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Abstract.

A category Cln representing free algebras of clones of operations of �nite but

arbitrary arities is constructed together with an adjunction hF; U; �; �i : Set ! Cln:

This gives rise to an algebraic theory T over Set: A single-sorted variety V of clone

algebras is, then, equationally de�ned inspired by the multi-sorted construction of

Taylor [20]. It is shown that the Eilenberg-Moore category of T-algebras is isomorphic

to the category ~V corresponding to the variety V :

1 Introduction In algebraic logic one studies the classes of algebras that form the so-

called algebraic semantics of deductive systems ([2, 3]). Along these lines several attempts

have been made to de�ne algebras that would be appropriate for algebraizing equational

logic. Some of these attempts were focusing on ordinary, single-sorted, algebras, whereas

others were using many-sorted algebras. The general theory of this latter type of algebras

has been developed independently in [14, 15],[9] and [1]. Some of these attempts are P.

Hall's notion of clone (see [6]), which gives a partial single-sorted algebra, B.H. Neumann

and E.C. Wiegold's representation of varieties in terms of semigroups [18], W.D. Neumann's

substitution algebras [17], having in�nitary substitution operations, W. Lawvere's algebraic

theories [10, 11] (see also [12, 19]), W. Taylor's heterogeneous variety of substitution algebras

[20] and, �nally, N. Feldman's polynomial substitution algebras [8] (see also [5]). In a similar

direction Czelakowski and Pigozzi [7] view equational logic as a 2-deductive system in the

sense of [3] and propose its algebraization via another 2-deductive system, based on [8],

which they call hyperequational logic.

The common feature underlying all these algebraizations is the a priori choice of the basic

operations of the class of algebras that is chosen as the algebraizing class. For instance,

in [18] the identity, repetition, deletion and transposition operators are taken as constants

and composition of operators as an associative binary operation, in [17] projections and

in�nitary substitutions are the basic operations, in [20] n-ary projections and m-ary to

n-ary substitutions, for all m;n � 1; are chosen as basic, whereas in [8] projections and

one-place substitutions are basic.

In [21, 23], a general framework for the algebraization of multi-signature logical systems,

based on the notion of equivalence of institutions [22, 24] was introduced. This framework

suggests another approach to the algebraization of equational logic (see [25]) closer in spirit

to [11], based on the categorical algebraic notion of an algebraic theory ([4, 13, 16]). Namely,
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the algebraizing class of algebras is not presented in the traditional way by choosing a

priori basic operations and relating them via equational axioms. Rather, an adjunction is

constructed based on the original logical system that is chosen to represent equational logic

over multiple signatures. This adjunction gives rise in the standard way to an algebraic

theory in monoid form. The Eilenberg-Moore algebras of this algebraic theory constitute

the algebraizing class of algebras. Thus, basic operations are not given. Instead all clone

operations are assigned equal weight. On the other hand, in an attempt to connect this

approach to the traditional one, in Section 5, a variety V of algebras is constructed based

on a similar construction in [20]. The algebras of V correspond to clones of algebras with

operations of arbitrary �nite arities. It is then shown, in Section 6, that the category of

the Eilenberg-Moore algebras of the aforementioned algebraic theory is isomorphic to the

category ~V of this variety V:

2 Basic Constructions A countably in�nite set of variables V is �xed in advance and

well-ordered and by Set is denoted the category of all small sets. Given a set X; we de�ne

the set of X-terms with variables in the set V:

De�nition 1 Let X 2 jSetj: We de�ne the set of X-terms TmX(V ) 2 jSetj; to be the

smallest set with

(i) V � TmX(V ) and

(ii) If x 2 X;n 2 ! and t0; : : : ; tn�1 2 TmX(V ); with tn�1 6= vn�1; then

x(t0; : : : ; tn�1) 2 TmX(V ):

The de�nitions of simultaneous substitution of terms for variables in a term and that of

the extension of a given set map f : X ! TmY (V ) to a map f� : TmX(V ) ! TmY (V ) are

given next.

De�nition 2 Let X 2 jSetj; as before. De�ne a function

RX : TmX(V )�

1[
k=0

TmX(V )
k ! TmX(V )

by RX : TmX(V ) � TmX(V )
0 ! TmX(V ); (t; hi) 7! t; and, otherwise, by recursion on the

structure of X-terms as follows:

(i)

RX(vi; hs0; : : : ; sm�1i) =

�
si; i < m

vi; i � m

for every m 2 !; s0; : : : ; sm�1 2 TmX(V );

(ii) RX(x(t0; : : : ; tn�1); ~s) = x(RX(t0; ~s); : : : ; RX(tn�1; ~s); sn; : : : ; sm�1); for every x 2

X;n 2 !; t0; : : : ; tn�1 2 TmX(V ); tn�1 6= vn�1; and every m 2 !;~s 2 TmX(V )
m:

It is understood that the last, say k-th, term inside the parenthesis on the right, i.e.,

RX(tk�1; ~s); 0 � k < n; if m � n; and either RX(tk�1; ~s) or sk�1; 0 � k < m; if n < m;

must be the last term that is not equal to the variable vk�1:

De�nition 3 Let X;Y 2 jSetj and f : X ! TmY (V ): De�ne f� : TmX(V ) ! TmY (V )

by recursion on the structure of X-terms as follows:

(i) f�(v) = v; for every v 2 V;

(ii) f�(x(t0; : : : ; tn�1)) = RY (f(x); hf
� (t0); : : : ; f

�(tn�1)i); for every x 2 X;n 2 !;

t0; : : : ; tn�1 2 TmX(V ); tn�1 6= vn�1:
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In the sequel, we write f : X + Y to denote a Set-map f : X ! TmY (V ); as above.

The choice follows an analogous notation used in [16] for Kleisli morphisms. It is used

to anticipate the fact that these morphisms will turn out to be morphisms in the Kleisli

category of the algebraic theory T in Set that will be constructed in the fourth section.

Given two such maps f : X + Y and g : Y + Z; their composition g Æ f : X + Z is

de�ned to be

g Æ f = g�f:

This de�nition is also reminiscent of the composition in a Kleisli category of an algebraic

theory. We denote by Cln the category having as collection of objects jSetj and as its

collections of morphisms

Cln(X;Y ) = ff : X + Y : f 2 Set(X;TmY (V ))g;

for every X;Y 2 jSetj: Composition in Cln is the composition Æ as de�ned above and the

identity arrows jX : X + X are the set maps jX : X ! TmX(V ); with

jX(x) = x(); for every x 2 X:

Given two Cln-maps f : X + Y; g : Y + Z; a Set-map from TmX(V ) into TmZ(V )

may be obtained either by taking the extension (g Æf)� of g Æf to X-terms or by composing

the extensions f� and g�: It is now shown that the outcomes are the same both ways. Two

lemmas are needed �rst.

Lemma 4 Let f : X + Y; k;m 2 !; t 2 TmX(V ); ~u 2 TmX(V )
k
and ~s 2 TmX(V )

m: Then

RX(RX(t; ~u); ~s) = RX(t; hRX (u0; ~s); : : : ; RX(uk�1; ~s); sk ; : : : ; sm�1i):

Proof:

By recursion on the structure of t:

If t = vi 2 V;

RX(RX (vi; ~u); ~s) =

�
RX(ui; ~s); i < k

RX(vi; ~s); i � k

�
=

8<
:

RX(ui; ~s); i < k

si; k � i < m

vi; m � i

9=
; =

= RX(vi; hRX(u0; ~s); : : : ; RX(uk�1; ~s); sk ; : : : ; sm�1i):

Next, if x 2 X;n 2 ! and t0; : : : ; tn�1 2 TmX(V ); tn�1 6= vn�1;

RX(RX(x(t0; : : : ; tn�1); ~u); ~s) =

= RX(x(RX (t0; ~u); : : : ; RX(tn�1; ~u); un; : : : ; uk�1); ~s)

(by de�nition of RX)

= x(RX(RX (t0; ~u); ~s); : : : ; RX(RX(tn�1; ~u); ~s);

RX(un; ~s); : : : ; RX(uk�1; ~s); sk; : : : ; sm�1) (by de�nition of RX)

= x(RX(t0; hRX(u0; ~s); : : : ; RX(uk�1; ~s); sk; : : : ; sm�1i); : : : ;

RX(tn�1; hRX(u0; ~s); : : : ; RX(uk�1; ~s); sk; : : : ; sm�1i); RX(un; ~s); : : : ;

RX(uk�1; ~s); sk; : : : ; sm�1) (by the induction hypothesis)

= RX(x(t0; : : : ; tn�1); hRX (u0; ~s); : : : ; RX(uk�1; ~s); sk; : : : ; sm�1i);

(by de�nition of RX):

�

The proofs of Lemmas 5 and 6 below are also by induction on the structure of the term

t and will be omitted. Lemma 4 is used in the proof of the inductive step in Lemma 5 and

Lemma 5 in the inductive step of Lemma 6.
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Lemma 5 Let f : X + Y;m 2 !; t 2 TmX(V ); ~s 2 TmX(V )
m: Then

f�(RX(t;~s)) = RY (f
�(t); f�(~s)):

Lemma 6 Let f : X + Y; g : Y + Z be two Cln-maps. Then

(g Æ f)� = g�f�:

3 The Adjunction We are now ready to proceed with the construction of the promised

adjunction

hF;U; �; �i : Set! Cln:

First, de�ne a functor F : Set! Cln by

F (X) = X; for every X 2 jSetj;

and, if f : X ! Y 2 Mor(Set);

F (f) = jY f : X + Y:

If f : X ! Y; g : Y ! Z 2 Mor(Set); then

F (gf) = jZ(gf) = (jZg)
�(jY f) = F (g)�F (f) = F (g) Æ F (f);

i.e., F is a functor.

Now de�ne a functor U : Cln! Set by

U(X) = TmX(V ); for every X 2 jClnj;

and, if f : X + Y 2 Mor(Cln);

U(f) = f� : TmX(V )! TmY (V ):

Then, if f : X + Y; g : Y + Z 2 Mor(Cln); we have

U(g Æ f) = (g Æ f)�

= g�f� (by Lemma 6)

= U(g)U(f);

i.e., U is also a functor.

Finally, de�ne natural transformations � : ISet ! UF by �X : X ! TmX(V ) with �X =

jX ; for every X 2 jSetj; and � : FU ! ICln by �X : TmX(V ) +X with �X = iTmX(V ); for

every X 2 jClnj: It is now shown that � and � are indeed natural transformations.

To this end, let f : X ! Y 2 Mor(Set): Then, for every x 2 X;

Y U(F (Y ))-

�Y

X U(F (X))-

�X

?

f

?

U(F (f))

U(F (f))(�X (x)) = U(F (f))(x()) = (jY f)
�(x()) =
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= RY ((jY f)(x); hi) = jY f(x) = �Y (f(x)):

Next, let f : X + Y 2 Mor(Cln): Then, for every t 2 TmX(V );

F (U(Y )) Y-�Y

F (U(X)) X-
�X

?

F (U(f))

?

f

(f Æ �X)(t) = f�(�X (t)) = f�(t) = ��Y (jTmY (V )(f
�(t))) = (�Y Æ F (U(f)))(t):

Finally, if t 2 TmX(V ); then

i�TmX(V )(�TmX(V )(t)) = i�TmX(V )(t()) = t;

and, if y 2 Y;

i�TmX(V )(�TmY (V )(�Y (y))) = i�TmX(V )(y()()) = y() = �Y (y);

i.e., the following triangles commute

TmX(V ) TmTmX(V )(V )
-

�TmX(V )

iTmX(V )

@

@

@

@

@

@

@

@R

TmX(V )
?

i�
TmX(V )

Y TmY (V )-

�TmY (V )�Y

�Y

@

@

@

@

@

@

@

@R

Y
?

iTmY (V )

which proves

Theorem 7 hF;U; �; �i : Set! Cln is an adjunction.

4 The Theory of the Adjunction It is well-known ([13, 16, 4]) that an adjunction

hF;U; �; �i : Set! Cln gives rise to an algebraic theory T = hT; �; �i in monoid form over

Set; with T = UF and � = U�F : Moreover there exists a unique functor K : SetT ! Cln

from the Kleisli category of the theory to Cln; called the Kleisli comparison functor of the

adjunction, that makes the F - and U-paths of the following diagrams commute.

SetT Cln-
K

Set

FT

@

@

@

@R

F
�

�

�

�	

SetT Cln-
K

Set

UT

@

@

@

@R

U
�

�

�

�	

It is easy to verify that, in this case SetT = Cln and K = ICln: Therefore Cln is the

category of all free algebras of the algebraic theory T in Set:

Also recall that aT-algebra hX; �i consists of a setX together with a map � : T (X) ! X;

i.e., � : TmX(V )! X; such that the following diagrams commute

X TmX(V )-

jX

iX

@

@

@

@R

X
?

�

TmX(V ) X-
�

TmTmX(V )(V ) TmX(V )-

(jX�)
�

?

i�
TmX (V )

?

�
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5 Clone Algebras In this section a variety of algebras V is equationally de�ned whose

members are called clone algebras. The construction is inspired by W. Taylor's construc-

tion of a multi-sorted analog in [20]. In the next section, it will be shown that the category
~V of this variety is isomorphic to the Eilenberg-Moore category SetT of the algebraic theory

T in Set; that was constructed in the previous section.

Let L = h�; �i be the language type de�ned as follows.

� = fvi;Ci : i 2 !g; with �(vi) = 0; �(Ci) = i+ 1:

De�nition 8 A clone algebra A is an L-algebra that satis�es the following identities,

for every n;m 2 !;

� C0(x) = x

� Cn(x; y0 : : : ; yn�2; vn�1) = Cn�1(x; y0 : : : ; yn�2)

�

Cn(vm; x0; : : : ; xn�1) =

�
xm; if m < n

vm; otherwise

� Cn(z;Cn(y0; ~x); : : : ;Cn(ym�1; ~x); xm; : : : ; xn�1) = Cn(Cm(z; ~y); ~x)

Let V be the variety of all clone algebras and denote by ~V the category associated with V:

It will now be shown that a functor P can be constructed from the category ~V; associated

with the variety V; to the category SetT of all T-algebras in Set: The object part of P is

constructed �rst.

Let A = hA;LAi be a clone algebra. De�ne A� = hA; �A� i as follows: �A� : TmA(V )!

A is de�ned by recursion on the structure of A-terms, by

� �A�(vi) = vA
i
; for every i 2 !;

� If a 2 A;n 2 !; t0; : : : ; tn�1 2 TmA(V ); tn�1 6= vn�1;

�A�(a(t0; : : : ; tn�1)) = CAn (a; �A� (t0); : : : ; �A�(tn�1)):

Lemma 9 Let A 2 V;A� = hA; �A� i: Then, for every t 2 TmA(V );m 2 !;~s 2 TmA(V )
m;

�A�(RA(t;~s)) = CAm(�A�(t); �A� (~s)):

Proof:

By induction on the structure of t:

If t = vi 2 V; then

�A�(RA(vi; ~s)) =

�
�A�(si); if i < m

�A�(vi); if i �m

�
=

�
�A�(si); if i < m

vA
i
; if i �m

�

= CA
m
(vA
i
; �A�(~s)) (by the third axiom)

= CA
m
(�A� (vi); �A�(~s)):

If a 2 A;n 2 !;~t 2 TmA(V )
n; tn�1 6= vn�1; then

�A�(RA(a(~t); ~s)) =
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= �A�(a(RA(t0; ~s); : : : ; RA(tn�1; ~s); sn; : : : ; sm�1)) (by de�nition of RA)

= CA
m
(a; �A� (RA(t0; ~s)); : : : ; �A�(RA(tn�1; ~s)); �A� (sn); : : : ; �A�(sm�1))

(by de�nition of �A�)

= CA
m
(a;CA

m
(�A�(t0); �A�(~s)); : : : ;CA

m
(�A�(tn�1); �A�(~s)); �A�(sn); : : : ; �A�(sm�1))

(by the induction hypothesis)

= CA
m
(CA

n
(a; �A�(~t)); �A�(~s)) (by the fourth axiom)

= CA
m
(�A�(a(~t)); �A� (~s)): (by de�nition of �A�)

�

Lemma 10 Let A 2 V: Then A� = hA; �A�i 2 jSetTj:

Proof:

We need to show that the following diagrams commute

A TmA(V )-

jA

iA

@

@

@

@R

A
?

�A�

TmA(V ) A-
�A�

TmTmA(V )(V ) TmA(V )-

(jA�A�)�

?

i�
TmA(V )

?

�A�

For the triangle, we have, for every a 2 A;

�A�(jA(a)) = �A�(a()) (by de�nition of jA)

= CA0 (a) (by de�nition of �A�)

= a (by the �rst axiom)

= iA(a):

For the rectangle, we proceed by induction on the structure of a TmA(V )-term t: If t =

vi 2 V; then

�A�((jA�A�)�(vi)) = �A�(vi) = �A�(i�TmA(V )(vi)):

If s 2 TmA(V ); n 2 !;~t 2 TmTmA(V )(V )
n; tn�1 6= vn�1; then

�A�((jA�A�)�(s(~t))) = �A�(RA((jA�A�)(s); (jA�A�)�(~t))) (by de�nition of (jA�A�)�)

= CA
m
(�A� (jA(�A�(s))); �A� ((jA�A�)�(~t))) (by Lemma 9)

= CAm(�A� (s); �A� (i�
TmA(V )

(~t)))

(by commutativity of triangle and the induction hypothesis)

= �A�(RA(s; i
�

TmA(V )
(~t))) (by Lemma 9)

= �A�(i�
TmA(V )

(s(~t))): (by de�nition of i�
TmA(V )

)

�

Next suppose that A = hA;LAi;B = hB;LBi 2 V and h : A! B 2 ~V(A;B): We show

that the following diagram commutes

A B-
h

TmA(V ) TmB(V )-

(jBh)
�

?

�A�

?

�B�
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i.e., that h 2 SetT(A�;B�):

We work by induction on the structure of an A-term t:

If t = vi 2 V; then

�B�((jBh)
�(vi)) = �B�(vi) (by de�nition of (jBh)

�)

= vB
i

(by de�nition of �B�)

= h(vA
i
) (since h 2 ~V(A;B))

= h(�A�(vi)): (by de�nition of �A�)

If a 2 A;n 2 !;~t 2 TmA(V )
n; tn�1 6= vn�1;

�B�((jBh)
�(a(~t))) = �B�(RB((jBh)(a); (jBh)

�(~t))) (by de�nition of (jBh)
�)

= CB
n
(�B�(jB(h(a))); �B� ((jBh)

�(~t))) (by Lemma 9)

= CB
n
(h(a); h(�A� (~t))) (by comm. of triangle and the ind. hyp.)

= h(CA
n
(a; �A� (~t))) (since h 2 ~V(A;B))

= h(�A�(a(~t))): (by de�nition of �A�)

Thus, it is possible to de�ne the functor P : ~V ! SetT by

P (A) = A�; for every A 2 V;

and, given h 2 ~V(A;B); P (h) 2 SetT(A�;B�); by

P (h) = h:

6 The Equivalence In this section, a functor Q : SetT ! ~V in the opposite direction

is de�ned and it is shown that P and Q are inverses of each other. Therefore the two

categories SetT and ~V are isomorphic categories.

Let A = hA; �Ai be a T-algebra. De�ne an L-algebra A
# = hA;LA

#

i as follows:

� vA
#

i
= �A(vi); for every i 2 !;

� CA
#

n
(a; a0; : : : ; an�1) = �A(RA(jA(a); hjA(a0); : : : ; jA(an�1)i)); for every n 2 !; a; a0;

: : : ; an�1 2 A:

Lemma 11 Let A = hA; �Ai 2 jSetTj: Then jA�A = (jA�A)
�jTmA(V ):

Proof:

Let t 2 TmA(V ): Then

(jA�A)
�(jTmA(V )(t)) = (jA�A)

�(t()) (by de�nition of jTmA(V ))

= jA�A(t): (by de�nition of (jA�A)
�)

�

Lemma 12 Let A 2 jSetTj: Then A# 2 V:

Proof:

We need to verify that the identities of De�nition 8 hold. For the �rst one,

CA
#

0 (a) = �A(RA(jA(a); hi)) = �AjA(a) = a:
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For the second, we have

CA
#

n
(a; b0; : : : ; bn�2; v

A
#

n�1) =

= CA
#

n
(a;~b; �A(vn�1)) (by de�nition of vA

#

n�1)

= �A(RA(jA(a); hjA(~b); jA(�A(vn�1))i)) (by de�n. of CA
#

n
)

= �A(RA(jA(�A(jA(a))); hjA(�A(jA(~b))); jA(�A(vn�1))i))

(by �AjA = iA)

= �A(RA(jA(�A(a())); hjA(�A(~b())); jA(�A(vn�1))i))

(by de�nition of jA)

= �A(RA((jA�A)(a()); h(jA�A)
�(~b()()); (jA�A)

�(vn�1())i))

(by Lemma 11)

= �A((jA�A)
�(a()(~b()(); vn�1()))) (by de�n. of (jA�A)

�)

= �A(i
�

TmA(V )
(a()(~b()(); vn�1())))

(since �A(jA�A)
� = �Ai

�

TmA(V )
)

= �A(RA(a(); h~b(); vn�1i)) (by de�nition of i�
TmA(V )

)

= �A(RA(a();~b())); (by de�nition of RA)

= : : : (reverse all the steps in the deduction above)

= CA
#

n�1(a;
~b):

The third and the fourth identities can be proved similarly. Lemma 11 is used in the proof

of both. In the proof of the fourth, Lemma 4 is also used. �

Next, let A = hA; �Ai;B = hB; �Bi 2 jSetTj and h 2 SetT(A;B); i.e., the following

diagram commutes

A B-
h

TmA(V ) TmB(V )-

(jBh)
�

?

�A

?

�B

We show that h 2 ~V(A#;B#): To this end, we need to verify the following two equations

� h(vA
#

i
) = vB

#

i
; for every i 2 !; and

� h(CA
#

n
(a; a0; : : : ; an�1)) = CB

#

n
(h(a); h(a0); : : : ; h(an�1)); for every n 2 !; a; a0; : : : ;

an�1 2 A:

We have

h(vA
#

i
) = h(�A(vi)) (by de�nition of vA

#

i
)

= �B((jBh)
�(vi)) (by commutativity of rectangle)

= �B(vi) (by de�nition of (jBh)
�)

= vB
#

i
; (by de�nition of vB

#

i
)

and

h(CA
#

n (a;~a)) = h(�A(RA(jA(a); jA(~a)))) (by de�nition of CA
#

n )

= �B((jBh)
�(RA(jA(a); jA(~a)))) (by commut. of rectangle)

= �B(RB((jBh)
�(jA(a)); (jBh)

�(jA(~a)))) (by Lemma 5)

= �B(RB((jBh)(a); (jBh)(~a)))

= CB
#

n (h(a); h(~a)): (by de�nition of CB
#

n )
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Therefore, we can de�ne a functor Q : SetT ! ~V; by

Q(A) = A#; for every A 2 jSetTj;

and, given h 2 SetT(A;B); Q(h) 2 ~V(A#;B#); by

Q(h) = h:

We �nally proceed to show that QP = I~V and PQ = ISetT : To this end, let A = hA;LAi 2

V: We have

vA
�#

i
= �A�(vi) = vA

i

and, for every n 2 !; a; a0; : : : ; an�1 2 A;

CA
�#

n
(a;~a) = �A�(RA(jA(a); jA(~a))) (by de�nition of CA

�#

n
)

= �A�(a(jA(~a))) (by de�nition of RA)

= CA
n
(a; �A� (jA(~a))) (by de�nition of �A�)

= CA
n
(a;~a): (by �A�jA = iA)

Finally, let A = hA; �Ai 2 jSetTj: We have

�A#�(vi) = vA
#

i = �A(vi)

and, for every a 2 A; t0; : : : ; tn�1 2 TmA(V ); tn�1 6= vn�1;

�A#�(a(~t)) = CA
#

n (a; �A#� (~t)) (by de�nition of �A#�)

= �A(RA(jA(a); jA(�A(~t))))

(by de�nition of CA
#

n and the ind. hyp.)

= �A(RA(jA(�A(jA(a))); (jA�A)
�(~t())))

(by �AjA = iA and Lemma 11)

= �A((jA�A)
�(a()(~t()))) (by de�nition of RA)

= �A(i
�

TmA(V )
(a()(~t()))) (since �A(jA�A)

� = �Ai
�

TmA(V )
)

= �A(RA(a();~t)) (by de�nition of i�
TmA(V )

)

= �A(a(~t)): (by de�nition of RA)

Thus, the following theorem holds

Theorem 13 ~V �= SetT:
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