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1. Introduction

“. . .when a logic is algebraizable, the powerful methods of modern algebra can be
used in its investigation, and this has had a profound influence on the development
of these logics.” (Wim Blok and Don Pigozzi, 1989).

In 1989 Blok and Pigozzi [4], following in the footsteps of Czelakowski [8]
and their own previous work [3], made precise for the first time the notion of
algebraizable logic. A bulk of work has been published since, influenced by this
“Memoirs monograph”, that has collectively come to be known under the name of
abstract algebraic logic. Contrasted with the “traditional” algebraic logic, abstract
algebraic logic deals with abstract deductive systems, rather than with specific
ones, and its main purpose is to study the framework for the algebraization of

� The research that led to the results presented in this paper began with the author’s doctoral
dissertation, written under the supervision of Professor Don Pigozzi of Iowa State University. While
at Iowa State University the author was partially supported by National Science Foundation grant
CCR-9593168.
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these systems and unveil general conditions under which wide classes of deductive
systems can be shown to be algebraizable. Another goal is to exploit algebraiz-
ability to study properties of an algebraizable deductive system or class of such
systems by studying corresponding properties of algebraizing classes of algebras
and vice-versa.

A deductive system S = 〈L,�S〉 consists, roughly speaking, of a structural and
finitary consequence relation on the set of formulas FmL(V ) over some language
type L, built using a fixed denumerable set of variables V . Given a class K of
L-algebras, an algebraic deductive system SK = 〈L, |=K〉 may be constructed,
whose consequence relation is now a consequence relation on the set of equations
EqL(V ) over the type L, defined by

E |=K φ ≈ ψ iff

for all A = 〈A,LA〉 ∈ K, �a ∈ Aω,

eA
1 (�a) = eA

2 (�a), for all e1 ≈ e2 ∈ E, implies φA(�a) = ψA(�a).
In [5], the notion of a k-deductive system was introduced to unify these two no-
tions. A k-deductive system consists of a consequence relation on k-tuples of
L-formulas. Thus, a deductive system in the original sense is a 1-deductive system
and an algebraic deductive system is a 2-deductive system.

A deductive system S = 〈L,�S〉 is interpretable in an algebraic deductive
system SK = 〈L, |=K〉 if there exists a finite set δ(v) ≈ ε(v) = {δi(v) ≈ εi(v) :
i < n} of n equations in one variable v, such that, for all � ∪ {ψ} ⊆ FmL(V ),

� �S ψ iff {δ(φ) ≈ ε(φ) : φ ∈ �} |=K δ(ψ) ≈ ε(ψ).

In this case the set δ ≈ ε is the set of defining equations for S and K.
On the other hand, the algebraic deductive system SK is interpretable in the

deductive system S if there exists a finite set �(v, u) = {�j(v, u) : j < m} of m
formulas in two variables v, u, such that, for all E ∪ {φ ≈ ψ} ⊆ EqL(V ),

E |=K φ ≈ ψ iff {�(e1, e2) : e1 ≈ e2 ∈ E} �S �(φ,ψ).

In this case the set � is the set of equivalence formulas for S and K.
It is worth noting, parenthetically, that to unify these two notions of inter-

pretability, the notion of k–l-interpretability was introduced in [6] applying to a
general k-deductive system being interpretable in a general l-deductive system.
Then, the first case considered above is the description of 1–2-interpretability and
the second of 2–1-interpretability. The generalized notion was, in turn, the main
inspiration for the definition of interpretability for institutions in [22].

The k- and the l-deductive system are then said to be equivalent if, in addition
to being interpretable in one another, the two interpretations are inverses of each
other. More precisely, if we start from a k-formula, apply the k–l-interpretation and
then apply the l–k-interpretation to the resulting set of l-formulas, we obtain a set
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of k-formulas that are interderivable with the original k-formula, with respect to
the k-consequence relation, and the same holds if we start with an l-formula and
apply the interpretations in the reverse order. Specializing to 1- and 2-deductive
systems again, we have that the deductive system S is equivalent to the algebraic
deductive system SK if, for every φ ∈ FmL(V ) and φ ≈ ψ ∈ EqL(V ), the systems
of defining equations δ ≈ ε and equivalence formulas � are inverses of each other,
i.e., satisfy the following conditions:

φ ��S �(δ(φ), ε(φ))

and

φ ≈ ψ =| |=K δ(�(φ,ψ)) ≈ ε(�(φ,ψ)).

A deductive system S is algebraizable in the sense of Blok and Pigozzi if there
exists a class K of L-algebras, such that S is equivalent to SK . K is called the
equivalent algebraic semantics of S. This notion was later generalized to cover
infinitary deductive systems [15]. (See also [16] and [17].) In this case the set of
equivalence formulas and the set of defining equations are allowed to be infinite.
Other generalizations can be found in [12, 1] and [20].

An easy example is that of Classical Propositional Calculus, viewed as a de-
ductive system CPC = 〈LCPC,�CPC〉 over the language type LCPC consisting of
the nullary connectives �,⊥, the unary connective ¬ and the binary connectives ∧
and ∨. This system is algebraizable with equivalent algebraic semantics the class
BA of Boolean algebras (actually the two element Boolean algebra 2 suffices). In
fact, if φ → ψ,φ ↔ ψ are defined by

φ → ψ := ¬φ ∨ ψ, φ ↔ ψ := (φ → ψ) ∧ (ψ → φ),

then there are translations δ ≈ ε = {δ0(v) ≈ ε0(v)}, with δ0(v) = v, ε0(v) = �
from CPC to SBA and � = {�0(v, u)}, with �0(v, u) = v ↔ u from SBA to
CPC. Note that this means that for all � ∪ ψ ⊆ FmLCPC(V ) and E ∪ {φ ≈ ψ} ⊆
EqLCPC

(V ),

� �CPC ψ iff {φ ≈ � : φ ∈ �} |=BA ψ ≈ �,

E |=BA φ ≈ ψ iff {e1 ↔ e2 : e1 ≈ e2 ∈ E} �CPC {φ ↔ ψ},
φ ��CPC {φ ↔ �} and φ ≈ ψ =| |=BA {φ ↔ ψ ≈ �}.

This algebraization framework works well with all structural deductive systems.
However, to algebraize multiple signature logics with quantifiers such as equational
or first-order logic, it is necessary to first transform the original logic to a structural
sentential counterpart. It is briefly reviewed here how this transformation was ap-
plied to equational logic in [9] and to first-order logic without terms in Appendix
C of [4].

The Hyperequational Logic of Czelakowski and Pigozzi. Czelakowski and Pigozzi
[9] view equational logic as a 2-deductive system SQ as follows: For a given
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language type L = 〈�,ρ〉 and a given quasivariety Q over L, SQ contains the
axioms

• v ≈ v,
• φ ≈ ψ , for all identities φ ≈ ψ of Q,

and the following rules of inference

• v≈u
u≈v

,

• v≈u,u≈w

v≈w
,

• v0≈u0,...,vn−1≈un−1
λ(v0,...,vn−1)≈λ(u0,...,un−1)

, for all λ ∈ �, with ρ(λ) = n,

• φ0≈ψ0,...,φn−1≈ψn−1
φ≈ψ

, for all quasi-identities (
∧

i<n φi ≈ ψi) → φ ≈ ψ of Q.

The following 2-deductive system is based on the axiomatization of algebras of
clones of infinitary operations given by Feldman [10] and later simplified by Cir-
ulis [7]. It is the system HEQω over the language CL, containing an infinite se-
quence S0,S1, . . . of binary operation symbols and an infinite sequence v0, v1, . . .

of nullary operation symbols, defined by the following axioms for all n,m, l < ω,

• Sn
vn
(u) ≈ u,

• Sn
u(vn) ≈ u,

• Sn
u(vm) ≈ vm, if n �= m,

• Sn
uSn

w(z) ≈ Sn
Sn
u(w)(z),• Sn

u(m/l)S
m
w(z) ≈ Sm

Sn
u(m/l)(w)

Sn
u(m/l)(z), where u(m/l) = Sm

vl
(u) and m,n, l are all

distinct.

All algebras of type CL that satisfy these equations are called substitution algebras
and form the variety SA. SA is an equivalent algebraic semantics for equational
logic in the following sense: HEQω = SSA and, conversely, every logic SV, where V
is a variety, can be viewed as a theory of HEQω; more precisely, as the congruence
of the formula algebra FmCL({uλ : λ ∈ �}) generated by imposing appropriate
rank restrictions on the generators uλ, λ ∈ �, depending on the rank ρ(λ) of
the operation symbol λ, and by postulating that all identities of V hold (see the
appendix of [9] for more details).

The Structural Sentential Counterpart of First-Order Logic. This version of first-
order logic is based on its algebraization via the class of cylindric algebras [14]. It
is the deductive system PRω over the language consisting of

• the binary connectives ∨,∧,→,
• the unary connective ¬,
• the nullary connectives � and ⊥,
• the unary connectives c0, c1, . . ., corresponding to existential quantifications,

also known as cylindrifications, because of their role in the cylindric algebras of
sets, and
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• the nullary connectives d00, d01, d10, d20, d11, d02, . . ., corresponding to equali-
ties between variables, also known as diagonals, also because of their role in
cylindric set algebras.

PRω is defined by the axioms given below, under the following conventions: ∃vn :=
cn, vm ≈ vn := dmn,∀vn := ¬∃vn¬ and m,n, k natural numbers. Because of
this alias use of the v’s, x, y, z are now used to denote variables of this deductive
system. The axioms are:

• φ for every classical tautology φ,
• ∀vn(x → y) → (∀vnx → ∀vny),
• ∀vnx → x,
• ∀vnx → ∀vn∀vnx,
• ∃vnx → ∀vn∃vnx,
• ∀vm∀vnx → ∀vn∀vmx,
• vn ≈ vn,
• ∃vm(vm ≈ vn),
• vm ≈ vn ∧ vm ≈ vk → vn ≈ vk ,
• (vm ≈ vn ∧ ∃vm(vm ≈ vn ∧ x)) → x, if m �= n,

and there are two rules of inference

• x,x→y

y
,

• x
∀vnx .

The study of all first-order theories in the standard sense can be reduced to the
study of the structural sentential logic PRω. Its algebraization can be directly ac-
complished if one takes the class of cylindric algebras as the equivalent algebraic
semantics (see Appendix C in [4] for more details). This shows that, in this case,
construction of the algebraizing class precedes and paves the way for the transfor-
mation of the logic to its sentential counterpart, whereas intuition would demand
the reverse to happen. The logic must naturally give rise to its algebraizing class of
algebras.

The need for these artificial, ad-hoc transformations makes the use of this frame-
work for the algebraization of multisignature logics with quantifiers rather unsat-
isfactory. This had been realized by Pigozzi soon after the appearance of [4]. At
the same time, motivated by entirely different considerations, Goguen and Burstall
[13] introduced the model-theoretic notion of institution to formalize the notion
of a multisignature logic defined as a model-theoretic consequence relation. An
institution I = 〈Sign,SEN,MOD, |=〉 consists, roughly speaking, of an arbitrary
category Sign of signatures, a functor SEN from Sign into the category Set of
all small sets, giving, for each signature $, the set SEN($) of $-sentences, a
functor MOD from Sign into the opposite category CATop of categories, giving,
for each signature $, the category MOD($) of $-models and, finally, for each
signature $, a $-satisfaction relation |=$ between $-models and $-sentences
that satisfies the satisfaction condition, which can be summarized in the slogan
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“truth is invariant under change of notation” [13]. Both equational and first-order
logic (without terms) can be formulated to fit the institution framework. In the
first case signatures consist of function symbols and in the second of relation
symbols. In the examples presented later in the paper, including equational and
first-order logic, the signature category Sign is a Kleisli category of an algebraic
theory T in some appropriately chosen category C. Informally, C will be called
the “underlying category” of Sign. Fiadeiro and Sernadas [11] changed the for-
malism slightly, keeping in place multiple signatures but, at the same time, getting
rid of the model-theoretic framework. Thus, π -institutions were defined, which
provided an alternative structure to deductive systems, that can handle substitu-
tions at the language level rather than the metalanguage level. A π -institution
I = 〈Sign,SEN, {C$}$∈|Sign|〉 consists of an arbitrary category Sign of signatures,
a functor SEN : Sign → Set (as before) and, for each signature $, a closure
operator C$ on the set SEN($) of $-sentences. The system {C$}$∈|Sign| satisfies a
generalized structurality condition. Structural k-deductive systems provide special
examples of π -institutions and, also, every institution gives rise in a natural way to
a π -institution by defining the $-consequence relation model-theoretically in the
standard way. Following the previously adopted convention, if Sign is a category
with structure over some category C, C will be said to be the “underlying category”
of Sign. π -institutions will be used as the supporting structure in place of deductive
systems in the generalization of Blok and Pigozzi’s algebraizability framework to
accomondate, besides classical deductive systems, logics with multiple signatures
and quantifiers.

The formal definitions of a deductive system, of an institution and of a π -
institution are presented in the next section. There, it is also shown how one can
perceive a k-deductive system as a π -institution, therefore showing the reason
why deductive systems are very simple special cases of the π -institution structure.
Some more elaborate examples of institutions are also provided. First, the one that
corresponds to equational logic over multiple signatures, followed by the one that
corresponds to first-order logic without terms. In the first case, signatures consist
of operation symbols whereas in the second they consist of relation symbols. As
mentioned before, both of these logics can be algebraized under the deductive sys-
tem framework, after their transformation to structural sentential counterparts. The
last example in Section 2 provides an institutional logic which is diagram- rather
than string-based. Its sentences will be arrows of a category and the consequence
relation will correspond to the equational consequence relation induced by the class
of all small categories.

In Section 3, some material pertaining to algebraic theories, also known as
monads or triples, from categorical algebra, and their connection to adjunctions is
reviewed. Since the notion of a π -institution is categorical in flavor, it is expected
that the role of the equivalent algebraic semantics K in the present context will be
taken by a subcategory of the category of algebras of some appropriately chosen
algebraic theory. This theory is extracted by an adjunction between the signature
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category of the π -institution under consideration and its “underlying category”. To
all the examples of π -institutions that are given in Section 2 there is naturally asso-
ciated an adjunction from the “underlying category” of their signature category to
the signature category. This adjunction gives rise in a standard way (to be reviewed
in Section 3) to an algebraic theory in this underlying category. It is easily shown
in all cases that the signature category is the Kleisli category of the adjunction and
that the original adjunction is the Kleisli adjunction of this theory.

Subsequently, a subcategory Q of the Eilenberg–Moore category of the theory
will be chosen and, in Section 4, it will be shown how an institution is obtained
based on this subcategory and a sentence functor EQ : L → Set on some full
subcategory L of the Kleisli category of the algebraic theory, whose construction
is based on a prespecified functor ' : C → Set on the category C. This institution
will be said to be an 〈L, ',Q〉-algebraic institution. More precisely, let C be a
category, T an algebraic theory in C, L a full subcategory of the Kleisli category
CT of T in C and Q a subcategory of the Eilenberg–Moore category CT of T in C.
Given a functor ' : C → Set, giving, for each C ∈ |C|, the set of C-formulas, an
〈L, ',Q〉-algebraic institution I〈L,',Q〉 = 〈L,EQ,ALG, |=〉 has, for each L ∈ |L|,
as L-sentences pairs of C-formulas, as L-models T-algebras in Q together with
mappings from L to their underlying objects, “pinning down” the fundamental op-
erations inside the clone of operations, and satisfaction of an equation by a model is
determined as with ordinary algebras after C-formulas are interpreted according to
the interpretation of their fundamental operations. Examples of institutions of this
kind, based on the algebraic theories obtained by the adjunctions of the equational,
first-order and equational categorical logic institutions, will also be provided in
Section 4.

Finally, in Section 5, the notion of equivalent institutions introduced in [21] (see
also [22]), which generalizes the notion of equivalence of deductive systems, will
be used to define the notion of an algebraizable institution. Roughly speaking, an
arbitrary institution I will be said to be algebraizable if there exists a category C,
and an algebraic theory T in C, such that I is equivalent to an 〈L, ',Q〉-algebraic
institution for some full subcategory L of the Kleisli category CT, a functor ' :
L → Set and a subcategory Q of the Eilenberg–Moore category CT of T-algebras
in C.

2. Institutional Logics

A language type L = 〈�,ρ〉 is a pair whose first component is a set of operation
symbols and whose second component ρ : � → ω is a function giving the arity
of each operation symbol in �. Given a language type L and a set of variables V ,
by FmL(V ) is denoted the set of all L-formulas with variables in V . This set is
the universe of the absolutely free L-algebra, which will be denoted by FmL(V ).
A mapping σ : V → FmL(V ) is called an assignment (of formulas to variables),



538 GEORGE VOUTSADAKIS

also denoted by σ : V ⇁ V , and can be uniquely extended, by the freeness of
FmL(V ), to a homomorphism σ ∗ : FmL(V ) → FmL(V ), called a substitution.

An L-logic S is a pair S = 〈L,�S〉, where �S⊆ P (FmL(V )) × FmL(V ) is
such that, for all +,� ⊆ FmL(V ), φ ∈ FmL(V ),

(i) + �S φ, for all φ ∈ +,
(ii) + �S φ and + ⊆ � imply � �S φ,

(iii) + �S φ and � �S γ , for all γ ∈ +, imply � �S φ.

The logic S is called structural if, in addition,

(iv) + �S φ implies σ (+) �S σ (φ), for all substitutions σ ,

and it is called finitary if, in addition,

(v) + �S φ implies +′ �S φ, for some +′ ⊆f +.

The definition of an S-logic may be restated in terms of closure operators. Given a
set X, a closure operator C on X is a mapping C : P (X) → P (X) such that, for
all Y,Z ⊆ X,

(i) Y ⊆ C(Y ),
(ii) Y ⊆ Z implies C(Y ) ⊆ C(Z) and

(iii) C(C(Y )) ⊆ C(Y ).

A closure operator on FmL(V ) is called structural if, in addition, for all + ∪ {φ} ⊆
FmL(V ),

(iv) φ ∈ C(+) implies σ (φ) ∈ C(σ (+)), for all substitutions σ ,

and it is called finitary if, in addition,

(v) φ ∈ C(+) implies φ ∈ C(+′), for some +′ ⊆f +.

Given an L-logic S = 〈L,�S〉, denote by CS the closure operator on FmL(V )

defined by

CS(+) = {φ ∈ FmL(V ) : + �S φ}
and, given a closure operator C on FmL(V ), define a logic SC = 〈L,�C〉 by

+ �C φ iff φ ∈ C(+).

Then the mappings S �→ CS and C �→ SC define a bijective correspondence
between logics and closure operators on FmL(V ), which restricts to a bijective
correspondence between structural finitary logics and structural finitary closure
operators. A structural finitary logic is usually referred to as a sentential logic or a
deductive system.

In [4] the notion of an algebraizable sentential logic was introduced and a the-
ory of algebraizability developed. The formalism of sentential logics cannot handle
directly the case of multi-signature logics with quantifiers, like equational logic
over multiple signatures and first-order logic. The general theory of algebraizable
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sentential logics may be applied to these logics but only after their transformation
to sentential counterparts in a rather artificial and ad-hoc way. This transformation
was carried out for equational logic in [9] and for first-order logic in Appendix
C of [4] and was reviewed briefly in the Introduction. The main purpose of the
present paper is to give a general formalism for handling directly the algebraization
of multi-signature logics with quantifiers without the need to first perform this
artificial transformation which essentially alters the spirit of the original logic.

To lay the foundations for this framework, the structure of a sentential logic
must be replaced by a more general structure that can accomondate miltiple signa-
tures. A structure that has proven to be very efficient in this respect is the model-
theoretic structure of an institution, introduced in [13] and later modified to that of
a π -institution in [11] to directly generalize structural logics and at the same time
accomondate multiple signatures.

An institution I = 〈Sign,SEN,MOD, |=〉 is a quadruple consisting of

(i) a category Sign whose objects are called signatures and whose morphisms
are called assignments,

(ii) a functor SEN : Sign → Set from the category of signatures to the category
of small sets, giving, for each $ ∈ |Sign|, the set of $-sentences SEN($)

and mapping an assignment f : $1 → $2 to a substitution SEN(f ) :
SEN($1) → SEN($2),

(iii) a functor MOD : Sign → CATop from the category of signatures to the op-
posite of the category of categories giving, for each signature $, the category
of $-models MOD($),

(iv) for each signature $, a satisfaction relation |=$⊆ |MOD($)| × SEN($),
such that, for all f : $1 → $2 ∈ Mor(Sign), φ ∈ SEN($1) and m ∈
|MOD($2)|, the following satisfaction condition holds

MOD(f )(m) |=$1 φ iff m |=$2 SEN(f )(φ).

Pictorially, this condition may be illustrated as follows:

MOD(f )(m) |=$1 φ

MOD(f ) ↑ ↓ SEN(f )

m |=$2 SEN(f )(φ)

A π -institution I = 〈Sign,SEN, {C$}$∈|Sign|〉, on the other hand, is a triple with its
first two components exactly the same as the first two components of an institution
and, for every $ ∈ |Sign|, a closure operator C$ : P (SEN($)) → P (SEN($)),
such that, for every f : $1 → $2 ∈ Mor(Sign),

SEN(f )(C$1(+)) ⊆ C$2(SEN(f )(+)), for all + ⊆ SEN($1).

Given an institution I = 〈Sign,SEN,MOD, |=〉, define, for all $ ∈ |Sign|, + ⊆
SEN($), M ⊆ |MOD($)|,

+∗ = {m ∈ |MOD($)| : m |=$ +} and M∗ = {φ ∈ SEN($) : M |=$ φ}
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and set C$(+) = +∗∗, for all $ ∈ |Sign|, + ⊆ SEN($). Then π(I) = 〈Sign,SEN,
{C$}$∈|Sign|〉 is a π -institution, called the π -institution associated with the institu-
tion I and denoted by π(I).

A few examples of institutions and π -institutions that will also serve to illustrate
the theory in the following sections come next.

2.1. DEDUCTIVE INSTITUTIONS

Let L be a language type. An L-equation is a pair 〈φ,ψ〉 of L-formulas, usually
written φ ≈ ψ . With the motivation to incorporate equational logics into the sen-
tential logic formalism, the notion of a k-deductive system was introduced in [5].
Given a positive integer k, a k-deductive system S over L is a pair S = 〈L,�S〉,
where, now, �S ⊆ P (Fmk

L(V ))×Fmk
L(V ), satisfying all five conditions that a sen-

tential logic must satisfy with k-tuples of formulas and sets of k-tuples of formulas
taking the place of formulas and sets of formulas, respectively.

Let S = 〈L,�S〉 be a k-deductive system over L. We construct the π -institution
IS = 〈SignS,SENS, {C$}$∈|SignS |〉 as follows:

(i) SignS is the one-object category with object V and morphisms all assign-
ments f : V ⇁ V , i.e., set maps f : V → FmL(V ). The identity morphism
is the inclusion iV : V → FmL(V ). Composition g ◦f of two assignments f

and g is defined by g◦f = g∗f , where, recall that g∗ : FmL(V ) → FmL(V )

denotes the substitution extending the assignment g.
(ii) SENS : SignS → Set maps V to Fmk

L(V ) and f : V ⇁ V to (f ∗)k :
Fmk

L(V ) → Fmk
L(V ). It is easy to see that SENS is a functor.

(iii) Finally, CV : P (Fmk
L(V )) → P (Fmk

L(V )) is the standard closure operator
CS : P (Fmk

L(V )) → P (Fmk
L(V )) associated with the k-deductive system S,

i.e.,

CV (�) = {φ ∈ Fmk
L(V ) : � �S φ}, for all � ⊆ Fmk

L(V ).

CV , defined in this way satisfies the conditions imposed in the definition of a π -
institution. In fact, the last condition in the definition of a π -institution is, in this
case, the structurality property of a deductive system that plays a central role in
the classical theory of algebraizability. Abstracting structurality and incorporating
substitutions in the object language, rather than handling them in the metalanguage,
in the context of multi-signature logical systems is one of the basic motivations for
the introduction of categorical abstract algebraic logic. IS is thus a π -institution.
It will be called the deductive π -institution associated with the k-deductive system
S. Note that for k = 1 we obtain the deductive π -institutions associated with
deductive systems in the sense of [4] and for k = 2 we obtain, among others,
the π -institutions associated with the semantically defined equational 2-deductive
systems SK whose consequence relations CK : P (Fm2

L(V )) → P (Fm2
L(V )) are

the equational consequence relations determined by some class K of L-algebras.
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2.2. EQUATIONAL INSTITUTION

An ω-indexed set or, simply, ω-set A is a family of sets A = {Ak : k ≥ 1}, where
it is assumed that Am ∩ An = ∅, for all m,n ≥ 1,m �= n. An ω-indexed set
morphism or, simply, ω-set morphism f : A → B, from an ω-set A to an ω-set
B, is a collection of set maps f = {fk : Ak → Bk : k ≥ 1}. Given two ω-set
morphisms f : A → B, g : B → C, define their composite gf : A → C by
gf = {gkfk : Ak → Ck : k ≥ 1}. With this composition, the collection of ω-
sets with ω-set morphisms between them forms a category, called the category of
ω-sets and denoted by 4Set.

An ω-set V = {Vk : k ≥ 1}, with Vk = {vki : i < k}, called ω-set of variables, is
fixed in advance. Given an ω-set X, the ω-set of X-terms TmX(V ) = {TmX(V )k :
k ≥ 1} is defined by letting TmX(V )k be the smallest set with

• vki ∈ TmX(V )k, i < k,
• x(t0, . . . , tn−1) ∈ TmX(V )k, for all n ≥ 1, x ∈ Xn, t0, . . . , tn−1 ∈ TmX(V )k.

It is important for the reader to notice that X is not allowed to contain nullary
operation symbols, since this would spoil the disjointness of the different levels of
TmX(V ), which is required for TmX(V ) to be an ω-set. This, as is well known,
does not harm the generality since nullary operations may always be replaced by
constant unary operations.

Given X,Y ∈ |4Set|, f : X → TmY (V ) ∈ Mor(4Set), let f ∗ : TmX(V )

→ TmY (V ) be the 4Set-morphism such that f ∗
k (x(vk0, . . . , vk,k−1)) = fk(x), for

all k ≥ 1, x ∈ Xk, and f ∗
k (t) is the Y -term obtained from t by recursively replacing

each subterm x(t0, . . . , tn−1) of t by fn(x)(f
∗
k (t0), . . . , f

∗
k (tn−1)). We write f :

X ⇁ Y to denote an 4Set-map f : X → TmY (V ). Given two such morphisms
f : X ⇁ Y and g : Y ⇁ Z their composition g ◦ f : X ⇁ Z is defined to be the
4Set-map g ◦ f = g∗f . With this composition, the collection of ω-sets with the
harpoon morphisms between them forms a category, denoted by EQSig. Identities
in EQSig are the morphisms j

EQ
X : X ⇁ X, with j

EQ
Xk

(x) = x(vk0, . . . , vk,k−1),
for all k ≥ 1, x ∈ Xk. The category EQSig will be the signature category of the
institution for equational logic.

Next, define the sentence functor EQSEN : EQSig → Set by

EQSEN(X) =
( ∞⋃

k=1

TmX(V )k

)2

, for every X ∈ |EQSig|,

and, given f : X ⇁ Y ∈ Mor(EQSig), EQSEN(f ) : EQSEN(X) → EQSEN(Y )

is given by

EQSEN(f )(〈s, t〉) = 〈f ∗
k (s), f

∗
l (t)〉, if s ∈ TmX(V )k, t ∈ TmX(V )l,

for all 〈s, t〉 ∈ EQSEN(X). EQSEN is well-defined, because TmX(V )k∩TmX(V )l
= ∅, for all k, l ≥ 1, k �= l. We call an 〈s, t〉 ∈ EQSEN(X) an X-equation and
denote it by s ≈ t .
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The model functor EQMOD : EQSig → CATop of the equational institution
is described next. Given a set A, by Cl(A) is denoted the ω-set whose k-th level
Clk(A) consists of all functions f : Ak → A. Given an ω-set X, an X-algebra
A = 〈A,XA〉 is a pair consisting of a set A together with an 4Set-morphism
XA : X → Cl(A). If x ∈ Xk, following common usage, we write xA for XA

k (x) ∈
Clk(A). Given two X-algebras A and B, an X-algebra homomorphism h : A → B
is a set map h : A → B, such that, for all n ≥ 1, x ∈ Xn, �a ∈ An,

h(xA(�a)) = xB(h(�a)).

X-algebras with X-algebra homomorphisms between them form a category, de-
noted by EQMOD(X). Given an X-algebra A = 〈A,XA〉, define an 4Set-morph-
ism A : TmX(V ) → Cl(A) by letting vA

ki : Ak → A be the i-th projection function
in k variables and

x(t0, . . . , tn−1)
A = xA(tA

0 , . . . , tA
n−1), for all

n ≥ 1, x ∈ Xn, t0, . . . , tn−1 ∈ TmX(V )k.

Then, it is not difficult to define EQMOD at the morphism level. To this end, let
f : X ⇁ Y ∈ Mor(EQSig). Then EQMOD(f )(〈A, YA〉) = 〈A,XEQMOD(f )(A)〉,
for all 〈A, YA〉 ∈ |EQMOD(Y )|, where xEQMOD(f )(A) = fk(x)

A, for all k ≥ 1, x ∈
Xk, and, if h : 〈A, YA〉 → 〈B, Y B〉 ∈ Mor(EQMOD(Y )), then

EQMOD(f )(h) = h : 〈A,XEQMOD(f )(A)〉 → 〈B,XEQMOD(f )(B)〉.

h may be shown to be an X-algebra homomorphism and, hence, EQMOD(f ) is
well-defined at the morphism level.

Finally, for the satisfaction relation, we have, for every X ∈ |EQSig|,

A |=X s ≈ t iff sA = tA,

for all A ∈ |EQMOD(X)|, s ≈ t ∈ EQSEN(X). It is not very hard to verify that
the satisfaction condition holds and that EQ = 〈EQSig,EQSEN, EQMOD, |=〉 is
an institution.

Details of the constructions presented in this section will be given in the forth-
coming [23].

2.3. INSTITUTION FOR FIRST-ORDER LOGIC WITHOUT TERMS

A hierarchy of sets or, simply, an h-set A is a family of sets A = {AN : N ∈ Pf(ω)},
where Pf(ω) = {N : N ⊆f ω}, such that AM∩N = AM ∩ AN , for all M,N ⊆f ω.
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By a morphism of h-sets or an h-set morphism f : A → B from an h-set A to an
h-set B we mean a family of set maps f = {fN : AN → BN : N ∈ Pf(ω)}, such
that the following diagram commutes, for all N ⊆ M ⊆f ω,

AN

fN

i

BN

i

AM
fM

BM

where by i : AN → AM and i : BN → BM are denoted the inclusion maps. Given
two h-set morphisms f : A → B and g : B → C, their composite gf : A → C

is defined by gf = {gNfN : AN → BN : N ⊆f ω}. With this composition the
collection of h-sets with h-set morphisms between them forms a category, called
the category of h-sets and denoted by HSet.

By L in this section will be denoted the set of symbols {¬,∧} ∪ {∃k : k ∈ ω},
used as connectives and quantifiers, respectively, in the construction of formulas.
Given a set X, by X will be denoted an isomorphic copy of X constructed in some
canonical way. x denotes then the copy of x ∈ X in the set X. Given an h-set X,
the h-set of X-formulas FmL(X) = {FmL(X)N : N ∈ Pf(ω)} ∈ |HSet| is defined
by letting FmL(X)N be the smallest set with

• x ∈ FmL(X)N , for every x ∈ XN ,
• ¬φ, φ1 ∧ φ2 ∈ FmL(X)N , for all φ, φ1, φ2 ∈ FmL(X)N ,
• ∃kφ ∈ FmL(X)N , for every φ ∈ FmL(X)N∪{k}.

Given X,Y ∈ |HSet|, f : X → FmL(Y ) ∈ Mor(HSet), let f ∗ : FmL(X) →
FmL(Y ) be the HSet-morphism such that f ∗

N(x) = fN(x), for all N ⊆f ω, x ∈ XN ,
and f ∗

N(φ) is the Y -formula obtained from φ by recursively replacing each subfor-
mula of φ by its image under f ∗

N , except for subformulas following a quantifier
∃k which are replaced by their image under f ∗

N∪{k}. Write f : X ⇁ Y to denote
an HSet-map f : X → FmL(Y ). Given two such morphisms f : X ⇁ Y and
g : Y ⇁ Z their composition g ◦ f : X ⇁ Z is defined to be the HSet-map
g ◦ f = g∗f . With this composition the collection of h-sets with the harpoon
morphisms between them forms a category, denoted by FOSig. Identities in this
category are the morphisms jFO

X : X ⇁ X, with jFO
XN

(x) = x, for all N ⊆f ω, x ∈
XN . The category FOSig will serve as the signature category of the institution for
first-order logic without terms.

Next, define the sentence functor FOSEN : FOSig → Set by

FOSEN(X) = FmL(X)∅, for every X ∈ |FOSig|,
and, given f : X ⇁ Y ∈ Mor(FOSig), FOSEN(f ) : FOSEN(X) → FOSEN(Y )

is given by

FOSEN(f )(φ) = f ∗
∅ (φ), for all φ ∈ FmL(X)∅.
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A φ ∈ FmL(X)∅ is called an X-sentence.
The model functor FOMOD : FOSig → CATop of the institution is described

next. Given a set A, by Rel(A) is denoted the h-set whose N-th level RelN(A)

consists of all relations r ⊆ Aω that depend only on the individual variables in-
dexed by the elements of N . Given X ∈ |HSet|, an X-structure A = 〈A,XA〉 is a
pair consisting of a set A together with an HSet-morphism XA : X → Rel(A). If
x ∈ XN , following common usage, we write xA for XA

N(x) ∈ RelN(A). Given two
X-structures A and B, an X-structure homomorphism h : A → B is a surjective
set map h : A → B, such that, for all N ⊆f ω, x ∈ XN ,

�a ∈ xA iff h(�a) ∈ xB.

X-structures and X-structure homomorphisms between them form a category, de-
noted by FOMOD(X). Given an X-structure A = 〈A,XA〉, define an HSet-morph-
ism A : FmL(X) → Rel(A) by letting

• xA = xA, for all x ∈ XN ,
• (¬φ)A = Aω − φA, (φ1 ∧ φ2)

A = φA
1 ∩ φA

2 , for all φ, φ1, φ2 ∈ FmL(X)N ,
• (∃kφ)A = {�b : bi = ai ∀i �= k and �a ∈ φA}.

Now, it is not difficult to define FOMOD at the morphism level. Let f : X ⇁ Y ∈
Mor(FOSig). Then

FOMOD(f )(〈A, YA〉) = 〈A,XFOMOD(f )(A)〉,
for all 〈A, YA〉 ∈ |FOMOD(Y )|,

where xFOMOD(f )(A) = fN(x)
A, for all N ⊆f ω, x ∈ XN , and, if h : 〈A, YA〉 →

〈B, Y B〉 ∈ Mor(FOMOD(Y )), then FOMOD(f )(h) = h : 〈A,XFOMOD(f )(A)〉 →
〈B,XFOMOD(f )(B)〉. h may be shown to be an X-structure homomorphism and there-
fore FOMOD(f ) is well-defined at the morphism level.

Finally, for the satisfaction relation, we have, for every X ∈ |FOSig|,
A |=X φ iff φA = Aω,

for all A ∈ |FOMOD(X)|, φ ∈ FOSEN(X). It is not difficult to verify that the
satisfaction condition holds and that F O = 〈FOSig,FOSEN,FOMOD, |=〉 is an
institution.

Details of the constructions presented here will be given in the forthcoming [24].

2.4. INSTITUTION FOR THE EQUATIONAL LOGIC OF CATEGORIES

The previous two institutions, of equational and of first-order logic, provide exam-
ples of logics that, from the algebraic logic point of view, can also be treated in
the sentential logic framework but only after they are first transformed to sentential
counterparts. Later in the paper, their algebraization will be carried out directly
without the need for this artificial transformation.
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The next example, although “trivial” in some sense, has something unique in
nature. The logic presented here is not a string-based logic, i.e., based on variables,
connectives and well-formed formulas inductively formed by these, but rather a
diagram-based logic. The role of signature objects is played by graphs and the role
of formulas is played by the arrows of the category freely generated by a given
graph. The example is “trivial” because it takes into account only the equational
aspect of the logic of categories and disregards other very important aspects, like
limits and colimits. The point to be made, however, is that this simple logic is
algebraizable in the sense of categorical abstract algebraic logic although there is
no direct way of expressing its algebraizability using the sentential logic framework
of universal abstract algebraic logic.

A (directed) graph G = 〈V,E, s, t〉 consists of a set V of nodes or ver-
tices, a set E of edges, and two functions s, t : E → V , associating with each
edge e its source vertex s(e) and its target vertex t (e), respectively. One writes
e : s(e) → t (e) in this case. Sometimes the notation V (G),E(G) is used to
denote the sets of vertices, edges, respectively, of a graph G. Let G = 〈V,E, s, t〉
and G′ = 〈V ′, E′, s′, t ′〉 be graphs. A graph morphism h : G → G′ is a pair
h = 〈h1, h2〉, with h1 : V → V ′ and h2 : E → E′ satisfying s′(h2(e)) = h1(s(e))

and t ′(h2(e)) = h1(t (e)), for all e ∈ E. Usually, the subscript 1 or 2 is sup-
pressed, since it is clear from context whether h is applied to a vertex or to an
edge, respectively. Given two graph morphisms f = 〈f1, f2〉 : G1 → G2 and
g = 〈g1, g2〉 : G2 → G3, define their composite componentwise, i.e., gf =
〈g1f1, g2f2〉 : G1 → G3. With this composition, graphs with graph morphisms
between them form a category, denoted by Gph. A path p in a graph G is a
sequence p = (e0, e1, . . . , en−1) of edges in E, such that t (ei) = s(ei+1), for
all i = 0, . . . , n − 2. Such a path is said to be from s(e0) to t (en−1). Two paths
p = (e0, . . . , en−1) and q = (f0, . . . , fm−1) are said to be parallel if they are from
the same vertex to the same vertex, i.e., if s(e0) = s(f0) and t (en−1) = t (fm−1).

Given a graph G, one may construct the free category or path category Pth(G)

on G. Its objects are the objects of G and, for all v, u ∈ V , the collection of its
arrows from v to u is

Pth(G)(v, u) = {p : p is a path from v to u in G}.
Given two arrows p = (e0, . . . , en−1) : u → v and q = (f0, . . . , fm−1) : v → w

in Pth(G), the composite arrow qp = (e0, . . . , en−1, f0, . . . , fm−1) : u → w.
Identities are the empty paths. By Pth(G) will be denoted the underlying graph of
the category Pth(G).

Given G1,G2 ∈ |Gph|, f : G1 → Pth(G2) ∈ Mor(Gph), let f ∗ : Pth(G1)

→ Pth(G2) be the Gph-morphism, that sends identities to identities, acts exacly
like f on single-edge paths and extends f “by juxtaposition” on paths of more than
unitary length. We denote a Gph-morphism f : G1 → Pth(G2) by f : G1 ⇁ G2.
Given two such morphisms f : G1 ⇁ G2 and g : G2 ⇁ G3, their compo-
sition g ◦ f : G1 ⇁ G3 is defined to be the Gph-map g ◦ f = g∗f . With
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this composition, the collection of graphs with the harpoon morphisms between
them forms a category, denoted by CSig. Identities in CSig are the morphisms
jCT
G : G ⇁ G, with jCT

G1
(v) = v and jCT

G2
(e) = (e), for all v ∈ V, e ∈ E, where

G = 〈V,E, s, t〉 ∈ |Gph|. The category CSig will be the signature category of the
institution for the equational logic of categories.

Next, define the sentence functor CSEN : CSig → Set by letting CSEN(G)

to be the set of all pairs of edges in Pth(G) for every G ∈ |Gph|, i.e., the set
of all pairs of paths in G, and, given h : G1 ⇁ G2 ∈ Mor(CSig), CSEN(f ) :
CSEN(G1) → CSEN(G2) to be given by

CSEN(h)(〈p, q〉) = 〈h∗(p), h∗(q)〉,
for all edges p, q in Pth(G).

The model functor CMOD : CSig → CATop of the institution is described next.
Given a graph G, CMOD(G) is the category with objects all pairs 〈C, f 〉, where C
is a small category and f : G → C ∈ Mor(Gph), where C denotes the underlying
graph of C. Its morphisms h : 〈C, f 〉 → 〈D, g〉 are functors h : C → D, such that
hf = g as graph morphisms from G to D.

G
gf

C
h

D

Furthermore, given a morphism k : G1 ⇁ G2 ∈ Mor(CSig), CMOD(k) :
CMOD(G2) → CMOD(G1) maps an object 〈C, f 〉 ∈ |CMOD(G2)| to the ob-
ject 〈C, f †k〉,

G1
k

Pth(G2)
f †

C

where f † : Pth(G2) → C is the natural extension of f : G2 → C to paths
“by composition”, i.e., f †(e0, e1, . . . , en−1) = f (en−1)f (en−2) . . . f (e0), for all
edges (e0, . . . , en−1) in Pth(G2), and an arrow h : 〈C, f 〉 → 〈D, g〉 to the arrow
CMOD(k)(h) : 〈C, f †k〉 → 〈D, g†k〉, with CMOD(k)(h) = h. Note that, for all
e ∈ E1, if k2(e) = (e0, . . . , en−1) ∈ Pth(G2), then

hf †k(e)=hf †(e0, . . . , en−1)

=h(f (en−1) . . . f (e0))

=h(f (en−1)) . . . h(f (e0))

= g(en−1) . . . g(e0)

= g†(e0, . . . , en−1)

= g†k(e),

and, therefore, h is a well-defined morphism in CMOD(G1).
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Finally, for the satisfaction relation, we have, for all G ∈ |CSig|,

〈C, g〉 |=G (e0, . . . , en−1) ≈ (f0, . . . , fm−1) iff

g†(e0, . . . , en−1) = g†(f0, . . . , fm−1),

i.e., if and only if g(en−1) . . . g(e0) = g(fm−1) . . . g(f0), for all 〈C, g〉 ∈
|CMOD(G)|, 〈(e0, . . ., en−1), (f0, . . . , fm−1)〉 ∈ CSEN(G). It is relatively easy, in
this case as well, to verify that CL = 〈CSig,CSEN,CMOD, |=〉 is an institution.

3. Adjunctions and Algebraic Theories

Let C be a category. An algebraic theory or monad or triple T = 〈T , η, µ〉 in C
consists of a functor T : C → C and natural transformations η : IC → T and
µ : T T → T , such that, for every C ∈ |C|, the following diagrams commute:

T (C)
ηT (C)

iT (C)

T (T (C))

µC

T (C)
T (ηC)

iT (C)

T (C)

T (T (T (C)))
µT (C)

T (µC)

T (T (C))

µC

T (T (C))
µC

T (C)

The prototypical example of an algebraic theory is the algebraic theory TL =
〈TL, ηL, µL〉 in Set associated with the variety of all L-algebras for some lan-
guage type L. TL : Set → Set sends a set X to the set FmL(X), ηLX

: X →
FmL(X) is the insertion-of-variables map and µLX

: FmL(FmL(X)) → FmL(X)

is the map i∗FmL(X) extending the identity map on FmL(X) (see [18] and [19] for
more details).

Given an algebraic theory T = 〈T , η, µ〉 in a category C, a T-algebra is a pair
〈C, ξ 〉, where C ∈ |C| and ξ : T (C) → C ∈ Mor(C), such that the following
diagrams commute

C
ηC

iC

T (C)

ξ

C

T (T (C))
µC

T (ξ)

T (C)

ξ

T (C)
ξ

C

C is said to be the underlying object of 〈C, ξ 〉 and ξ is its structure map.
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Given two T-algebras 〈C, ξ 〉, 〈D, ζ 〉, a T-algebra homomorphism h : 〈C, ξ 〉 →
〈D, ζ 〉 from 〈C, ξ 〉 to 〈D, ζ 〉 is a C-morphism h : C → D, such that the following
diagram commutes

T (C)
T (h)

ξ

T (D)

ζ

C
h

D

TL-algebras are in bijective correspondence with L-algebras and TL-algebra
homomorphisms are the usual L-algebra homomorphisms.

In general, T-algebras with T-algebra homomorphisms between them form a
category CT, called the Eilenberg–Moore category of the algebraic theory T in C.
For every object C ∈ |C|, 〈T (C), µC〉 is easily seen to be a T-algebra. The full sub-
category of CT with objects all T-algebras of this form, i.e., 〈T (C), µC〉, C ∈ |C|,
is called the Kleisli category of T in C and denoted by CT. The Kleisli category has
a better known description, which gives a category isomorphic to the one described
above: its objects are the objects of C, its morphisms f : C ⇀ D are C-morphisms
f : C → T (D) and composition of f : C ⇀ D and g : D ⇀ E is given by
g ◦ f = µET (g)f

C
f

T (D)
T (g)

T (T (E))
µE

T (E)

Identities are the maps ηC : C ⇀ C,C ∈ |C|.
Eilenberg–Moore categories of algebraic theories in the category of sets are

the same as varieties of single-sorted universal algebras, although with possibly
infinitary operations (see, e.g., [19]). However, algebraic theories are much more
general than universal algebra. They can be defined in arbitrary categories. They
capture, for instance, multi-sorted universal algebras. Another example is provided
by the category of topological groups, which is the Eilenberg–Moore category of
an algebraic theory in the category of topological spaces.

Algebraic theories in a category C are very closely connected to adjunctions
from C. A brief overview of some of the connecting features is given here. Again
the reader is advised to consult [18, 19] or [2] for more detailed accounts.

Let C and D be two categories. An adjunction from C to D is a quadruple
〈F,U, η, ε〉 : C → D, where F : C → D and U : D → C are functors, η : IC →
UF and ε : FU → ID are natural transformations and the following triangles
commute, for all C ∈ |C|,D ∈ |D|,

F(C)
F(ηC)

iF(C)

F (U(F(C)))

εF(C)

F (C)

U(D)
ηU(D)

iU(D)

U(F (U(D)))

U(εD)

U(D)
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F is said to be left adjoint to U , U right adjoint to F , η is called the unit of the
adjunction and ε the counit of the adjunction.

Another equivalent formulation is that there exists an isomorphism φC,D :
D(F (C),D) ∼= C(C,U(D)), for all C ∈ |C|,D ∈ |D|, that is natural in both
C and D, i.e., for all c ∈ C(C1, C2), d ∈ D(D1,D2), the following rectangle
commutes

D(F (C2),D1)
φC2,D1

D(F (c),d)

C(C2, U(D1))

C(c,U(d))

D(F (C1),D2)
φC1,D2

C(C1, U(D2))

where, for all f ∈ D(F (C2),D1), D(F (c), d)(f ) = dfF(c) and, for all g ∈
C(C2, U(D1)), C(c, U(d))(g) = U(d)gc. Passage to φC,D, given the adjunction,
is accomplished by setting, for all f : F(C) → D ∈ Mor(D),

φC,D(f ) = U(f )ηC : C → U(D).

This φ is natural and its converse is given, for all g : C → U(D) ∈ Mor(C), by

ψC,D(g) = εDF(g) : F(C) → D.

Conversely, if φC,D : D(F (C),D) → C(C,U(D)) is given, then one obtains
ηC : C → U(F(C)) by taking ηC = φC,F (C)(iF (C)), for all C ∈ |C|, and εD :
F(U(D))→ D by taking εD = φ−1

U(D),D(iU(D)), for all D ∈ |D|.
Yet another equivalent formulation states that the functor U : D → C has a left

adjoint if and only if, for all C ∈ |C|, there exists a free D-structure F(C) on C

along U . This means that there exists a map ηC : C → U(F(C)) in C with the
universal mapping property, i.e., for all other map f : C → U(D) in C, there is a
unique D-map f ′ : F(C) → D, such that the following triangle commutes

C
ηC

f

U(F(C))

U(f ′)

U(D)

Given an algebraic theory T = 〈T , η, µ〉 in C, there are two very important adjunc-
tions that are associated with it. One is the Eilenberg–Moore adjunction
〈FT, UT, ηT, εT〉 : C → CT from C to the Eilenberg–Moore category of T in
C. FT sends C ∈ |C| to the T-algebra 〈T (C), µC〉, UT sends a T-algebra to its
underlying object, ηT = η and εT

〈C,ξ 〉 : 〈T (C), µC〉 → 〈C, ξ 〉 is given by εT
〈C,ξ 〉 = ξ .

In the case of the algebraic theory TL = 〈TL, ηL, µL〉 associated with the
variety of all L-algebras this adjunction is from Set to the category SetTL , the
functor FL sending a set X to the algebra FmL(X), the functor UL sending an
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algebra A to its universe, ηL
X : X → FmL(X) being the insertion-of-variables map

and εL
A : FmL(A) → A being the map i

†
A that extends the identity on A to an

algebra homomorphism, using the freeness of FmL(A) over A.
The second adjunction associated with an algebraic theory T = 〈T , η, µ〉 in a

category C is the Kleisli adjunction 〈FT, UT, ηT, εT〉 : C → CT from C to the
Kleisli category of T in C. FT sends C ∈ |C| to itself and a map f : C1 → C2 to
the map ηC2f : C1 ⇀ C2. UT sends C to T (C) and a map f : C1 ⇀ C2 to the map
µC2T (f ) : T (C1) → T (C2). ηT = η and, finally, εTC

= iT (C) : T (C) ⇀ C.
In the special case of TL, i.e., of the adjunction 〈FL, UL, ηL, εL〉 : Set →

SetTL , FL maps a set X to itself and a morphism f : X → Y to FL(f ) : X →
FmL(Y ), which is f composed with the insertion-of-variables, UL maps X to
FmL(X) and an assignment f : X → FmL(Y ) to the substitution f ∗ : FmL(X) →
FmL(Y ) extending f , ηLX

: X → FmL(X) is the insertion-of-variables and
εLX

: FmL(X) → FmL(X) is the identity on FmL(X).
Conversely, every adjunction 〈F,U, η, ε〉 : C → D gives rise to an algebraic

theory T = 〈T , η, µ〉 in C by setting T = UF and µ = UεF (see, e.g., [18,
p. 134]). Since adjunctions arise very naturally in many contexts, this way of con-
structing an algebraic theory is very popular. It will be exploited in the sequel to
construct the three algebraic theories on which the algebraization of equational,
first-order and categorical equational logics will be based.

3.1. THE ADJUNCTION OF EQUATIONAL LOGIC

The adjunction 〈FEQ, UEQ, ηEQ, εEQ〉 : 4Set → EQSig is defined as follows: FEQ :
4Set → EQSig sends an ω-set X to itself and an ω-set morphism f : X → Y

to FEQ(f ) : X ⇁ Y , with FEQ(f ) = j
EQ
Y f . UEQ : EQSig → 4Set sends X ∈

|EQSig| to TmX(V ) and a morphism f : X ⇁ Y to f ∗ : TmX(V ) → TmY (V ).
ηEQX

= j
EQ
X , for all X ∈ |4Set|, and εEQX

= iTmX(V ), for all X ∈ |EQSig|.
This adjunction yields the algebraic theory TEQ = 〈TEQ, ηEQ, µEQ〉 in 4Set,

with TEQ = UEQFEQ and µEQ = UEQεEQFEQ
. Thus, TEQ sends an ω-set X to

TmX(V ) and an ω-set morphism f : X → Y to the morphism (j
EQ
Y f )∗ : TmX(V )

→ TmY (V ) extending j
EQ
Y f : X → TmY (V ), ηEQX

: X → TmX(V ) is the
insertion-of-variables and µEQX

: TmTmX(V )(V ) → TmX(V ) is the map extending
the identity map on TmX(V ). In this special case a TEQ-algebra is a pair 〈X, ξ 〉,
where X is an ω-set and ξ : TmX(V ) → X is an ω-set morphism, such that the
following diagrams commute

X
ηEQX

iX

TmX(V )

ξ

X

TmTmX(V )(V )
µEQX

TEQ(ξ)

TmX(V )

ξ

TmX(V )
ξ

X
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The Kleisli category 4SetTEQ is exactly the category EQSig (its arrows were de-
noted by ⇁ anticipating this) and the adjunction 〈FEQ, UEQ, ηEQ, εEQ〉 constructed
above is the Kleisli adjunction corresponding to this algebraic theory. There is
a special subclass of Eilenberg–Moore algebras of this algebraic theory that will
be singled out because it will play a major role later in the algebraization of the
equational institution. These are constructed as follows: Let A be a set. Denote by
Cl(A) the ω-set with Clk(A) the set of all functions f : Ak → A, for all k ≥ 1. Now
define ξA : TmCl(A)(V ) → Cl(A) by induction on the structure of a Cl(A)-term as
follows:

• ξAk
(vki) = pki , for all i < k, where pki : Ak → A denotes the i-th projection

function,
• ξAk

(f (t0, . . . , tn−1)) = f (ξAk
(t0), . . . , ξAk

(tn−1)), for all f ∈ Cln(A),

t0, . . . , tn−1 ∈ TmCl(A)(V )k.

〈Cl(A), ξA〉 is a TEQ-algebra, for every set A, and the full subcategory of 4SetTEQ

with objects all algberas of this form will be denoted by FCln, a shorthand for full
clone algebras.

3.2. THE ADJUNCTION OF FIRST-ORDER LOGIC

In this section L will again denote the language type consisting of the connectives
{¬,∧} ∪ {∃k : k ∈ ω} and FmL(V ) will denote the h-set of L-formulas with
variables in V . The adjunction 〈FFO, UFO, ηFO, εFO〉 : HSet → FOSig is defined
as follows: FFO : HSet → FOSig sends an h-set X to itself and an h-set morphism
f : X → Y to FFO(f ) : X ⇁ Y , with FFO(f ) = jFO

Y f . UFO : FOSig → HSet
sends X ∈ |FOSig| to FmL(X) and a morphism f : X ⇁ Y to f ∗ : FmL(X) →
FmL(Y ). ηFOX

= jFO
X , for all X ∈ |HSet|, and εFOX

= iFmL(X), for all X ∈ |FOSig|.
This adjunction yields the algebraic theory TFO = 〈TFO, ηFO, µFO〉 in HSet,

with TFO = UFOFFO and µFO = UFOεFOFFO
. Thus, TFO sends an h-set X to FmL(X)

and an h-set morphism f : X → Y to the morphism (jFO
Y f )∗ : FmL(X) →

FmL(Y ) extending jFO
Y f : X → FmL(Y ), ηFOX

: X → FmL(X) is the insertion-
of-variables and µFOX

: FmL(FmL(X)) → FmL(X) is the map extending the
identity map on FmL(X). In this special case a TFO-algebra is a pair 〈X, ξ 〉, where
X is an h-set and ξ : FmL(X) → X is an h-set morphism, such that the following
diagrams commute

X
ηFOX

iX

FmL(X)

ξ

X

FmL(FmL(X))
µFOX

TFO(ξ)

FmL(X)

ξ

FmL(X)
ξ

X
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The Kleisli category HSetTFO is exactly the category FOSig (its arrows were also
denoted by ⇁ anticipating this) and the adjunction 〈FFO, UFO, ηFO, εFO〉 construc-
ted above is the Kleisli adjunction corresponding to this algebraic theory. There
is, in this case as well, a special subclass of Eilenberg–Moore algebras of this
algebraic theory that will be singled out because of its key role in the algebraization
of the institution of first-order logic. These are constructed as follows: Let A be a
set. Denote by Rel(A) the h-set with RelN(A) the set of all relations R ⊆ Aω that
depend only on the variables indexed by the elements of N , for all N ⊆f ω. Now
define ξA : FmL(Rel(A)) → Rel(A) by induction on the structure of a Rel(A)-
formula as follows:

• ξAN
(x) = x, for all x ∈ RelN(A),

• ξAN
(¬φ) = Aω − ξAN

(φ), for all φ ∈ FmL(Rel(A))N ,
• ξAN

(φ1 ∧ φ2) = ξAN
(φ1) ∩ ξAN

(φ2), for all φ1, φ2 ∈ FmL(Rel(A))N ,
• ξAN

(∃kφ) = {�b ∈ Aω : ai = bi∀i �= k and �a ∈ ξAN∪{k}(φ)}.
〈Rel(A), ξA〉 is a TFO-algebra, for every set A, and the full subcategory of HSetTFO

with objects all algebras of this form will be denoted by FRln, a shorthand for full
relation algebras.

3.3. THE ADJUNCTION OF EQUATIONAL CATEGORICAL LOGIC

The adjunction 〈FCT, UCT, ηCT, εCT〉 : Gph → CSig is defined as follows: FCT :
Gph → CSig sends a graph G to itself and a graph morphism f : G1 → G2 to
FCT(f ) : G1 ⇁ G2, with FCT(f ) = jCT

G2
f . UCT : CSig → Gph sends G ∈ |CSig|

to Pth(G) and a morphism f : G1 ⇁ G2 to f ∗ : Pth(G1) → Pth(G2). ηCTG
= jCT

G ,
for all G ∈ |Gph|, and εCTG

= iPth(G), for all G ∈ |CSig|. This is a well-known
adjunction, better-known by the freeness of the path category Pth(G) over G along
the forgetful functor from Cat to Gph associating with each category its underlying
graph.

This adjunction yields the algebraic theory TCT = 〈TCT, ηCT, µCT〉 in Gph, with
TCT = UCTFCT and µCT = UCTεCTFCT

. Thus, TCT sends a graph G to Pth(G) and
a graph morphism f : G1 → G2 to the morphism (jCT

G2
f )∗ : Pth(G1) → Pth(G2)

extending jCT
G2

f : G1 → Pth(G2), ηCTG
: G → Pth(G) is the insertion-of-arrows

and µCTG
: Pth(Pth(G)) → Pth(G) is the map extending the identity map on

Pth(G). In this special case a TCT-algebra is a pair 〈G, ξ 〉, where G is a graph and
ξ : Pth(G) → G is a graph morphism, such that the following diagrams commute

G
ηCTG

iG

Pth(G)

ξ

G

Pth(Pth(G))
µCTG

TCT(ξ)

Pth(G)

ξ

Pth(G)
ξ

G



CATEGORICAL ABSTRACT ALGEBRAIC LOGIC 553

The Kleisli category GphTCT
is exactly the category CSig (its arrows were denoted

by ⇁ following the same convention) and the adjunction 〈FCT, UCT, ηCT, εCT〉
constructed above is the Kleisli adjunction corresponding to this algebraic the-
ory. A special subclass of Eilenberg–Moore algebras of this algebraic theory will
be singled out in this case too because of its key role in the algebraization of
the institution of equational categorical logic. These are constructed as follows:
Let C be a category. Denote by G(C) the underlying graph of C. Now define
ξC : Pth(G(C)) → G(C) as follows:

ξC((f0, f1, . . . , fn−1)) = fn−1fn−2 . . . f0,

for all (f0, f1, . . . , fn−1) in Pth(G(C)). 〈G(C), ξC〉 is a TCT-algebra, for every
category C, and the full subcategory of GphTCT with objects all algberas of this
form will be denoted by ACat, a shorthand for algebras of categories.

Note that ACat is equivalent to Cat. This is the case since the forgetful func-
tor from Cat to Gph is monadic, or, equivalently, since every Eilenberg–Moore
algebra of that monad is isomorphic to an algebra of categories.

4. Algebraic Institutions

Let C be a category, T = 〈T , η, µ〉 an algebraic theory in monoid form in C, L a
full subcategory of CT, ' : C → Set a functor and Q a subcategory of CT. Define
the 〈L, ',Q〉-algebraic institution I〈L,',Q〉 = 〈L,EQ,ALG, |=〉 as follows

(i) EQ : L → Set is given by EQ = ((' ◦ UT) �L)
2, i.e.,

EQ(L) = '(T (L))2, for every L ∈ |L|,
and, given f : L ⇀ K ∈ Mor(L),

EQ(f )(〈s, t〉) = ('(µKT (f ))(s),'(µKT (f ))(t)),

for all 〈s, t〉 ∈ '(T (L))2,

'(T (L))
'(T (f ))

'(T (T (K)))
'(µK)

'(T (K)).

(ii) ALG : L → CATop is the functor that sends an object L ∈ |L| to the category
ALG(L) with objects triples of the form 〈〈X, ξ 〉, f 〉, 〈X, ξ 〉 ∈ |Q|, f : L ⇀

X ∈ Mor(CT), and morphisms h : 〈〈X, ξ 〉, f 〉 → 〈〈Y, ζ 〉, g〉 Q-morphisms
h : 〈X, ξ 〉 → 〈Y, ζ 〉, such that g = T (h)f .

L
f g

T (X)
T (h)

T (Y )
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Moreover, given k : L ⇀ K ∈ Mor(L), ALG(k) : ALG(K) → ALG(L) is
the functor that sends 〈〈X, ξ 〉, f 〉 ∈ |ALG(K)| to 〈〈X, ξ 〉, f ◦k〉 ∈ |ALG(L)|
and h : 〈〈X, ξ 〉, f 〉 → 〈〈Y, ζ 〉, g〉 ∈ Mor(ALG(K)) to

ALG(k)(h) = h : 〈〈X, ξ 〉, f ◦ k〉 → 〈〈Y, ζ 〉, g ◦ k〉 ∈ Mor(ALG(L)).

(iii) |=L ⊆ |ALG(L)| × EQ(L) is defined by

〈〈X, ξ 〉, f 〉 |=L 〈s, t〉 iff '(ξµXT (f ))(s) = '(ξµXT (f ))(t),

T (L)
T (f )

T (T (X))
µX

T (X)
ξ

X

for all 〈〈X, ξ 〉, f 〉 ∈ |ALG(L)|, 〈s, t〉 ∈ EQ(L).

THEOREM 1. I〈L,',Q〉 is an institution.
Proof. EQ : L → Set is well-defined. Let f : L ⇀ K,g : K ⇀ M ∈ Mor(L).

Then

EQ(g ◦ f ) = '(µMT (g ◦ f ))2 (by the definition of EQ)

= '(µMT (µMT (g)f ))2 (since g ◦ f = µMT (g)f )

= '(µMT (µM)T (T (g))T (f ))2 (since T is a functor)

= '(µMµT (M)T (T (g))T (f ))2 (by commutativity of

T (T (T (M)))
T (µM)

µT (M)

T (T (M))

µM

T (T (M))
µM

T (M)

)

= '(µMT (g)µKT (f ))2 (by commutativity of

T (T (K))
T (T (g))

µK

T (T (T (M)))

µT (M)

T (K)
T (g)

T (T (M))

)

= '(µMT (g))2'(µKT (f ))2 (since ' is a functor)

= EQ(g)EQ(f ) (by the definition of EQ).

ALG : L → CATop is well defined at the morphism level. Indeed, if h : 〈〈X, ξ 〉, f 〉
→ 〈〈Y, ζ 〉, g〉 ∈ Mor(ALG(K)), then

T (h)(f ◦ k) = T (h)(µXT (f )k) (since f ◦ k = µXT (f )k)

= µYT (T (h))T (f )k (by commutativity of
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T (T (X))
T (T (h))

µX

T (T (Y ))

µY

T (X)
T (h)

T (Y )

)

= µYT (T (h)f )k (since T is a functor)

= µYT (g)k (since h ∈ Mor(ALG(K)))

= g ◦ k.

Thus, h : 〈〈X, ξ 〉, f ◦k〉 → 〈〈Y, ζ 〉, g◦k〉 ∈ Mor(ALG(L)). Finally, the satisfaction
condition holds, since, if k : L ⇀ K ∈ Mor(L), 〈s, t〉 ∈ EQ(L), 〈〈X, ξ 〉, f 〉 ∈
|ALG(K)|,

ALG(k)(〈〈X, ξ 〉, f 〉) |=L 〈s, t〉
iff 〈〈X, ξ 〉, f ◦ k〉 |=L 〈s, t〉, by definition of ALG(k),
iff '(ξµXT (f ◦ k))(s) = '(ξµXT (f ◦ k))(t), by definition of |=L,
iff '(ξµXT (µXT (f )k))(s) = '(ξµXT (µXT (f )k))(t),

since f ◦ k = µXT (f )k,
iff '(ξµXT (µX)T (T (f ))T (k))(s) = '(ξµXT (µX)T (T (f ))T (k))(t),

since T is a functor,
iff '(ξµXµT (X)T (T (f ))T (k))(s) = '(ξµXµT (X)T (T (f ))T (k))(t),

by commutativity of

T (T (T (X)))
T (µX)

µT (X)

T (T (X))

µX

T (T (X))
µX

T (X)

iff '(ξµXT (f )µKT (k))(s) = '(ξµXT (f )µKT (k))(t),

by commutativity of

T (T (K))
T (T (f ))

µK

T (T (T (X)))

µT (X)

T (K)
T (f )

T (T (X))

iff '(ξµXT (f ))('(µKT (k))(s)) = '(ξµXT (f ))('(µKT (k))(t)),

since ' is a functor,
iff 〈〈X, ξ 〉, f 〉 |=K '(µKT (k))2(〈s, t〉), by the definition of |=K ,
iff 〈〈X, ξ 〉, f 〉 |=K EQ(k)(〈s, t〉), by the definition of EQ(k),

as required. ✷
Of particular interest are the following special cases:
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(a) The category C has a terminal object 1 and the functor ' : C → Set is the
covariant Hom-functor C(1,−). In this case

EQ(L) = C(1, T (L))2, for all L ∈ |L|,
and, given f : L ⇀ K ∈ Mor(L),

EQ(f )(〈s, t〉) = C(1, µKT (f ))2(〈s, t〉) = 〈µKT (f )s, µKT (f )t〉.
Moreover, for L ∈ |L|, 〈〈X, ξ 〉, f 〉 ∈ |ALG(L)|, 〈s, t〉 ∈ EQ(L), we have

〈〈X, ξ 〉, f 〉 |=L 〈s, t〉 iff ξµXT (f )s = ξµXT (f )t.

Algebraic institutions of this form are exactly the ones introduced in [21]. It
soon became apparent that they are far from sufficient for the algebraization
of such well-known institutions, as the institution of equational logic over
function symbols of fixed finite arities of Section 2 (see also [23]) and the
institution of first-order logic without terms with relation symbols of fixed
finite arities of Section 2 (see also [24]).

(b) (A subcase of (a)) Let C = Set, ' : Set → Set the functor Set(1,−), which
is isomorphic to the identity functor. Then

EQ(L) = T (L)2, for every L ∈ |Set|,
and, given f : L ⇀ K ∈ Mor(L),

EQ(f )(〈s, t〉) = 〈µKT (f )(s), µKT (f )(t)〉.
Further, if 〈〈X, ξ 〉, f 〉 ∈ |ALG(L)|, 〈s, t〉 ∈ EQ(L),

〈〈X, ξ 〉, f 〉 |=L 〈s, t〉 iff ξµXT (f )(s) = ξµXT (f )(t).

By the 〈L, ',Q〉-algebraic π -institution, we will understand the π -institution (also
denoted by I〈L,',Q〉) associated with the institution I〈L,',Q〉 in the sense of Section
2 (see also [22]). (There, it was denoted by π(I〈L,',Q〉). The π is omitted to sim-
plify the notation, since it is usually clear from context which structure is under
discussion.)

4.1. ALGEBRAIC 2-DEDUCTIVE SYSTEMS

Let L = 〈�,ρ〉 be a propositional language and V a countable set of variables.
Recall that FmL(V ) denotes the set of formulas constructed by recursion using
variables in V and connectives in L in the usual way. Recall also that an assignment
of formulas to variables is a mapping f : V → FmL(V ), which is also denoted
by f : V ⇁ V , and that such an assignment can be extended uniquely to a
substitution, i.e., an endomorphism of the formula algebra FmL(V ), denoted by
f ∗ : FmL(V ) → FmL(V ).
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Let K be a class of L-algebras (in the usual universal algebraic sense). By
SK = 〈L, |=K〉 we denote the 2-deductive system associated with K in the sense
of [5], i.e., SK is the system whose formulas are the pairs 〈φ,ψ〉, φ,ψ ∈ FmL(V ),
and, for all E ∪ {〈φ,ψ〉} ⊆ Fm2

L(V ),E |=K 〈φ,ψ〉, if and only if, for all A ∈
K,h : FmL(V ) → A, if h(e1) = h(e2), for all 〈e1, e2〉 ∈ E, then h(φ) = h(ψ).

Now, let VL be the variety of all L-algebras. With this variety there is associ-
ated the algebraic theory TL = 〈TL, ηL, µL〉 in monoid form in the category Set
(see the discussion in the previous section and also [19]). Let FL denote the full
subcategory of SetTL with the single object V . (Its morphisms are the assignments
f : V ⇁ V and composition is the Kleisli composition.) Let QK be the full
subcategory of SetTL with objects the TL-algebras corresponding to the L-algebras
in K. Then, the 〈FL, ISet,QK〉-algebraic institution I〈FL,ISet,QK 〉 will be called the
algebraic institution associated with SK .

4.2. EQUATIONAL ALGEBRA

Let TEQ = 〈TEQ, ηEQ, µEQ〉 be the algebraic theory in 4Set that was described in
the previous section, 4SetTEQ the Kleisli category of TEQ in 4Set and FCln the
full subcategory of 4SetTEQ with collection of objects 〈Cl(A), ξA〉, as described
before.

Define the functor 'EQ : 4Set → Set as follows:

'EQ(X) =
⋃
i≥1

Xi, for all X ∈ |4Set|,

and, given f : X → Y ∈ Mor(4Set), 'EQ(f ) :⋃i≥1 Xi →⋃
i≥1 Yi is defined by

'EQ(f )(x) = fn(x), for all x ∈ Xn.

Let I〈4SetTEQ ,'EQ,FCln〉 be the 〈4SetTEQ , 'EQ,FCln〉-algebraic institution and de-
note by EA the 〈4SetTEQ , 'EQ,FCln〉-algebraic π -institution, i.e., the π -institu-
tion associated with I〈4SetTEQ ,'EQ,FCln〉.

Briefly EA = 〈4SetTEQ ,EQEA, {CEAX
}X∈|4SetTEQ |〉 has the following descrip-

tion:

1. its signature category is the Kleisli category 4SetTEQ ,
2. its sentence functor sends an ω-set X to the set of all equations s ≈ t , with

s, t ∈ ⋃
i≥1 TmX(V )i and an ω-set morphism f : X ⇁ Y to the morphism

EQEA(f ) : (⋃i≥1 TmX(V )i)
2 → (

⋃
i≥1 TmY (V )i)

2, that maps an equation

s ≈ t in

(⋃
i≥1

TmX(V )i

)2

, with s ∈ TmX(V )m and t ∈ TmX(V )n

to the equation f ∗
m(s) ≈ f ∗

n (t) in (
⋃

i≥1 TmY (V )i)
2, and, finally,
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3. its sentence closure operator

CEAX
: P

((⋃
i≥1

TmX(V )i

)2)
→ P

((⋃
i≥1

TmX(V )i

)2)

is given by

s ≈ t ∈ CEAX
(E) iff

for all 〈Cl(A), ξA〉 ∈ |FCln|, f : X ⇁ Cl(A),

(ξAµEQCl(A)
TEQ(f ))∗(e1) = (ξAµEQCl(A)

TEQ(f ))∗(e2), for all e1 ≈ e2 ∈ E,

implies

(ξAµEQCl(A)
TEQ(f ))∗(s) = (ξAµEQCl(A)

TEQ(f ))∗(t).

4.3. FIRST-ORDER ALGEBRA

Let TFO = 〈TFO, ηFO, µFO〉 be the algebraic theory in HSet, described in the
preceding section, HSetTFO the Kleisli category of TFO in HSet and FRln the
full subcategory of HSetTFO with collection of objects all full relation algebras
〈Rel(A), ξA〉, also defined in Section 3.

Define the functor 'FO : HSet → Set as follows:

'FO(X) = X∅, for all X ∈ |HSet|,
and, given f : X → Y ∈ Mor(HSet), 'FO : X∅ → Y∅ is defined by

'FO(f )(x) = f∅(x), for all x ∈ X∅.

Let I〈HSetTFO ,'FO,FRln〉 be the 〈HSetTFO, 'FO,FRln〉-algebraic institution and de-
note by F OA the 〈HSetTFO, 'FO,FRln〉-algebraic π -institution, i.e., the π -ins-
titution associated with I〈HSetTFO ,'FO,FRln〉.

Briefly, F OA = 〈HSetTFO,EQFA, {CFAX
}X∈|HSetTFO |〉 has the following de-

scription:

1. its signature category is the Kleisli category HSetTFO,
2. its sentence functor sends an h-set X to the set of all equations s ≈ t , with s, t ∈

FmL(X)∅, where, again, L consists of the connectives {¬,∧} ∪ {∃k : k ∈ ω},
and an h-set morphism f : X ⇁ Y to the morphism EQFA(f ) : FmL(X)2

∅ →
FmL(Y )2

∅, that maps an equation s ≈ t in FmL(X)2
∅, to the equation f ∗

∅ (s) ≈
f ∗
∅ (t) in FmL(Y )2

∅ and, finally,



CATEGORICAL ABSTRACT ALGEBRAIC LOGIC 559

3. its sentence closure operator

CFAX
: P (FmL(X)2

∅) → P (FmL(X)2
∅)

is given by

s ≈ t ∈ CFAX
(E) iff

for all 〈Rel(A), ξA〉 ∈ |FRln|, f : X ⇁ Rel(A),

(ξAµFORel(A)
TFO(f ))∗(e1) = (ξAµFORel(A)

TFO(f ))∗(e2), for all e1 ≈ e2 ∈ E,

implies

(ξAµFORel(A)
TFO(f ))∗(s) = (ξAµFORel(A)

TFO(f ))∗(t).

4.4. ALGEBRA OF CATEGORIES

Now, let TCT = 〈TCT, ηCT, µCT〉 be the algebraic theory in Gph, described in
Section 3, GphTCT

its Kleisli category in Gph and ACat the full subcategory of
its Eilenberg–Moore category GphTCT with collection of objects all algebras of
categories 〈G(C), ξC〉.

Define the functor 'CT : Gph → Set as follows:

'CT(G) = E(Pth(G)), for all G ∈ |Gph|,
where, by E(G) is denoted the collection of edges of G, and, given f : G1 →
G2 ∈ Mor(Gph), 'CT(f ) : E(Pth(G1)) → E(Pth(G2)) is defined by

'CT(f )((e0, e1, . . . , en−1)) = (f (e0), f (e1), . . . , f (en−1)),

for all (e0, . . . , en−1) ∈ E(Pth(G1)).
Let I〈GphTCT

,'CT,ACat〉 be the 〈GphTCT
, 'CT,ACat〉-algebraic institution and de-

note by CA the 〈GphTCT
, 'CT,ACat〉-algebraic π -institution, i.e., the π -institu-

tion associated with I〈GphTCT
,'CT,ACat〉. A brief description of CA = 〈GphTCT

,

EQCA, {CCAG
}G∈|GphTCT

|〉 follows:

1. its signature category is the Kleisli category GphTCT
,

2. its sentence functor sends a graph G to the set of all equations

(e0, . . . , en−1) ≈ (f0, . . . , fm−1) ∈ E(Pth(G))2,

and a graph morphism h : G1 ⇁ G2 to the morphism EQCA(h) : E(Pth(G1)) →
E(Pth(G2)) that maps an equation (e0, . . . , en−1) ≈ (f0, . . . , fm−1) in
E(Pth(G1))

2 to the equation (h(e0), . . . , h(en−1)) ≈ (h(f0), . . . , h(fm−1)) in
E(Pth(G2))

2 and, finally,
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3. its sentence closure operator

CCAG
: P (E(Pth(G))2) → P (E(Pth(G))2)

is given by

(e0, . . . , en−1) ≈ (f0, . . . , fm−1) ∈ CCAG
(E) iff

for all 〈G(C), ξC〉 ∈ |ACat|, f : G ⇁ G(C),

(ξCµCTG(C)
TCT(f ))∗(p) = (ξCµCTG(C)

TCT(f ))∗(q), for all p ≈ q ∈ E,

implies

(ξCµCTG(C)
TCT(f ))∗(e0, . . . , en−1) = (ξCµCTG(C)

TCT(f ))∗(f0, . . . , fm−1).

5. Algebraizable Institutions

Recall that, given a positive integer k, a k-deductive system over a language type
L is defined in [5] to be a pair S = 〈L,�S〉, where �S⊆ P (Fmk

L(V ))× Fmk
L(V )

is a structural and finitary consequence relation on the set of k-formulas Fmk
L(V ).

In [6], given a k-deductive system S = 〈L,�S〉 and an l-deductive system T =
〈L,�T 〉 over the same language type L, a k–l-translation τ : S → T is defined
to be a set τ = {τ i(v0, . . . , vk−1) : i < n} of n l-formulas τ i(v0, . . . , vk−1) =
〈τ i

j (v0, . . . , vk−1) : j < l〉, in k variables v0, . . . , vk−1. A k–l-translation is said to
be a k–l-interpretation if, for all � ∪ {φ} ⊆ Fmk

L(V ),

� �S φ if and only if τ(�) �T τ(φ). (1)

The two systems S and T are called equivalent if there exists a k–l-interpretation
τ : S → T and an l–k-interpretation σ : T → S, such that, for all φ ∈ Fmk

L(V )

and ψ ∈ Fml
L(V ),

σ (τ(φ)) ��S φ and τ(σ (ψ)) ��T ψ. (2)

In [22] these notions were extended to cover the case of institutional logics.
Let I1 = 〈Sign1,SEN1, {C$}$∈|Sign1|〉,I2 = 〈Sign2,SEN2, {C$}$∈|Sign2|〉 be two
π -institutions. A translation of I1 in I2 is a pair 〈F, α〉 : I1 → I2 consisting of a
functor F : Sign1 → Sign2 and a natural transformation α : SEN1 → P SEN2F .

A translation is called an interpretation if, in addition, for all $1 ∈ |Sign1|,�∪
{φ} ⊆ SEN1($1),

φ ∈ C$1(�) if and only if α$1(φ) ⊆ CF($1)(α$1(�)).

This condition corresponds to condition (1) in the case of a k–l-translation for
deductive systems. I1 and I2 are called deductively equivalent if there exist inter-
pretations 〈F, α〉 : I1 → I2 and 〈G,β〉 : I2 → I1, such that

1. 〈F,G, η, ε〉 : Sign1 → Sign2 is an adjoint equivalence,
2. for all $1 ∈ |Sign1|, $2 ∈ |Sign2|, φ ∈ SEN1($1), ψ ∈ SEN2($2),
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CG(F($1))(SEN1(η$1)(φ)) = CG(F($1))(βF($1)(α$1(φ))),

C$2(SEN2(ε$2)(αG($2)(β$2(ψ)))) = C$2(ψ).

These conditions correspond to (2), but they are more complex reflecting their
ability to handle the more intricate context of multiple signature logics. Two insti-
tutions are deductively equivalent if their associated π -institutions are equivalent
in the sense described above.

Blok and Pigozzi call a k-deductive system algebraizable in [4] if it is equiv-
alent to an algebraic 2-deductive system, i.e., one whose consequence relation is
the equational consequence relation corresponding to some class of L-algebras.
Since equivalence of deductive systems corresponds to deductive equivalence of
π -institutions and algebraic 2-deductive systems correspond to algebraic π -ins-
titutions, the following definition naturally generalizes the definition for deductive
systems.

DEFINITION 2. A π -institution I = 〈Sign,SEN, {C$}$∈|Sign|〉 is algebraizable
if it is deductively equivalent to an 〈L, ',Q〉-algebraic π -institution. Similarly,
an institution I is algebraizable if it is deductively equivalent to an 〈L, ',Q〉-
algebraic institution.

The examples of institutions provided in Section 2 will now be revisited and it
will be sketched how one establishes that the corresponding algebraic institutions
obtained in Section 4 can be used as their algebraic counterparts.

5.1. ALGEBRAIZABLE DEDUCTIVE SYSTEMS

Let L be a language type and S = 〈L,�S〉 a k-deductive system over L. Recall
from Section 2 that to S there is associated the deductive π -institution IS =
〈SignS,SENS, {C$}$∈|SignS |〉. Suppose, next, that S is algebraizable in the sense
of [4]. Thus, there exists a class K of L-algebras, such that S is interpretable in
the equational deductive system SK = 〈L, |=K〉 via an interpretation τ : S → SK ,
i.e., for all k-formulas 〈φ0, . . . , φk−1〉 and all � ⊆ Fmk

L(V ),

� �S 〈φ0, . . . , φk−1〉 iff τ(�) |=K τ(〈φ0, . . . , φk−1〉),
SK is interpretable in S via an interpretation σ : SK → S, i.e., for all equations
φ ≈ ψ and all E ⊆ Fm2

L(V ),

E |=K φ ≈ ψ iff σ (E) �S σ (φ,ψ),

and, for all k-formulas 〈φ0, . . . , φk−1〉 and all equations φ ≈ ψ ,

〈φ0, . . . , φk−1〉 ��S σ (τ(〈φ0, . . . , φk−1〉)) and φ ≈ ψ =| |=K τ(σ (φ,ψ)). (3)

To the equational deductive system SK = 〈L, |=K〉, considered as a 2-deductive
system, there is also associated in exactly the same way a π -institution IK =
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ISK
= 〈SignK,SENK , {C$}$∈|SignK |〉 and it is obvious, by the two constructions,

that SignS = SignK .
Define the translation 〈F, α〉 : IS → IK by F = ISignS

and α : SENS →
P SENK by αV : Fmk

L(V ) → P (Fm2
L(V )), with

αV (φ0, . . . , φk−1) = τ(φ0, . . . , φk−1), for all 〈φ0, . . . , φk−1〉 ∈ Fmk
L(V ),

and the translation 〈G,β〉 : IK → IS by G = ISignK
and β : SENK → P SENS

by βV : Fm2
L(V ) → P (Fmk

L(V )), with

βV (φ,ψ) = σ (φ,ψ), for all φ ≈ ψ ∈ Fm2
L(V ).

Then 〈F, α〉 : IS → IK and 〈G,β〉 : IK → IS are interpretations because τ and
σ are interpretations in the sense of [6] and it is true that

σ (τ(φ0, . . . , φk−1))
cS = 〈φ0, . . . , φk−1〉cS and τ(σ (φ,ψ))cK = 〈φ,ψ〉cK ,

for all 〈φ0, . . . , φk−1〉 ∈ Fmk
L(V ) and φ ≈ ψ ∈ Fm2

L(V ), in IS and IK , respec-
tively, since these conditions are, respectively, equivalent to the conditions in (3).
Thus IS and IK are equivalent π -institutions in the present sense. It is not difficult
to see that IK is the algebraic institution I〈FL,ISet,QK 〉 associated with SK , whose
description was given in Section 4. Thus, if S is algebraizable in the sense of [4],
IS is equivalent to an algebraic π -institution and is, therefore, algebraizable in the
present sense.

The question remains open of whether S must be algebraizable in the sense of
[4] (or even [15]) if IS is algebraizable in the present sense. If this question is
answered to the negative, then the current notion of algebraizability, when applied
to the deductive π -institutions IS , has the potential of changing the meaning of
algebraizability for deductive systems, giving rise to a properly wider class of
algebraizable deductive systems than the ones described in [4] and [15].

5.2. EQUATIONAL LOGIC

Recall from Section 2 the definition of the institution EQ = 〈EQSig,EQSEN,

EQMOD, |=〉 that represents the system of equational logic with multiple sig-
natures. Recall also from Section 4 the definition of the 〈4SetTEQ , 'EQ, FCln〉-
algebraic π -institution EA = 〈4SetTEQ ,EQEA, {CEAX

}X∈|4SetTEQ |〉 corresponding
to the 〈4SetTEQ , 'EQ,FCln〉-algebraic institution I〈4SetTEQ ,'EQ,FCln〉. As was poin-
ted out in Section 3, EQSig = 4SetTEQ and therefore the following translations
〈F, α〉 : EQ → EA and 〈G,β〉 : EA → EQ may be legitimately defined:
F = IEQSig and α : EQSEN → P EQEA is given, for all X ∈ |EQSig|, by
αX : EQSEN(X) → P (EQEA(X)), with

αX(s ≈ t) = {s ≈ t}, for all s ≈ t ∈
( ∞⋃

k=1

TmX(V )k

)2

.
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Similarly, G = I4SetTEQ
and β : EQEA → P EQSEN is given, for all X ∈

|4SetTEQ |, by βX : EQEA(X) → P (EQSEN(X)), with

βX(s ≈ t) = {s ≈ t}, for all s ≈ t ∈
( ∞⋃

k=1

TmX(V )k

)2

.

It is trivial to check that α and β are natural transformations. It is also trivial to
check that the invertibility conditions

βX(αX(s ≈ t))cEQ = {s ≈ t}cEQ and αX(βX(s ≈ t))cEA = {s ≈ t}cEA

are satisfied, for all X ∈ |EQSig|, s ≈ t ∈ (
⋃∞

k=1 TmX(V )k)
2, since

βX(αX(s ≈ t)) = αX(βX(s ≈ t)) = {s ≈ t}.
However, it is not trivial to show that α and β are interpretations, i.e., that, for all
X ∈ |EQSig|, E ∪ {s ≈ t} ⊆ (

⋃∞
k=1 TmX(V )k)

2,

s ≈ t ∈ EcEQ iff s ≈ t ∈ EcEA .

We sketch the steps of this proof below. Details will be provided in [23].
Let X ∈ |EQSig|, k ≥ 1, t ∈ TmX(V )k. Then, for all X-algebras A = 〈A,XA〉

∈ |EQMOD(X)|,
tA = ξAk

((ηCl(A)X
A)∗k(t)). (4)

This situation is depicted as follows:

X
XA

Cl(A)
ηCl(A)

TmCl(A)(V ),

TmX(V )
(ηCl(A)X

A)∗
TmCl(A)(V )

ξA
Cl(A).

Similarly, for all TEQ-algebras 〈Cl(A), ξA〉 ∈ |FCln|, and all f : X ⇁ Cl(A),

tA = ξAk
(f ∗

k (t)), (5)

which is illustrated by

TmX(V )
f ∗

TmCl(A)(V )
ξA

Cl(A).

Suppose, now, that for E ∪ {s ≈ t} ⊆ (
⋃∞

k=1 TmX(V )k)
2, s ≈ t ∈ EcEQ . We

need to show that s ≈ t ∈ EcEA . Since s ≈ t ∈ EcEQ , for all A = 〈A,XA〉 ∈
|EQMOD(X)|, �a ∈ Aω, EA(�a) implies sA(�a) = tA(�a). But, then, if 〈〈A, ξ 〉, f 〉 ∈
|EAMOD(X)|, such that ξ(f ∗(e0)) = ξ(f ∗(e1)), for all e0 ≈ e1 ∈ E, we have,
by (5), that EA holds, whence sA = tA and, by following the reverse reasoning,
ξ(f ∗(s)) = ξ(f ∗(t)), i.e., s ≈ t ∈ EcEA , as was to be shown. The converse follows
along the same lines except that (4) is used instead of (5).

Thus π(EQ) and EA are equivalent π -institutions and, since EA is an alge-
braic π -institution, π(EQ) is an algebraizable π -institution. Thus the institution of
equational logic EQ is algebraizable.
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5.3. FIRST-ORDER LOGIC WITHOUT TERMS

Recall from Section 2 the definition of the institution F OL = 〈FOSig,FOSEN,

FOMOD, |=〉 that represents the system of first-order logic without terms over
multiple (relational) signatures. Recall also from Section 4 the definition of the
〈HSetTFO, 'FO, FRln〉-algebraic π -institution F OA = 〈HSetTFO,EQFA,
{CFAX

}X∈|HSetTFO |〉 corresponding to the 〈HSetTFO, 'FA,FRln〉-algebraic institution
I〈HSetTFO ,'FO,FRln〉.

Given X ∈ |FOSign|, N ⊆f ω and φ,ψ ∈ FmL(X)N , define

T (φ) = ¬(φ ∧¬φ), φ → ψ = ¬(φ ∧ ¬ψ) and

φ ↔ ψ = (φ → ψ) ∧ (ψ → φ).

Then, since as was pointed out in Section 3, FOSig = HSetTFO, the following
translations 〈F, α〉 : F OL → F OA and 〈G,β〉 : F OA → F OL may be
legitimately defined: F = IFOSig and α : FOSEN → P EQFA is given, for all
X ∈ |FOSig|, by αX : FOSEN(X) → P (EQFA(X)), with

αX(φ) = {φ ≈ T (φ)}, for all φ ∈ FmL(X)∅.

Similarly, G = IHSetTFO
and β : EQFA → P FOSEN is given, for all X ∈

|HSetTFO |, by βX : EQFA(X) → P (FOSEN(X)), with

βX(φ ≈ ψ) = {φ ↔ ψ}, for all φ ≈ ψ ∈ TmX(V )2
∅.

It is trivial to check that α and β are natural transformations. According to [22]
we only need to show that α is an interpretation, i.e., that, for all X ∈ |HSet|,
� ∪ {φ} ⊆ FmL(X)∅,

φ ∈ �cF OL iff φ ≈ T (φ) ∈ {ψ ≈ T (ψ) : ψ ∈ �}cF OA (6)

and that the second of the invertibility conditions holds, i.e., that, for all X ∈
|HSet|, φ,ψ ∈ FmL(X)∅,

{φ ≈ ψ}cF OA = {φ ↔ ψ ≈ T (φ ↔ ψ)}cF OA . (7)

The proofs are based on the following fact, which, together with other details,
will be elaborated on further in [24]: Let X ∈ |HSet|, N ⊆f ω, φ ∈ FmL(X)N .
Then, for all 〈Rel(A), ξA〉 ∈ |FRln| and f : X ⇁ Rel(A), the X-structure A =
〈Rel(A), ξAf 〉 satisfies

φA = ξAN
(f ∗

N(φ)). (8)

This situation pictorially is as follows:

FmL(X)
f ∗

FmL(Rel(A))
ξA

Rel(A).
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To prove (6), let X ∈ |HSet|,� ∪ {φ} ⊆ FOSEN(X). If φ ∈ �cF OL , then, for all
A ∈ |FOMOD(X)|,

A |=X � implies A |=X φ.

Suppose that 〈Rel(A), ξA〉 ∈ |FRln| and f : X ⇁ Rel(A) are such that ξA(f ∗(ψ))

= ξA(f
∗(T (ψ))), for all ψ ∈ �. Then, by (8), if A = 〈Rel(A), ξAf 〉, ψA =

T (ψ)A, for all ψ ∈ �. Therefore A |=X ψ for all ψ ∈ �, and, hence, A |=X φ. Re-
versing the steps above then yields ξA(f

∗(φ)) = ξA(f
∗(T (φ))), i.e., φ ≈ T (φ) ∈

{ψ ≈ T (ψ) : ψ ∈ �}cF OA , as required. The reverse implication may be proved
similarly.

For (7) we have, for all 〈〈Rel(A), ξA〉, f 〉 ∈ |FAMOD(X)|,
〈〈Rel(A), ξA〉, f 〉 |=X φ ↔ ψ ≈ T (φ ↔ ψ)

iff ξA(f
∗(φ ↔ ψ)) = ξA(f

∗(T (φ ↔ ψ)))

iff (φ ↔ ψ)A = T (φ ↔ ψ)A (by (8))

iff φA = ψA (since T (φ ↔ ψ)A = Aω)

iff ξA(f
∗(φ)) = ξA(f

∗(ψ)) (by (8))

iff 〈〈Rel(A), ξA〉, f 〉 |=X φ ≈ ψ.

Thus π(F OL) and F OA are equivalent π -institutions and, since F OA is
an algebraic π -institution, π(F OL) is an algebraizable π -institution. Thus the
institution of first-order logic F OL is algebraizable.

5.4. EQUATIONAL CATEGORICAL LOGIC

Recall from Section 2 the definition of the institution CL = 〈CSig,CSEN,
CMOD, |=〉 that represents the system of categorical equational logic, i.e., the logic
that governs derivations of arrow equalities from other valid arrow equalities in
categories. Recall also from Section 4 the definition of the 〈GphTCT

, 'CT, ACat〉-
algebraic π -institution CA = 〈GphTCT

,EQCA, {CCAG
}G∈|GphTCT

|〉 corresponding
to the 〈GphTCT

, 'CT, ACat〉-algebraic institution I〈GphTCT
,'CT,ACat〉.

Since, as was pointed out in Section 3, CSig = GphTCT
, the following trans-

lations 〈F, α〉 : CL → CA and 〈G,β〉 : CA → CL may be legitimately
defined: F = ICSig and α : CSEN → P EQCA is given, for all G ∈ |CSig|, by
αG : CSEN(G) → P (EQCA(G)), with

αX(〈(e0, . . . , en−1), (f0, . . . , fm−1)〉) = {(e0, . . . , en−1) ≈ (f0, . . . , fm−1)},
for all edges (e0, . . . , en−1), (f0, . . . , fm−1) of Pth(G). Similarly, G = IGphTCT

and
β : EQCA → P CSEN is given, for all G ∈ |GphTCT

|, by βG : EQCA(G) →
P (CSEN(G)), with

βG(p ≈ q) = {〈p, q〉}, for all p ≈ q ∈ E(Pth(G))2.
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It is trivial to check that α and β are natural transformations. According to [22]
we only need to show that α is an interpretation, i.e., that, for all G ∈ |Gph|,
P ∪ {〈(e0, . . . , en−1), (f0, . . . , fm−1)〉} ⊆ Mor(Pth(Pth(G))2,

〈(e0, . . . , en−1), (f0, . . . , fm−1)〉 ∈ P cCL iff (9)

(e0, . . . , en−1) ≈ (f0, . . . , fm−1) ∈ {(p0, . . . , pk−1) ≈ (q0, . . . , ql−1) :
〈(p0, . . . , pk−1), (q0, . . . , ql−1)〉 ∈ P }cCA

and that the second of the invertibility conditions holds, i.e., that, for all X ∈
|Gph|, p, q ∈ E(Pth(G)),

{p ≈ q}cCA = {p ≈ q}cCA . (10)

The last condition is trivial whereas the proof of (9) is based on the following fact:
Let G ∈ |Gph|,C a small category, with C its underlying graph, and g : G ⇁ C ∈
Mor(CSig). Then, for all paths (e0, . . . , en−1) in G,

g†(e0, . . . , en−1) = (ξCµCTC
TCT(g))

∗(e0, . . . , en−1). (11)

This situation is pictorially as follows:

Pth(G)
TCT(g)

Pth(Pth(C))
µCTC

Pth(C)
ξC

C.

To prove (9), let G ∈ |Gph|, P ∪ {〈(e0, . . . , en−1), (f0, . . . , fm−1)〉} ⊆ CSEN(X).
If 〈(e0, . . . , en−1), (f0, . . . , fm−1)〉 ∈ P cCL , then, for all 〈C, g〉 ∈ |CMOD(X)|,

〈C, g〉 |=G P implies 〈C, g〉 |=G 〈(e0, . . . , en−1), (f0, . . . , fm−1)〉.
Suppose that 〈C, ξC〉 ∈ |ACat| and g : G ⇁ C are such that

(ξCµCTC
TCT(g))

∗(p) = (ξCµCTC
TCT(g))

∗(q), for all p, q ∈ P.

Then, by (11), g†(p) = g†(q), whence g†(e0, . . . , en−1) = g†(f0, . . . , fm−1).
Reversing the steps above then yields

(ξCµCTC
TCT(g))

∗(e0, . . . , en−1) = (ξCµCTC
TCT(g))

∗(f0, . . . , fm−1),

i.e., (e0, . . . , en−1) ≈ (f0, . . . , fm−1) ∈ P cCA , as required. The reverse implication
may be proved similarly.

Thus π(CL) and CA are equivalent π -institutions and, since CA is an alge-
braic π -institution, π(CL) is an algebraizable π -institution. Thus the institution of
the equational logic of categories CL is algebraizable.

An interesting open problem concerning the algebraizability of the institution
CL of the equational logic of categories is whether it is algebraizable via an alge-
braic institution based on an algebraic theory in the category of sets. This question
naturally arises from the well-known facts that categories are models (Eilenberg–
Moore algebras) of an algebraic theory in the category of graphs but not of an
algebraic theory in the category of sets.
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