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A duality theory for bilattices

B. Mobasher, D. Pigozzi, G. Slutzki and G. Voutsadakis

Abstract. Recent studies of the algebraic properties of bilattices have provided insight into their internal strucutres,
and have led to practical results, especially in reducing the computational complexity of bilattice-based multi-
valued logic programs. In this paper the representation theorem for interlaced bilattices without negation found in
[19] and extended to arbitrary interlaced bilattices without negation in [2] is presented. A natural equivalence is
then established between the category of interlaced bilattices and the cartesian square of the category of bounded
lattices. As a consequence a dual natural equivalence is obtained between the category of distributive bilattices
and the coproduct of the category of bounded Priestley spaces with itself. Some applications of these equivalences
are given. The subdirectly irreducible interlaced bilattices are characterized in terms of subdirectly irreducible
lattices. A known characterization of the join-irreducible elements of the “knowledge” lattice of an interlaced
bilattice is used to establish a natural equivalence between the category of finite, distributive bilattices and the
category of posets of the formP ⊕⊥ Q.

Introduction

Bilattices are algebras with two separate lattice structures. They have been used as the
basis for a denotational semantics for systems of inference that arise in artificial intelligence
and knowledge-based logic programming ([7, 9]). In particular, they have been used to
provide a general framework for an efficient procedural semantics of logic programming
languages that can deal with incomplete as well as contradictory information. Such systems
must have two common characteristics: first they must rely on the expressive power of an
underlying multi-valued logic, and secondly, they should be able to interpret statements not
only based on their truth or falsity, but also based on some measure of the knowledge or
information contained within those statements. In such semantics the state of an agent’s
knowledge about a possible event plays as an important a role as the event’s truth value. In
this context the two lattice orderings of a bilattice are viewed as representing, respectively,
the relative degrees of truth and knowledge of possible events.

Originally, Ginsberg [9] suggested using bilattices as the underlying framework for
various AI inference systems including those based on default logics, truth maintenance
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systems, probabilistic logics, and others. These ideas were later pursued [7, 8, 13] in the
context of logic programming semantics. Also recently, bilattices and their extensions have
been used in the literature to model a variety of reasoning mechanisms about uncertainty
in the presence of incomplete or contradictory information. For example, in [18], a variant
of Fitting’s extension of logic programming to bilattices was used to deal with a form
of negation as failure as well as a second explicit negation in logic programs. In [11]
bilattices were extended to include a third ordering (called theprecisionordering) in order to
effectively deal with varying degrees of belief and doubt in probabilistic deductive databases.

Studies of the algebraic structure of bilattices have led to practical results, particularly in
reducing the computational complexity of bilattice-based logic programs. For example, in
[13] it was shown that for finite distributive bilattices (and, more generally, bilattices with
thedescending chain property, we can restrict our attention to derivations that range over
a relatively small subset of special truth-values. These special truth values turn out to be
the join irreducible elements of the knowledge part of the bilattice, and they provide the
basis for an efficient procedural semantics for multivalued logic programs. Ginsberg [9] has
discussed the ramifications of reducing the complexity of bilattice based inference systems
by focusing on a smaller set of representative elements calledgroundedelements. Join-
irreducible elements provide an even smaller set of representative elements which represent
the most “primitive” bits of information. In fact, this difference could be exponential for
certain classes of bilattices. More recently, the notion of join-irreduciblity has been used
in connection with a proof theory for bilattice-based logics [1]. It is therefore important to
further study bilattices and their algebraic properties. This, in part, is the motivation behind
the present work.

A bilattice hasnegationif there is a bijection of order 2 with the property that it preserves
one of the orderings and inverts the other. A bilattice isinterlacedif the join and meet
operations of each of its two lattice orderings is monotonic with respect to the other ordering.
In this paper we extend the representation theorem for interlaced bilattices with negation
found in [19] to arbitrary interlaced bilattices. We then refine it to construct a natural
equivalence between the category of interlaced bilattices and the product (in the category of
categories) of the category of ordinary bounded lattices with itself. This natural equivalence
induces another equivalence between the category of distributive bilattices and the product
of the category of bounded distributive lattices with itself. This in turn gives rise to a dual
natural equivalence between the category of distributive bilattices and the coproduct of
the category of bounded Priestley spaces with itself. In analogy with distributive lattices,
this specializes to a duality between the categories of finite distributive bilattices and the
coproduct of the category of finite ordered sets (posets) with itself.

In the case of interlaced bilattices with negation, we obtain the same pattern of equiva-
lences but with the product or coproduct of each category replaced by the category itself.
For example, the category of interlaced bilattices with negation is naturally equivalent to
the category of bounded lattices.
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These equivalences give considerable insight into the structure of join-irreducible
elements of an interlaced bilattice. This structure is investigated in the last part of the paper.
The representation of a finite, distributive bilattice in terms of the poset of join-irreducibles
of its knowledge lattice has proved useful in constructing simplified operational semantics
for knowledge-based logic programs based on bilattices; see [13].

Basic theory of bilattices

DEFINITION 1. A bilattice is an algebraB = 〈B,∧1,∨1,01,11,∧2,∨2,02,12〉 such
thatB1 = 〈B,∧1,∨1,01,11〉 andB2 = 〈B,∧2,∨2,02,12〉 are bounded lattices.

By anegationonB we mean a unary operation¬ onB satisfying the conditions

1. ¬¬x = x,
2. ¬(x ∨1 y) = ¬x ∧1 ¬y, ¬(x ∧1 y) = ¬x ∨1 ¬y,
3. ¬(x ∨2 y) = ¬x ∨2 ¬y, ¬(x ∧2 y) = ¬x ∧2 ¬y.

Although the terminology for bilattices is not uniform, it has become more-or-less stan-
dard to use the termbilattice to refer to what we call a bilattice with negation. For this
reason, we often speak of a bilatticewithout negationfor emphasis.

The lattice ordering corresponding to the bounded latticeB1 will be denoted by≤1

and the lattice ordering corresponding toB2 by ≤2; often the bilatticeB is written in the
form 〈B,≤1,≤2〉. Alternatively,≤1 and≤2 are often denoted by≤t and≤k, respectively,
reflecting the fact that they represent the “truth” and “knowledge” orderings when the
bilattice serves as the basis for the denotational semantics of a knowledge-based logic
program.

Any single latticeL = 〈L,≤〉 determines two bilatticesL+ = 〈L,≤,≤〉 andL− =
〈L,≥,≤〉 in a natural way. Alternatively ifL = 〈L,∧,∨,0,1〉, thenL+ = 〈L,∧,∨,0,1,
∧,∨,0,1〉 andL− = 〈L,∨,∧,1,0,∧,∨,0,1〉. The two simplest examples of nontrivial
bilattices without negation are the bilatticesT WO+ andT WO−, whereT WO is the
2-element lattice. The simplest example of a nontrivial bilattice with negation is the bilattice
FOUR, depicted in Figure 1; it is the algebraic representation of the four-valued logic
of Belnap [3]. There are many other interesting nonclassical logics that are useful for
knowledge-based logic programming and that can be represented using bilattices. For a
detailed discussion see [7, 9].

Note that, ifB has negation, thenx ≤1 y if and only if ¬y ≤1 ¬x andx ≤2 y if
and only if ¬x ≤2 ¬y. (The latter equivalence reflects the intuition that, if an agent
has more knowledge of one particular possible eventE1 than of another eventE2, it also
has more knowledge of the logical negation ofE1 than of the logical negation ofE2.)
Moreover,¬ : 〈B,∧1,∨1〉 → 〈B,∨1,∧1〉 and¬ : 〈B,∧2,∨2〉 → 〈B,∧2,∨2〉 are lattice
isomorphisms. This immediately implies that¬01 = 11,¬11 = 01 and also that 02 and 12
remain fixed under negation.
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Let B1 andB2 be two bilattices. As usual, a mappingf : B1 → B2 is called abilattice
homomorphismif it preserves all bilattice operations (including negation if it is present).
The collection of all bilattices together with all bilattice homomorphisms forms a category,
called thecategory of bilatticesand denoted byBL. The category of bilattices with negation
is denoted byBL¬.

DEFINITION 2. A bilatticeB (with or without negation) is calledinterlacedif each
of ∧1,∨1,∧2,∨2 is monotonic with respect to both orderings≤1 and≤2. B is called
distributive if for every ♦,¤ ∈ {∧1,∨1,∧2,∨2} and all x, y, z ∈ B, x ♦ (y ¤ z) =
(x ♦ y) ¤ (x ♦ z).

The terminterlaced bilatticewas introduced in [7]. It is worth pointing out that interlaced
bilattices form a variety that can be axiomatized by the following four identities:

((x ∧1 y) ∧2 z) ∧1 (y ∧2 z) = (x ∧1 y) ∧2 z,

((x ∧2 y) ∧1 z) ∧2 (y ∧1 z) = (x ∧2 y) ∧1 z,

((x ∧1 y) ∨2 z) ∧1 (y ∨2 z) = (x ∧1 y) ∨2 z,

((x ∨2 y) ∧1 z) ∨2 (y ∧1 z) = (x ∨2 y) ∧1 z.

In [19] the term Padmanabhan bilattice is used instead of the term interlaced bilattice for
those bilattices that satisfy these four identities.

The bilatticesL+ andL− are interlaced for every latticeL . We also remark that every
distributive bilattice is interlaced.

The full subcategories ofBL having as their objects all interlaced and distributive bilat-
tices will be denoted, respectively, byIBL andDBL. The analogous subcategories ofBL¬
are denoted, respectively, byIBL¬ andDBL¬.
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DEFINITION 3. Let L = 〈L,∧,∨,0,1〉 and L ′ = 〈L′,∧′,∨′,0′,1′〉 be bounded
lattices. DefineB(L ,L ′) = 〈L × L′,u1,t1,⊥1,>1,u2,t2,⊥2,>2〉 as follows: for all
(x, x′), (y, y′) ∈ L× L′,

(x, x′) u1 (y, y
′) = (x ∧ y, x′ ∨′ y′), (x, x′) t1 (y, y

′) = (x ∨ y, x′ ∧′ y′),
(x, x′) u2 (y, y

′) = (x ∧ y, x′ ∧′ y′), (x, x′) t2 (y, y
′) = (x ∨ y, x′ ∨′ y′),

⊥1= (0,1′), >1 = (1,0′),⊥2= (0,0′), >2 = (1,1′).

If h: L ∼= L ′ is a lattice isomorphism, we define

∼ (x, x′) = (h−1(x′), h(x)).

B(L ,L ′) with the operation∼ adjoined is denoted byBh(L ,L ′). For any bounded lattice
L we writeB(L) for Bh(L ,L), whereh is the identity automorphism onL .

B(L ,L ′) is called theproduct bilattice associated withL andL ′. B(L) is thesquare
bilattice with negation associated withL .

The product bilattice with negation associated with the two-element lattice isFOUR.

THEOREM 4. ([7, 19]) 1.For any pair of bounded latticesL andL ′, B(L ,L ′) is an
interlaced bilattice. Moreover,B(L ,L ′) is distributive if and only ifL and L ′ are
both distributive.

2. For any bounded latticeL ,B(L) is an interlaced bilattice with negation. Moreover,
B(L) is distributive if and only ifL is distributive.

The following representation theorem is the key to all the categorical equivalences
described in the introduction.

THEOREM 5. 1.For every interlaced bilatticeB, there exists a pairL ,L ′ of bounded
lattices such thatB ∼= B(L ,L ′).

2. For every interlaced bilatticeB with negation, there exists a bounded latticeL
such thatB ∼= B(L).

This theorem has a complicated evolution. It was formulated for distributive bilattices
without negation, and the essential ideas of the proof presented, in [9] and [7]. A complete
proof for the distributive case with negation can be found in [13]. Independently, the
theorem for interlaced bilattices with negation was proved in [19]. Although the theorem
is formulated in [19] for bilattices with negation, an analysis of the proof shows that the
assumption of negation is not used in any essential way. The proof uses some general results
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on quasilattices and the Plonka sums of lattices over a semilattice. We sketch here a simpler
and more direct proof along the lines of the proof in [13]1.

For the purpose of the proof, the following definition due to Ginsberg [9] is useful. In
the present context we find it more suitable to use the terms positive and negative for what
in [9] are referred to as t-grounded and f-grounded elements, respectively.

DEFINITION 6. LetB = 〈B,≤1,≤2〉 be an interlaced bilattice. An elementx ∈ B is
calledpositiveif, for everyy ∈ B, x ≤1 y impliesx ≤2 y. It is callednegativeif, for every
y ∈ B, y ≤1 x impliesx ≤2 y. Denote by POS(B) and NEG(B) the sets of positive and
negative elements, respectively, ofB.

LEMMA 7. LetB be an interlaced bilattice.

1. POS(B) = [02,11]≤1 = [02,11]≤2;
2. NEG(B) = [02,01]≥1 = [02,01]≤2.

Proof. 1. Assumex ∈ [02,11]≤1 andx ≤1 y. Then 02 ≤1 x ≤1 y. Thus 02 ∨1 x = x

andy ∨1 x = y. From 02 ≤2 y and the monotonicity of∨1 with respect to≤2 we have
02 ∨1 x ≤2 y ∨1 x, i.e., x ≤2 y. Sox ∈ POS(B). Assume now thatx is positive. Then
from x ≤1 11 we get 02 ≤2 x ≤2 11, i.e.,x ∈ [02,11]≤2. Finally, assumex ∈ [02,11]≤2.
Fromx ≤2 11 we get 11 ∧2 x = x and from 02 ≤1 11 we have 02 ∧2 x ≤1 11 ∧2 x. So
02 ≤1 x, i.e.,x ∈ [02,11]≤1. Hence [02,11]≤1 ⊆ POS(B) ⊆ [02,11]≤2 ⊆ [02,11]≤1.

This establishes the first part of the lemma. The second part is established by a similar
argument. ¨

As a consequence of Part 1 of this lemma,〈[02,11]≤1,≤1〉 and 〈[02,11]≤2,≤2〉 are
identical lattices. We denote this lattice byPOS(B). Similarly, we setNEG(B) =
〈[02,01]≥1,≥1〉 = 〈[02,01]≤2,≤2〉. In caseB has negation,¬ (when restricted to
POS (B)) is an isomorphism betweenPOS(B) andNEG(B); this is easy to check. We
note thatPOS(B)+ = 〈POS(B),≤2,≤2〉 andNEG(B)− = 〈NEG(B),≥2,≤2〉.

As a corollary of the lemma we have the following characterization of positive and
negative elements of an interlaced bilattice in terms of its representation as the product
bilattice associated with bounded latticesL ,L ′. This result was obtained for distributive
bilattices in [13].

1We thank the referee who pointed out that this proof was first given by Avron [2] and later strengthened
by Pynko [17] in an unpublished paper. Both, in turn, were not aware of the proof of Romanowska and Trakul
[19]. Although our proof is essentially the same as the one presented in [2], we leave it in the text for the sake
of completeness. Avron also obtained some results on the equational bases of the variety of interlaced bilattices
inspired by some similar results that had previously been obtained by Jónsson [10] for the variety of distributive
bilattices.
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COROLLARY 8. Let L andL ′ be bounded lattices, and let0 and0′ be the respective
least elements. An elementx of B(L ,L ′) is positive if and only ifx = (y,0′), for some
y ∈ L, and it is negative if and only ifx = (0, y′), for somey′ ∈ L′.

Proof. Let B(L ,L ′) = 〈L×L′,v1,v2〉. It is easy to check that [⊥2,>1]v2 = L×{0′}
and [⊥2,⊥1]v2 = {0} × L′. ¨

Proof of Theorem 5.
Part 1. We show thatB ∼= B(POS(B),NEG(B)). Let

B(POS(B),NEG(B)) = 〈POS(B)× NEG(B),u1,t1,⊥1,>1,u2,t2,⊥2,>2〉.

Then, for all(x, x′), (y, y′) ∈ POS(B)× NEG(B),

(x, x′) u1 (y, y
′) = (x ∧2 y, x

′ ∨2 y
′) = (x ∧1 y, x

′ ∧1 y
′),

(x, x′) t1 (y, y
′) = (x ∨2 y, x

′ ∧2 y
′) = (x ∨1 y, x

′ ∨1 y
′),

(x, x′) u2 (y, y
′) = (x ∧2 y, x

′ ∧2 y
′) = (x ∧1 y, x

′ ∨1 y
′),

(x, x′) t2 (y, y
′) = (x ∨2 y, x

′ ∨2 y
′) = (x ∨1 y, x

′ ∧1 y
′).

⊥1= (02,01), >1 = (11,02), ⊥2= (02,02), >2 = (11,01).

We note for future reference that

B(POS(B),NEG(B)) = POS(B)+ × NEG(B)−,

where “×” denotes the ordinary direct product of bilattices.
For eachx ∈ B we define

f (x) = (x ∧2 11, x ∧2 01).

By Lemma 7,f : B → POS(B) × NEG(B). We will show thatf is an isomorphism
betweenB andB(POS(B),NEG(B)). For this purpose we first prove that, for anyx ∈ B,

x = (x ∧2 11) ∨2 (x ∧2 01). (1)

Trivially x ≤1 11. Thus by the interlacing assumption,x ≤1 x ∧2 11. Again applying the
interlacing assumption, we getx = x ∨2 (x ∧2 01) ≤1 (x ∧2 11) ∨2 (x ∧2 01). Trivially
01 ≤1 x. Thus,x ∧2 01 ≤1 x. Hence(x ∧2 11)∨2 (x ∧2 01) ≤1 (x ∧2 11)∨2 x = x. This
establishes (1).
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It follows immediately from (1) thatf is injective. To see it is surjective, consider any
(x, y) ∈ POS(B) × NEG(B). Note thaty ≤1 02 ≤1 x. Sox ∨2 y ≤1 x ∨2 x = x, and
hence(x∨2 y)∧2 11 ≤1 x∧2 11 = x; the last equality holds becausex is positive, and thus
x ≤2 11. On the other hand, fromx ≤1 11 we also getx = (x∨2y)∧2x ≤1 (x∨2y)∧2 11.
Thus we have(x ∨2 y) ∧2 11 = x, and in a similar way we can show(x ∨2 y) ∧2 01 = y.
Sof (x ∨2 y) = (x, y), and hencef is surjective. We have shown thatf is a bijection
between the two bilatticesB andB(POS(B),NEG(B)).

In order to prove it is a bilattice isomorphism, it suffices to show that it preserves the
two lattice orderings. From the construction ofB(POS(B),NEG(B)) it follows that, for
(x, x′), (y, y′) ∈ POS(B)×NEG(B), (x, x′) v1 (y, y

′) if and only ifx ≤1 y andx′ ≤1 y
′,

and (x, x′) v2 (y, y′) if and only if x ≤2 y and x′ ≤2 y′. Consider anyx, y ∈ B.
Thenx ≤1 y implies (by the interlacing condition) (x ∧2 11) ≤1 (y ∧2 11) and (x ∧2

01) ≤1 (y ∧2 01), which in turn is equivalent tof (x) v1 f (y). Similarly, x ≤2 y implies
(x ∧2 11) ≤2 (y ∧2 11) and(x ∧2 01) ≤2 (y ∧2 01), and hencef (x) v2 f (y).

This completes the proof of Part 1.
Part 2. Assume now thatB has a negation¬. We show thatB ∼= B(POS(B))(∼=

B(NEG(B)). Recall the¬ (restricted to POS(B)) is an isomorphism between the lattices
POS(B) andNEG(B). Let ∼ denote the negation ofB¬ (POS(B), NEG(B)). Then, for all
(x, x′) ∈ POS(B)× NEG(B),

∼ (x, x′) = (¬x′,¬x).
It is easy to check that the mapping(a, b) 7→ (a,¬b) is an isomorphism between the two
bilattices with negationB¬(POS(B),NEG(B)) andB(POS(B)).Consequently, in order to
prove the theorem it is sufficient to show thatB ∼= B¬(POS(B),NEG(B)); to show this it
only remains to verify thatf preserves negation.

∼ f (x) = ∼ (x ∧2 11, x ∧2 01)

= (¬(x ∧2 01),¬(x ∧2 11))

= (¬x ∧2 ¬(01),¬x ∧2 ¬(11))

= (¬x ∧2 11,¬x ∧2 01)

= f (¬x).
This completes the proof of Theorem 5.
Note that as a corollary of the proof we have that

B ∼= POS(B)+ × NEG(B)−,

for every interlaced bilatticeB.

COROLLARY 9. 1. An algebraB is a distributive bilattice if and only if there exist
bounded, distributive lattices,L ,L ′ such thatB ∼= B(L ,L ′).
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2. B is a distributive bilattice with negation if and only if there exists a bounded
distributive latticeL such thatB ∼= B(L).

Categorical equivalences

In this section we show that the extraction of the pair (POS(B), NEG(B)) from the
bilatticeB is natural and consequently gives a categorical equivalence. The reader is referred
to Mac Lane [12] for all unexplained categorical notation and terminology.

LetL be the category of bounded latticesL = 〈L,∧,∨,0,1〉 with morphisms all{0,1}–
lattice homomorphisms.DL is the full subcategory ofL whose objects are all bounded
distributive lattices.

Given an interlaced bilatticeB we setL2(B) = 〈POS(B),NEG(B)〉. As shown above,
B ∼= B(L2(B)), with fB : B ∼= B(L2(B)) given by

fB(x) = (x ∧2 11, x ∧2 01), for everyx ∈ B. (2)

Moreover, given an arbitrary pair of bounded latticesL = 〈L,∧,∨,0,1〉 and L ′ =
〈L′,∧′,∨′,0′,1′〉, we can construct the interlaced bilatticeB(L ,L ′)and then extract the pair
of bounded latticesL2(B(L ,L ′)). It is not difficult to see, using Corollary 8, that〈L ,L ′〉 ∼=
L2(B(L ,L ′)) in the product categoryL × L, wheregL ,L ′ : 〈L ,L ′〉 ∼= L2(B(L ,L ′)) is
defined by

gL ,L ′(x, x′) = ((x,0′), (0, x′)) for every(x, x′) ∈ L× L′. (3)

For our purposes the essential property of the constructions ofB(L ,L ′) and ofL2(B) is
their naturalness. This is formalized as a functorF between the categoriesL×L andIBL
and a functorG in the opposite direction.

DefineFObj : Obj(L × L) → Obj(IBL), by

FObj(L ,L ′) = B(L ,L ′), for every〈L ,L ′〉 ∈ Obj(L × L).

FMor : Mor(L × L) → Mor (IBL) is defined as follows. For all〈L ,L ′〉, 〈M ,M ′〉 ∈
Obj(L × L) and〈h, h′〉 : 〈L ,L ′〉 → 〈M ,M ′〉 ∈ Mor (L × L), FMor(h, h

′) : B(L ,L ′) →
B(M ,M ′) ∈ Mor(IBL) is given by

FMor(h, h
′)((x, x′)) = (h(x), h′(x′)), for every(x, x′) ∈ B(L ,L ′).

It is not difficult to see thatF : L × L → IBL, acting asFObj on Obj (L × L) and as
FMor on Mor (L × L), is a functor.

DefineGObj : Obj(IBL) → Obj (L × L) by

GObj(B) = L2(B), for everyB ∈ Obj(IBL),



118 b. mobasher, d. pigozzi, g. slutzki and g. voutsadakis algebra univers.

andGMor : Mor(IBL) → Mor(L × L) as follows: for everyB,C ∈ Obj(IBL) and
k : B → C ∈ Mor(IBL),GMor(k) : L2(B) → L2(C) ∈ Mor(L × L) is given by

GMor(k)(x, y) = (k(x) ∧2 11, k(y) ∧2 01), for every(x, y) ∈ L2(B).

It turns out thatG : IBL → L × L, acting asGObj on Obj(IBL) and asGMor on
Mor(IBL), is also a functor. We have the following theorem relatingF : L × L → IBL
andG : IBL → L × L. Following [12], given a categoryC, we useIC to denote the
identity functor onC, and

•→ to denote natural transformations.

THEOREM 10. The categoriesL × L andIBL are naturally equivalent. More pre-
cisely, f : IIBL

•→ FG and g : IL×L
•→ GF are natural isomorphisms, where

f : Obj(IBL) → Mor(IBL) and g : Obj(L × L) → Mor(L × L) are as defined in
(2) and(3), respectively.

Proof. Let 〈h, h′〉 : 〈L ,L ′〉 → 〈M ,M ′〉 ∈ Mor(L × L) and(x, x′) ∈ L× L′. Then

G(F(h, h′))(gL ,L ′(x, x′)) = (F (h, h′)(x,0′) u2 (1,0
′), F (h, h′)(0, x′) u2 (0,1

′))
= ((h(x), h′(0′)) u2 (1,0

′), (h(0), h′(x′)) u2 (0,1
′))

= ((h(x) ∧ 1, h′(0′) ∧′ 0′), (h(0) ∧ 0, h′(x′) ∧′ 1′))
= ((h(x),0′), (0, h′(x′)))
= gM ,M ′(h(x), h′(x′))
= gM ,M ′(h, h′)(x, x′),

i.e., the following diagram commutes, as required.

〈L ,L ′〉 gL ,L ′−→ G(F(L ,L ′))
〈h, h′〉 ↓ ↓ G(F(h, h′))

〈M ,M ′〉 −→
gM ,M ′ G(F(M ,M ′))

Next, letk : B → C ∈ Mor(IBL) andx ∈ B. Then

F(G(k))(fB(x)) = F(G(k))((x ∧2 11, x ∧2 01))

= (k(x ∧2 11) ∧2 11, k(x ∧2 01) ∧2 01)

= (k(x) ∧2 11 ∧2 11, k(x) ∧2 01 ∧2 01)

= (k(x) ∧2 11, k(x) ∧2 01) = fC(k(x)),

i.e., the following diagram commutes, as required.

B
fB−→ F(G(B))

k ↓ ↓ F(G(k))

C −→ F(G(C))
fC
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Thusf andg are natural transformations betweenIIBL andFG and betweenIL×L and
GF , respectively. SincefB : B → F(G(B)) andgL×L ′ : L × L ′ → G(F(L × L ′)) are
isomorphisms,f andg are natural isomorphisms. ¨

COROLLARY 11. The categoriesDL × DL andDBL are naturally equivalent.

Proof. By Theorems 4 and 10, the restrictions off and g to Obj(DBL) and
Obj(DL × DL), respectively, are natural isomorphisms. ¨

The well known natural equivalence betweenDL and the opposite category of bounded
Priestley spacesPSop ([14, 15, 16], see also [6]) induces a natural equivalence between
the corresponding product categoriesDL × DL andPSop × PSop. Combined with the
natural equivalence of the above theorem, this gives a Priestley-style duality theorem for
interlaced bilattices.

COROLLARY 12. The category of distributive bilatticesDBL and the coproduct of
the category of bounded Priestley spacesPS with itself are dually naturally equivalent
categories.

Proof. Let 8 : DL → PSopand9 : PSop → DL be the well-known functors and
ψ : IDL

•→ 98 and φ : IPSop
•→ 89 the well-known natural isomorphisms that

establish the dual natural equivalence betweenDLandPS. Consider the composed functors
(8 × 8)G : DBL → PSop × PSop andF(9 × 9) : PSop × PSop → DBL. Let
B ∈ Obj(DBL). 〈ψPOS(B), ψNEG(B)〉 : G(B) → (9×9)(8×8)G(B) is an isomorphism
in DL × DL. Applying the functorF we get the isomorphismF(〈ψPOS(B), ψNEG(B)〉) :
FG(B) → F(9×9)(8×8)G(B) in DBL. Finally, composing this with the isomorphism
fB : B → FG(B) we get the isomorphism, inDBL,

F(〈ψPOS(B), ψNEG(B)〉) ◦ fB : B → F(9 ×9)(8×8)G(B).

The collection of these isomorphisms for eachB ∈ Obj(DBL) is clearly a natural isomor-
phism between the functorsIDBL andF(9 × 9)(8 × 8)G. In a similar way we have
that

{(8×8)(g9(P ),9(P ′)) ◦ 〈φP , φP ′ 〉 : 〈P,P ′〉 ∈ Obj(PSop × PSop)}
is a natural isomorphism betweenIPSop×PSop and(8×8)GF(9 ×9). ¨

Theorem 10 and Corollaries 11 and 12 have corresponding analogues for bilattices with
negation.

THEOREM 13. The categoriesL andIBL¬ are naturally equivalent.
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Proof. Given an interlaced bilatticeB with negation, set

L(B) = POS(B),

and, given a bounded latticeL = 〈L,∧,∨,0,1〉, let B(L), be as in Definition 3. The
functorF : L → IBL¬ is defined as follows.FObj : Obj(L) → Obj(IBL¬) is given by

FObj(L) = B(L), for everyL ∈ Obj(L),

and, for allL ,M ∈ Obj(L) andh : L → M ∈ Mor(L), FMor(h) : B(L) → B(M ) ∈
Mor(IBL¬) is given by

FMor(h)(x, y) = (h(x), h(y)), for every(x, y) ∈ B(L).

Furthermore, we note thatF preserves surjections in the sense that, ifh : L → M is a
surjection then so isF(h) : B(L) → B(M ).

The functorG : IBL¬ → L is defined by

GObj(B) = L(B), for everyB ∈ Obj(IBL¬),

and, for everyB,C ∈ Obj(IBL¬) andk : B → C ∈ Mor(IBL¬),

GMor(k)(x) = (k(x) ∧2 11, k(x) ∧2 01), for everyx ∈ L(B).

G also preserves surjections in the obvious sense.
If we then definefB : B ∼= B(L(B)) by

fB(x) = (x ∧2 11, x ∧2 01), for everyx ∈ B,

andgL : L ∼= L(B(L)) by

gL (x) = (x, x), for everyx ∈ L,

then, following the proof of Theorem 10, we obtain again a natural equivalence. ¨

COROLLARY 14. The categoriesDL andDBL¬ are naturally equivalent.

COROLLARY 15. The category of distributive bilattices with negationDBL¬ and the
category of bounded Priestley spacesPS are dually naturally equivalent.
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Subdirect irreducibility

As an easy application of Theorem 5 we obtain a simple characterization of the subdirectly
irreducible interlaced bilattices, see, e.g., [4].

THEOREM 16. An interlaced bilatticeB is subdirectly irreducible if and only ifPOS(B)
is a subdirectly irreducible lattice andNEG(B) is trivial or vice-versa.

Proof. Let B = 〈B,≤1,≤2〉 be a subdirectly irreducible interlaced bilattice. From
the remark following the proof of Theorem 5 we haveB ∼= POS(B)+ × NEG(B)−. So
either POS(B)+ or NEG(B)−, and hence eitherPOS(B) or NEG(B), must be trivial.
Assume, without loss of generality, thatPOS(B) is trivial. ThenB ∼= NEG(B)−. Therefore
NEG(B)− must be a subdirectly irreducible bilattice. ButNEG(B)− has exactly the same
congruence lattice thatNEG(B) has. SoNEG(B)− is a subdirectly irreducible bilattice if
and only ifNEG(B) is a subdirectly irreducible lattice, as required.

Conversely, by a similar argument, if one ofPOS(B),NEG(B) is subdirectly irreducible
and the other is trivial, thenB ∼= B(POS(B),NEG(B)) is also subdirectly irreducible.̈

COROLLARY 17. An interlaced bilatticeB is subdirectly irreducible if and only if there
exists a subdirectly irreducible latticeL such thatB ∼= L+ or B ∼= L−.

COROLLARY 18. T WO+ and T WO− are up to isomorphism the only subdirectly
irreducible distributive bilattices.

Theorem 16 and its second corollary can be reformulated for interlaced bilattices with
negation. It turns out that it is more convenient to prove the analog of Theorem 16 as a
corollary of the natural equivalence between the categoriesL andIBL¬ established in
Theorem 13. We thus obtain the following result of Romanowska and Trakul.

THEOREM 19. ([19], Corollary 4.6) An interlaced bilatticeB with negation is sub-
directly irreducible iff the latticeL(B) = POS(B) is subdirectly irreducible.

Proof. Let B ∈ Obj(IBL¬) be subdirectly irreducible. LetL = L(B) and assume, to
the contrary, thatL is not subdirectly irreducible, i.e., thatL has a subdirect representation
h : L → ∏

i∈I L i , where none of the compositionspih : L → L i is a lattice isomorphism.
Natural isomorphisms preserve products. Hence, by Theorem 13, the previously observed
fact that the functorF : L → IBL¬ preserves surjections, and the fact that direct products
are preserved under natural equivalence, we have thatF(h) : B(L) → B(∏i∈I L i ) ∼=∏
i∈I B(L i ) is a subdirect representation ofB(L) ∼= B with none of the compositions

piF (h) : B(L) → B(L i ) a bilattice isomorphism, contrary to the subdirect irreducibility
of B.
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ThusB subdirectly irreducible impliesL(B) is subdirectly irreducible. A similar argu-
ment shows that, ifL is subdirectly irreducible, then so isB(L). HenceL(B) subdirectly
irreducible impliesB (∼= BL(B)) is subdirectly irreducible. ¨

COROLLARY 20. ([19], Theorem 4.7)FOUR is up to isomorphism the only sub-
directly irreducible distributive bilattice with negation.

Proof. In view of the last part of Theorem 4,B is a subdirectly irreducible distributive
bilattice with negation iffL(B) is a subdirectly irreducible distributive lattice. But the
two-element lattice is the only subdirectly irreducible distributive lattice, andL(B) is the
two-element lattice iffB is FOUR. ¨

Join irreducible elements of interlaced bilattices

Based on our representation theorem for interlaced bilattices, we obtain, in this section,
a characterization of the lattices of join-irreducible elements, with respect to the second
ordering, of arbitrary interlaced bilattices.

The natural equivalence betweenIBL andL×L induces a natural equivalence between
the categoriesIBLf andLf × Lf , i.e., the category of finite interlaced bilattices and the
cartesian square of the category of finite lattices. It also induces one between the categories
DBLf andDLf × DLf , i.e., the category of finite distributive bilattices and the cartesian
square of the category of finite distributive lattices. When the latter equivalence is combined
with the cartesian square of Birkhoff’s [5] natural equivalence betweenDLf andPOop

f ,
wherePOf is the category of finite posets and order preserving mappings, we obtain
a natural equivalence betweenDBLf and POop

f × POop
f

∼= (POf t POf )
op. Under

this equivalence a finite, distributive bilatticeB is mapped into the poset of its≤2-join-
irreducible elements.

Let L = 〈L,≤〉 be a bounded lattice. Recall that an elementx ∈ L is called≤-join-
irreducible, or simply join-irreducible when the lattice is clear from context, if, for all
y, z ∈ L, x = y ∨ z impliesx = y or x = z. The set of all nonzero join-irreducibles ofL
is denoted byJ (L) and the subposet of〈J (L),≤〉 of L is denoted byJ(L).

Let B = 〈B,≤1,≤2〉 be a bilattice. An elementx ∈ B is calledpositive(resp.negative)
≤2-join-irreducible if it is positive (resp. negative) and join-irreducible with respect to the
≤2-ordering. We denote byJ+

2 (B) (resp. J−
2 (B)) the set of all nonzero positive (resp.

negative)≤2-join-irreducible elements ofB, and byJ+
2 (B) (resp. J−

2 the corresponding
partially ordered set with the partial ordering inherited by≤2. Moreover,J2(B) denotes
the set of all≤2- join-irreducible elements ofB, andJ2(B) is the corresponding poset.

LEMMA 21. LetB be an interlaced bilattice.

1. J+
2 (B) = J (POS(B)) andJ−

2 (B) = J (NEG(B)).
2. {J+

2 (B), J
−
2 (B)} is a bipartition ofJ2(B)− {02}.

3. If B has negation,J+
2 (B)

∼= J−
2 (B).
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Proof. Part 1 is an immediate consequence of Lemma 7.
Supposex ∈ B is both positive and negative. Then by Parts 1 and 2 of Lemma 7

respectively we have 02 ≤1 x and 02 ≥1 x, i.e.,x = 02. SoJ+
2 (B) andJ−

2 (B) are disjoint.
ClearlyJ2(B) ⊇ J+

2 (B)∪J−
2 (B). For the opposite inclusion, assume 02 6= x /∈ J+

2 (B)∪
J−

2 (B). By (1) we havex = (x ∧2 11) ∨2 (x ∧2 01). By Lemma 7, sincex is nonpositive,
x 6= x ∧2 11, and, since it is also nonnegative,x 6= x ∧2 01. Sox = (x ∧2 11)∨2 (x ∧2 01)

is a proper∨2-decomposition ofx, and hencex /∈ J2(B). This gives Part 2. The last part of
the lemma is an immediate consequence of the fact that the latticesPOS(B) andNEG(B)
are isomorphic under negation. ¨

Let P = 〈P,�〉 andQ = 〈Q,v〉 be two disjoint partially ordered sets. Define thelift
of P, denoted byP⊥, by P⊥ = 〈P ∪ {0},≤〉, where 0/∈ P andx ≤ y in P⊥ if and only if
x = 0 or x � y in P. Define thedisjoint unionP

⊎
Q = 〈P ∪Q,≤〉 to be the partially

ordered set withx ≤ y if and only if eitherx, y ∈ P andx � y or x, y ∈ Q andx v y.
Given two partially ordered setsP andQ, define theseparated sumof P andQ, denoted

P ⊕⊥ Q, to be the posetP ⊕⊥ Q = (P′ ⊎ Q′)⊥, whereP′,Q′ are canonically determined
isomorphic copies ofP,Q, respectively, such thatP ′ ∩Q′ = ∅.

Finally, observe that, by Lemma 21,J2(B) = J+
2 (B)⊕⊥ J−

2 (B).

THEOREM 22. 1.Let B be a (finite) interlaced bilattice. Then there exist (finite)
posetsP,Q such that

J2(B) ∼= P ⊕⊥ Q.

2. Conversely, letP,Q be finite posets. Then there is a finite interlaced bilatticeB such
that

P ⊕⊥ Q ∼= J2(B).

Proof. (1). Suppose thatB = 〈B,≤1,≤2〉 is a finite interlaced bilattice. We have
already observed thatJ2(B) = J+

2 (B) ⊕⊥ J−
2 (B) = J(POS(B)) ⊕⊥ J(NEG(B)). Set

P = J(POS(B)) andQ = J(NEG(B)). ThenJ2(B) ∼= P ⊕⊥ Q.
(2). LetP,Q be finite posets. LetO(P),O(Q) be the lattice of order-ideals (i.e., down

sets) ofP,Q, respectively. TheP ∼= J(O(P)) andQ ∼= J(O(Q)). Next, we construct the
bilattice B = B(O(P),O(Q)). By Corollary 8 and Lemma 21 we haveJ+

2 (B)
∼= P and

J−
2 (B)

∼= Q. Therefore,P ⊕⊥ Q ∼= J2(B). ¨

The correspondence between finite distributive bilattices and pairs of finite posets, as
described in Theorem 22, gives rise to a natural equivalence between the category of finite
distributive bilattices and a subcategory of the category of finite posets. We omit the details.
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COROLLARY 23. 1. Let B be a (finite) interlaced bilattice with negation. Then
there exists a (finite) posetP such that

J2(B) ∼= P ⊕⊥ P.

2. Conversely, letP be a finite poset. Then there is a finite interlaced bilattice with
negationB such that

P ⊕⊥ P ∼= J2(B).

We note that part 2 of Theorem 22 can be extended to the infinite case if one considers
completely join-irreducible elements with respect to the second ordering, as opposed to just
join-irreducibles.
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