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Abstract. A category theoretic generalization of the theory of algebraizable deductive

systems of Blok and Pigozzi is developed. The theory of institutions of Goguen and

Burstall is used to provide the underlying framework which replaces and generalizes the

universal algebraic framework based on the notion of a deductive system. The notion

of a term π-institution is introduced first. Then the notions of quasi-equivalence, strong

quasi-equivalence and deductive equivalence are defined for π-institutions. Necessary and

sufficient conditions are given for the quasi-equivalence and the deductive equivalence of

two term π-institutions, based on the relationship between their categories of theories.

The results carry over without any complications to institutions, via their associated π-

institutions. The π-institution associated with a deductive system and the institution of

equational logic are examined in some detail and serve to illustrate the general theory.
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1. Introduction

Recent work in algebraic logic has focused on abstracting the classical Tarski-
Lindenbaum algebraization process by which a class of algebras is associated
with certain deductive systems. In the prototypical example of classical
propositional calculus the presence of a biconditional induces a congruence
on the algebra of formulas whose quotient gives a Boolean algebra. In the
absence of an explicit biconditional one has to discover alternative ways of
determining whether a reasonable algebraic counterpart exists for a given
deductive system S and of finding a class of algebras serving this purpose
if such a class exists. To address this problem, Blok and Pigozzi [4] devel-
oped the theory of algebraizable deductive systems. The focus was now on
the equational deductive system associated with a class of algebras rather
than being on the algebras themselves. The possible ways of interpreting
the deductive apparatus of a deductive system into the equational deduc-
tive apparatus of a class of algebras and vice-versa play a key role in this
theory. A class of algebras K is said to be an equivalent algebraic semantics
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for a deductive system S if there exists an interpretation of the entailment
relation of S in the equational entailment of K and vice-versa and the two
interpretations are inverses of one another in a natural sense. A deductive
system is then called algebraizable if it has an equivalent algebraic seman-
tics. In [4] a characterization of algebraizability is obtained in terms of the
existence of an isomorphism between the theory lattice of S and the equa-
tional theory lattice of K, and a second characterization is given in terms
of the abstract properties of the Leibniz operator which maps S-theories
to congruences of the formula algebra of S. In [13, 14, 15] the theory was
generalized to encompass infinitary deductive systems. In [10] the notion
of Leibniz operator was modified and the notion of Tarski operator was ob-
tained which is applied to generalized matrices (called abstract logics in [10])
rather than ordinary logical matrices of the deductive system. In [6] a fur-
ther abstraction of the algebraization process is obtained. Algebraizability
is now viewed as a specific example of the notion of equivalence of deductive
systems. It is the equivalence of the algebraizable deductive system S with
a very special deductive system, namely the 2-dimensional deductive system
that is associated with its equivalent algebraic semantics.

In a slightly different direction Andréka, Németi and Sain introduced
a process of algebraization of logics with semantics in [1, 2, 3]. The two
approaches are different but have much in common. See [9] for a detailed
comparison.

The theory developed in [4, 6] together with its generalizations and refine-
ments [13] and [10] serve well the algebraization of propositional-like logics
over a fixed similarity type. However they are rather inefficient in handling
more complex deductive systems where similarity types (or signatures) vary,
like equational logic (the theory of abstract clones) and first-order logic.
These systems may be handled by the methods of abstract algebraic logic
only after the logical system is transformed into a propositional logic in a
rather artificial way; see, e.g., Appendix C in [4]. On the other hand the no-
tion of institution introduced in [12] has proven very successful in formalizing
deductive systems with varying signatures. Roughly speaking, an institution
consists of an arbitrary category Sign of signatures together with two func-
tors SEN and MOD that give, respectively, for each signature object Σ, a
set of Σ-sentences and a category of Σ-models. For each signature object Σ,
sentences and models are related via a Σ-satisfaction relation. The main ax-
iom formalizes the slogan that ”truth is invariant under change of notation”
(see [11]). Motivated by Goguen and Burstall’s work, Fiadeiro and Sernadas
[8] introduced the notion of π-institution. The main modification is that,
instead of having a semantical satisfaction relation as the basis for the de-



CAAL: Equivalent Institutions 277

duction, the focus is shifted towards a syntactic consequence relation in the
spirit of Tarski [19]. Thus, a π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 is
a triple, where Sign and SEN are the same as before but CΣ is a closure op-
erator on the set of Σ-sentences. The notion of a π-institution may be viewed
as the natural generalization of the notion of a deductive system on which a
categorical theory of algebraizability, generalizing the theory of [4] may be
based. It would thus be desirable to extend the notions of interpretation and
equivalence to π-institutions. The notion of an institution morphism that is
used in [11, 12] to connect two institutions may be appropriately modified
to serve the purposes of categorical abstract algebraic logic.

A translation will now be defined to be a pair 〈F,α〉 : I1 → I2, where F :
Sign1 → Sign2 is a functor and α is a natural transformation α : SEN1 →
PSEN2F. I.e., single sentences of the source institution get mapped not to
single sentences of the target institution but, rather, to sets of sentences in
accordance with the notion of translation for deductive systems in [6]. A
translation is an interpretation if, for all Σ ∈ |Sign1|,Φ ∪ {φ} ⊆ SEN1(Σ),

φ ∈ CΣ(Φ) if and only if αΣ(φ) ⊆ CF (Σ)(αΣ(Φ)).

Following [8] and [11, 12], the category of theories of a π-institution and
that of an institution are considered, i.e., the category with objects theories
(closed sets of sentences) with respect to either the sentence closures, in
the π-institution framework, or the induced consequence relations, in the
institution framework. This category plays the role of the theory lattice of
a deductive system in this broader context.

Inspired by [4, 6, 7], the notions of quasi-equivalence and deductive equiv-
alence for two π-institutions are then defined. Generally speaking, two π-
institutions I1 and I2 are quasi-equivalent if the sentence closure operators
of the first can be interpreted in the corresponding closure operators of the
second in a natural way and vice versa. This notion of quasi-equivalence
generalizes the notion of equivalence for deductive systems introduced in [6].
Attention is subsequently restricted to a special, but yet wide, class of π-
institutions, the, so-called, term π-institutions. Using the theory categories
of π-institutions, necessary and sufficient conditions for the quasi-equivalence
and the deductive equivalence of two term π-institutions are given. Namely,
it is proved in Theorem 9.4 that two term π-institutions I1 and I2 are
quasi-equivalent if and only if their categories of theories are adjoint cat-
egories via an adjunction satisfying some additional, relatively simple and
quite natural, conditions. A similar characterization for deductive equiva-
lence is also provided. More precisely, it is shown in Theorem 10.5 that two
term π-institutions are deductively equivalent if and only if their categories
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of theories are naturally equivalent via an equivalence satisfying some of the
same conditions. These results carry over without any complications to the
institution framework.

Finally, as an illustration of the theory, a π-institution IS that naturally
represents a k-deductive system S in the sense of [6] and an institution EQ
that corresponds to a version of equational logic with varying signatures are
considered. If the k-deductive system is algebraizable [4], the associated π-
institution IS is easily seen to have an algebraic counterpart. Similarly, EQ
is shown to be deductively equivalent to an algebraic counterpart EA.

2. Institutions and π-Institutions

Definition 2.1 (Goguen and Burstall). An institution I = 〈Sign,SEN,
MOD, |=〉 consists of

(i) A category Sign whose objects are called signatures.

(ii) A functor SEN : Sign → Set, from the category Sign of signatures
into the category Set of sets, called the sentence functor and giving,
for each signature Σ, a set whose elements are called sentences over
that signature Σ or Σ-sentences.

(iii) A functor MOD : Sign → CATop from the category of signatures into
the opposite of the category of categories, called the model functor
and giving, for each signature Σ, a category whose objects are called
Σ-models and whose morphisms are called Σ-morphisms.

(iv) A relation |=Σ ⊆ |MOD(Σ)| × SEN(Σ), for each Σ ∈ |Sign|, called
Σ-satisfaction, such that for every morphism f : Σ1 → Σ2 in Sign
the satisfaction condition

m2 |=Σ2 SEN(f)(φ1) if and only if MOD(f)(m2) |=Σ1 φ1

holds, for every m2 ∈ |MOD(Σ2)| and every φ1 ∈ SEN(Σ1).

The defining categories and functors of an institution together with their
interconnections are illustrated by the following diagram:

MOD
�

�
��

Set

Sign

SEN
�

�
��

CATop

|=
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Furthermore, the satisfaction condition can be given pictorially as follows:
If f : Σ1 → Σ2 is a morphism in Sign, then

MOD(Σ2) SEN(Σ2)|=Σ2

MOD(Σ1) SEN(Σ1)
|=Σ1

�

MOD(f)

�

SEN(f)

Given an institution I = 〈Sign,SEN,MOD, |=〉 and Σ ∈ |Sign|, we
define, for all Φ ⊆ SEN(Σ) and M ⊆ |MOD(Σ)|,

Φ∗ = {m ∈ |MOD(Σ)| : m |=Σ φ for every φ ∈ Φ}

and
M∗ = {φ ∈ SEN(Σ) : m |=Σ φ for every m ∈M}.

Moreover we set Φc = Φ∗∗ and M c = M∗∗.
From now on, when the “c” symbol is used, its scope will be the largest

possible well-formed expression to its left. For instance, in SEN(f)(Φ)c the
scope of “c” is SEN(f)(Φ) and not just Φ and in SEN(f)(SEN(f)−1(Φc))c the
scope of the second “c” is SEN(f)(SEN(f)−1(Φc)) and not just
SEN(f)−1(Φc).

Goguen and Burstall [12], prove the following very useful lemma that is
used below to obtain the π-institution associated with a given institution I.
Lemma 2.2. [Closure Lemma] Let I = 〈Sign,SEN,MOD, |=〉 be an institu-
tion, f : Σ1 → Σ2 ∈ Mor(Sign) and Φ ⊆ SEN(Σ1). Then

SEN(f)(Φc) ⊆ SEN(f)(Φ)c.

Definition 2.3 (Fiadeiro and Sernadas). A π-institution I = 〈Sign,
SEN, {CΣ}Σ∈|Sign|〉 consists of

(i) A category Sign whose objects are called signatures.

(ii) A functor SEN : Sign → Set, from the category Sign of signatures
into the category Set of sets, called the sentence functor and giving,
for each signature Σ, a set whose elements are called sentences over
that signature Σ or Σ-sentences.

(iii) A mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|,
called Σ-closure, such that
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(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1(A)) ⊆ CΣ2(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|,
f ∈ Sign(Σ1,Σ2), A ⊆ SEN(Σ1).

Note that the Σ-closure operator of a π-institution is not required to be
finitary. Also in Definition 2.3 condition (iii)(d) generalizes the structurality
condition of deductive systems and Corollary 2.4 and Lemma 2.5 below are
generalizations of well-known properties of the closure operators of deductive
systems to the present institutional context.

Given an institution I = 〈Sign,SEN,MOD, |=〉, define

π(I) = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉,
by setting

CΣ(Φ) = Φc, for all Σ ∈ |Sign|,Φ ⊆ SEN(Σ).

It is easy to verify, using Lemma 2.2, that π(I) is a π-institution. We will
refer to π(I) as to the π-institution associated with the institution I.

From now on, given a π-institution I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉, a
signature Σ and Φ ⊆ SEN(Σ), we will use the simplified notation Φc to
denote CΣ(Φ). Usually the signature Σ is clear from context and therefore
this simplified notation does not cause any confusion.

Corollary 2.4. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution.
Then, for all f : Σ1 → Σ2 ∈ Mor(Sign),Φ ⊆ SEN(Σ1),

SEN(f)(Φc)c = SEN(f)(Φ)c.

Proof. Clearly SEN(f)(Φ)c ⊆ SEN(f)(Φc)c. For the reverse inclusion

SEN(f)(Φc)c ⊆ (SEN(f)(Φ)c)c = SEN(f)(Φ)c,

the inclusion being valid by (iii)(d) of Definition 2.3.

Another lemma will also be of utmost importance for our subsequent
considerations.

Lemma 2.5. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, f : Σ1 →
Σ2 a morphism in Sign and Φ ⊆ SEN(Σ2). Then

SEN(f)−1(Φc)c = SEN(f)−1(Φc).
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Proof. Clearly, SEN(f)−1(Φc) ⊆ SEN(f)−1(Φc)c. For the reverse inclusion,
let

φ ∈ SEN(f)−1(Φc)c.

Then SEN(f)(φ) ∈ SEN(f)(SEN(f)−1(Φc)c), whence by (d) of Definition 2.3
SEN(f)(φ) ∈ SEN(f)(SEN(f)−1(Φc))c, and therefore SEN(f)(φ) ∈ (Φc)c,
i.e., SEN(f)(φ) ∈ Φc. Hence φ ∈ SEN(f)−1(Φc), as required.

Corollary 2.6. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, f :
Σ1 → Σ2 an isomorphism in Sign and Φ ⊆ SEN(Σ1). Then

SEN(f)(Φc)c = SEN(f)(Φc).

The notions of institution and π-institution are too general to allow the
formulation of any useful general results. Usually one has to focus on a par-
ticular class of institutions by imposing appropriate conditions on the signa-
ture category, the model categories or the sentence closures of the institution
(see, e.g., [18]). The development of a general theory of algebraizability of
institutions may be achieved by restricting to institutions that satisfy a cat-
egorical analog of a property of deductive systems that plays a crucial role
in the classical theory of algebraizability. This is the property of having
”real” (recursively defined) terms and ”real” (also recursively defined) sub-
stitutions of terms for variables in other terms. The generalized institutional
property is, thus, called the term property. Its precise definition follows and
π-institutions that satisfy this property are called term π-institutions. Some
examples follow in the next section.

Definition 2.7. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution, A ∈
|Sign| and p ∈ SEN(A). 〈A, p〉 is called a source signature - variable
pair if there exists a function f : {〈Σ, φ〉 : Σ ∈ |Sign|, φ ∈ SEN(Σ)} → |(A ↓
Sign)|, such that, for all Σ ∈ |Sign| and for all φ ∈ SEN(Σ), f〈Σ,φ〉 : A→ Σ
and SEN(f〈Σ,φ〉)(p) = φ and

(∀Σ′ ∈ |Sign| ∀g : Σ → Σ′(gf〈Σ,φ〉 = f〈Σ′,SEN(g)(φ)〉)).

A π-institution is called term if it has a source signature-variable pair. An
institution I is called term if its associated π-institution π(I) is a term π-
institution. A Sign-object such as A will be called a source signature and
a sentence such as p will be called a source variable or, simply, a variable.

The following diagrams illustrate the definition:
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A Σ�
f〈Σφ〉

Σ′

f〈Σ′,SEN(g)(φ)〉
�

�
�

��

g
�

�
�

��

p φ�
SEN(f〈Σφ〉)

SEN(g)(φ)

SEN(f〈Σ′,SEN(g)(φ)〉)
�

�
�

��

SEN(g)
�

�
�

��

3. Examples

An example of a π-institution and one of an institution will now be sketched.
More details and proofs of relevant statements will be presented elsewhere.
The π-institution is a very simple one. Its signature category is a one-
object category. It naturally represents a deductive system in the sense of
[4, 6]. The institution, on the other hand, naturally represents a version of
equational logic with varying types. The types are the objects of its signature
category and its morphisms are interpretations between the types. Thus,
in this case, the structure of the signature category is much more complex.
These two examples provide an illustration of the fact that deductive systems
may be viewed as special cases of π-institutions and that the π-institution
and institution formalisms can handle much more complex logical systems.
For some additional examples see [11, 12] and [20].

k-Deductive Systems

Let L = 〈Λ, ρ〉 be a propositional language and V a countable set of variables.
FmL(V ) denotes the set of formulas constructed by recursion using variables
in V and connectives in L in the usual way. An assignment of formulas to
variables is a mapping f : V → FmL(V ). It will be denoted by f : V ⇁ V.
Such an assignment can be extended uniquely to a substitution, i.e., an
endomorphism of the formula algebra FmL(V ), denoted by f∗ : FmL(V ) →
FmL(V ).

Let S = 〈L,	S〉 be a k-deductive system over L in the sense of [6]. We
construct the π-institution IS = 〈SignS ,SENS , {CΣ}Σ∈|SignS |〉 as follows:

(i) SignS is the one-object category with object V and morphisms all
assignments f : V ⇁ V. The identity morphism is the inclusion iV :
V → FmL(V ). Composition g◦f of two assignments f and g is defined
by g ◦ f = g∗f.

(ii) SENS : SignS → Set maps V to FmL(V )k and f : V ⇁ V to (f∗)k :
FmL(V )k → FmL(V )k. It is easy to see that SENS is a functor.
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(iii) Finally, CV : P(FmL(V )k) → P(FmL(V )k) is the standard closure
operator CS : P(FmL(V )k) → P(FmL(V )k) associated with the k-
deductive system S, i.e.,

CV (Φ) = {φ ∈ FmL(V )k : Φ 	S φ}, for all Φ ⊆ FmL(V )k.

CV , defined in this way, satisfies conditions (iii)(a)-(d) of Definition 2.3. In
fact, as already noted, (iii)(d) of Definition 2.3 in this case is the structura-
lity property of a deductive system that plays a central role in the classical
theory of algebraizability. Abstracting structurality in the context of multi-
signature logical systems is one of the basic motivations for the introduction
of categorical abstract algebraic logic. IS is thus a π-institution. It will be
called the π-institution associated with the k-deductive system S. Note
that IS is a term π-institution for any k-deductive system S. Indeed, the
pair 〈V, p〉, where p is a k-variable, is a source signature-variable pair for IS .
Note also that for k = 1 we obtain the π-institutions associated with deduc-
tive systems in the sense of [4] and for k = 2 we obtain all π-institutions
associated with 2-deductive systems including those associated with the se-
mantically defined equational 2-deductive systems SK whose consequence
relations CK : P(FmL(V )2) → P(FmL(V )2) are the equational consequence
relations determined by some class K of L-algebras.

In the next section an institution representing equational logic with vary-
ing similarity types is developed. Comparison with IS makes it obvious that
one has to deal with a significantly more complex signature structure due
to the different type of structurality present in morphisms relating different
similarity types. An institution representing equational logic with varying
signatures was also developed in [11]. The one given here is different in
many ways from the one in [11]. Goguen and Burstall’s system is multi-
sorted whereas the present system is single-sorted. On the other hand the
present system handles substitutions of derived operations of one type for
basic operations of another whereas Goguen and Burstall restrict to substitu-
tions of basic operations for other basic operations. The added generality at
this point is essential for appropriately handling structurality in the context
of abstract algebraic logic. It is the main feature that allows the generation
of an algebraic theory via its Kleisli adjunction serving to algebraize the
equational institution.

Equational Logic

An ω- indexed set or, simply, ω-set A is a family of sets A = {Ak : k ∈ ω}.
An ω-indexed set morphism or, simply, ω-set morphism f : A → B,
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from an ω-set A to an ω-set B, is a collection of set maps f = {fk : Ak →
Bk : k ∈ ω}. Given two ω-set morphisms f : A → B, g : B → C, define
their composite gf : A→ C by gf = {gkfk : Ak → Ck : k ∈ ω}. With this
composition, the collection of ω-sets with ω-set morphisms between them
forms a category, called the category of ω-sets and denoted by ΩSet.

An ω-set V = {Vk : k < ω}, with Vk = {vki : i < k}, called ω-set of
variables, is fixed in advance. Given an ω-set X, the ω-set of X-terms
TmX(V ) = {TmX(V )k : k ∈ ω} is defined by letting TmX(V )k be the
smallest set with

• vki ∈ TmX(V )k, i < k,

• x(t0, . . . , tn−1) ∈ TmX(V )k, for all n ∈ ω, x ∈ Xn, t0, . . . , tn−1 ∈
TmX(V )k.

Given X,Y ∈ |ΩSet|, f : X → TmY (V ) ∈ Mor(ΩSet), let f∗ : TmX(V ) →
TmY (V ) be the ΩSet-morphism such that f∗k leaves vki, i < k, fixed, for all
k ∈ ω, andf∗k (t) is the Y -term obtained from t by recursively replacing each
subterm x(t0, . . . , tn−1) of t by fn(x)(f∗k (t0), . . . , f∗k (tn−1)). (See also [21, 22]
for a formal definition and proofs.) We write f : X ⇁ Y to denote an
ΩSet-map f : X → TmY (V ). Given two such morphisms f : X ⇁ Y and
g : Y ⇁ Z their composition g ◦ f : X ⇁ Z is defined to be the ΩSet-map
g◦f = g∗f. With this composition, the collection of ω-sets with the harpoon
morphisms between them forms a category, denoted by EQSIG. Identities in
EQSIG are the morphisms jEQ

X : X ⇁ X, with jEQ
Xk

(x) = x(vk0, . . . , vk,k−1),
for all k ∈ ω, x ∈ Xk. The category EQSIG will be the signature category
of the institution for equational logic.

Next, define the sentence functor EQSEN : EQSIG → Set by

EQSEN(X) =
∞⋃

k=0

TmX(V )2k, for every X ∈ |EQSIG|,

and, given f : X ⇁ Y ∈ Mor(EQSIG), EQSEN(f) : EQSEN(X) →
EQSEN(Y ), is given by

EQSEN(f)(〈s, t〉) = 〈f∗k (s), f∗k (t)〉, if s, t ∈ TmX(V )k,

for all 〈s, t〉 ∈ EQSEN(X). EQSEN is well-defined, because, if s ∈ TmX(V )k
∩TmX(V )l, k �= l, then it can be shown that s ∈ TmX(V )0 and f∗k (s) =
f∗0 (s), for all k ∈ ω. We call an 〈s, t〉 ∈ EQSEN(X) an X-equation and
denote it by s ≈ t.
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The model functor EQMOD : EQSIG → CATop of the equational
institution is described next. Given a set A, by Cl(A) is denoted the ω-set
whose k-th level Clk(A) consists of all functions f : Ak → A. Given an ω-set
X, an X-algebra A = 〈A,XA〉 is a pair consisting of a set A together with
an ΩSet-morphism XA : X → Cl(A). If x ∈ Xk, following common usage,
we write xA for XA

k (x) ∈ Clk(A). Given two X-algebras A and B, an X-
algebra homomorphism h : A → B is a set map h : A → B, such that,
for all n ∈ ω, x ∈ Xn,�a ∈ An,

h(xA(�a)) = xB(h(�a)).

X-algebras with X-algebra homomorphisms between them form a category,
denoted by EQMOD(X). Given an X-algebra A = 〈A,XA〉, define an ΩSet-
morphism A : TmX(V ) → Cl(A) by letting vAki : Ak → A be the i-th
projection function in k variables and x(t0, . . . , tn−1)A = xA(tA0 , . . . , t

A
n−1),

for all n ∈ ω, x ∈ Xn, t0, . . . , tn−1 ∈ TmX(V )k. Then, it is not difficult
to define EQMOD at the morphism level. To this end, let f : X ⇁
Y ∈ Mor(EQSIG). Then EQMOD(f)(〈A,Y A〉) = 〈A,XEQMOD(f)(A)〉, for
all 〈A,Y A〉 ∈ |EQMOD(Y )|, where xEQMOD(f)(A) = fk(x)A, for all k ∈
ω, x ∈ Xk, and, if h : 〈A,Y A〉 → 〈B,Y B〉 ∈ Mor(EQMOD(Y )), then
EQMOD(f)(h) = h : 〈A,XEQMOD(f)(A)〉 → 〈B,XEQMOD(f)(B)〉. h may
be shown to be an X-algebra homomorphism and, hence, EQMOD(f) is
well-defined at the morphism level.

Finally, for the satisfaction relation, we have, for every X ∈ |EQSIG|,
A |=X s ≈ t iff sA = tA,

for all A ∈ |EQMOD(X)|, s ≈ t ∈ EQSEN(X). It is not very hard to ver-
ify that the satisfaction condition holds and that EQ = 〈EQSIG,EQSEN,
EQMOD, |=〉 is an institution. It is worth pointing out that EQ does not
possess a source signature-variable pair and, hence, is not a term institu-
tion. The main reason is that, roughly speaking, sentence morphisms work
level-wise. So it is not possible starting from a single sentence (the source
variable of Definition 2.7) at a specific level to reach sentences of arbitrary
levels.

One may develop a π-institution corresponding to first-order logic in a
very similar way. Details of that construction are given in [23].

4. The Category of Theories and the Theory Functor

In [4] algebraizability of a deductive system was characterized via the exi-
stence of an isomorphism connecting the theory lattice of the deductive
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system with the congruence lattice of its algebraic counterpart that com-
mutes with substitutions. In [6] this setting was generalized to include the
characterization of the equivalence of an arbitrary k-deductive system with
an arbitrary l-deductive system. Lattices of theories are playing a key role
in this characterization as well. Since then, they have proven to be very
effective model theoretic tools in the whole of abstract algebraic logic. The
notion corresponding to the theory lattice in the present categorical context
is that of the category of theories of a π-institution [8]. Thus, it is only
natural that the category of theories of a π-institution will play a key role
in categorical abstract algebraic logic in general. We summarize below the
main facts concerning the category of theories of a π-institution. For a more
detailed treatment see [8].

Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. Define its cate-
gory of theories TH(I), as follows:

The objects of TH(I) are pairs 〈Σ, T 〉, where Σ ∈ |Sign| and T ⊆
SEN(Σ) with T c = T. The morphisms f : 〈Σ1, T1〉 → 〈Σ2, T2〉 are Sign-mor-
phisms f : Σ1 → Σ2, such that SEN(f)(T1) ⊆ T2.

Given an institution I = 〈Sign,SEN,MOD, |=〉, define

TH(I) = TH(π(I)),

i.e., its category of theories is the category of theories of its associated
π-institution. It is straightforward to verify that this notion coincides with
the notion defined directly in [12]. Note also that the category of theories
TH(IS) of the π-institution IS associated with a deductive system S has as
its objects all pairs 〈V, T 〉, where T is an S-theory in the sense of [4], and as
morphisms between 〈V, T1〉 and 〈V, T2〉 all assignments f : V ⇁ V, such that
f∗(T1) ⊆ T2. In particular, the wide subcategory of TH(IS) with morphisms
all theory morphisms induced by the identity assignment is isomorphic to
the category associated with the theory lattice of S in the standard way.

Now, coming back to the π-institution framework, define a functor SIG :
TH(I) → Sign by

SIG(〈Σ, T 〉) = Σ, for every 〈Σ, T 〉 ∈ |TH(I)|,
and by letting SIG(f) : Σ1 → Σ2 denote the underlying Sign-morphism of f,
for every f : 〈Σ1, T1〉 → 〈Σ2, T2〉 ∈ Mor(TH(I)). Then the following holds.

Lemma 4.1. Let I = 〈Sign,SEN, {CΣ}Σ∈|Sign|〉 be a π-institution and f :
〈Σ1, T1〉 → 〈Σ2, T2〉 ∈ Mor(TH(I)) an isomorphism. Then

SEN(SIG(f))(T1) = T2.
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Proof. Since f : 〈Σ1, T1〉 → 〈Σ2, T2〉 ∈ Mor(TH(I)), SEN(SIG(f))(T1) ⊆
T2. Since f−1 : 〈Σ2, T2〉 → 〈Σ1, T1〉 ∈ Mor(TH(I)), we also have

SEN(SIG(f−1))(T2) ⊆ T1.

Thus, T2 ⊆ SEN(SIG(f))(T1), whence SEN(SIG(f))(T1) = T2, as was to be
shown.

Next, define a functor THY : Sign → TH(I) by

THY(Σ) = 〈Σ, ∅c〉, for every Σ ∈ |Sign|,
and THY(f) : 〈Σ1, ∅c〉 → 〈Σ2, ∅c〉, with

SIG(THY(f)) = f, for every f : Σ1 → Σ2 ∈ Mor(Sign),

which is well-defined since SEN(f)(∅c)c ⊆ SEN(f)(∅)c = ∅c, by (d) of Defi-
nition 2.3.

Finally, denoting by ISign, ITH(I) the identity functors of Sign,TH(I),
respectively, define natural transformations η : ISign → SIG ◦ THY by

ηΣ : Σ → SIG(THY(Σ)) ∈ Mor(Sign),

with
ηΣ = iΣ, for every Σ ∈ |Sign|,

and ε : THY ◦ SIG → ITH(I) by ε〈Σ,T 〉 : 〈Σ, ∅c〉 → 〈Σ, T 〉 ∈ Mor(TH(I)),
with

SIG(ε〈Σ,T 〉) = iΣ, for every 〈Σ, T 〉 ∈ |TH(I)|.
Then, the following theorem ([8], Proposition 3.32) holds.

Theorem 4.2. 〈THY,SIG, η, ε〉 : Sign → TH(I) is an adjunction.

Recall that if S is a deductive system, T is an S-theory and σ : FmL(V )
→ FmL(V ) a substitution, σ−1(T ) is always an S-theory whereas σ(T ) is
not in general an S-theory. Thus, in dealing with the effect of substitutions
on theories one has to define (see [4]) an induced operator σS : ThS → ThS ,
on the set of S-theories ThS , such that

σS(T ) = CS(σ(T )), for every T ∈ ThS .

In the present categorical context the place of σS is taken by the morphism
part of a functor THS : Sign → Set. It is defined formally as follows:

THS(Σ) = {〈Σ, T 〉 : T ⊆ SEN(Σ), T c = T}, for every Σ ∈ |Sign|,
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i.e., THS(Σ) is the set of all Σ-theories. Given f : Σ1 → Σ2 ∈ Mor(Sign),
THS(f) : THS(Σ1) → THS(Σ2) is defined by

THS(f)(〈Σ1, T1〉) = 〈Σ2,SEN(f)(T1)c〉, for every 〈Σ1, T1〉 ∈ THS(Σ1).

Recall that by our adopted scoping convention for “c” in Section 2, in
“SEN(f)(T1)c” “c” applies to SEN(f)(T1) and not only to T1. THS : Sign
→ Set is indeed a functor, since, if f : Σ1 → Σ2, g : Σ2 → Σ3 ∈ Mor(Sign)
and 〈Σ1, T1〉 ∈ THS(Σ1),

THS(gf)(〈Σ1, T1〉) = 〈Σ3,SEN(gf)(T1)c〉
= 〈Σ3,SEN(g)(SEN(f)(T1))c〉
= 〈Σ3,SEN(g)(SEN(f)(T1)c)c〉
= THS(g)(〈Σ2,SEN(f)(T1)c〉)
= THS(g)(THS(f)(〈Σ1, T1〉)).

We call THS : Sign → Set the theory functor.

5. Relating Categories of Theories

A key role in the theory of algebraizable deductive systems [4] is played by
special properties of the Leibniz operator mapping theories to congruences
on the formula algebra. For instance, monotonicity of the Leibniz operator is
equivalent to protoalgebraicity and injectivity together with join-continuity
is equivalent to algebraizability. In the categorical context, where the cor-
respondence between theory lattices assumes the form of a functor between
categories of theories of institutions, it is natural to look for special pro-
perties that this functor may possess and expect that they will be crucial in
characterizing equivalence of institutions. Properties of this kind are studied
in this and subsequent sections.

Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉, I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions. We now introduce properties of func-
tors relating the categories of theories TH(I1) and TH(I2), that will be used
in the sequel to give the main characterization theorems of the relations
of quasi-equivalence and deductive equivalence between the π-institutions
themselves.

Denote by π2 : |TH(I1)| → |Set| the second projection, defined by

π2(〈Σ1, T1〉) = T1, for every 〈Σ1, T1〉 ∈ |TH(I1)|,
and, similarly, π2 : |TH(I2)| → |Set|, given by

π2(〈Σ2, T2〉) = T2, for every 〈Σ2, T2〉 ∈ |TH(I2)|.



CAAL: Equivalent Institutions 289

Definition 5.1. A functor F : TH(I1) → TH(I2) will be called

(i) signature-respecting if there exists a functor F † : Sign1 → Sign2,
such that the following rectangle commutes

Sign1 Sign2
�

F †

TH(I1) TH(I2)�F

�

SIG
�

SIG

If this is the case, it is easy to verify that F † is necessarily unique.

(ii) (strongly) monotonic if, for all 〈Σ1, T1〉, 〈Σ1, T
′
1〉 ∈ |TH(I1)|,

T1 ⊆ T ′
1 (if and) only if π2(F (〈Σ1, T1〉)) ⊆ π2(F (〈Σ1, T

′
1〉)),

(iii) join-respecting if, for all Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1),

(
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c = π2(F (〈Σ1,Φc〉)).

Finally, a signature-respecting functor F : TH(I1) → TH(I2) will
be said to commute with substitutions if, for every f : Σ1 → Σ′

1 ∈
Mor(Sign1),

THS2(F †(f))(F (〈Σ1, T1〉)) = F (THS1(f)(〈Σ1, T1〉)), (i)

for every 〈Σ1, T1〉 ∈ |TH(I1)|, where F † : Sign1 → Sign2 is the (necessarily
unique) functor of part (i).

Let S be an algebraizable deductive system with equivalent algebraic
semantics K. In [4] it is shown that the mapping Ω : ThS → ThK sending
an S-theory T to the largest congruence on the formula algebra of S that
is compatible with T, which is called the Leibniz operator, is actually an
isomorphism from the lattice of S-theories onto the lattice of K-congruences.
This isomorphism induces a functor Ω : TH(IS) → TH(ISK

) by defining
Ω(〈V, T 〉) = 〈V,Ω(T )〉, for every 〈V, T 〉 ∈ |TH(IS)|, and

Ω(f) = (f∗)2 : 〈V,Ω(T1)〉 → 〈V,Ω(T2)〉,
for all f : 〈V, T1〉 → 〈V, T2〉 ∈ Mor(TH(IS)). In other words, a theory
morphism σS induced by a substitution σ is mapped to the congruence
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morphism σK induced by the same substitution. In this case Ω† is the
identity signature functor and commutativity with substitutions assumes
the familiar form in [4]

σK(Ω(T1)) = Ω(σS(T1)).

On the other hand, the join-respecting property has nothing to do with the
join-continuity of [4]. In [4], Ω : ThS → ThK is said to be join-continuous
if, for every family Ti, i ∈ I, of S-theories, Ω(

∨S
i∈I Ti) =

∨K
i∈I Ω(Ti). In the

case of the π-institution associated with a deductive system S = 〈L,	S〉 it
assumes the form

∨K

φ∈Φ
Ω(CS(φ)) = Ω(CS(Φ)), for every Φ ⊆ FmL(V ).

Using the definition of the theory functors THS1 : Sign1 → Set and
THS2 : Sign2 → Set, Equation (i) may be rewritten in the form

SEN2(F †(f))(π2(F (〈Σ1, T1〉)))c = π2(F (〈Σ′
1,SEN1(f)(T1)c〉)).

The properties above may be extended to the case where the two cate-
gories of theories TH(I1) and TH(I2) are related via an adjunction. The
following definition then applies

Definition 5.2. An adjunction 〈F,G, η, ε〉 : TH(I1) → TH(I2) will be
called

(i) signature-respecting if both F and G are signature-respecting,

(ii) (strongly) monotonic if both F and G are (strongly) monotonic,

(iii) join-respecting if both F and G are join-respecting.

Finally, a signature-respecting adjunction will be said to commute with
substitutions if both F and G commute with substitutions.

6. Relating Institutions

In [6], the notions of interpretation and of translation between two deductive
systems were introduced. The notion of equivalence of deductive systems was
then given. This allowed for an elegant and symmetric reformulation of the
notion of algebraizability. In this section the notion of a translation and that
of an interpretation are extended to fit the π-institution framework. Based
on these notions, the relations of quasi-equivalence, strong quasi-equivalence
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and deductive equivalence, increasing in strength, can be defined between
two π-institutions. These relations provide the necessary means for compar-
ing their deductive apparatuses. The weakest notion is introduced first and
the rest are then developed in increasing order of strength. Characteriza-
tions of these relations will be provided in the next sections of the paper, in
terms of the strength of the ties that they impose between the categories of
theories of the two π-institutions they relate.

Definition 6.1. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,
SEN2, {CΣ}Σ∈|Sign2|〉 be two π-institutions.

• A translation of I1 in I2 is a pair 〈F,α〉 : I1 → I2 consisting of

(i) a functor F : Sign1 → Sign2 and

(ii) a natural transformation α : SEN1 → PSEN2 F.

• A translation 〈F,α〉 : I1 → I2 is an interpretation of I1 in I2 if, for
all Σ1 ∈ |Sign1|,Φ ∪ {φ} ⊆ SEN1(Σ1),

φ ∈ Φc if and only if αΣ1(φ) ⊆ αΣ1(Φ)c. (ii)

Note that if S is an algebraizable deductive system andK is its equivalent
algebraic semantics, a translation 〈F,α〉 : IS → ISK

is always taken to be
the identity on signatures in [4]. In that case αV : FmL(V ) → P(FmL(V )2)
is the well-known system of defining equations δ ≈ ε, which is always finite.
In particular (ii) assumes the form

Φ 	S φ iff {δ(ψ) ≈ ε(ψ) : ψ ∈ Φ} |=K δ(φ) ≈ ε(φ), (iii)

which is the condition defining K as an algebraic semantics for S and is the
first condition for algebraizability. The existence of an interpretation in the
other direction gives the second condition for algebraizability in the context
of deductive systems. The remaining two (third and fourth) conditions dic-
tate that the two interpretations must be inverses of one another. (iii) also
appears in a more general form as the definition of an interpretation from a
general k-deductive system to a general l-deductive system in [6].

Using the notion of interpretation for π-institutions the following rela-
tions on π-institutions can be defined.

Definition 6.2. Let I1,I2 be two π-institutions, as above.

• I1 will be said to be interpretable in I2 if there exists an interpre-
tation 〈F,α〉 : I1 → I2.
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• I1 will be said to be left quasi-equivalent to I2 and I2 is right
quasi-equivalent to I1 if there exist interpretations 〈F,α〉 : I1 → I2

and 〈G,β〉 : I2 → I1, such that

1. 〈F,G, η, ε〉 : Sign1 → Sign2 is an adjunction, for some natural
transformations η, ε,

2. for all Σ1 ∈ |Sign1|, φ ∈ SEN1(Σ1),

SEN1(ηΣ1)(φ)c ⊆ βF (Σ1)(αΣ1(φ))c (iv)

and, for all Σ2 ∈ |Sign2|, ψ ∈ SEN2(Σ2),

SEN2(εΣ2)(αG(Σ2)(βΣ2(ψ)))c ⊆ {ψ}c. (v)

In this case 〈F,α〉 is a left quasi-inverse of 〈G,β〉 and 〈G,β〉 a right
quasi-inverse of 〈F,α〉.

• I1 will be said to be strongly left quasi-equivalent to I2 and I2

strongly right quasi-equivalent to I1 if there exist interpretations
〈F,α〉 : I1 → I2, 〈G,β〉 : I2 → I1, such that 1 and 2 above hold,
but in 2 the inclusions are replaced by equalities. In this case 〈F,α〉
is a strong left quasi-inverse of 〈G,β〉 and 〈G,β〉 a strong right
quasi-inverse of 〈F,α〉.

• I1 and I2 are deductively equivalent if there exist an interpretation
〈F,α〉 : I1 → I2 and an interpretation 〈G,β〉 : I2 → I1, such that
〈F,α〉 and 〈G,β〉 are inverses of one another meaning that 〈F,α〉 is
a strong left quasi-inverse of 〈G,β〉 and in 1 above the adjunction is
replaced by an adjoint equivalence.

Note that if I1 and I2 are deductively equivalent and 〈F,α〉, 〈G,β〉 are in-
verses of each other, then each is both left and right strongly quasi-equivalent
to the other and the unit and counit of the quasi-invertibility relations are
natural isomorphisms.

Coming back to the case of algebraizable deductive systems, it is interest-
ing to note that (iv) and (v) replace the invertibility relations of [4] and the
generalized invertibility relations of [6]. But in the present setting, because
of the additional complexity induced by varying signatures, the additional
condition that the signature adjunction 〈F,G, η, ε〉 be an adjoint equivalence
is necessary to obtain full deductive equivalence. Note also that, if I1 and
I2 are deductively equivalent via the interpretations 〈F,α〉 : I1 → I2 and
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〈G,β〉 : I2 → I1 and the adjoint equivalence 〈F,G, η, ε〉 : Sign1 → Sign2,
then, for all Σ2 ∈ |Sign2| and ψ ∈ SEN2(Σ2),

{ψ}c = SEN2(εΣ2)(αG(Σ2)(βΣ2(ψ))c), (vi)

and, for all Σ1 ∈ |Sign1| and φ ∈ SEN1(Σ1),

{φ}c = SEN1(ηΣ1)
−1(βF (Σ1)(αΣ1(φ))c). (vii)

In this case (vi) and (vii) are equivalent to the equality versions of (v) and
(iv), respectively, in view of Corollaries 2.4 and 2.6 and the fact that ηΣ1

and εΣ2 are isomorphisms.
We define the corresponding notions for institutions using their associ-

ated π-institutions.

Definition 6.3. Let I1 and I2 be two institutions.

• I1 is interpretable in I2 if π(I1) is interpretable in π(I2).

• I1 is (strongly) left quasi-equivalent to I2 if π(I1) is (strongly)
left quasi-equivalent to π(I2) and, similarly, for (strong) right quasi-
equivalence.

• I1 and I2 are deductively equivalent if π(I1) and π(I2) are deduc-
tively equivalent.

A technical lemma that will be used very often in what follows is given
first.

Lemma 6.4. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions and 〈F,α〉 : I1 → I2 an interpretation.
Then

αΣ1(Φ
c)c = αΣ1(Φ)c, for all Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1). (viii)

Proof. Clearly, αΣ1(Φ)c ⊆ αΣ1(Φ
c)c. Since α is an interpretation, αΣ1(Φ

c)
⊆ αΣ1(Φ)c, whence αΣ1(Φ

c)c ⊆ (αΣ1(Φ)c)c, i.e., αΣ1(Φ
c)c ⊆ αΣ1(Φ)c, as

required.

Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉, I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions such that there exist translations 〈F,α〉
: I1 → I2, 〈G,β〉 : I2 → I1 and an adjunction 〈F,G, η, ε〉 : Sign1 → Sign2.
It is routine to check that in case any of the relations (iv)-(vii) holds, then
the same relation is valid with the single sentence φ or ψ replaced by a set of
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sentences. This fact will be used repeatedly in what follows without being
explicitly stated.

Moreover, it can be shown (see [20]) that the existence of the two transla-
tions and of the adjoint equivalence together with conditions (ii) and (vi) are
sufficient for the deductive equivalence of I1 and I2. This parallels Corollary
2.9 of [4], where an analogous result is proved for algebraizable deductive
systems.

7. Equational Algebra

In this section, an algebraic counterpart EA of the institution EQ, given
in Section 3 is constructed. This is an institution based on an algebraic
theory in monoid form in an appropriately chosen category. The definition
of deductive equivalence, presented in the previous section, will provide the
necessary framework in which EQ will be shown to be related to its algebraic
counterpart EA.

The construction of the institution EA = 〈EASIG,EASEN,EAMOD,
|=〉 is outlined first. This institution is based on an algebraic theory TEQ =
〈TEQ, ηEQ, µEQ〉 in monoid form in the category ΩSet of ω-sets. It may be
shown that the equational institution EQ and EA are deductively equivalent
institutions. Details of the construction and the equivalence will be provided
elsewhere.

First, an adjunction 〈FEQ, UEQ, ηEQ, εEQ〉 : ΩSet → EQSIG is con-
structed as follows: The functor FEQ : ΩSet → EQSIG is the identity
on objects and sends an ΩSet-morphism f : X → Y to the morphism
jEQ
Y f : X ⇁ Y in EQSIG obtained by composing f with the embedding

of Y in TmY (V ), taking the k-ary basic operation y ∈ Yk to the Y -term
y(vk,0, . . . , vk,k−1). The functor UEQ : EQSIG → ΩSet sends an object X
of EQSIG to the ω-set TmX(V ) of X-terms with variables in V and an
EQSIG-morphism f : X ⇁ Y to the ω-set map f∗ : TmX(V ) → TmY (V )
obtained by extending f to X-terms (see also Section 3). The natural trans-
formation ηEQ : IΩSet → UEQFEQ from the identity functor on ΩSet to the
composite of FEQ and UEQ assigns to each ω-set X the standard embedding
jEQ
X of X into TmX(V ) sending x ∈ Xk to x(vk,0, . . . , vk,k−1). Finally, the

natural transformation εEQ : FEQUEQ → IEQSIG from the composite of
UEQ and FEQ to the identity functor on EQSIG assigns to each object X
of EQSIG the identity map iTmX(V ) viewed as an EQSIG-morphism from
TmX(V ) to X.

This adjunction gives rise in a standard way to an algebraic theory
TEQ = 〈TEQ, ηEQ, µEQ〉 in ΩSet by setting TEQ = UEQFEQ, ηEQ = ηEQ
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and µEQ = UEQεEQ
FEQ (see, e.g., [16], p.134). It turns out that the Kleisli

category ΩSetTEQ
coincides with EQSIG. A TEQ-algebra in ΩSet is now a

pair X = 〈X, ξ〉 consisting of an ω-set X together with an ΩSet-morphism
ξ : TmX(V ) → X, such that the following diagrams commute

X TmX(V )�ηEQX

iX

�
�

�
�

�
���
X
�

ξ

TmX(V ) X�
ξ

TmTmX(V )(V ) TmX(V )�TEQ(ξ)

�

µEQX

�

ξ

The ω-set X is called the carrier or universe of the algebra X and the
ΩSet-morphism ξ is called the structure map of X. Given two TEQ-
algebras X = 〈X, ξ〉 and Y = 〈Y, ζ〉, a TEQ-algebra homomorphism is an
ΩSet-morphism h : X → Y that preserves the algebra structure, i.e., such
that the following rectangle commutes.

X Y�
h

TmX(V ) TmY (V )�TEQ(h)

�

ξ

�

ζ

The collection of all TEQ-algebras together with TEQ-algebra homomor-
phisms between them forms a category ΩSetTEQ, known as the Eilenberg-
Moore category of TEQ-algebras in ΩSet. ΩSetTEQ is usually thought of as a
class of algebras of the same similarity type that is equationally defined, since
Eilenberg-Moore categories of algebras for algebraic theories in Set roughly
correspond to universal algebraic varieties of algebras [17]. Thus, the pas-
sage from EQ to EA, as defined below, is not a trivial process. Models of EQ
are first-order models over varying algebraic signatures whereas models of
EA come from algebras of the same similarity type that, in addition, belong
to some equationally defined class of algebras corresponding to the chosen
algebraic theory TEQ. The significance of this passage in the general theory
of categorical abstract algebraic logic and its key role in the algebraization
of a multi-sorted logical system was emphasized in [20] and will be further
studied in [21], where a further step towards the formulation of a general the-
ory of algebraizability along the lines of [4, 6] will be taken. Namely, based



296 G. Voutsadakis

on the notion of an algebraic theory, the general notion of algebraic insti-
tution will be defined, which roughly corresponds to a 2-deductive system
with an equational consequence relation. Algebraic institutions will then
be used in conjunction with the graded notions of equivalence, that were
defined in Section 6, to give a definition of corresponding graded notions of
algebraizability for institutions.

Recall from Section 3.2 that given a set A, by Cl(A) is denoted the ω-set
whose k-th level consists of all k-ary operations on A. Given a set A, one
may construct a TEQ-algebra A∗ = 〈Cl(A), ξA〉, with universe Cl(A), whose
structure map reflects the way clone operations compose in Cl(A). Letting
QEQ be the full subcategory of ΩSetTEQ with objects {A∗ = 〈Cl(A), ξA〉 :
A ∈ |Set|}, construct the institution EA = 〈EASIG,EASEN,EAMOD, |=〉
as follows:

(i) EASIG = EQSIG

(ii) EASEN = EQSEN

(iii) For every X ∈ |EASIG|,EAMOD(X) is the category with objects
pairs 〈A∗, f〉,A∗ ∈ |QEQ|, f : X ⇁ Cl(A) ∈ Mor(EASIG), and mor-
phisms h : 〈A∗, f〉 → 〈B∗, g〉, TEQ-algebra homomorphisms h : A∗ →
B∗, such that g = h ◦ f . Moreover, given k : X ⇁ Y ∈ Mor(EASIG),
EAMOD(k) : EAMOD(Y ) → EAMOD(X) is the functor that maps
an object 〈A∗, f〉 ∈ |EAMOD(Y )| to 〈A∗, f ◦k〉 ∈ |EAMOD(X)| and a
morphism h : 〈A∗, f〉 → 〈B∗, g〉 ∈ Mor(EAMOD(Y )) to the morphism
EAMOD(k)(h) : 〈A∗, f ◦ k〉 → 〈B∗, g ◦ k〉, with EAMOD(f)(h) = h.

(iv) Finally, satisfaction in EA is defined, for every X ∈ |EASIG|, by

〈A∗, f〉 |=X s ≈ t iff ξA(f∗(s)) = ξA(f∗(t)),

for all 〈A∗, f〉 ∈ |EAMOD(X)|, s ≈ t ∈ EASEN(X).

It is not hard to see that EA is an institution and that EA and EQ are
deductively equivalent, via the interpretations 〈IEQSIG, α〉 : EQ → EA, and
〈IEASIG, β〉 : EA → EQ, where

αX(s ≈ t) = {s ≈ t}, for all X ∈ |EQSIG|, s ≈ t ∈ EQSEN(X) and

βX(s ≈ t) = {s ≈ t}, for all X ∈ |EASIG|, s ≈ t ∈ EASEN(X).

The key observation for this equivalence is that to an X-algebra A =
〈A,XA〉 one may associate the TEQ-algebra 〈Cl(A), ξA〉 ∈ |QEQ| and a mor-
phism f : X ⇁ Cl(A), such that fk(x) = ηEQ

Cl(A)k
(xA), for all k ∈ ω, x ∈ Xk,
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and to each model 〈〈Cl(A), ξA〉, f〉 one may associate an X-algebra A =
〈A, ξAf〉, such that the two members in each of these pairs satisfy the same
equations in their respective institutions.

As an example, let X = {Xk : k ∈ ω}, with X0 = X1 = ∅,X2 = {·} and
Xn = ∅, for all n ≥ 3, i.e., X is the signature of groupoids. To a groupoid
〈A, ·A〉 ∈ |EQMOD(X)| one associates the TEQ-algebra 〈Cl(A), ξA〉 with the
morphism ηCl(A)X

A : X ⇁ Cl(A), with ηCl(A)(XA(·)) = v20 ·A v21, and to
〈〈Cl(A), ξA〉, g〉 ∈ |EAMOD(X)| one associates the groupoid 〈A, ξA(g(·))〉.
Then the assertion expresses the fact that, for any groupoid term t,

tA = ξA((ηEQ
Cl(A)X

A)∗(t)) and tA = ξA(g∗(t)).

TmX(V ) TmCl(A)(V )�
(ηEQ

Cl(A)X
A)∗

Cl(A)�ξA

TmX(V ) TmCl(A)(V )�g
∗

Cl(A)�ξA

8. Interpretability

In this section a characterization of interpretability of a term π-institution
I1 in a π-institution I2 is provided. Namely, it will be shown that a term
π-institution I1 is interpretable in a π-institution I2 if and only if there
exists a strongly monotonic, join-respecting, signature-respecting functor
from TH(I1) into TH(I2) that commutes with substitutions. A characte-
rization of the existence of a translation 〈F,α〉 : I1 → I2, from a term
π-institution I1 to a π-institution I2 is given first. This will just require and
will be guaranteed by the existence of a signature-respecting functor from
TH(I1) into TH(I2).

Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions and 〈F,α〉 : I1 → I2 a translation.
Define F# : TH(I1) → TH(I2) as follows.

F#(〈Σ1, T1〉) = 〈F (Σ1), αΣ1(T1)c〉, for every 〈Σ1, T1〉 ∈ |TH(I1)|,

and, given f : 〈Σ1, T1〉 → 〈Σ′
1, T

′
1〉 ∈ Mor(TH(I1)),

F#(f) : 〈F (Σ1), αΣ1(T1)c〉 → 〈F (Σ′
1), αΣ′

1
(T ′

1)
c〉

is determined by
SIG(F#(f)) = F (SIG(f)),
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where SIG : TH(I1) → Sign1 and SIG : TH(I2) → Sign2 denote the
forgetful functors from theories to signatures, defined formally in Section 4.

SIG being faithful, F#(f) is well-defined, and it is a theory morphism
since

SEN2(SIG(F#(f)))(αΣ1(T1)c)c = SEN2(F (SIG(f)))(αΣ1(T1))c

(by Corollary 2.4)
= αΣ′

1
(SEN1(SIG(f))(T1))c

(since α is a natural transf.)
⊆ αΣ′

1
(T ′

1)
c

(since f : 〈Σ1, T1〉 → 〈Σ′
1, T

′
1〉).

F# : TH(I1) → TH(I2) is a functor, since, if f : 〈Σ1, T1〉 → 〈Σ′
1, T

′
1〉, g :

〈Σ′
1, T

′
1〉 → 〈Σ′′

1, T
′′
1 〉 ∈ Mor(TH(I1)), we have

SIG(F#(gf)) = F (SIG(gf))
= F (SIG(g))F (SIG(f))
= SIG(F#(g))SIG(F#(f))
= SIG(F#(g)F#(f))

and therefore F#(gf) = F#(g)F#(f). Finally F# is signature-respecting.
In fact, the following diagram commutes:

Sign1 Sign2
�

F

TH(I1) TH(I2)�F#

�

SIG
�

SIG

For every 〈Σ1, T1〉 ∈ |TH(I1)|,

SIG(F#(〈Σ1, T1〉)) = SIG(〈F (Σ1), αΣ1(T1)c〉)
= F (Σ1)
= F (SIG(〈Σ1, T1〉)),

and, for every f : 〈Σ1, T1〉 → 〈Σ′
1, T

′
1〉 ∈ Mor(TH(I1)), we have, by definition

of F#,
SIG(F#(f)) = F (SIG(f)).

Suppose, next, that I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉 is a term π-
institution, I2 = 〈Sign2,SEN2, {CΣ}Σ∈|Sign2|〉 is a π-institution and F :
TH(I1) → TH(I2) a signature-respecting functor. Then, by Definition
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5.1(i), there exists a (necessarily unique) functor F † : Sign1 → Sign2, such
that the following rectangle commutes

Sign1 Sign2
�

F †

TH(I1) TH(I2)�F

�

SIG
�

SIG

Since I1 is term, there exists a source signature-variable pair 〈A, p〉 for I1.
Set

Θ = π2(F (〈A, {p}c〉)).
Define αF : SEN1 → PSEN2F

† by αF
Σ1

: SEN1(Σ1) → P(SEN2(F †(Σ1))),
with

αF
Σ1

(φ) = PSEN2(F †(f〈Σ1,φ〉))(Θ), for all Σ1 ∈ |Sign1|, φ ∈ SEN1(Σ1).

To show that the pair 〈F †, αF 〉 : I1 → I2 is a translation, it suffices to
show that αF : SEN1 → PSEN2F

† is a natural transformation, i.e., that the
following diagram commutes, for every f : Σ1 → Σ′

1 ∈ Mor(Sign1).

SEN1(Σ′
1) PSEN2(F †(Σ′

1))�
αF

Σ′
1

SEN1(Σ1) PSEN2(F †(Σ1))�
αF

Σ1

�

SEN1(f)

�

PSEN2(F †(f))

For every φ ∈ SEN1(Σ1), we have

PSEN2(F †(f))(αF
Σ1

(φ)) = PSEN2(F †(f))(PSEN2(F †(f〈Σ1,φ〉))(Θ))
(by definition of αF

Σ1
)

= PSEN2(F †(ff〈Σ1,φ〉))(Θ)
(since PSEN2F

† is a functor)
= PSEN2(F †(f〈Σ′

1,SEN1(f)(φ)〉))(Θ)
(by the term property)

= αF
Σ′

1
(SEN1(f)(φ)) (by definition of αF

Σ′
1
),

as required. Thus, 〈F †, αF 〉 : I1 → I2 is indeed a translation. This estab-
lishes the following
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Theorem 8.1. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,
SEN2, {CΣ}Σ∈|Sign2|〉 be two π-institutions.

(i) If 〈F,α〉 : I1 → I2 is a translation, then F# : TH(I1) → TH(I2) is a
signature-respecting functor.

(ii) If I1 is term and F : TH(I1) → TH(I2) is a signature-respecting
functor, then 〈F †, αF 〉 : I1 → I2 is a translation.

With the help of Theorem 8.1, it is not difficult to obtain a similar
characterization for the existence of an interpretation 〈F,α〉 : I1 → I2 from
a term π-institution I1 to a π-institution I2. Namely, we have

Theorem 8.2. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,
SEN2, {CΣ}Σ∈|Sign2|〉 be two π-institutions.

(i) If 〈F,α〉 : I1 → I2 is an interpretation, then F# : TH(I1) → TH(I2)
is a strongly monotonic, join-respecting, signature-respecting functor
that commutes with substitutions.

(ii) If I1 is term and F : TH(I1) → TH(I2) is a strongly monotonic,
join-respecting, signature-respecting functor that commutes with sub-
stitutions, then 〈F †, αF 〉 : I1 → I2 is an interpretation.

Proof. (i) By part (i) of Theorem 8.1, it suffices to show that F# : TH(I1)
→ TH(I2) is strongly monotonic, join-respecting and commutes with sub-
stitutions. To this end, let 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈ |TH(I1)|. Then

T1 ⊆ T ′
1 iff αΣ1(T1)c ⊆ αΣ1(T

′
1)

c (since α is an interpretation)
iff π2(F#(〈Σ1, T1〉)) ⊆ π2(F#(〈Σ1, T

′
1〉))

(by the definition of F#, π2).

To show that F# is join-respecting, let Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1). Then

(
⋃

φ∈Φ π2(F#(〈Σ1, {φ}c〉)))c = (
⋃

φ∈Φ αΣ1({φ}c)c)c

(by the definitions of F#, π2)
= (

⋃
φ∈Φ αΣ1(φ)c)c (by Lemma 6.4)

= (
⋃

φ∈Φ αΣ1(φ))c

= αΣ1(Φ)c

= αΣ1(Φ
c)c (by Lemma 6.4)

= π2(F#(〈Σ1,Φc〉))
(by the definitions of F#, π2).
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Finally, for commutativity with substitutions, we have, for all f : Σ1 → Σ′
1 ∈

Mor(Sign1),

SEN2(F (f))(π2(F#(〈Σ1, T1〉)))c = SEN2(F (f))(αΣ1(T1)c)c

(by the definitions of F#, π2)
= SEN2(F (f))(αΣ1(T1))c (by Cor. 2.4)
= αΣ′

1
(SEN1(f)(T1))c

(since α is a natural transformation)
= αΣ′

1
(SEN1(f)(T1)c)c (by Lemma 6.4)

= π2(F#(〈Σ′
1,SEN1(f)(T1)c〉))

(by definitions of F#, π2).

(ii) By part (ii) of Theorem 8.1, it suffices to show that, for every Σ1 ∈
|Sign1|,Φ ∪ {φ} ⊆ SEN1(Σ1), we have

φ ∈ Φc iff αF
Σ1

(φ) ⊆ αF
Σ1

(Φ)c.

To this end, we first prove that

π2(F (〈Σ1,Φc〉)) = αF
Σ1

(Φ)c, for all Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1). (ix)

In fact, we have

αF
Σ1

(Φ)c = (
⋃

φ∈Φ α
F
Σ1

(φ))c

= (
⋃

φ∈Φ PSEN2(F †(f〈Σ1,φ〉))(Θ))c (by the definition of αF
Σ1

)
= (

⋃
φ∈Φ PSEN2(F †(f〈Σ1,φ〉))(π2(F (〈A, {p}c〉))))c

(by definition of Θ)
= (

⋃
φ∈Φ PSEN2(F †(f〈Σ1,φ〉))(π2(F (〈A, {p}c〉)))c)c

= (
⋃

φ∈Φ π2(F (〈Σ1,SEN1(f〈Σ1,φ〉)(p)c〉)))c
(by commutativity with substitutions)

= (
⋃

φ∈Φ π2(F (〈Σ1, {φ}c〉)))c (by the term property)
= π2(F (〈Σ1,Φc〉)) (by join-continuity).

Finally, let Σ1 ∈ |Sign1| and Φ ∪ {φ} ⊆ SEN1(Σ1). Then

αF
Σ1

(φ) ⊆ αF
Σ1

(Φ)c iff αF
Σ1

(φ)c ⊆ αF
Σ1

(Φ)c

iff π2(F (〈Σ1, {φ}c〉)) ⊆ π2(F (〈Σ1,Φc〉))
by Equation (ix),

iff {φ}c ⊆ Φc by strong monotonicity,
iff φ ∈ Φc,

as required.
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9. Quasi-Equivalence

In this section the relation of quasi-equivalence between two term π-institu-
tions I1 and I2 is characterized. As a corollary, a characterization of strong
quasi-equivalence is obtained. This also yields a characterization of deduc-
tive equivalence by looking at the special case where the adjunction between
the signature categories happens to be an adjoint equivalence. However, in
the main result of the next section, Theorem 10.5, it will be shown that
in this special case, the additional requirement that the unit and counit of
the adjunction be natural isomorphisms can simplify the conditions imposed
significantly.

It is worth pointing out that the main characterization theorem of this
section, Theorem 9.4, and its proof are slightly more complicated than the
corresponding result for deductive systems because in the present context
one has to deal with the increased complexity of the signature categories of
the π-institutions involved. The reader may wish at this point to compare
the two examples presented in Section 3 as an illustration of this fact.

Lemma 9.1. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions and 〈F,G, η, ε〉 : TH(I1) → TH(I2) a
signature-respecting adjunction. Then, for all 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈ |TH(I1)|,

〈Σ2, T2〉, 〈Σ2, T
′
2〉 ∈ |TH(I2)|,

SIG(η〈Σ1,T1〉) = SIG(η〈Σ1,T ′
1〉) and SIG(ε〈Σ2,T2〉) = SIG(ε〈Σ2,T ′

2〉).

Proof. We show that, for all Σ1 ∈ |Sign1|, 〈Σ1, T1〉 ∈ |TH(I1)|,

SIG(η〈Σ1,T1〉) = SIG(η〈Σ1,∅c〉).

To this end, consider the theory morphism i : 〈Σ1, ∅c〉 → 〈Σ1, T1〉, such
that SIG(i) = iΣ1 . This morphism agrees on signatures with the morphism
i〈Σ1,∅c〉 : 〈Σ1, ∅c〉 → 〈Σ1, ∅c〉, that is also the identity on signatures, by defi-
nition. Thus, by signature-respectivity,

SIG(F (i)) = SIG(F (i〈Σ1 ,∅c〉))
= SIG(iF (〈Σ1,∅c〉)).

Similarly, by signature-respectivity, the above equation yields

SIG(G(F (i))) = SIG(G(iF (〈Σ1,∅c〉)))
= SIG(iG(F (〈Σ1,∅c〉)))
= iSIG(G(F (〈Σ1,∅c〉))),
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and, therefore, the following diagram commutes, by the naturality of η :

SIG(〈Σ1, T1〉) SIG(G(F (〈Σ1, T1〉)))�
SIG(η〈Σ1,T1〉)

SIG(〈Σ1, ∅c〉) SIG(G(F (〈Σ1, ∅c〉)))�
SIG(η〈Σ1,∅c〉)

�

iΣ1

�

iSIG(G(F (〈Σ1,∅c〉)))

This shows that SIG(η〈Σ1,T1〉) = SIG(η〈Σ1,∅c〉), as required. The correspond-
ing relation for the counit ε can be proved similarly.

Recall from Section 5 that, given a signature-respecting functor F :
TH(I1) → TH(I2), by F † : Sign1 → Sign2 is denoted the induced sig-
nature functor such that SIG ◦ F = F † ◦ SIG. We denote by η†Σ1

: Σ1 →
G†(F †(Σ1)) the common value SIG(η〈Σ1,T1〉), for all Σ1-theories 〈Σ1, T1〉,
and by ε†Σ2

: F †(G†(Σ2)) → Σ2 the common value SIG(ε〈Σ2,T2〉), for all Σ2-
theories 〈Σ2, T2〉.

Using Lemma 9.1, it is not hard to see that the following holds

Lemma 9.2. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions.

(i) If 〈F,G, η, ε〉 : TH(I1) → TH(I2) is a signature-respecting adjunction,
then 〈F †, G†, η†, ε†〉 : Sign1 → Sign2 is an adjunction.

(ii) Moreover, if 〈F,G, η, ε〉 : TH(I1) → TH(I2) is a signature-respecting
adjoint equivalence then 〈F †, G†, η†, ε†〉 : Sign1 → Sign2 is an adjoint
equivalence.

The following definition will be used in the characterization of strong
quasi-equivalence.

Definition 9.3. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,
SEN2, {CΣ}Σ∈|Sign2|〉 be two π-institutions. An adjunction 〈F,G, η, ε〉 :
TH(I1) → TH(I2) will be said to be strong if the following hold

(i) SEN1(SIG(η〈Σ1,T1〉))(T1)c = π2(G(F (〈Σ1, T1〉))), for every 〈Σ1, T1〉 ∈
|TH(I1)|, and

(ii) SEN2(SIG(ε〈Σ2,T2〉))(π2(F (G(〈Σ2, T2〉))))c = T2, for every 〈Σ2, T2〉 ∈
|TH(I2)|.
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Theorem 9.4. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,
SEN2, {CΣ}Σ∈|Sign2|〉 be two π-institutions.

(i) If I1 is left quasi-equivalent (respectively, strongly left quasi-equivalent,
deductively equivalent) to I2 via the interpretations 〈F,α〉 : I1 →
I2, 〈G,β〉 : I2 → I1 and the adjunction (respectively, adjunction, ad-
joint equivalence) 〈F,G, η, ε〉 : Sign1 → Sign2, then 〈F#, G#, η#,
ε#〉 : TH(I1) → TH(I2) is a strongly monotonic, join-respecting,
signature-respecting adjunction (respectively, strong adjunction, ad-
joint equivalence) that commutes with substitutions, where

SIG(η#
〈Σ1,T1〉) = ηΣ1 and SIG(ε#〈Σ2,T2〉) = εΣ2,

for all 〈Σ1, T1〉 ∈ |TH(I1)|, 〈Σ2, T2〉 ∈ |TH(I2)|.

(ii) If I1,I2 are term and 〈F,G, η, ε〉 : TH(I1) → TH(I2) is a strongly
monotonic, join-respecting, signature-respecting adjunction (respecti-
vely, strong adjunction, adjoint equivalence) that commutes with sub-
stitutions, then I1 is left quasi-equivalent (respectively, strongly left
quasi-equivalent, deductively equivalent) to I2 via the interpretations
〈F †, αF 〉 : I1 → I2, 〈G†, αG〉 : I2 → I1 and the adjunction (respec-
tively, adjoint equivalence) 〈F †, G†, η†, ε†〉 : Sign1 → Sign2.

Proof. We restrict our attention to the case of quasi-equivalence. The
remaining cases may be handled similarly.

(i) Let 〈F,α〉 : I1 → I2, 〈G,β〉 : I2 → I1 be the two interpretations and
〈F,G, η, ε〉 : Sign1 → Sign2 the adjunction witnessing the quasi-equivalence
relation between I1 and I2. By part (i) of Theorem 8.2 there exist strongly
monotonic, join-respecting, signature-respecting functors F# : TH(I1) →
TH(I2), G# : TH(I2) → TH(I1), that commute with substitutions. Define
η# : ITH(I1) → G#F# and ε# : F#G# → ITH(I2) as in the statement of
the theorem. Since, by the definition of left quasi-equivalence,

SEN1(ηΣ1)(T1)c ⊆ βF (Σ1)(αΣ1(T1))c

and
SEN2(εΣ2)(αG(Σ2)(βΣ2(T2)))c ⊆ T2,

both η#
〈Σ1,T1〉 and ε#〈Σ2,T2〉 are well-defined theory morphisms and it is clear

that 〈F#, G#, η#, ε#〉 : TH(I1) → TH(I2) is an adjunction. Since both F#

and G# are strongly monotonic, join-respecting, signature-respecting and
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commute with substitutions, 〈F#, G#, η#, ε#〉 is also strongly monotonic,
join-respecting, signature-respecting and commutes with substitutions.

(ii) By Theorem 8.2, 〈F †, αF 〉 : I1 → I2, 〈G†, αG〉 : I2 → I1 are inter-
pretations. Furthermore, since 〈F,G, η, ε〉 : TH(I1) → TH(I2) is signature-
respecting, η† : ISign1

→ G†F † and ε† : F †G† → ISign2
are such that

〈F †, G†, η†, ε†〉 : Sign1 → Sign2 is an adjunction. Thus, it only remains to
show that

SEN1(η
†
Σ1

)(φ)c ⊆ αG
F †(Σ1)(α

F
Σ1

(φ))c,

for all Σ1 ∈ |Sign1| and all φ ∈ SEN1(Σ1) and

SEN2(ε
†
Σ2

)(αF
G†(Σ2)(α

G
Σ2

(ψ)))c ⊆ {ψ}c,

for all Σ2 ∈ |Sign2| and ψ ∈ SEN2(Σ2). We show the first.

αG
F †(Σ1)

(αF
Σ1

(φ))c = αG
F †(Σ1)

(αF
Σ1

(φ)c)c (by Lemma 6.4)
= αG

F †(Σ1)
(αF

Σ1
({φ}c)c)c (by Lemma 6.4)

= αG
F †(Σ1)

(π2(F (〈Σ1, {φ}c〉)))c (by Equation (ix))
= π2(G(〈F †(Σ1), π2(F (〈Σ1, {φ}c〉))〉)) (by Eqt. (ix))
= π2(G(F (〈Σ1, {φ}c〉)))

(since F (〈Σ1, {φ}c〉) = 〈F †(Σ1), π2(F (〈Σ1, {φ}c〉))〉)
⊇ SEN1(η

†
Σ1

)({φ}c)c (by Lemma 9.1)
= SEN1(η

†
Σ1

)(φ)c.

The second may be shown analogously.

10. Deductive Equivalence

The notion of deductive equivalence was defined for π-institutions in Section
6 and a characterization was obtained for the deductive equivalence of two
term π-institutions in terms of their categories of theories in Theorem 9.4
of the preceding section as a special case of a similar characterization for
the more general notion of quasi-equivalence. In this section, we exploit the
special additional features present in the case of a deductive equivalence,
more precisely, the fact that units and counits of the adjunctions involved
are natural isomorphisms, to obtain a refinement of Theorem 9.4 for the case
of deductive equivalence.

Lemma 10.1. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions. A signature-respecting adjoint equiva-
lence 〈F,G, η, ε〉 : TH(I1) → TH(I2) is monotonic.
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Proof. Suppose 〈F,G, η, ε〉 : TH(I1) → TH(I2) is signature-respecting
and let 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈ |TH(I1)|, with T1 ⊆ T ′

1. Then, the identity
on Σ1 induces a theory morphism i : 〈Σ1, T1〉 → 〈Σ1, T

′
1〉. This morphism

agrees on signatures with the identity i〈Σ1,T1〉 : 〈Σ1, T1〉 → 〈Σ1, T1〉, whence,
by signature-respectivity,

SIG(F (i)) = SIG(F (i〈Σ1,T1〉))
= SIG(iF (〈Σ1,T1〉))
= iSIG(F (〈Σ1,T1〉)).

Thus, F (i) : F (〈Σ1, T1〉) → F (〈Σ1, T
′
1〉) is the identity on signatures, showing

that
π2(F (〈Σ1, T1〉)) ⊆ π2(F (〈Σ1, T

′
1〉)).

By symmetry, for all 〈Σ2, T2〉, 〈Σ2, T
′
2〉 ∈ |TH(I2)|, with T2 ⊆ T ′

2,

π2(G(〈Σ2, T2〉)) ⊆ π2(G(〈Σ2, T
′
2〉)),

as required.

Lemma 10.2. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions. A signature-respecting adjoint equiva-
lence 〈F,G, η, ε〉 : TH(I1) → TH(I2) is injective on Σ1-theories, i.e., for
all Σ1 ∈ |Sign1|, 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈ |TH(I1)|,

〈Σ1, T1〉 �= 〈Σ1, T
′
1〉 implies F (〈Σ1, T1〉) �= F (〈Σ1, T

′
1〉)

and the same holds for Σ2-theories, for every Σ2 ∈ |Sign2|.
Proof. Let 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈ |TH(I1)|. If F (〈Σ1, T1〉) = F (〈Σ1, T

′
1〉),

then, by signature-respectivity and Lemma 9.1,

SEN1(SIG(η−1
〈Σ1,T1〉))(π2(G(F (〈Σ1, T1〉)))) =

SEN1(SIG(η−1
〈Σ1,T ′

1〉))(π2(G(F (〈Σ1, T
′
1〉)))),

whence, by Lemma 4.1, T1 = T ′
1. An analogous argument can be used for

G.

Lemma 10.3. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions. A signature-respecting adjoint equiva-
lence 〈F,G, η, ε〉 : TH(I1) → TH(I2) is join-respecting.
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Proof. Let Σ1 ∈ |Sign1|,Φ ⊆ SEN1(Σ1). Since, by Lemma 10.1, 〈F,G, η,
ε〉 is monotonic,

π2(F (〈Σ1, {φ}c〉)) ⊆ π2(F (〈Σ1,Φc〉)), for every φ ∈ Φ,

whence
(
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c ⊆ π2(F (〈Σ1,Φc〉)).

Suppose that the inclusion is proper, i.e., that

(
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c ⊂ π2(F (〈Σ1,Φc〉)).

Then, by Lemmas 10.1 and 10.2, if Σ2 = SIG(F (〈Σ1,Φc〉)), we have

π2(G(〈Σ2, (
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c〉)) ⊂

⊂ π2(G(〈Σ2, π2(F (〈Σ1,Φc〉))〉))
= π2(G(F (〈Σ1,Φc〉))),

whence, since η〈Σ1,Φc〉 is an isomorphism,

SEN1(SIG(η−1
〈Σ1,Φc〉))(π2(G(〈Σ2, (

⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c〉))) ⊂

SEN1(SIG(η−1
〈Σ1,Φc〉))(π2(G(F (〈Σ1,Φc〉))))

i.e., by Lemma 4.1,

SEN1(SIG(η−1
〈Σ1,Φc〉))(π2(G(〈Σ2, (

⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c〉))) ⊂ Φc. (x)

Now, note that

π2(F (〈Σ1, {φ}c〉)) ⊆ (
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c,

for every φ ∈ Φ, whence, by Lemma 10.1,

π2(G(F (〈Σ1, {φ}c〉))) ⊆ π2(G(〈Σ2, (
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c〉)),

and, hence,

(
⋃

φ∈Φ

π2(G(F (〈Σ1, {φ}c〉))))c ⊆ π2(G(〈Σ2, (
⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c〉)).
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Thus, by Lemma 9.1,

SEN1(η
†−1

Σ1
)((

⋃

φ∈Φ

π2(G(F (〈Σ1, {φ}c〉))))c) ⊆

SEN1(SIG(η−1
〈Σ1,Φc〉))(π2(G(〈Σ2, (

⋃

φ∈Φ

π2(F (〈Σ1, {φ}c〉)))c〉))),

where recall that

η†Σ1
= SIG(η〈Σ1,T1〉), for every Σ1-theory 〈Σ1, T1〉 ∈ |TH(I1)|.

Therefore, by (x), and Corollaries 2.6 and 2.4, we have

SEN1(η
†−1

Σ1
)(

⋃

φ∈Φ

π2(G(F (〈Σ1, {φ}c〉))))c ⊂ Φc,

i.e., by Lemma 9.1,

(
⋃

φ∈Φ

SEN1(SIG(η−1
〈Σ1,{φ}c〉))(π2(G(F (〈Σ1, {φ}c〉)))))c ⊂ Φc,

whence, by Lemma 4.1,

(
⋃

φ∈Φ

{φ}c)c ⊂ Φc, i.e., Φc ⊂ Φc,

a contradiction.

Lemma 10.4. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,SEN2,
{CΣ}Σ∈|Sign2|〉 be two π-institutions and 〈F,G, η, ε〉 : TH(I1) → TH(I2) a
signature-respecting adjoint equivalence. Then, for all 〈Σ1, T1〉, 〈Σ1, T

′
1〉 ∈

|TH(I1)|,

T1 ⊆ T ′
1 iff π2(F (〈Σ1, T1〉)) ⊆ π2(F (〈Σ1, T

′
1〉)),

and, similarly, for G.

Proof. The “only if” holds by Lemma 10.1.
For the “if” direction, assume that π2(F (〈Σ1, T1〉)) ⊆ π2(F (〈Σ1, T

′
1〉)).

Then we must have, by Lemma 10.1,

π2(G(F (〈Σ1, T1〉))) ⊆ π2(G(F (〈Σ1, T
′
1〉))),
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and, therefore, by Lemma 9.1,

SEN1(SIG(η−1
〈Σ1,T1〉))(π2(G(F (〈Σ1, T1〉)))) ⊆

SEN1(SIG(η−1
〈Σ1,T ′

1〉))(π2(G(F (〈Σ1, T
′
1〉)))),

i.e., by Lemma 4.1, T1 ⊆ T ′
1, as required.

Theorem 10.5. Let I1 = 〈Sign1,SEN1, {CΣ}Σ∈|Sign1|〉,I2 = 〈Sign2,
SEN2, {CΣ}Σ∈|Sign2|〉 be two term π-institutions. I1 and I2 are deductively
equivalent if and only if there exists a signature-respecting adjoint equiva-
lence 〈F,G, η, ε〉 : TH(I1) → TH(I2) that commutes with substitutions.

Proof. A stronger “only if” was proved in part (i) of Theorem 9.4.
For the “if” part, it suffices, by part (ii) of Theorem 9.4, to show that

the signature-respecting adjoint equivalence 〈F,G, η, ε〉 : TH(I1) → TH(I2)
that commutes with substitutions is also strongly monotonic and join-conti-
nuous. But this was shown in Lemmas 10.4 and 10.3, respectively.

Theorem 10.5 is a direct generalization of Theorems 3.7 of [4] and V3.5
of [6] modulo the signature-respectivity condition which is needed here to
tame the much more complex structure of the category of signatures of an
arbitrary π-institution as compared to the one associated with a deductive
system S in the sense of [4, 6]1.

Since the notions of deductive equivalence and the category of theories
for institutions were defined in terms of the corresponding notions on the
associated π-institutions, Theorem 10.5 can be reformulated to fit in the
institution framework as follows:

Corollary 10.6. Let I1 = 〈Sign1,SEN1,MOD1, |=1〉, I2 = 〈Sign2,
SEN2,MOD2, |=2〉 be two term institutions. I1 and I2 are deductively equi-
valent if and only if there exists a signature-respecting adjoint equivalence
〈F,G, η, ε〉 : TH(I1) → TH(I2) that commutes with substitutions.
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