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The study of structure systems, an abstraction of the concept of first-order structures, is continued. Structure
systems have algebraic systems as their algebraic reducts and their relational component consists of a collection
of relation systems on the underlying functors. An analog of the expansion of a first-order structure by constants
is presented. Furthermore, analogs of the Diagram Lemma and the Reduction Operator Lemma from the theory
of equality-free first-order structures are provided in the framework of structure systems.
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1 Introduction

The recent rapid development of the theory of abstract algebraic logic (AAL) into a coherent theory created a
common setting in which much of the previous work in the field of algebraic logic may be carried out. It also
provided a unified general framework for the future study of the algebraization of a wide variety of new logical
systems appearing in mathematical logic, in computer science, in linguistics and in other theoretical and applied
fields of study. This development is due to the seminal work of Czelakowski, of Blok and Pigozzi, and of the
Barcelona group under the leadership of Font and Jansana, among others. The interested reader may refer to the
review article [18], the monograph [17], and the book [6] for an overview of the theory and its main results and
applications.

The development of AAL brought again into the forefront older work of Bloom [2], which showed that its main
objects of study, deductive systems, and their models, logical matrices, form a part of the theory of first-order
logic without equality. More precisely, they may be studied in the framework of universal Horn logic (without
equality) with a single unary relation symbol, the truth predicate, and of its ordinary first-order models.

This connection between sentential logics and equality-free first-order logic led Dellunde (partly in joint work
with Casanovas and Jansana) and Elgueta (partly in joint work with Czelakowski and Jansana) to the study of
equality-free first-order logic and its model theory from the point of view of AAL. Their work may be found in
the series of papers [4, 8, 9, 10] and [11, 12, 13, 14, 15], respectively.

The main body of AAL, which is the one responsible for it becoming a mature and robust theory, deals with
sentential logics. This framework is powerful enough to encompass most of the logics that had been studied
in classical algebraic logic before, using a variety of case-specific techniques that were unified by AAL. There
are logics, however, for which this framework is inadequate; most notably, logics with multiple signatures and
quantifiers, but also logics whose syntax is not string-based. This led in [27] (see also [28, 29]) to the founding
of the theory of categorical abstract algebraic logic (CAAL), whose main objects of study are π-institutions [16]
(see also [19, 20]), structures more complex than sentential logics that allow handling successfully many of the
logical systems that are not handled elegantly or cannot be handled at all by traditional methods in AAL.
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In AAL, classes of universal algebras, more specifically, varieties and quasi-varieties of universal alge-
bras, serve as the algebraic counterparts of sentential logics. In CAAL, recent work [30, 31, 32, 33] has re-
vealed that the role of universal algebras is assumed by what were called algebraic systems in [32]. Moreover,
the idea of using algebraic systems in place of universal algebras has proven fruitful in a different direction.
It has helped critically in the development of an analog of the sub-theory of AAL, presented by Pałasinśka and
Pigozzi [26] for handling algebraically the logical connective of implication, to the level of logics formalized as
π-institutions [34, 35, 36, 37].

Because of these very recent developments and also because of some additional results obtained by the author
in [38], it is very natural to consider lifting results from the model theory of equality-free first-order logic to the
level of structures, abstracting first-order structures, that have as their underlying algebraic components algebraic
systems rather than universal algebras. In fact, this is what has been started in the series of papers [39, 40, 41],
following the work of Elgueta in [11] and inspired by both Dellunde’s and Elgueta’s work. These abstract
structures, mimicking equality-free first-order models at this more abstract level, were introduced in [39] and
called structure systems or simply systems. Basic aspects of the syntax and the semantics for the study of systems
were also developed in [39] following leads from equality-free first-order logic and its models. Moreover, in [39],
the reduced product construction is lifted in this setting and an analog of the well-known Ultraproduct Theorem
of Łoś is obtained for structure systems. The second installment [40] studies Leibniz equality, a weak form of
equality that stands in for genuine equality in the equality-free context of the theory, and provides analogs of the
well-known Homomorphism Theorems of universal algebra in the context of systems. Finally, in [41], operators
are introduced for classes of structure systems, and some of their properties when composed with one another
are studied. A few of the concepts and the results of [39] and [40] that are critical for better understanding the
developments in the present paper will be reviewed in Section 2.

The whole of this work and what is to follow has exactly the same goal in CAAL as the work of Elgueta did
in AAL, i. e., to develop a more general framework for some of the results already known in a more restricted
setting in CAAL and to place some of these results in a more natural context.

In the present work, this development is continued by formulating and proving analogs in the framework of
structure systems of the Diagram Lemma and of the Reduction Operator Lemma of [11].

For general concepts and notation from category theory the reader is referred to any of [1, 3, 23]. Standard
references on model theory are the books by Chang and Keisler [5], Hodges [21], and Marker [25].

2 Preliminaries

In this section, some concepts and some results that were introduced previously in the theory of CAAL, together
with some of the basics of [39] and [40], will be recalled. This exposition of background information will,
hopefully, facilitate the reading in the following sections.

Given a category Sign and a functor SEN : Sign −→ Set, the clone of all natural transformations on SEN
is defined to be the locally small category with collection of objects {SENα : α an ordinal} and collection of
morphisms τ : SENα −→ SENβ β-sequences of natural transformations τi : SENα −→ SEN [33]. Composition

SENα SENβ�〈τi : i < β〉
SENγ�〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.
A subcategory N of this category consisting of all objects of the form SENk for k < ω and containing all pro-
jection morphisms pk,i : SENk −→ SEN, i < k, k < ω, with pk,i

Σ : SEN(Σ)k −→ SEN(Σ) given by

pk,i
Σ (�ϕ ) = ϕi for all �ϕ ∈ SEN(Σ)k,

and such that, for every family {τi : SENk −→ SEN : i < l} of natural transformations in N , the sequence

〈τi : i < l〉 : SENk −→ SENl

is also in N , is referred to as a category of natural transformations on SEN.
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This construction is very similar to that used in the formalization of Lawvere theories [22] (also [24, 1.5.35])
in categorical algebra, and generalizes the clone of operations on a given algebra from the theory of universal
algebra.

The term clone category is used for a category F with all natural numbers as objects that is isomorphic to a
category of natural transformations N on a given functor SEN via an isomorphism that preserves the projection
operations and, as a consequence, also preserves objects (identifying SENk with k, k ∈ ω).

A system language L = 〈F , R, 
〉 consists of a clone category F , a nonempty set R of relation symbols, and a
function 
 : R −→ ω that assigns finite arities to the relation symbols in R. The set of L-terms TeL is constructed
by recursion using a fixed denumerable set of variables V = {xk : k ∈ ω}, which will sometimes be denoted,
as usual, by the metavariables x, y, z, etc., by setting xk ∈ TeL for all k ∈ ω and σ(t0, . . . , tn−1) ∈ TeL for
all σ ∈ F (n, 1) and all t0, . . . , tn−1 ∈ TeL. An atomic L-formula is an expression of the form r(t0, . . . , tn−1),
where r ∈ R with 
(r) = n and t0, . . . , tn−1 ∈ TeL. Arbitrary L-formulas are constructed using atomic L-for-
mulas and some set of adequate connectives and quantifiers in the ordinary first-order way.

Given a system language L, an L-structure system or, simply, L-system A = 〈SENA, 〈NA, FA〉, RA〉 con-
sists of

1. a functor SENA : SignA −→ Set with a category of natural transformations NA on SENA;

2. a surjective functor F A : F −→ NA that preserves all projections pk,i : k −→ 1, k < ω, i < k;

3. a family RA = {rA : r ∈ R} of relation systems on SENA indexed by R such that rA is n-ary if 
(r) = n.

L-systems generalize both the ordinary matrix models of AAL and first-order structures, and form in the context
of CAAL the natural models for theories over a fixed system language L.

Let t ∈ TeL be an L-term, A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system, Σ ∈ |SignA|, and �ϕ ∈ SENA(Σ)ω .
The value of t at 〈Σ, �ϕ〉 in the system A, denoted by tA

Σ(�ϕ ), is defined by recursion on the structure of t as follows:
xA

kΣ
(�ϕ ) = ϕk for all k ∈ ω, and

σ(t0, . . . , tn−1)A
Σ(�ϕ ) = F A(σ)Σ(tA0Σ

(�ϕ ), . . . , tAn−1Σ
(�ϕ ))

for all σ ∈ F (n, 1) and all t0, . . . , tn−1 ∈ TeL.
Finally, given an L-formula α, an L-system A, as above, Σ ∈ |SignA|, and �ϕ ∈ SENA(Σ)ω , A satisfies α

at 〈Σ, �ϕ 〉, written A �Σ α[�ϕ ], is defined by recursion on the structure of the L-formula α as follows:

1. If α = r(t0, . . . , tn−1) is atomic, then A �Σ r(t0, . . . , tn−1)[�ϕ ] iff 〈tA0Σ
(�ϕ ), . . . , tAn−1Σ

(�ϕ )〉 ∈ rA
Σ .

2. A �Σ (α0 ∧ α1)[�ϕ ] iff A �Σ α0[�ϕ ] and A �Σ α1[�ϕ ].
3. A �Σ (¬β)[�ϕ ] iff A ��Σ β[�ϕ ].

4. A �Σ (∀i)β[�ϕ ] iff A �Σ β[�ψ ] for all �ψ ∈ SENA(Σ)ω such that ϕj = ψj for all j �= i.

These conditions clearly define the semantics of all other connectives in the first-order model theory of L-systems.
Let SEN : Sign −→ Set be a functor and N be a category of natural transformations on SEN. In the sequel,

the functor of N -terms with variables in an arbitrary set X that was presented in [37] will also be used. Given a
set X , the collection TeN (X) of N -terms in the variables X is defined recursively as follows:

1. x ∈ TeN (X) for all x ∈ X;

2. σ(t0, . . . , tn−1) ∈ TeN (X) for all σ : SENn −→ SEN in N and all t0, . . . , tn−1 ∈ TeN (X).
Moreover, given sets X,Y and a mapping f : X −→ Y , f induces a mapping TeN (f) : TeN (X) −→ TeN (Y ),
defined recursively on the structure of N -terms, by

1. TeN (f)(x) = f(x), for all x ∈ X;

2. for all σ : SENn −→ SEN in N and all t0, . . . , tn−1 ∈ TeN (X),

TeN (f)(σ(t0, . . . , tn−1)) = σ(TeN (f)(t0), . . . ,TeN (f)(tn−1)).

It is not difficult to see that, defined as above, TeN : Set −→ Set is a functor, and that it is equipped with a
category N t of natural transformations that is compatible with N . By an N -term we will understand a member
of TeN (X) for some X ∈ |Set|.
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Let, now, A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉 be two L-structure systems. Re-
call from [39] that an (NA,NB)-epimorphic translation 〈F, α〉 : SENA −→se SENB is said to be an L-mor-
phism 〈F, α〉 : A −→ B if

1. the following triangle commutes:

NA NB;

F

FA
�

�
�

��
FB

�
�

�
��

the dashed line represents the two-way correspondence established by the (N A,NB)-epimorphic property;

2. for all r ∈ R with 
(r) = n, all Σ ∈ |SignA|, and all �ϕ ∈ SENA(Σ)n, �ϕ ∈ rA
Σ implies αΣ(�ϕ ) ∈ rB

F (Σ).

Such an L-morphism is called strong or strict if, in the last condition above, the displayed implication is replaced
by an equivalence. A strict surjective L-morphism is called reductive and is denoted by 〈F, α〉 : A−�s B.

Several results on L-systems from both [39] and [40] will be useful in better understanding the results pre-
sented in the following sections. In [39, Lemma 6], given two L-systems

A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉
and a strong L-morphism 〈F, α〉 : A −→s B, it is shown that if D is an L-subsystem of B, denoted D ⊆ B,
then α−1(D) ⊆ A, and it is also shown that if C ⊆ A, F : SignA −→ SignB is injective, and F (SignC) is a sub-
category of SignB, then α(C) ⊆ B. For the precise definitions of the pre-image α−1(D) and of the image α(C)
of L-systems D and C, respectively, along an L-system morphism and related details, see [39, Section 3.2].
Moreover, in [39, Proposition 7], it is proven that every reductive L-morphism is elementary. In [40], the notion
of a congruence system θ of an L-system A = 〈SENA, 〈NA, FA〉, RA〉 is defined. It is an NA-congruence sys-
tem on SENA, in the ordinary sense of CAAL, that, in addition, is compatible with all relation systems in RA,
i. e., such that for all r ∈ R with 
(r) = n, all Σ ∈ |SignA|, and all �ϕ, �ψ ∈ SENA(Σ)n, �ϕ ∈ rA

Σ and �ϕ θn
Σ

�ψ im-

ply �ψ ∈ rA
Σ . Furthermore, it is shown in [40, Proposition 1] that the collection ConNA

(A) of all NA-congruence

systems of A forms a principal ideal of the complete lattice ConNA

(SENA) of all NA-congruence systems
on SENA, whence there always exists a largest NA-congruence system of A, which is termed the Leibniz
NA-congruence system of A and is denoted by ΩNA

(A) or, more simply, Ω(A). In [40, Theorem 6] a syn-
tactic characterization is provided of the Leibniz congruence system of an L-system A. A Leibniz formula over L
or a Leibniz L-formula is a formula of the form β(x, y) with two free variables such that for some atomic for-
mula γ(x, �z ) with at least one free variable x,

β(x, y) := (∀�z )(γ(x, �z ) ↔ γ(y, �z )),

where by (∀�z ) is denoted the string of universal quantifications (∀z0) . . . (∀zk−1), where k is the length of the
vector �z. It is shown in [40, Theorem 6] that, given an L-system A = 〈SENA, 〈NA, FA〉, RA〉, Σ ∈ |SignA|,
and ϕ,ψ ∈ SENA(Σ), 〈ϕ,ψ〉 ∈ ΩNA

Σ (A) iff for all Leibniz L-formulas β(x, y),

A �Σ′ β(x, y)[SEN(f)(ϕ), SEN(f)(ψ)] for all Σ′ ∈ |SignA|, f ∈ SignA(Σ,Σ′).

Finally, in [40, Proposition 16], given two L-systems

A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉
and a reductive system morphism 〈F, α〉 : A−�s B, where F : SignA −→ SignB is an isomorphism, then the
pair 〈F ∗, α∗〉 is defined by letting F ∗ = F and

α∗ : SENA/ΩNA

(A) −→ SENB/ΩNB

(B) ◦ F ∗

be given, for all Σ ∈ |SignA|, by

α∗
Σ(ϕ∗) = αΣ(ϕ)∗ for all ϕ ∈ SENA(Σ).
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The following diagram illustrates the definition of 〈F ∗, α∗〉:

A∗ B∗.�
〈F ∗, α∗〉

A B�〈F, α〉

�

〈ISignA , πNA〉
�

〈ISignB , πNB〉

It is then proven that 〈F ∗, α∗〉 : A∗ −→ B∗ is an isomorphism of L-systems. For the definition of quotient
L-systems and other related details, see [40, Section 4].

3 Expansion by constants

Suppose that L = 〈F , R, 
〉 is a system language and A = 〈SENA, 〈NA, FA〉, RA〉 is an L-structure system.
The analog in the context of structure systems of the expansion LA of an equality-free first-order language L
by a new set CA of constant symbols ca, a ∈ A, is the expansion LA of the system language L by the sentence
functor SENA, i. e., the quadruple LA = 〈F , SENA, R, 
〉.

Using the notation of [37, Section 2] that was reviewed in the introduction, define a new sentence func-
tor TeA : SignA −→ Set as follows: At the object level, for all Σ ∈ |SignA|,

TeA(Σ) = TeF (V ∪ SENA(Σ)).

Of course it is assumed that the variables in the denumerable collection V are disjoint from all sentences ϕ
in SENA(Σ), for all Σ ∈ |SignA|.

At the morphism level, for all f ∈ SignA(Σ,Σ′), define TeA(f) : TeA(Σ) −→ TeA(Σ′) by recursion on the
structure of t ∈ TeA(Σ) as follows:

1. If t = v ∈ V , then TeA(f)(v) = v.

2. If t = ϕ ∈ SENA(Σ), then TeA(f)(ϕ) = SENA(f)(ϕ).
3. If t = σ(t0, . . . , tn−1) for some σ ∈ F (n, 1) and t0, . . . , tn−1 ∈ TeA(Σ), then

TeA(f)(σ(t0, . . . , tn−1)) = σ(TeA(f)(t0), . . . ,TeA(f)(tn−1)).

An element t ∈ TeA(Σ) will be referred to as a Σ-term over LA.
We define similarly the functor FmA : SignA −→ Set yielding Σ-formulas over LA as follows: At the object

level, FmA(Σ) is built recursively out of the Σ-terms over LA, the relation symbols in R, and some adequate
collection of first-order connectives in the usual way. At the morphism level, the only change in a Σ-formula
over LA that is effected by FmA(f), where f ∈ SignA(Σ,Σ′), is that every Σ-sentence ϕ ∈ SENA(Σ) appearing
in a term in the formula is replaced by the Σ′-sentence SENA(f)(ϕ), i. e., every Σ-term t over LA in the formula
is replaced by the Σ′-term TeA(f)(t).

An LA(-structure) system is a quadruple

B = 〈SENB, 〈NB, FB〉, 〈CB, γB〉, RB〉,
where 〈SENB, 〈NB, FB〉, RB〉 is an L-system and 〈CB, γB〉 : SENA −→s SENB is a singleton translation.

Next, the value tBΣ (�ψ ) of a Σ-term t over LA in an LA-system B = 〈SENB, 〈NB, FB〉, 〈CB, γB〉, RB〉 at
the tuple �ψ ∈ SENB(CB(Σ))ω is defined by recursion on the structure of t as follows:

1. If t = vi ∈ V , then tBΣ (�ψ ) = ψi.

2. If t = ϕ ∈ SENA(Σ), then tBΣ (�ψ ) = γB
Σ (ϕ).

3. If t = σ(t0, . . . , tn−1) for some n-ary σ in F and t0, . . . , tn−1 ∈ TeA(Σ), then

tBΣ (�ψ ) = σB
CB(Σ)(t

B
0Σ

(�ψ ), . . . , tBn−1Σ
(�ψ )).
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Satisfaction of a Σ-formula α(�v ) over LA with free variables in the list �v in an LA-system B at the tu-
ple �ψ ∈ SENB(CB(Σ))ω is denoted by B �Σ α[�ψ ] and is defined by recursion on the structure of the Σ-formu-
la α as follows:

1. If α = r(t0, . . . , tn−1) is atomic, i. e., if r ∈ R with 
(r) = n and t0, . . . , tn−1 ∈ TeA(Σ), then

B �Σ r(t0, . . . , tn−1)[�ψ ] iff 〈tB0Σ
(�ψ ), . . . , tBn−1Σ

(�ψ )〉 ∈ rB
CB(Σ).

2. If α is a Boolean combination of Σ-formulas over LA or results from a quantification of some other Σ-for-
mula over LA, then the recursive step mimics the corresponding one from first-order logic.

We denote by AtA(Σ) the collection of all atomic Σ-sentences over LA.
Finally, we say that a Σ-formula α over LA is satisfied in an LA-system B if it is satisfied at every tuple in the

system.

4 The Diagram Lemma

Let L = 〈F , R, 
〉 be a system language and A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system. The diagram of A,
denoted by DgA = {DgΣA}Σ∈|SignA|, is defined by setting, for all Σ ∈ |SignA|,

DgΣA = {α ∈ AtA(Σ) : 〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉 �Σ α}
∪ {¬α : α ∈ AtA(Σ), 〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉 �Σ ¬α}.

The Leibniz diagram of A, denoted by DglA = {DglΣA}Σ∈|SignA|, is defined by letting, for all Σ ∈ |SignA|,
DglΣA be the union of DgΣA and all Σ-sentences over LA of the form β(t, t′), for β(x, y) a Leibniz L-formula
(see [40, Section 3] and, also, the introduction) and t, t′ ∈ TeA(Σ) closed Σ-terms over LA, i. e., containing no
variables in V , such that 〈tAΣ, t′AΣ 〉 ∈ ΩΣ(A). More formally,

DglΣA = DgΣA ∪ {β(t, t′) : β(x, y) a Leibniz L-formula, t, t′ ∈ TeA(Σ) closed,
and 〈tAΣ, t′AΣ 〉 ∈ ΩΣ(A)}.

The elementary diagram DgeA of A is defined as DgeA = {DgeΣA}Σ∈|SignA|, where for each Σ ∈ |SignA|,
DgeΣA is the collection of all Σ-sentences over LA which hold in 〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉.

Note that, by [40, Theorem 6], we have that DglA ≤ DgeA, i. e., for all Σ ∈ |SignA|, DglΣA ⊆ DgeΣA.
The following lemma forms an analog for structure systems of the Diagram Lemma [11, Lemma 4.5]. Before

its formulation, the reader should take notice of the construction of the singleton translation

〈F ∗, α∗〉 : SENA/Ω(A) −→s SENB/Ω(B)

out of the singleton translation 〈F, α〉 : SENA −→s SENB that was presented, under several appropriate hypothe-
ses, in [40, Proposition 16] and reviewed in the introduction. The same construction, under different hypotheses,
will be key in the proof of the Diagram Lemma.

Theorem 4.1 (Diagram Lemma) Let L = 〈F , R, 
〉 be a system language,

A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉

be two L-systems, and 〈F, α〉 : SENA −→s SENB a singleton translation, where F : SignA −→ SignB is a
surjective functor.

1. If 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DglA, then 〈F ∗, α∗〉 : A∗ −→s B∗ is a strong L-mor-
phism from A∗ into B∗ and α∗

Σ is injective for all Σ ∈ |SignA|.
2. If 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DgeA, then 〈F ∗, α∗〉 : A∗ −→e B∗ is an elementary

L-morphism from A∗ into B∗ and α∗
Σ is injective for all Σ ∈ |SignA|.

Moreover, implications become equivalences if, in addition, 〈F, α〉 : SENA −→se SENB is an (NA,NB)-epi-
morphic translation, where F : SignA −→ SignB is a surjective functor.
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P r o o f.
1. Assume that 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DglA. Define F ∗ = F : SignA −→ SignB

and α∗ : SENA/Ω(A) −→ SENB/Ω(B) ◦ F ∗ by letting, for all Σ ∈ |SignA|,

α∗
Σ : SENA(Σ)/ΩΣ(A) −→ SENB(F (Σ))/ΩF (Σ)(B)

be defined by

α∗
Σ(ϕ∗) = αΣ(ϕ)∗ for all ϕ ∈ SENA(Σ).

It must first be shown that α∗ is a well-defined singleton translation from SENA/Ω(A) to SENB/Ω(B) ◦ F .
To this end, suppose that Σ ∈ |SignA| and that ϕ,ϕ′ ∈ SENA(Σ) are such that ϕ∗ = ϕ′∗, i. e., 〈ϕ,ϕ′〉 ∈ ΩΣ(A).
By [40, Theorem 6], for all Σ′ ∈ |SignA| and all f ∈ SignA(Σ,Σ′), β(SENA(f)(ϕ), SENA(f)(ϕ′)) ∈ DglΣ′A

for all Leibniz L-formulas β(x, y). Thus, since 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DglA, we get that

B �F (Σ′) β(x, y)[αΣ′(SENA(f)(ϕ)), αΣ′(SENA(f)(ϕ′))].

This is equivalent, by the naturality of α, to

B �F (Σ′) β(x, y)[SENB(F (f))(αΣ(ϕ)), SENB(F (f))(αΣ(ϕ′))].

Hence, by the surjectivity of F combined with [40, Theorem 6], we get that 〈αΣ(ϕ), αΣ(ϕ′)〉 ∈ ΩF (Σ)(B), i. e.,
that αΣ(ϕ)∗ = αΣ(ϕ′)∗. Therefore, α∗

Σ is a well-defined mapping for all Σ ∈ |SignA|.
To see that α∗ : SENA/Ω(A) −→ SENB/Ω(B) ◦ F is a natural transformation, consider Σ1,Σ2 ∈ |SignA|,

f ∈ SignA(Σ1,Σ2), and ϕ ∈ SENA(Σ1). Then

SENA(Σ2)/ΩΣ2(A) SENB(F (Σ2))/ΩF (Σ2)(B)�
α∗

Σ2

SENA(Σ1)/ΩΣ1(A) SENB(F (Σ1))/ΩF (Σ1)(A)�α∗
Σ1

�

SENA(f)/Ω(A)

�

SENB(F (f))/Ω(B)

and

α∗
Σ2

(SENA(f)/Ω(A)(ϕ∗)) = α∗
Σ2

(SENA(f)(ϕ)∗)
= αΣ2(SENA(f)(ϕ))∗

= SENB(F (f))(αΣ1(ϕ))∗

= SENB(F (f))/Ω(B)(αΣ1(ϕ)∗)
= SENB(F (f))/Ω(B)(α∗

Σ1
(ϕ∗)).

Next, we show that 〈F, α∗〉 is (NA∗
,NB∗

)-epimorphic. To this end, suppose that σ is n-ary in F , Σ ∈ |SignA|,
and �ϕ ∈ SENA(Σ)n. Then, since 〈σA

Σ(�ϕ ), σA
Σ(�ϕ )〉 ∈ ΩΣ(A), by [40, Theorem 6] we get that for all Leibniz

L-formulas β(x, y), all Σ′ ∈ |SignA|, and all f ∈ SignA(Σ,Σ′),

β(SENA(f)(σA
Σ(�ϕ )), σ(SENA(f)(�ϕ ))) ∈ DglΣ′(A).

But, by the hypothesis, we have that 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DglA, whence we get that

B �F (Σ′) β(x, y)[αΣ′(SENA(f)(σA
Σ(�ϕ ))), σB

F (Σ′)(αΣ(SENA(f)(�ϕ )))],

whence

B �F (Σ′) β(x, y)[αΣ′(SENA(f)(σA
Σ(�ϕ ))), σB

F (Σ′)(SENB(F (f))(αΣ(�ϕ )))]
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and, therefore,

B �F (Σ′) β(x, y)[SENB(F (f))(αΣ(σA
Σ(�ϕ ))), SENB(F (f))(σB

F (Σ)(αΣ(�ϕ )))].

Thus, by the surjectivity of F together with [40, Theorem 6], we obtain that

〈αΣ(σA
Σ(�ϕ )), σB

F (Σ)(αΣ(�ϕ ))〉 ∈ ΩF (Σ)(B).

Thus,

(1) αΣ(σA
Σ(�ϕ ))∗ = σB

F (Σ)(αΣ(�ϕ ))∗.

Finally, we obtain

α∗
Σ(σA∗

Σ (�ϕ ∗)) = α∗
Σ(σA

Σ(�ϕ )∗)
= αΣ(σA

Σ(�ϕ ))∗

= σB
F (Σ)(αΣ(�ϕ ))∗ (by equation (1))

= σB∗
F (Σ)(αΣ(�ϕ )∗)

= σB∗
F (Σ)(α

∗
Σ(�ϕ ∗)).

This shows that 〈F, α∗〉 : SENA/Ω(A) −→se SENB/Ω(B) is indeed an (NA∗
,NB∗

)-epimorphic translation.
Next, it is shown that 〈F, α∗〉 : A∗ −→ B∗ is an L-system morphism and that it is strong. In fact, given r ∈ R

with 
(r) = n, Σ ∈ |SignA|, and �ϕ ∈ SENA(Σ)n, we get that

�ϕ ∗ ∈ rA∗
Σ iff �ϕ ∈ rA

Σ

iff r(�ϕ ) ∈ DglΣA

iff 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 �Σ r(�ϕ )
iff αΣ(�ϕ ) ∈ rB

F (Σ)

iff αΣ(�ϕ )∗ ∈ rB∗
F (Σ)

iff α∗
Σ(�ϕ ∗) ∈ rB∗

F (Σ).

This shows that 〈F, α∗〉 : A∗ −→s B∗ is a strong L-system morphism.

Finally, by [40, Lemma 2], we get that Ker(〈F, α∗〉) ∈ Con(A∗), whence Ker(〈F, α∗〉) = ∆SENA∗
, since A∗

is reduced. Hence α∗
Σ is injective for all Σ ∈ |SignA|.

Suppose, conversely, that 〈F, α〉 : SENA −→se SENB, where F : SignA −→ SignB is a surjective func-
tor, is an (NA,NB)-epimorphic translation, and that 〈F ∗, α∗〉 : A∗ −→s B∗ is a strong L-morphism from A∗

into B∗ and α∗
Σ is injective for all Σ ∈ |SignA|. We must show that 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model

of DglA.
First, suppose that r ∈ R with 
(r) = n, Σ ∈ |SignA|, and �ϕ ∈ SENA(Σ)n. Since 〈F, α∗〉 is strong, we ob-

tain that

〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉 �Σ r(�ϕ ) iff

〈SENB∗
, 〈NB∗

, FB∗〉, 〈F, α∗〉, RB∗〉 �Σ r(�ϕ ).

Thus, we obtain that

〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉 �Σ r(�ϕ ) iff 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 �Σ r(�ϕ ).

Next, suppose that β(x, y) is a Leibniz L-formula, Σ ∈ |SignA|, and t(�ϕ ), t′(�ϕ ) are Σ-terms over LA such
that β(t, t′) ∈ DglΣA. Then we have 〈tAΣ(�ϕ ), t′AΣ (�ϕ )〉 ∈ ΩΣ(A). Thus, since 〈F, α〉 : SENA −→se SENB is an
(NA,NB)-epimorphic translation such that 〈F, α∗〉 : A∗ −→s B∗, we obtain that

〈αΣ(tAΣ(�ϕ )), αΣ(t′AΣ (�ϕ ))〉 ∈ ΩF (Σ)(B),

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.mlq-journal.org



Math. Log. Quart. 53, No. 2 (2007) 155

i. e., 〈tBF (Σ)(αΣ(�ϕ )), t′BF (Σ)(αΣ(�ϕ ))〉 ∈ ΩF (Σ)(B). Hence, by [40, Theorem 6], we get that

〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 �Σ β(t, t′)

and, therefore, 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DglΣA. But Σ ∈ |SignA| was arbitrary, which
means that 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DglA, as was to be shown.

2. By 1., showing that the strong L-system morphism 〈F ∗, α∗〉 : A∗ −→s B∗ is also elementary is sufficient
to prove the “only if” direction. To this end, suppose that γ(�x ) is an L-formula whose free variables are among
those in the list �x of length n, Σ ∈ |SignA|, and �ϕ ∈ SENA(Σ)n. Then we have

A∗ �Σ γ[�ϕ ∗] iff A �Σ γ[�ϕ ] (by [39, Proposition 7])

iff 〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉 �Σ γ(�ϕ )
iff 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 �Σ γ(�ϕ ) (by the hypothesis)

iff B �F (Σ) γ[αΣ(�ϕ )]
iff B∗ �F (Σ) γ[αΣ(�ϕ )∗] (by [39, Proposition 7])

iff B∗ �F (Σ) γ[α∗
Σ(�ϕ ∗)] (by the definition of α∗

Σ).

For the converse, suppose that Σ ∈ |SignA| and that γ(�ϕ ) is a Σ-sentence over LA. Then

〈SENA, 〈NA, FA〉, 〈ISignA , ι〉, RA〉 �Σ γ(�ϕ )
iff A �Σ γ[�ϕ ] (γ an L-sentence)

iff A∗ �Σ γ[�ϕ ∗] (by [39, Proposition 7])

iff B∗ �F (Σ) γ[α∗
Σ(�ϕ ∗)] (by the hypothesis)

iff B �F (Σ) γ[αΣ(�ϕ )] (by [39, Proposition 7])

iff 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 �Σ γ(�ϕ ).

Theorem 4.1 yields the following corollary, which forms an analog of [11, Corollary 4.6] for L-systems.
It says, roughly speaking, that an elementary morphism is strong, and if its functor component is an isomorphism,
then the image of the domain is an elementary subsystem of the codomain. It also asserts that an elementary
morphism between two L-systems induces an elementary morphism between their Leibniz reductions and that,
under this induced morphism, the image of the domain becomes an elementary subsystem of the codomain in case
the functor component of the original elementary morphism is an isomorphism.

Corollary 4.2 Let L = 〈F , R, 
〉 be a system language and

A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉, RB〉

be two L-systems.

1. If 〈F, α〉 : A −→e B is an elementary L-system morphism, then 〈F, α〉 : A −→s B is also strong, and if,
in addition, F : SignA −→ SignB is an isomorphism, then α(A) ⊆e B.

2. If 〈F, α〉 : A −→e B is an elementary L-system morphism and F is surjective, then 〈F, α∗〉 : A∗ −→e B∗

is also elementary, and if, in addition, F : SignA −→ SignB is an isomorphism, then α∗(A∗) ⊆e B∗.

P r o o f.
1. It is clear from the definitions involved that 〈F, α〉 : A −→e B elementary implies that 〈F, α〉 : A −→s B

is also strong. Now apply [39, Lemma 6, part 2] to obtain that α(A) ⊆ B. However, since 〈F, α〉 is elementary,
we get that α(A) ⊆e B.

2. From the hypothesis, we obtain that 〈SENB, 〈NB, FB〉, 〈F, α〉, RB〉 is a model of DgeA. Thus, by The-
orem 4.1, 2., we get that 〈F ∗, α∗〉 : A∗ −→e B∗ is an elementary L-system morphism. Therefore, with the help
of [39, Lemma 6, part 2], we get that α∗(A∗) ⊆e B∗.
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5 The Reduction Operator Lemmas

In this section an analog of [11, Reduction Operator Lemma 4.7] of Elgueta is formulated and proven for L-sys-
tems. This result consists of three parts. All of them deal with equalities between operators on classes of L-sys-
tems that are obtained by composing in various ways the Leibniz reduction operator L with other class operators.
The first part shows that, if Si denotes the operator of taking isomorphic copies of L-subsystems with isomorphic
functor components, then LSi = LSiL. The second part shows that, if P,Pf ,Pu,Psd denote the operators of
taking isomorphic copies of direct products, filtered products, ultraproducts, subdirect products, respectively,
of L-systems, then LO = LOL, where O stands for any of these product operators. Finally, in the last part, it is
shown that, if Sie is the operator of taking isomorphic copies of elementary L-subsystems with isomorphic functor
components of a class of L-systems, then LSie = LSieL = SieL. Our interest in this lemma lies with the fact that,
when proving model-theoretic characterizations of different equality-free first-order definable classes and of their
corresponding reductions, one starts with the abstract class and then applies the Reduction Operator Lemma
to obtain the analogous result for the reduced class. See [11, Section 5] for more details. As a consequence,
the present results open and pave the way for establishing in future work analogs of the equality-free class
characterization theorems in the context of L-systems, generalizing the corresponding results on equality-free
first-order classes.

Recall from [39, Section 3] that an L-system A = 〈SENA, 〈NA, FA〉, RA〉 with SENA : SignA −→ Set
is said to be a simple subsystem of an L-system B = 〈SENB, 〈NB, FB〉, RB〉 with SENB : SignB −→ Set
if it is a subsystem of B such that their sentence functors SENA : SignA −→ Set and SENB : SignB −→ Set
have the same domain, i. e., if SignA = SignB.

The following lemma is a technical result that will be useful in the proofs of the first and of the third part of
the Reduction Operator Lemma.

Lemma 5.1 Let A = 〈SENA, 〈NA, FA〉, RA〉 be a simple subsystem of B = 〈SENB, 〈NB, FB〉, RB〉, and
let θ = {θΣ}Σ∈|SignA| ∈ Con(B). Define θA = {θA

Σ}Σ∈|SignA| by θA
Σ = θΣ ∩ SENA(Σ)2 for all Σ ∈ |SignA|.

Define also 〈ISignA , η〉 : A/θA −→ B/θ by letting, for all Σ ∈ |SignA|, ηΣ : SENA(Σ)/θA
Σ −→ SENB(Σ)/θΣ

be given by

ηΣ(ϕ/θA
Σ) = ϕ/θΣ for all ϕ ∈ SENA(Σ).

Then 〈ISignA , η〉 : A/θA �s B/θ defines a strong embedding from A/θA into B/θ.

P r o o f. First, note that for all Σ ∈ |SignA|, ηΣ is well-defined. Indeed, if for ϕ,ϕ′ ∈ SENA(Σ) we have
that ϕ/θA

Σ = ϕ′/θA
Σ , then, by the definition of θA, it follows immediately that ϕ/θΣ = ϕ′/θΣ. That

η : SENA/θA −→ SENB/θ

is a natural transformation is easy to see. The same goes for the (NAθA

,NBθ

)-epimorphic property, whence

〈ISignA , η〉 : SENA/θA −→ SENB/θ

is an (NAθA

,NBθ

)-epimorphic translation. To see that 〈ISignA , η〉 : A/θA −→ B/θ is an L-morphism, sup-

pose that r ∈ R with 
(r) = n, Σ ∈ |SignA|, and �ϕ ∈ SENA(Σ)n. Then

�ϕ/θA
Σ ∈ r

A/θA

Σ iff �ϕ ∈ rA
Σ iff �ϕ ∈ rB

Σ iff �ϕ/θΣ ∈ r
B/θ
Σ .

The above equivalences also show that 〈ISignA , η〉 is a strong L-morphism. Finally, to see that it is an injection,

suppose that Σ ∈ |SignA| and ϕ,ϕ′ ∈ SENA(Σ) such that ϕ/θΣ = ϕ′/θΣ. Thus,

〈ϕ,ϕ′〉 ∈ θΣ ∩ SENA(Σ)2 = θA
Σ .

Hence ϕ/θA
Σ = ϕ′/θA

Σ and ηΣ is in fact injective, for all Σ ∈ |SignA|.
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Having Lemma 5.1 at hand, we now proceed with the first part of the Reduction Operator Lemma showing
that LSi = LSiL, where Si denotes the operator of taking isomorphic copies of L-subsystems with isomorphic
functor components. L is the Leibniz reduction operator that maps a class of L-systems to the class of all
isomorphic copies of the Leibniz reductions of its members. For the formal definitions of those operators, see [39]
and, specifically for the Leibniz reduction of an L-system, see [40].

Lemma 5.2 (Reduction Operator Lemma I) LSi = LSiL.

P r o o f. We begin by showing that LSi ≤ LSiL. Suppose, to this end, that A is an L-system and K a class of
L-systems such that A ∈ LSi(K). Thus, there exist B,C with B ∈ K such that A ∼= C∗ and C ⊆i B. Then by
Lemma 5.1, there is a strong embedding 〈ISignC , η〉 : C/Ω(B)C �s B∗ with an isomorphic functor component.
Thus, by [39, Lemma 6, part 2], C/Ω(B)C is isomorphic to a subsystem of B∗. But, by [40, Proposition 16],
we also get that C∗ ∼= (C/Ω(B)C)∗, whence A ∼= (C/Ω(B)C)∗. This shows that A is isomorphic to the Leibniz
reduction of the L-system C/Ω(B)C, which is, in turn, isomorphic to a subsystem of B∗ which is the Leibniz
reduction of the L-system B ∈ K. Thus, A ∈ LSiL(K) and, therefore, LSi ≤ LSiL.

For the reverse inclusion, suppose that A is an L-system and K a class of L-systems, such that A ∈ LSiL(K).
Thus, there exist L-systems B,C with B ∈ K such that A ∼= C∗ and C ⊆i B∗. Consider the reductive L-mor-
phism 〈ISignB , πΩ(B)〉 : B−�s B∗. By [39, Lemma 6, part 1], we have that πΩ(B)−1

(C) ⊆i B. Also, the re-

striction 〈ISignB , πΩ(B)〉 �πΩ(B)−1 (C): πΩ(B)−1
(C)−�s C is a reductive L-morphism, whence A ∼= C∗ is iso-

morphic to a reduction via

〈ISignC , πΩ(C)〉 ◦ 〈ISignB , πΩ(B)〉 �πΩ(B)−1 (C): πΩ(B)−1
(C)−�s C∗

of a subsystem πΩ(B)−1
(C) ⊆i B ∈ K. Therefore A ∈ LSi(K) and, hence, LSiL ≤ LSi.

Next, we turn to the second part of the Reduction Operator Lemma. In this part, it is shown that LO = LOL,
where O is any of the operators P of taking isomorphic copies of direct products of L-systems, Pf of taking iso-
morphic copies of filtered products of L-systems, Pu of taking isomorphic copies of ultraproducts of L-systems,
and Psd of taking isomorphic copies of subdirect products of L-systems.

Lemma 5.3 (Reduction Operator Lemma II) For all O ∈ {P,Pf ,Pu,Psd}, LO = LOL.

P r o o f. We proceed in two parts. First, it is shown that LPf = LPfL, and second, that LPsd = LPsdL.
The cases covering products and ultraproducts follow directly from the case covering reduced products.

For reduced products, it suffices to show that if Ai = 〈SENi, 〈N i, F i〉, Ri〉, i ∈ I , is a collection of L-systems
and F is a proper filter over I , then

(
∏

i∈I Ai/F)∗ ∼= (
∏

i∈I A∗
i /F)∗.

This is because, in that case, if A is an L-system and K a class of L-systems, then on the one hand A ∈ LPf(K)
iff A ∼= (

∏
i∈I Ai/F)∗ for some Ai ∈ K, i ∈ I , and on the other hand A ∈ LPfL(K) iff A ∼= (

∏
i∈I A∗

i /F)∗

for some Ai ∈ K, i ∈ I .
We show that the pair 〈I, α〉 :

∏
i∈I A∗

i /F −→ (
∏

i∈I Ai/F)∗ is a reductive L-morphism, where 〈I, α〉 is
defined by letting I := I∏

i∈I Signi , and for all Σi ∈ |Signi|, i ∈ I , letting

α∏
i∈I Σi

: (
∏

i∈I SENi(Σi)/ΩΣi
(Ai))/F −→ (

∏
i∈I SENi(Σi)/F)/Ω∏

i∈I Σi
(
∏

i∈I Ai/F)

be defined by

α∏
i∈I Σi

(�ϕ ∗/F) = (�ϕ/F)∗ for all �ϕ ∈ ∏
i∈I SENi(Σi).

First, it is shown that α is well-defined. To this end, suppose that Σi ∈ |Signi| and ϕi, ψi ∈ SENi(Σi), i ∈ I ,
are such that

�ϕ ∗/≡F∏
i∈I Σi

= �ψ∗/≡F∏
i∈I Σi

.
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Therefore, we have {i ∈ I : ϕ∗
i = ψ∗

i } ∈ F . To see that (�ϕ/F)∗ = (�ψ/F)∗, use [40, Theorem 6]. To this end,
let γ(x, z1, . . . , zk) be an atomic L-formula, Σ′

i ∈ |Signi|, fi ∈ Signi(Σi,Σ′
i), i ∈ I , and

�χ1/≡F∏
i∈I Σ′

i
, . . . , �χk/≡F∏

i∈I Σ′
i
∈ ∏

i∈I SENi(Σ′
i)/≡F∏

i∈I Σ′
i
.

Then, by [39, Theorem 8], we get that
∏

i∈I Ai/F �∏
i∈I Σ′

i
γ[

∏
i∈I SENi(fi)(�ϕ )/≡F∏

i∈I Σ′
i
, �χ1/≡F∏

i∈I Σ′
i
, . . . , �χk/≡F∏

i∈I Σ′
i
] iff

{i ∈ I : Ai �Σ′
i
γ[SENi(fi)(ϕi), χ1i, . . . , χki]} ∈ F .

But we also have

{i ∈ I : ϕ∗
i = ψ∗

i } ∩ {i ∈ I : Ai �Σ′
i
γ[SENi(fi)(ϕi), χ1i, . . . , χki]}

⊆ {i ∈ I : Ai �Σ′
i
γ[SENi(fi)(ψi), χ1i, . . . , χki]},

whence, by the filter property of F , we get that

{i ∈ I : Ai �Σ′
i
γ[SENi(fi)(ψi), χ1i, . . . , χki]} ∈ F ,

which, again by [39, Theorem 8], yields that
∏

i∈I Ai/F �∏
i∈I Σ′

i
γ[

∏
i∈I SENi(fi)(�ψ )/≡F∏

i∈I Σ′
i
, �χ1/≡F∏

i∈I Σ′
i
, . . . , �χk/≡F∏

i∈I Σ′
i
].

Hence, if �ϕ ∗/≡F∏
i∈I Σi

= �ψ∗/≡F∏
i∈I Σi

, we get that

∏
i∈I Ai/F �∏

i∈I Σ′
i
γ(x, �z ) → γ(y, �z )[

∏
i∈I SENi(fi)(�ϕ )/≡F∏

i∈I Σ′
i
,

∏
i∈I SENi(fi)(�ψ )/≡F∏

i∈I Σ′
i
,

�χ1/≡F∏
i∈I Σ′

i
, . . . , �χk/≡F∏

i∈I Σ′
i
].

The converse implication may be shown to hold by symmetry, whence, since γ was an arbitrary atomic L-formula
and �χ1, . . . , �χk arbitrary tuples in

∏
i∈I SENi(Σ′

i), we get, by [40, Theorem 6], that

(�ϕ/≡F∏
i∈I Σi

)∗ = (�ψ/≡F∏
i∈I Σi

)∗.

The facts that α is a natural transformation, that 〈I, α〉 is an L-system morphism, and that it is strong and
surjective all follow relatively easy from the definitions of the reduced products involved.

To finish off this part of the proof, it suffices now to rely on [40, Proposition 16] to conclude that

〈I, α∗〉 : (
∏

i∈I A∗
i /F)∗ ∼= (

∏
i∈I Ai/F)∗.

We turn now to the proof of LPsd = LPsdL. We show first that LPsd ≤ LPsdL. Suppose that A is an
L-system and K a class of L-systems, such that A ∈ Psd(K) so that A∗ ∈ LPsd(K). Then, there exist Ai ∈ K,
i ∈ I , and 〈F, α〉 : A �sd

∏
i∈I Ai. Let 〈P i, πi〉 :

∏
i∈I Ai −→ Ai, i ∈ I , and 〈P ′i, π′i〉 :

∏
i∈I A∗

i −→ A∗
i ,

i ∈ I , be the projection L-morphisms. Define the pair 〈G, β〉 : A −→ ∏
i∈I A∗

i as follows: let G = F , and let,
for all Σ ∈ |SignA|, βΣ : SENA(Σ) −→ ∏

i∈I SENi(P i(G(Σ))/ΩP i(G(Σ))(Ai) be given by

βΣ(ϕ) =
∏

i∈I πi
F (Σ)(αΣ(ϕ))∗ for all ϕ ∈ SENA(Σ).

It is not difficult to check that 〈G, β〉 is a strong L-morphism such that for all i ∈ I , 〈P ′i, π′i〉 ◦ 〈G, β〉 is surjec-
tive. To show that 〈G, β〉 is strong, consider r ∈ R with 
(r) = n. Let Σ ∈ |SignA| and �ϕ ∈ SENA(Σ)n. Then

�ϕ ∈ rA
Σ iff αΣ(�ϕ ) ∈ r

∏
i∈I Ai

F (Σ)

iff (∀i ∈ I)(πi
F (Σ)(αΣ(�ϕ )) ∈ rAi

P i(F (Σ)))

iff (∀i ∈ I)(πi
F (Σ)(αΣ(�ϕ ))∗ ∈ r

A∗
i

P i(F (Σ)))

iff
∏

i∈I πi
F (Σ)(αΣ(�ϕ ))∗ ∈ r

∏
i∈I A∗

i

F (Σ)

iff βΣ(�ϕ ) ∈ r
∏

i∈I A∗
i

F (Σ) .

Surjectivity of 〈P ′i, π′i〉 ◦ 〈G, β〉 follows easily from the fact that 〈P i, πi〉 ◦ 〈F, α〉 is surjective for every i ∈ I .
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Hence, applying [39, Lemma 6, part 2] and [40, Homomorphism Theorem 10], we obtain that there exists

〈H, γ〉 : A/Ker(〈G, β〉) �sd

∏
i∈I A∗

i .

Therefore, (A/Ker(〈G, β〉))∗ ∈ LPsdL(K). But, by [40, Proposition 16], we have that (A/Ker(〈G, β〉))∗ ∼= A∗,
which completes this part of the proof.

For the converse inclusion, suppose that K is a class of L-systems and A ∈ LPsdL(K). Therefore, there
exist Bi ∈ K, i ∈ I , and a subdirect product C ⊆sd

∏
i∈I B∗

i such that A ∼= C∗. Now consider the reductive
L-morphism

∏
i∈I Bi

∏
i∈I B∗

i
�〈I, π〉 :=

∏
i∈I〈Ii, πi〉

Since C is an L-subsystem of
∏

i∈I B∗
i , by [39, Lemma 6, part 1], we get that π−1(C) ⊆ ∏

i∈I Bi. Moreover,
since C ⊆sd

∏
i∈I B∗

i , we obtain that π−1(C) ⊆sd

∏
i∈I Bi. Now, since 〈I, π〉 : π−1(C)−�s C is a reduc-

tive L-morphism, we obtain, by [40, Proposition 16], that C∗ ∼= π−1(C)∗. Thus, we now have A ∼= π−1(C)∗

and π−1(C) ⊆sd

∏
i∈I Bi with Bi ∈ K for all i ∈ I , which yields that A ∈ LPsd(K).

Finally, the third part of the Reduction Operator Lemma is presented. It shows that LSie = LSieL = SieL,
where Sie is the operator of taking isomorphic copies of elementary subsystems of L-systems with isomorphic
functor components.

Lemma 5.4 (Reduction Operator Lemma III) LSie = LSieL = SieL.

P r o o f. We first show that LSie = LSieL in a manner very similar to the one used for the proof of Lemma 5.2,
and then we show that LSieL = SieL.

First, to see that LSie ≤ LSieL, let A be an L-system and K a class of L-systems, such that A ∈ LSie(K).
Thus, there exist B,C with B ∈ K such that A ∼= C∗ and C ⊆ie B. Then, by Lemma 5.1, there exists a strong
embedding 〈ISignC , η〉 : C/Ω(B)C �s B∗ with an isomorphic functor component. But, in this case, we also
have that C/Ω(B)C ≡ C and that B∗ ≡ B, and, hence, C/Ω(B)C ≡ B∗, whence the embedding

〈ISignC , η〉 : C/Ω(B)C �s B∗

is also elementary. Again, using [39, Lemma 6, part 2] and [40, Homomorphism Theorem 10], C/Ω(B)C is iso-
morphic to an elementary subsystem of B∗. Now [40, Proposition 16] is invoked to complete the argument.

For the reverse inclusion, suppose that A is an L-system and K a class of L-systems such that A ∈ LSieL(K).
Thus, there exist L-systems B,C with B ∈ K such that A ∼= C∗ and C ⊆ie B∗. Consider the reductive L-mor-
phism 〈ISignB , πΩ(B)〉 : B−�s B∗. By [39, Lemma 6, part 1], we get πΩ(B)−1

(C) ⊆i B. But, since C ⊆ie B∗,

we obtain, in this case, the additional fact that πΩ(B)−1
(C) ⊆ie B. Indeed, we have that for all L-formulas γ,

all Σ ∈ |SignπΩ(B)−1
(C)|, and all �ϕ ∈ SENπΩ(B)−1

(C)(Σ),

πΩ(B)−1
(C) �Σ γ[�ϕ ] iff C �Σ γ[�ϕ ∗] (by the definition of πΩ(B)−1

(C))
iff B∗ �Σ γ[�ϕ ∗] (since C ⊆ie B∗)

iff B �Σ γ[�ϕ ] (by the definition of B∗).

Again, the remaining of the argument matches now the argument given to conclude the reverse inclusion. There-
fore, LSie = LSieL has now been established.

To see now that LSieL = SieL, it suffices to show that if A,B are two L-systems such that A ⊆ie B and B

is Leibniz reduced, then A is also Leibniz reduced. To prove this, let Σ ∈ |SignA|, ϕ,ψ ∈ SENA(Σ) such
that 〈ϕ,ψ〉 ∈ ΩΣ(A). This holds, by [40, Theorem 6], iff for all Leibniz L-formulas β(x, y), all Σ′ ∈ |SignA|,
and all f ∈ SignA(Σ,Σ′),

A �Σ′ β(x, y)[SENA(f)(ϕ), SENA(f)(ψ)],

which, in view of A ⊆ie B, is equivalent to

B �Σ′ β(x, y)[SENB(f)(ϕ), SENB(f)(ψ)].
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Therefore, again by an application of [40, Theorem 6], we get that 〈ϕ,ψ〉 ∈ ΩΣ(B). (Note the necessity of ⊆i for
this argument!) Thus, for all Σ ∈ |SignA|, we have ΩΣ(A) ⊆ ΩΣ(B) = ∆SENB

Σ . Therefore Ω(A) = ∆SENA

Σ

and A is Leibniz reduced.

The Reduction Operator Theorem, the promised analog of the homonymous result of [11], summarizes the
results presented in Lemmas 5.2, 5.3, and 5.4.

Theorem 5.5 (Reduction Operator Theorem)

1. LSi = LSiL.

2. For all O ∈ {P,Pf ,Pu,Psd}, LO = LOL.

3. LSie = LSieL = SieL.

We intend to continue the work presented in this paper with the goal of abstracting several of Elgueta’s results
to the present framework. Elgueta’s results generalize well-known results of the theory of models of first-order
logic to the equality-free context. The present framework leads to further generalization of these results to a
multi-signature equality-free context.
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