω}�SKS y,

whence modus ponens also holds in SKS with respect to the system {�nE(x, y) :n∈ω} and this
concludes the proof that {�nE(x,y) :n∈ω} is an equivalence system.

6 On protoalgebraicity and equivalentiality

In sections 4 and 5 of [11], the constructions of unconstrained and constrained fibring are examined
with regards to the algebraic character of the fibred logic resulting from fibring two protoalgebraic
or two equivalential logics, respectively, in the categories Prot and Equiv. (The interested reader
may also want to consult [16] for closely related work.) The category Prot of protoalgebraic logics
is defined as the subcategory of Cons with objects all protoalgebraic logics and morphisms all
morphisms in Cons that send a protoalgebraizator of the source logic onto a protoalgebraizator of
the target logic. It turns out that for all protoalgebraic logics S and S ′, every translation f :S →S ′

in Cons must send a protoalgebraizator of S onto a protoalgebraizator of S ′ and, hence, it must be a
morphism in Prot. Thus, Prot is the full subcategory of Cons with objects all protoalgebraic logics
(Proposition 4.3 of [11]). Theorem 4.4 of [11] asserts that the category Prot has both unconstrained
and constrained fibring and, moreover, its proof shows that this fibred logic is exactly the same logic
that results by the straightforward fibring process in Cons.

Based on this result and the fact that both SCPC and SE′ are protoalgebraic with protoalgebraizator
{x→y}, we obtain, based on our Propositions 4 and 5, an alternative proof of the relatively obvious
result that both SE and SK are protoalgebraic logics with protoalgebraizator {x→y}:
COROLLARY 12
The modal logics SE and SK of Malinowski are protoalgebraic with {x→y} as an implication system.

According to Theorem 5.14 of [11], the category Equiv of equivalential logics, which is a subcate-
gory (but not a full one) of Cons also has both unconstrained and constrained fibring. But Proposition
5.8 of [11] and its proof show that, in general, the coproduct of two logics in Cons is different than
their coproduct in Equiv. Thus, it is reasonable to expect that when two logics are fibred, their fibring
(unconstrained or constrained) will be different depending on which category this fibring is taking
place in. In fact, one of the vulnerable points of the theory developed by Fernández and Coniglio in
[11] is that the fact that the (unconstrained and constrained) fibrings of pairs of equivalential logics
in their context is also equivalential does not follow by any appropriately selected properties of the
constituent logics or of the fibring process in Cons, but is rather forced in Equiv from the fact that in
this category all logics are equivalential and all morphisms are equivalence-preserving morphisms.
In this context, once fibring is shown to exist, the fibres cannot but be equivalential ‘by ambience’.

Another vulnerability of the setting of [11], also relating to the case of fibring of equivalential
logics, is revealed by the following result

COROLLARY 13
Even though the logic SK is equivalential and it is the constrained fibring in Cons of the equivalential
logics SCPC and SK′ , it is not the fibring of SCPC and SK′ in Equiv.
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16 Modalization and the Leibniz hierarchy

In fact, Malinowski shows that SK is equivalential, with an equivalence system {�n(x↔y) :
n∈ω}, consisting of an infinite number of equivalence formulas, and, in addition, it is not finitely
equivalential, i.e. it does not have any finite equivalence system. Thus, there cannot be any morphism
in Equiv mapping the equivalence system of SCPC onto the infinite equivalence system of SE.
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