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Abstract. Josep Maria Font and Ramon Jansana, inspired by previous work of Cze-
lakowski, Blok and Pigozzi and of other members of the Barcelona algebraic logic
group, studied the interaction between the algebraization of deductive systems in the
sense of Tarski and the algebraization of Gentzen systems, connected with the deduc-
tive systems in various ways. Only recently, did the author extend the notion of a
Gentzen system to the π-institution level and this extension provides the framework
for the extension of some of the results of Font and Jansana to the categorical abstract
algebraic logic level.

1 Introduction In [12] Font and Jansana used abstract logics, introduced by Suszko and
his collaborators in [5] and [7], to provide an alternative algebraic semantics for sentential
logics to the traditionally used logical matrix semantics (see, e.g., [3, 4]). An abstract logic
IL = 〈A, C〉 consists of an algebra A = 〈A,LA〉 together with a closure operator C on
the universe A of the algebra, as opposed to the single set F ⊆ A, the set of designated
elements or filter, of a logical matrix A = 〈A, F 〉. As a consequence, in the theory of
[12], the well-known Leibniz operator of Blok and Pigozzi [3], as applied to filters over an
algebra, is replaced by the Tarski operator, which is applied to closure systems over a given
algebra. Logics are classified, depending on different properties possessed by the Leibniz
operator on their models, into several steps of an algebraic hierarchy. The major classes
consist of the protoalgebraic [2], the equivalential [8] and the algebraizable logics [3]. An
overview of the hierarchy may be found in Czelakowski’s book [9] and in the survey article
[13]. The theories of the Tarski operator and that of the Leibniz operator give identical
results when applied to protoalgebraic sentential logics, which are at the lowest end of the
algebraic hierarchy. These are generally understood to be the most primitive algebraically,
but yet rich enough to be amenable to algebraic logic techniques. However, the theory of
abstract logics and the Tarski operator give new insights in the case of non-protoalgebraic
logics and reveal some of the ties that exist between logics in different steps of the hierarchy
that are obscure when the matrix models and the Leibniz operator alone are used. Chapter
5 of [12] contains many applications of this theory to different specific sentential logics.

One of the main concepts in [12] is that of a full model of a sentential logic S. A full
model of S is an abstract logic IL = 〈A, C〉 whose Tarski quotient IL∗ = 〈A∗, C∗〉 has as its
closure set system the entire collection FiSA∗ of S-filters on the algebra A∗. The collection
of all full models of S on A is denoted by FModSA. Of a particular interest to us, in
the present context, is the use by Font and Jansana of Gentzen systems to investigate
properties of sentential logics (see Chapter 4 of [12]). Two main considerations lead them
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to the introduction of Gentzen systems as auxiliary tools for the study of sentential logics.
The first is the general observation that the definition of full models involves second-order
reasoning. This property hints to the use of Gentzen systems, whose deduction is a higher
order deduction. The second, related to the first, is the specific question of whether the full
models of a specific logic may be characterized exactly as the models of a given Gentzen
system that is somehow related to the sentential logic.

To put the investigations on a sound basis, Font and Jansana introduce the notion of
an abstract logic being a model of a Gentzen system. Roughly speaking, IL = 〈A, C〉 is a
model of the Gentzen system G = 〈L, |∼G〉 if the entailment |∼G can be interpreted into
the entailment of C-entailments. The two notions that serve for relating sentential logics
with Gentzen systems are that of a Gentzen system G being adequate for a sentential logic
S and that of a Gentzen system G being fully adequate1 for a sentential logic S. Again
roughly speaking, G is adequate for S when �S is exactly the logic defined by |∼G in the
sense that its entailments are exactly the theorem sequents of G. On the other hand, G is
fully adequate for S when the full models of S correspond to the models of G. Of course, if
G is fully adequate for S, then G is also adequate for S.

Font and Jansana define the notion of an S-algebra and of a G-algebra. An algebra A
is an S-algebra if the abstract logic consisting of all the S-filters on A is reduced. This is
tantamount to saying that A is the algebraic reduct of a reduced full model of S. The class
of all S-algebras is denoted by AlgS. The collection of all AlgS-congruences on an algebra
A, i.e., congruences on A whose quotient algebras lie in AlgS, is denoted, as usual, by
ConAlgSA. In the Isomorphism Theorem 2.30 of [12], it is shown that, given an algebra A,
the Tarski operator is an order-isomorphism between 〈FModSA,≤〉 and 〈ConAlgSA,⊆〉.
On the other hand an algebra A is a G-algebra if it is the algebraic reduct of a reduced
model of G. AlgG denotes the class of all G-algebras.

In terms of the classes of algebras AlgS and AlgG associated with S and with G,
respectively, it is shown that, G being adequate for S implies that AlgG ⊆ AlgS, whereas
in the case of full adequacy the two classes are identical.

The present work is continuing work presented in a series of papers by the author adapt-
ing aspects of the theory of Font and Jansana to make it suitable for handling institutional
logics. The origin of the concept of institution lies in the work of Goguen and Burstall
[14, 15] in the domain of specifications of programming languages. The idea of using it
in the framework of a categorical theory of algebraization originated with Diskin [10]. It
was more rigorously pursued by the author in the dissertation [19], written under the su-
pervision of Don Pigozzi (see also [20, 21, 22]). The categorical theory uses the notion
of a π-institution, introduced by Fiadeiro and Sernadas in [11]. π-institutions possess a
general entailment system rather than a semantical entailment, as is the case with institu-
tions. Gentzen π-institutions, corresponding to Gentzen systems, were introduced in [23]
and were used to give a characterization of those π-institutions having a specific form of
the Deduction-Detachment Theorem. The first paper that deals with a generalization of
the Tarski operator to the institutional level is [24] (see also [26]). Introduction of logi-
cal congruence systems and of the Tarski congruence system, in particular, which is the
largest logical congruence of a π-institution, allows the development of a model theory for
π-institutions that parallels the model theory of sentential logics and is inspired by methods
and results of universal algebra. The notions of a basic full model and of a full model from
sentential logics were adapted to the π-institution framework in [25]. There, they were
called min and full models, respectively2. An order preserving correspondence between

1“Fully adequate” was originally called “strongly adequate” in [12] but was later renamed by Font,
Jansana and Pigozzi [13] to the more suggestive term.

2The difference in terminology is not deep or philosophical. The author thinks that it is more suggestive



CATEGORICAL ABSTRACT ALGEBRAIC LOGIC: GENTZEN (π)-INSTITUTIONS 409

full models and logical congruence systems in the style of the correspondence between full
models and S-congruences of a sentential logic S ([12], Theorem 2.30) is provided in [27].

In the present work, Gentzen π-institutions are used in the institutional framework to
provide an adaptation of the part of the theory of [12] that explores the connections of
sentential logics with Gentzen systems. More specifically, the notion of a π-institution I
serving as a model of a Gentzen π-institution G is introduced. In analogy with sentential
logics, this roughly means that the closure system of G may be interpreted into that of I.
Similarly, the notions of a Gentzen π-institution being adequate and fully adequate for a
given π-institution are introduced and results paralleling those governing the relationship
of a sentential logic and of a Gentzen system adequate or fully adequate for it are proved.

Throughout the paper, by Set will be denoted the category of all small sets, by P :
Set → Set the power set functor and by 2 : Set → Set the cartesian square functor. For
all other categorical concepts and unexplained categorical notation the reader is referred to
any of [1],[6] or [17].

Note also that the present line of work is continued further in [28].

2 Gentzen π-Institutions Recall from [11] that a π-institution I = 〈Sign, SEN,
{CΣ}Σ∈|Sign|〉 is a triple consisting of

(i) a category Sign, whose objects are called signatures and whose morphisms are called
assignments,

(ii) a functor SEN : Sign → Set from the category of signatures to the category of small
sets, giving, for each Σ ∈ |Sign|, the set of Σ-sentences SEN(Σ) and mapping an
assignment f : Σ1 → Σ2 to a substitution SEN(f) : SEN(Σ1) → SEN(Σ2),

(iii) a mapping CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, called Σ-closure,
such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1(A)) ⊆ CΣ2 (SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2),
A ⊆ SEN(Σ1).

A family C = {CΣ : P(SEN(Σ)) → P(SEN(Σ))}Σ∈|Sign| will be referred to as a closure
system on SEN : Sign → Set if it satisfies (iii)(a)-(d) above. Note that a closure system
in the present sense consists of a family of closure operators rather than a family of closure
systems in the traditional sense, that, in addition to the three closure conditions (iii)(a)-(c),
also satisfy the structurality condition (iii)(d).

It is well-known that, given an institution I, a π-institution π(I) results by taking the
semantic closure relations of I as the closure relations of π(I) [11]. Therefore the abundance
of examples of institutions in the literature (see, for instance, [14, 15, 16, 18, 20, 21, 22])
immediately yields, via this construction, many important examples of logics formulated as
π-institutions. We will not present any more examples here.

Let I = 〈Sign, SEN, C〉 and I ′ = 〈Sign′, SEN′, C′〉 be two π-institutions. A transla-
tion 〈F,α〉 : I → I′ from I to I ′ consists of a functor F : Sign → Sign′ and a natural trans-
formation α : SEN → PSEN′F [19, 20]. It is said to be singleton, denoted 〈F,α〉 : I →s I ′,

for mnemonical purposes to use “min models” than “basic full models”.
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if |αΣ(φ)| = 1, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ). A translation 〈F,α〉 : I → I′ is called
a semi-interpretation, denoted 〈F,α〉 : I〉−I ′, if, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) implies αΣ(φ) ⊆ C′
F (Σ)(αΣ(Φ)).

Finally, it is called an interpretation, denoted by 〈F,α〉 : I � I′, if, for all Σ ∈ |Sign|,Φ∪
{φ} ⊆ SEN(Σ),

φ ∈ CΣ(Φ) iff αΣ(φ) ⊆ C′
F (Σ)(αΣ(Φ)).

A π-institution I is said to be semi-interpretable in a π-institution I ′ if there exists a
semi-interpretation 〈F,α〉 : I〉−I ′. Similarly, I is said to be interpretable in I ′ if there
exists an interpretation 〈F,α〉 : I � I′.

In the following definition the notation PSEN2 will be used to denote the functor
(PSEN)2 (and not the functor P(SEN2)).

Definition 1 A Gentzen π-institution I is a π-institution

I = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉,

where SEN : Sign → Set is a functor and C is a closure system on PSEN2, such that

Axiom 〈Φ,Φ〉 ∈ CΣ(∅), for all Σ ∈ |Sign|,Φ ⊆ SEN(Σ),

Weakening 〈Γ ∪ Ψ,Φ〉 ∈ CΣ(〈Γ,Φ〉), for all Σ ∈ |Sign|,Γ,Ψ,Φ ⊆ SEN(Σ),

Cut 〈Γ,Ψ〉 ∈ CΣ(〈Γ,Φ〉, 〈Γ ∪ Φ,Ψ〉), for all Σ ∈ |Sign|,Γ,Ψ,Φ ⊆ SEN(Σ).

Entailment 〈Φ, {ψ}〉 ∈ CΣ(Φ), for all ψ ∈ Ψ, implies that 〈Φ,Ψ〉 ∈ CΣ(Φ), for all Σ ∈ |Sign|,
Φ,Ψ ⊆ SEN(Σ),Φ ⊆ PSEN(Σ)2 and φ ∈ SEN(Σ).

In the present setting, the following notational conventions will be used: By a capital
Greek letter, like Γ,Φ, etc, will be denoted subsets of SEN(Σ). By vectored capital Greek
letters, like �Γ, �Φ, etc., will be denoted pairs of subsets of SEN(Σ), with �Γ = 〈Γ1,Γ2〉, �Φ =
〈Φ1,Φ2〉, etc. By boldfaced capital Greek letters, such as Γ,Φ, etc. will be denoted col-
lections of pairs of subsets of SEN(Σ). Finally, we often adopt the notation Γ1 �Σ Γ2 for
〈Γ1,Γ2〉 when 〈Γ1,Γ2〉 ∈ PSEN(Σ)2 and Φ|∼Σ

�Φ for �Φ ∈ CΣ(Φ). These are all well-known
notational conventions from the theory of ordinary Gentzen systems (see, for instance,
Chapter 4 of [12]). With these conventions in place, the axioms of Axiom, Weakening and
Cut above take, respectively, the forms

• |∼Σ Φ �Σ Φ,

• Γ �Σ Φ|∼Σ Γ,Ψ �Σ Φ,

• Γ �Σ Φ; Γ,Φ �Σ Ψ|∼Σ Γ �Σ Ψ.

Let I = 〈Sign,PSEN2, C〉 and I ′ = 〈Sign′,PSEN′2, C′〉 be two Gentzen π-institutions.
A Gentzen translation 〈F,α〉 : I →G I ′ from I to I ′ consists of a functor F : Sign →
Sign′ and a natural transformation α : SEN → PSEN′. It is said to be singleton, denoted
〈F,α〉 : I →Gs I ′, if |αΣ(φ)| = 1, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ). A Gentzen
translation 〈F,α〉 : I →G I ′ is called a Gentzen semi-interpretation, denoted 〈F,α〉 :
I〉−GI ′, if, for all Σ ∈ |Sign|,Φ ∪ {�Φ} ⊆ P(PSEN(Σ)2),

�Φ ∈ CΣ(Φ) implies α2
Σ(�Φ) ⊆ C′

F (Σ)(α
2
Σ(Φ)).
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Finally, it is called a Gentzen interpretation, denoted by 〈F,α〉 : I �G I ′, if, for all
Σ ∈ |Sign|,Φ ∪ {�Φ} ⊆ P(PSEN(Σ)2),

�Φ ∈ CΣ(Φ) iff α2
Σ(�Φ) ⊆ C′

F (Σ)(α
2
Σ(Φ)).

Gentzen semi-interpretable and Gentzen interpretable are defined very similarly
to the terms semi-interpretable and interpretable, respectively, except that they refer to
Gentzen interpretations and Gentzen semi-interpretations.

Note that the notion of a Gentzen translation differs from the notion of translation
between two arbitrary π-institutions as introduced previously in [19, 20]. Also note that in
the definitions above, αΣ(Φ) := {αΣ(φ) : φ ∈ Φ}, for all Σ ∈ |Sign|,Φ ⊆ SEN(Σ), extends
the notation to sets of sentences and α2

Σ(�Φ) = 〈αΣ(Φ1), αΣ(Φ2)〉, for all �Φ = 〈Φ1,Φ2〉,
further extends the notation to pairs of sets of sentences. Finally, α2

Σ(Φ) := {α2
Σ(�Φ) : �Φ ∈

Φ}. This abuse of notation should not cause any confusion since the intended meaning will,
hopefully, be clear from context.

The following small table summarizes the various translation concepts and the associated
symbols:

General Gentzen
translation → →G

semi-interpretation 〉− 〉−G

interpretation � �G

Given a Gentzen π-institution G = 〈Sign,PSEN2, C〉, there is a natural way to construct
a closure system on SEN that reflects some of the properties of the closure system C of G.
Proposition 2 Let G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 be a Gentzen π-institution. Define
Gs = 〈Sign, SEN, {Cs

Σ}Σ∈|Sign|〉, such that, for all Σ ∈ |Sign|,Γ ∪ {φ} ⊆ SEN(Σ),

φ ∈ Cs
Σ(Γ) iff 〈Γ, {φ}〉 ∈ CΣ(∅) i.e., iff |∼Σ Γ �Σ φ.

Then Gs is also a π-institution.

Proof:
Let Σ ∈ |Sign|. Axiom and Weakening for Gentzen π-institutions combined yield φ ∈

Cs
Σ(Γ), for all φ ∈ Γ.

Now suppose that φ ∈ Cs
Σ(Cs

Σ(Γ)). Then Cs
Σ(Γ) �Σ φ ∈ CΣ(∅). But, by Entailment,

Γ �Σ Cs
Σ(Γ) ∈ CΣ(∅), which, together with Cs

Σ(Γ) �Σ φ ∈ CΣ(∅), imply, by Cut, that
Γ �Σ φ ∈ CΣ(∅), whence φ ∈ Cs

Σ(Γ).
If Γ ⊆ ∆ and φ ∈ Cs

Σ(Γ), then Γ �Σ φ ∈ CΣ(∅), whence, since ∆ �Σ Γ ∈ CΣ(∅), by
Axiom and Weakening, we get ∆ �Σ φ ∈ CΣ(∅), by Cut. Hence φ ∈ Cs

Σ(∆).
Finally, suppose f ∈ Sign(Σ1,Σ2) and let φ ∈ Cs

Σ1
(Γ). Then Γ �Σ1 φ ∈ CΣ1 (∅), whence,

by the structurality of C, we get that SEN(f)(Γ) �Σ2 SEN(f)(φ) ∈ CΣ2(∅), and, therefore,
SEN(f)(φ) ∈ Cs

Σ2
(SEN(f)(Γ)), i.e., Cs is also a closure system. �

If G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 is a Gentzen π-institution, as above, the institution
Gs = 〈Sign, SEN, {Cs

Σ}Σ∈|Sign|〉 will be called the weak sentential counterpart or the
theorem counterpart of G. The construction of Gs parallels the construction of the
sentential logic 〈L,�G〉, defined by a given Gentzen system G, in the theory of sentential
logics (see Definition 4.2 of [12]). The name “sentential counterpart” was chosen because
of this analogy. The same analogy motivates the definition of adequacy of a Gentzen π-
institution G for a π-institution I. Roughly speaking, it means that G defines I via its
sentential counterpart.
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Definition 3 Given a π-institution I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉, a Gentzen π-insti-
tution G = 〈Sign′,PSEN′2, {C ′

Σ}Σ∈|Sign′|〉 is said to be adequate for I if I is interpretable
in Gs, written I � Gs.

In the opposite way, given a π-institution I = 〈Sign, SEN, C〉, one may construct a
Gentzen closure on PSEN2 reflecting some of the properties of C.

Let I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. Construct Ig = 〈Sign,PSEN2,
{Cg

Σ}Σ∈|Sign|〉 by letting, for all Σ ∈ |Sign|, Cg
Σ be the smallest closure operator on

PSEN(Σ)2 satisfying

• Γ �Σ Φ ∈ Cg
Σ(∅), for all Γ ∪ Φ ⊆ SEN(Σ), such that Φ ⊆ CΣ(Γ),

• Γ ∪ Ψ �Σ Φ ∈ Cg
Σ(Γ �Σ Φ), for all Γ,Ψ,Φ ⊆ SEN(Σ),

• Γ �Σ Ψ ∈ Cg
Σ(Γ �Σ Φ,Γ ∪ Φ �Σ Ψ), for all Γ,Ψ,Φ ⊆ SEN(Σ).

Proposition 4 Ig is a Gentzen π-institution, for every π-institution I.
Proof:
Since, by definition, Cg

Σ is a closure operator, for every Σ ∈ |Sign|, it suffices to show
that Cg is a closure system on PSEN2. But this follows from the definition of Cg

Σ and the
fact that all closure conditions involved in that definition are structural, i.e., invariant under
the application of PSEN(f)2, for all Σ1,Σ2 ∈ |Sign| and f ∈ Sign(Σ1,Σ2). �

Given a π-institution I, the Gentzen π-institution Ig will be called the weak Gentz-
enization of I. In the next proposition, it is shown that it is adequate for I.
Proposition 5 Given a π-institution I, the weak Gentzenization Ig of I is a Gentzen
π-institution adequate for I.

Proof:
It must be shown that I � Igs. We show that 〈ISign, ι〉 : I → Igs, where ISign is the

identity functor on Sign and ι : SEN → SEN is the identity natural transformation, is an
interpretation of I into Igs. It suffices to show that, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),
we have

φ ∈ CΣ(Φ) iff φ ∈ Cgs
Σ (Φ).

Suppose φ ∈ CΣ(Φ). Then Φ �Σ φ ∈ Cg
Σ(∅), whence φ ∈ Cgs

Σ (Φ). Suppose, conversely, that
φ ∈ Cgs

Σ (Φ). Then Φ �Σ φ ∈ Cg
Σ(∅). Now, note that {Φ �Σ Ψ : Ψ ⊆ CΣ(Φ)} is the smallest

Σ-theory of Ig, whence Cg
Σ(∅) = {Φ �Σ Ψ : Ψ ⊆ CΣ(Φ)}, and, therefore φ ∈ CΣ(Φ). �

Out of a given π-institution I = 〈Sign, SEN, C〉, another construction of a Gentzen
counterpart may also be carried out that reflects properties of the closure system C more
closely than does the weak Gentzenization of I.

Let I = 〈Sign, SEN, {CΣ}Σ∈|Sign|〉 be a π-institution. Define the π-institution IG =
〈Sign,PSEN2, {CG

Σ }Σ∈|Sign|〉 by letting

CG
Σ : P(PSEN(Σ)2) → P(PSEN(Σ)2)

be defined, for all Σ ∈ |Sign|, by �Φ ∈ CG
Σ (Γ) iff, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

SEN(f)(Γ2) ⊆ CΣ′(SEN(f)(Γ1)), for all �Γ = 〈Γ1,Γ2〉 ∈ Γ,
implies SEN(f)(Φ2) ⊆ CΣ′ (SEN(f)(Φ1)).

(1)

In Proposition 2.1 of [23], it is shown that IG is a π-institution and it is called the
(strong) Gentzenization of I. Condition (1) will sometimes be abbreviated in the form

SEN(f)(Γ) ⊆ CΣ′ implies SEN(f)(�Φ) ∈ CΣ′ .
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3 Models of Gentzen π-Institutions

Definition 6 Suppose that G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 is a Gentzen π-institution.
A π-institution I = 〈Sign′, SEN′, {C ′

Σ}Σ∈|Sign′|〉 is said to be a model of G if G is Gentzen
semi-interpretable into the Gentzenization IG of I, in symbols G〉−GIG.

Let G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 be a Gentzen π-institution. A collection T =
{〈Σ, TΣ〉 : Σ ∈ |Sign|} of theories of G, such that

SEN(f)(TΣ1) ⊆ TΣ2 , for all Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2),

is called a theory system of G.
Note that the collection Th = {〈Σ,ThΣ〉 : Σ ∈ |Sign|}, where ThΣ = CΣ(∅) is the set

of all Σ-theorems, is a theory system of G, which will be called the theorem system of G.
Given a theory system T of G as above, define a triple GT = 〈Sign, SEN, {CT

Σ}Σ∈|Sign|〉
by setting, for all Σ ∈ |Sign|,Γ ⊆ SEN(Σ),

CT
Σ (Γ) = {φ ∈ SEN(Σ) : Γ �Σ φ ∈ TΣ}.

It is not difficult to check that GT , thus defined, is a π-institution.
Given a model I = 〈Sign′, SEN′, {C ′

Σ}Σ∈|Sign′|〉 of a Gentzen π-institution G via the
Gentzen semi-interpretation 〈F,α〉 : G〉−GIG, define

T I
Σ = {Γ �Σ Φ : αΣ(Γ �Σ Φ) ⊆ C′G

F (Σ)(∅)}, for all Σ ∈ |Sign|,

and, let
T I = {T I

Σ : Σ ∈ |Sign|}.
In the next result a way of obtaining a model of a Gentzen π-institution, given one of its

theory systems, is exhibited. Conversely, it is also shown how a given model of a Gentzen
π-institution gives rise to one of its theory systems.

Proposition 7 Let G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 be a Gentzen π-institution.

1. If T = {〈Σ, TΣ〉 : Σ ∈ |Sign|} is a theory system of G, GT is a model of G.

2. Conversely, if I = 〈Sign′, SEN′, {C ′
Σ}Σ∈|Sign′|〉 is a model of G, then T I is a theory

system of G.

Proof:

1. It will be shown that the identity 〈ISign, ι〉 : G〉−GGTG is a Gentzen semi-interpretation
of G into GTG. It suffices, to this end, to show that, for all Σ ∈ |Sign|,Γ ∪ {�Φ} ⊆
PSEN(Σ)2,

Φ1 �Σ Φ2 ∈ CΣ(Γ) implies Φ1 �Σ Φ2 ∈ CTG
Σ (Γ).

We have �Φ ∈ CΣ(Γ) implies, by structurality of C, that for all Σ′ ∈ |Sign|, f ∈
Sign(Σ,Σ′), SEN(f)(�Φ) ∈ CΣ′(SEN(f)(Γ)), whence, if SEN(f)(Γ) ⊆ TΣ′ , then we
get that SEN(f)(�Φ) ∈ TΣ′ . Thus, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),
SEN(f)(Γ) ⊆ CT

Σ′ implies SEN(f)(�Φ) ∈ CT
Σ′ , i.e., Φ1 �Σ Φ2 ∈ CTG

Σ (Γ).
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2. Now suppose that I = 〈Sign′, SEN′, {C ′
Σ}Σ∈|Sign′|〉 is a model of G via the Gentzen

semi-interpretation 〈F,α〉 : G〉−GIG. Clearly, T I
Σ ⊆ PSEN(Σ)2. Suppose that �Φ ∈

CΣ(T I
Σ). Then α2

Σ(�Φ) ⊆ C′G
F (Σ)(α

2
Σ(T I

Σ)). Thus α2
Σ(�Φ) ⊆ C′G

F (Σ)(∅), and, hence, �Φ ∈
T I

Σ , which proves that T I
Σ is a Σ-theory, for every Σ ∈ |Sign|.

Next suppose that Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2). Then

SEN(f)(T I
Σ1

) =

= SEN(f)({�Φ : α2
Σ1

(�Φ) ⊆ C′G
F (Σ1)(∅)})

= {SEN(f)(�Φ) : α2
Σ1

(�Φ) ⊆ C′G
F (Σ1)(∅)}

⊆ {SEN(f)(�Φ) : SEN′(F (f))(α2
Σ1

(�Φ)) ⊆ C′G
F (Σ2)(∅)}

PSEN(Σ2)2 P(PSEN′(F (Σ2))2)�
αΣ2

PSEN(Σ1)2 P(PSEN′(F (Σ1))2)�αΣ1

�

PSEN(f)2

�

PSEN′(F (f))2

= {SEN(f)(�Φ) : α2
Σ2

(SEN(f)(�Φ)) ⊆ C′G
F (Σ2)(∅)}

⊆ {�Ψ : α2
Σ2

(�Ψ) ⊆ C′G
F (Σ2)(∅)}

= T I
Σ2
.

Therefore T I = {T I
Σ}Σ∈|Sign| is indeed a theory system of G.

�
It is now shown that a surjective singleton interpretation between two π-institutions

induces a Gentzen interpretation between their Gentzenizations.

Lemma 8 Let I = 〈Sign, SEN, C〉 and I ′ = 〈Sign′, SEN′, C′〉 be two π-institutions and
〈F,α〉 : I �s I ′ be a surjective singleton interpretation. Then 〈F,α〉 : IG →G I ′G is a
Gentzen interpretation 〈F,α〉 : IG �G I ′G.

Proof:
Suppose that Σ ∈ |Sign|,Φ∪ {�Φ} ⊆ PSEN(Σ)2. Then �Φ ∈ CG

Σ (Φ) if and only if, for all
Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

SEN(f)(Φ) ⊆ CΣ′ implies SEN(f)(�Φ) ∈ CΣ′

iff, for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

αΣ′(SEN(f)(Φ)) ⊆ C′
F (Σ′) implies αΣ′(SEN(f)(�Φ)) ∈ C′

F (Σ′)

iff, by commutativity of

SEN(Σ′) SEN′(F (Σ′))�
αΣ′

SEN(Σ) SEN′(F (Σ))�αΣ

�

SEN(f)

�

SEN′(F (f))
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for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

SEN′(F (f))(αΣ(Φ)) ⊆ C′
F (Σ′) implies SEN′(F (f))(αΣ(�Φ)) ∈ C′

F (Σ′)

iff, by surjectivity, for all Σ′ ∈ |Sign′|, f ′ ∈ Sign′(F (Σ),Σ′),

SEN′(f ′)(αΣ(Φ)) ⊆ C′
Σ′ implies SEN′(f ′)(αΣ(�Φ)) ∈ C′

Σ′

iff αΣ(�Φ) ∈ C′G
F (Σ)(αΣ(Φ)). �

Finally, it is shown how the passage from theory systems to models and from models to
theory systems of Proposition 7 relates models and theories of a given Gentzen π-institution
very closely. This result forms a partial analog of Proposition 4.4 of [12] for π-institutions.

Proposition 9 Let G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 be a Gentzen π-institution.

1. If I = 〈Sign′, SEN′, {C ′
Σ}Σ∈|Sign′|〉 is a model of G, then T I is a theory system of G

and GTI � I.
If, conversely, T I is a theory system of G and GTI � I via a surjective singleton
interpretation, then I is a model of G.

2. T is a theory system of G if and only if GT is a model of G and T = T GT

.

Proof:

1. Suppose I = 〈Sign′, SEN′, {C ′
Σ}Σ∈|Sign′|〉 is a model of G, i.e., there exists a Gentzen

semi-interpretation α : G〉−GIG. Then, by Proposition 7, Part 1, T I is a theory system
of G. Thus, it suffices to show that GTI � I. In fact, it is shown that α : GTI � I.
To this end, let Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ). Then we have

φ ∈ CTI
Σ (Φ) iff Φ �Σ φ ∈ T I

Σ

iff αΣ(Φ �Σ φ) ⊆ C′G
F (Σ)(∅)

iff αΣ(φ) ⊆ C′
F (Σ)(αΣ(Φ)).

Suppose, conversely, that T I is a theory system of G and that GTI � I via a surjective
singleton interpretation. Then, by Proposition 7, Part 1, GTI

is a model of G, whence
G〉−GGTIG �G IG, where the Gentzen interpretation involved is provided by Lemma
8. Therefore I is a model of G.

2. Suppose that T is a theory system of G. Then, by Proposition 7, Part 1, we have that
GT is a model of G via the identity Gentzen semi-interpretation 〈ISign, ι〉 : G〉−GGTG,
whence, it suffices to show that T = T GT

. We have

Φ1 �Σ Φ2 ∈ T GT

Σ iff Φ1 �Σ Φ2 ∈ CTG
Σ (∅)

iff Φ2 ⊆ CT
Σ (Φ1)

iff Φ1 �Σ Φ2 ∈ TΣ.

Suppose, conversely, that GT is a model of G and T = T GT

. Then , by Proposition 7,
Part 2, T GT

is a theory system of G, whence T is also a theory system of G.
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�
The following proposition shows that the weak sentential counterpart Gs of a given

Gentzen π-institution G is identical with GTh and characterizes the closure system of G in
terms of the closure systems of its models.

Proposition 10 Let G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 be a Gentzen π-institution.

1. The weak sentential counterpart Gs of G is a model of G and it coincides with GTh.

2. �Φ ∈ CΣ(Φ) if and only if, for all I = 〈Sign′, SEN′, {C ′
Σ}Σ∈|Sign′|〉, with 〈F,α〉 :

G〉−GIG, and all Σ′ ∈ |Sign′|, f ∈ Sign′(F (Σ),Σ′),

SEN(f)(αΣ(Φ)) ⊆ C′G
Σ′ implies SEN(f)(αΣ(�Φ)) ⊆ C′G

Σ′ .

Proof:

1. That Gs = GTh is obvious, since, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ Cs
Σ(Φ) iff Φ �Σ φ ∈ CΣ(∅)

iff Φ �Σ φ ∈ ThΣ

iff φ ∈ CTh
Σ (Φ).

GTh is a model of G, by Proposition 9, Part 2.

2. The only if is obvious by the definition of a model. The if part follows by Part 1 if
one uses the model Gs and the identity interpretation 〈ISign, ι〉 : G �G GsG.

�
Finally, it is shown that every model of a Gentzen π-institution G, adequate for a π-

institution I, is also a model of I. To this end, two preliminary lemmas are needed. The
first asserts that a Gentzen semi-interpretation from a Gentzen π-institution G to a Gentzen
π-institution G′ induces a semi-interpretation from Gs into G′s.

Lemma 11 Suppose that G,G′ are Gentzen π-institutions and that 〈F,α〉 : G〉−GG′ a
Gentzen semi-interpretation. Then 〈F,α〉 : Gs〉−G′s is a (ordinary) semi-interpretation.

Proof:
Let G = 〈Sign,PSEN2, C〉 and G′ = 〈Sign′,PSEN′2, C′〉 be two Gentzen π-institutions

and 〈F,α〉 : G〉−GG′ be a Gentzen semi-interpretation. Consider Σ ∈ |Sign| and Φ ∪ {φ} ⊆
SEN(Σ). We have

φ ∈ Cs
Σ(Φ) iff Φ �Σ φ ∈ CΣ(∅)

implies αΣ(Φ �Σ φ) ∈ C′
F (Σ)(∅)

iff αΣ(Φ) �′
F (Σ) αΣ(φ) ∈ C′

F (Σ)(∅)
iff αΣ(φ) ⊆ C′s

F (Σ)(αΣ(Φ)).

Therefore 〈F,α〉 : Gs〉−G′s is indeed a semi-interpretation. �
The second auxiliary lemma asserts that, for every π-institution I, we have that IGs = I.

Lemma 12 IGs = I, for every π-institution I.
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Proof:
Suppose that I = 〈Sign, SEN, C〉 is a π-institution, Σ ∈ |Sign| and Φ∪ {φ} ⊆ SEN(Σ).

Then
φ ∈ CGs

Σ (Φ) iff Φ �Σ φ ∈ CG
Σ (∅)

iff SEN(f)(φ) ∈ CΣ′(SEN(f)(Φ))

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), iff φ ∈ CΣ(Φ). Therefore IGs = I. �
Finally, the main result, showing that every model of a Gentzen π-institution G, adequate

for a π-institution I, is also a model of I, is presented.

Proposition 13 Let G be a Gentzen π-institution adequate for the π-institution I. Then,
every model M of G is a model of I, i.e., G〉−GMG implies I〉−M.

Proof:
Since G is adequate for I, we have, by definition, I � Gs. Now suppose that M is a

model of G, i.e., G〉−GMG. Then, by Lemma 11, Gs〉−MGs, and, therefore, I〉−MGs. But,
by Lemma 12, MGs = M, whence, I〉−M. �

4 Models, Algebraic Systems and Full Adequacy It is now shown that, for a π-
institution, the property of being a model of a Gentzen π-institution is invariant (in a
restricted sense) under surjective singleton interpretations. As a corollary, it follows that
the property of being a model is invariant under appropriate bilogical morphisms.

Proposition 14 Let G be a Gentzen π-institution, I ′, I ′′ two π-institutions, 〈M,µ〉 : G →G

I ′G, 〈K,κ〉 : G →G I ′′G two Gentzen translations and 〈F,α〉 : I ′ → I ′′ a surjective singleton
interpretation, that make the following triangle commute:

I ′G I ′′G�
〈F,α〉

G

〈M,µ〉
�

�
�

��

〈K,κ〉
�

�
�
��

Then I ′ is a model of G via 〈M,µ〉 if and only if I ′′ is a model of G via 〈K,κ〉.
Proof:
First, by Lemma 8, the interpretation 〈F,α〉 : I ′ � I ′′ induces a Gentzen interpretation

〈F,α〉 : I ′G �G I ′′G.
Now it is obvious that if 〈M,µ〉 : G〉−GI ′G and 〈F,α〉 : I ′G �G I ′′G, then 〈K,κ〉 =

〈F,α〉〈M,µ〉 : G〉−GI ′′G.
If, conversely, 〈K,κ〉 : G〉−GI ′′G and 〈F,α〉 : I ′G �G I ′′G, then we have, for all Σ ∈

|Sign|,Φ ∪ {�Φ} ⊆ PSEN(Σ)2,

�Φ ∈ CΣ(Φ) implies αM(Σ)(µΣ(�Φ)) ⊆ C′′G
F (M(Σ))(αM(Σ)(µΣ(Φ)))

iff µΣ(�Φ) ⊆ C′G
M(Σ)(µΣ(Φ)),

whence 〈M,µ〉 : G〉−GI ′G. �
Recall from [24] the definition of a category of natural transformations: Given a category

Sign and a functor SEN : Sign → Set the clone of all natural transformations on SEN is
the locally small category with collection of objects {SENα : α an ordinal} and collection
of morphisms τ : SENα → SENβ β-sequences of natural transformations τ : SENα → SEN.
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A subcategory of this category containing all objects of the form SENk for k < ω, and all
projection morphisms pk,i : SENk → SEN, i < k, k < ω, is referred to as a category of
natural transformations on SEN.

Moreover, given two π-institutions I = 〈Sign, SEN, C〉 and I ′ = 〈Sign′, SEN′, C′〉
and categories of natural transformations N,N ′, respectively, on SEN, SEN′, a singleton
translation (semi-interpretation or interpretation) 〈F,α〉 from I to I ′ is said to be (N,N ′)-
homomorphic if, for every natural transformation τ : SENk → SEN in N, there exists a
natural transformation σ : SEN′k → SEN′ in N ′, such that, for every Σ ∈ |Sign| and every
�φ ∈ SEN(Σ)k,

SEN(Σ) SEN′(F (Σ))�
αΣ

SEN(Σ)k SEN′(F (Σ))k�α
k
Σ

�
τΣ

�
σF (Σ)

αΣ(τΣ(�φ)) = σF (Σ)(αk
Σ(�φ)).(2)

It is said to be (N,N ′)-epimorphic if it is (N,N ′)-homomorphic and, in addition, for every
σ : SEN′k → SEN′ in N ′, there exists τ : SENk → SEN in N, such that Equation (2) holds,
for all Σ ∈ |Sign|, �φ ∈ SEN(Σ)k. Corresponding notions are transferred in a straightforward
way to Gentzen translations (semi-interpretations or interpretations).

Finally, recall from [25], Lemma 4.2, that a π-institution I ′ = 〈Sign′, SEN′, C′〉 is
a model of a π-institution I = 〈Sign, SEN, C〉 if I is semi-interpretable in I′. If N,N ′

are categories of natural transformations on SEN, SEN′, respectively and I ′ is a model of
I via an (N,N ′)-epimorphic semi-interpretation 〈F,α〉 : I〉−I ′, then I ′ is said to be an
(N,N ′)-model of I.

Combining the statement of Proposition 14 with the relevant definitions, we easily obtain

Corollary 15 Let G be a Gentzen π-institution, I ′, I ′′ two π-institutions, and N,N ′, N ′′

categories of natural transformations on SEN, SEN′, SEN′′, respectively. Suppose, also, that
〈M,µ〉 : G →G I ′G is an (N,N ′)-epimorphic Gentzen translation, 〈K,κ〉 : G →G I ′′G

an (N,N ′′)-epimorphic Gentzen translation and 〈F,α〉 : I ′ → I ′′ an (N ′, N ′′)-bilogical
morphism, such that the following triangle commutes:

I ′G I ′′G�
〈F,α〉

G

〈M,µ〉
�

�
�

��

〈K,κ〉
�

�
�
��

Then I ′ is an (N,N ′)-model of G via 〈M,µ〉 if and only if I ′′ is an (N,N ′′)-model of G via
〈K,κ〉.

Recall, now, from [27] the definition of an (I, N)-algebraic system. Given a π-institution
I = 〈Sign, SEN, C〉 and a category N of natural transformations on SEN, a functor SEN′ :
Sign′ → Set was said to be an (I, N)-algebraic system if there exists a category N ′ of
natural transformations on SEN′ and a singleton (N,N ′)-epimorphic translation 〈F,α〉 :
I → SEN′, such that the 〈F,α〉-min model I ′ of I on SEN′ is N ′-reduced. In analogy with
that definition, the notion of a (G, N)-algebraic system, for a Gentzen π-institution G, is
now introduced.

Definition 16 Let G = 〈Sign,PSEN2, {CΣ}Σ∈|Sign|〉 be a Gentzen π-institution, SEN′ :
Sign′ → Set a functor and N,N ′ categories of natural transformations on SEN, SEN′,
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respectively. SEN′ will be said to be a (G, N)-algebraic system if there exists a closure
system C′ on SEN′ such that I ′ = 〈Sign′, SEN′, C′〉 is an N ′-reduced (N,N ′)-model of G.

The collection of all (G, N)-algebraic systems of G is denoted by AlgN (G).

Recall from Definition 3 that a Gentzen π-institution G was said to be adequate for a
π-institution I if I is interpretable in Gs. If the interpretation is an (N,N ′)-epimorphic
interpretation, for some categories N,N ′ of natural transformations on SEN, SEN′, respec-
tively, then G will be said to be (N,N ′)-adequate for I.

It will now be shown that, if G′ is a Gentzen π-institution (N,N ′)-adequate for a π-
institution I, then every (N ′, N ′′)-model of G′ is an (N,N ′′)-model of I and, as a conse-
quence, the class of all (G′, N ′)-algebraic systems forms a subclass of all (I, N)-algebraic sys-
tems. To this end a technical lemma is needed, showing that a Gentzen semi-interpretation
between two Gentzen π-institutions lifts to a logical morphism between their weak sentential
counterparts.

Lemma 17 Suppose that G = 〈Sign,PSEN2, C〉,G′ = 〈Sign′,PSEN′2, C′〉 are two Gen-
tzen π-institutions and suppose that 〈F,α〉 : G〉−GG′ is a Gentzen (N,N ′)-semi-interpre-
tation. Then 〈F,α〉 : Gs〉−seG′s is an (N,N ′)-logical morphism.

Proof:
Very similar to the proof of Lemma 11. �

Proposition 18 Let I = 〈Sign, SEN, C〉 be a π-institution, G′ = 〈Sign′, PSEN′2, C′〉
a Gentzen π-institution and N,N ′ categories of natural transformations on SEN, SEN′,
respectively. If G′ is (N,N ′)-adequate for I, then

1. every (N ′, N ′′)-model of G′ is an (N,N ′′)-model of I and

2. AlgN ′
(G′) ⊆ AlgN (I).

Proof:

1. Suppose that I ′′ is an (N ′, N ′′)-model of G′. Then, by definition, we have that
G′〉−GI ′′G, whence, by Lemma 17, G′s〉−seI ′′Gs, i.e., G′s〉−seI ′′. Since G′ is adequate
for I, we obtain, by definition, that I �se G′s. Combining the previous two relations,
we get I〉−seI ′′, whence I ′′ is an (N,N ′′)-model of I.

2. Suppose that SEN′′ : Sign′′ → Set ∈ AlgN ′
(G) via 〈F,α〉 : G〉−G 〈Sign′′, SEN′′, C′′〉G,

where I ′′ = 〈Sign′′, SEN′′, C′′〉 is N ′′-reduced. Then, by Part 1, I〉−seI ′′ and I ′′ is
N ′′-reduced. Therefore, by Proposition 6 of [27], SEN′′ ∈ AlgN (I).

�

Next, the definition of full adequacy of a Gentzen π-institution G′ for a π-institution I is
formulated. In the proposition following the definition, it will be shown that this is indeed
a stronger notion than that of adequacy (justifying the name full adequacy).

Definition 19 Let I = 〈Sign, SEN, C〉 be a π-institution, G′ = 〈Sign′, PSEN′2, C′〉 a
Gentzen π-institution and N,N ′ categories of natural transformations on SEN, SEN′, re-
spectively. G′ is said to be (N,N ′)-fully adequate for I if, there exists a singleton (N,N ′)-
epimorphic translation 〈F,α〉 : I →se G′s, such that, for every π-institution I ′′,
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• if I ′′ is an (N ′, N ′′)-model of G′ via 〈M,µ〉 : G′〉−GI ′′G, then I ′′ is an (N,N ′′)-full
model of I via 〈M,µ〉〈F,α〉,

I G′s�〈F,α〉

I ′′

〈M,µ〉〈F,α〉��
��

〈M,µ〉�
�

��

• if I ′′ is an (N,N ′′)-full model of I via 〈K,κ〉 : I〉−seI ′′, then I ′′ is a model of G′ via
some 〈M,µ〉 : G′〉−GI ′′G, such that 〈K,κ〉 = 〈M,µ〉〈F,α〉.

I G′s�〈F,α〉

I ′′

〈K,κ〉��
��

〈M,µ〉�
�

��

Proposition 20 shows that, if a Gentzen π-institution is fully adequate for a π-institution
I, then it is adequate for I.
Proposition 20 If G′ is a Gentzen π-institution (N,N ′)-fully adequate for a π-institution
I, then G′ is (N,N ′)-adequate for I.

Proof:
Suppose that G′ is fully adequate for I via the singleton (N,N ′)-epimorphic translation

〈F,α〉 : I →se G′s. It suffices to show that 〈F,α〉 is an interpretation. Recall that, by
Proposition 10, G′s is a model of G′ via 〈ISign′ , ι〉 : G′〉−GG′sG whence, by the definition
of full adequacy, G′s is an (N,N ′)-full model of I via 〈F,α〉 : I〉−seG′s. Finally, to show
that this semi-interpretation is an interpretation, consider I as an (N,N)-full model of I
via 〈ISign, ι〉 : I �se I. Then, by full adequacy, there exists 〈M,µ〉 : G′〉−GIG, such that
〈ISign, ι〉 = 〈M,µ〉〈F,α〉. Hence,

αΣ(φ) ∈ C′s
F (Σ)(αΣ(Φ))

iff αΣ(Φ) �′
F (Σ) αΣ(φ) ∈ C′

F (Σ)(∅)
implies µF (Σ)(αΣ(Φ)) �G

M(F (Σ)) µF (Σ)(αΣ(φ)) ∈ CG
M(F (Σ))(∅)

iff Φ �G
Σ φ ∈ CG

Σ (∅)
iff φ ∈ CΣ(Φ)

and 〈F,α〉 : I � Gs is an interpretation. �
Finally, it is shown that (N,N ′)-full adequacy is equivalent to a strong correspondence

between (I, N)-algebraic systems and (G′, N ′)-algebraic systems.

Proposition 21 Let G′ = 〈Sign′,PSEN′2, C′〉 be a Gentzen π-institution, I = 〈Sign,
SEN, C〉 a π-institution and N,N ′ categories of natural transformations on SEN, SEN′,
respectively. G′ is fully adequate for I via the singleton (N,N ′)-epimorphic translation
〈F,α〉 : I →se G′s iff, for all functors SEN′′ and categories of natural transformations N ′′

on SEN′′,

I G′s�〈F,α〉

SEN′′

〈M,µ〉〈F,α〉��
��

〈M,µ〉�
�

��
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SEN′′ ∈ AlgN ′
(G′) via the (N ′, N ′′)-epimorphic translation 〈M,µ〉 : SEN′ → SEN′′ if and

only if SEN′′ ∈ AlgN (I) via the (N,N ′′)-epimorphic translation 〈M,µ〉〈F,α〉 : SEN →
SEN′′.

Proof:
First, suppose that G′ is fully adequate for I via the singleton (N,N ′)-epimorphic trans-

lation 〈F,α〉 : I →se G′s. Then SEN′′ ∈ AlgN ′
(G′) via the (N ′, N ′′)-epimorphic translation

〈M,µ〉 : SEN′ → SEN′′ if and only if there exists a closure system C′′ on SEN′′, such that
I ′′ = 〈Sign′′, SEN′′, C′′〉 is an N ′′-reduced (N,N ′′)-model of G′ via 〈M,µ〉 : G′〉−GI ′′G if
and only if, by the definition of full adequacy, I ′′ is an N ′′-reduced (N ′, N ′′)-full model of
I via 〈M,µ〉〈F,α〉 : I〉−I ′′ if and only if SEN′′ ∈ AlgN (I) via 〈M,µ〉〈F,α〉 : SEN → SEN′′.

Suppose, conversely, that SEN′′ ∈ AlgN ′
(G′) via the (N ′, N ′′)-epimorphic translation

〈M,µ〉 : SEN′ → SEN′′ if and only if SEN′′ ∈ AlgN (I) via the (N,N ′′)-epimorphic transla-
tion 〈M,µ〉〈F,α〉 : SEN → SEN′′.

If I ′′ = 〈Sign′′, SEN′′, C′′〉 is an (N ′, N ′′)-model of G′ via 〈M,µ〉 : G′〉−G I ′′G, then
I ′′N ′′

is an N ′′-reduced (N ′, N ′′)-model of G′ via 〈M,πN ′′
M µ〉, whence I ′′N ′′

is an N ′′-reduced
(N,N ′′)-full model of I via 〈F,α〉〈M,πN ′′

M µ〉 and, therefore, by Corollary 5.10 of [25], I ′′ is
an (N,N ′′)-full model of I via 〈M,µ〉〈F,α〉.

If I ′′ is an (N,N ′′)-full model of I via 〈K,κ〉 = 〈M,µ〉〈F,α〉 : I〉−seI ′′, then I ′′N ′′
is an

N ′′-reduced (N,N ′′)-full model of I via 〈M,πN ′′
M µ〉〈F,α〉 : I〉−seI ′′N ′′

, whence I ′′N ′′
is an

N ′′-reduced (N ′, N ′′)-model of G′ via 〈M, πN ′′
M µ〉 : G′〉−GI ′′N ′′G

and, therefore, by Corollary
15, I ′′ is an (N ′, N ′′)-model of G′ via some 〈M,µ〉 : G′〉−GI ′′G. �
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