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Abstract The study of structure systems, an abstraction of the concept of first-
order structures, is continued. Structure systems have algebraic systems rather than
universal algebras as their algebraic reducts. Moreover, their relational component
consists of a collection of relation systems on the underlying functors rather than
simply a system of relations on a single set. Congruence systems of structure systems
are introduced and the Leibniz congruence system of a structure system is defined.
Analogs of the Homomorphism, the Second Isomorphism and the Correspondence
Theorems of Universal Algebra are provided in this more abstract context. These
results generalize corresponding results of Elgueta for equality-free first-order logic.
Finally, a version of Gödel’s Completeness Theorem is provided with reference to
structure systems.
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1 Introduction

The theory of logical matrices plays a major role in the model theory of sentential
logics. It is particularly important in the context of abstract algebraic logic, since
different classes of sentential logics in the abstract algebraic hierarchy of logics, also
known as the Leibniz hierarchy, may be characterized by closure properties of their
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matrix model classes. For an overview of results in this area the reader may consult
[20] or the more comprehensive treatise [8]. On the other hand, due to Bloom’s work
[3] (see also an exposition in [8]), the theory of logical matrices may be perceived as
part of the theory of equality-free first-order logic and, more specifically, of universal
Horn logic without equality. It is this connection that led Raimon Elgueta [14–17]
(and, in part, in joint work with Czelakowski [9] and with Jansana [18]) and Pillar
Dellunde [10, 11] (and, in part, jointly with Casanovas and Jansana [6] and with
Jansana [12]) to consider, in the context of abstract algebraic logic, first-order logic
without equality and its model theory.

Since a short summary of the work of Elgueta in [14] was given in the Introduction
to [31], which is a precursor to the present paper, it will not be repeated here. Suffices
it to say that the present work has been inspired by the aforementioned work of
Elgueta and of Dellunde and that the focus here is the part of the work dealing with
defining congruences on first-order structures, especially Leibniz congruences and in
proving analogs of the homomorphism theorems of Universal Algebra in this more
abstract setting. In what follows we describe, on the one hand, the direction of the
present work as compared to that of the work of Elgueta and, on the other, give a
brief summary of the work presented in [31], which is the basis for the present work
and almost all of whose notation will be adopted and used throughout the present
work.

In Voutsadakis [26–28], parts of the theory of algebraizability of sentential logics
based on the Tarski operator (see, e.g., [19]) were generalized to cover the case of
logics formulated as π -institutions. In subsequent work [29] the well-known theory
of the Leibniz operator (see [2]) was also abstracted to the level of π -institutions.
It has been made clear, especially from the treatment in [28], that the role that
algebras play in the theory of algebraizability of sentential logics is replaced in this
more abstract framework by algebraic systems. An algebraic system is a set-valued
functor endowed with a category of natural transformations on the functor, which
gives the functor a distinctive algebraic flavor. Following this work, another major
part of the theory of abstract algebraic logic, this time the one pertaining to the
algebraizability of the connective of logical implication rather than that of logical
equivalence as presented in [25], was also abstracted [30] so that partially ordered
algebraic systems instead of partially ordered algebras were at the focus. Partially
ordered algebraic systems are of course algebraic systems in the preceding sense
endowed with partial ordering systems, i.e., collections of partial orderings that are
preserved by signature changing morphisms. These systems are no longer special
cases of first-order structures, as are the partially ordered algebras of [25]. But first-
ordered structures were generalized in [31] to what were called structure systems,
abstractions of first-order structures, and, now, partially-ordered algebraic systems
are indeed special cases of structure systems. These successive abstractions led to the
detailed study of structure systems along the lines of the study of equality-free first-
order structures carried out by Elgueta and Dellunde in their work mentioned in the
previous paragraph.

Recall from [31] that a (structure system) language L = 〈F, R, ρ〉 consists of a
category F of natural transformations on a given sentence functor SEN, a nonempty
collection R of relation symbols and an arity function ρ : R → ω giving the arity
of a relation symbol in R. Then, an L-term over a denumerable set of variables
V is constructed out of the natural transformations in F, viewed as fundamental
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operation symbols, and the variables in V in the ordinary way. The collection of
all these terms is denoted by TeL(V). Note the difference between this definition
and the one for L-terms introduced in [31]. Because the category F is an entire
clone of natural transformations, this difference is only superficial as will be detailed
upon at the beginning of Section 3. Now, an L-formula over a given denumerable
set of variables V is constructed in the usual way, using the relation symbols in R
and the terms in TeL(V). The models used to study this syntactic framework are L-
(structure) systems. An L-structure system A = 〈SENA, 〈NA, FA〉, RA〉 consists of
a functor SENA : SignA → Set, a category NA of natural transformations on SENA

and a surjective functor FA : F → NA, that preserves all projections and, as a result,
preserves also the arity of all natural transformations.

Using these basic concepts, in [31] the notions of a subsystem, of a filter extension,
of an L-morphism and of a reduced product of L-systems are introduced. The reader
should consult Section 3 of [31] for precise definitions and also [14] to find out more
about the paradigms used from equality-free first-order logic. The final and main
section of [31] deals with the formulation and proof of an analog of Łos’ Ultraproduct
Theorem in the context of L-systems.

Having briefly described some basic concepts and the contents of [31], we turn now
to a short overview of the contents of the present paper. In Section 2, congruence
systems of structure systems are introduced, generalizing both the concept of a
congruence system on a sentence functor endowed with a category of natural
transformations from [26] and the concept of a congruence of an equality-free first-
order structure from [14]. In Section 3, the Leibniz congruence system of a structure
system is defined, abstracting both the Leibniz congruence system associated with
a theory system of a given π -institution from [29] and the Leibniz congruence of
a given equality-free first-order structure from [14]. In Section 4 the notion of a
quotient system of a given structure system is introduced. Both quotient sentence
functors from [26] and quotient equality-free first-order structures from [14] are
special cases of this more general construction. Also in Section 4 the main theorems
of the paper, analogs of the Homomorphism, the Second Isomorphism and the
Correspondence Theorem of Universal algebra, abstracting generalized versions
in [14], are presented and proven. Section 5 deals with reduced structure systems,
which are those structure systems that are reduced modulo their Leibniz congruence
systems and, as a consequence, have themselves identity Leibniz congruence systems.
Finally, Section 6 presents a version of Gödel’s Completeness Theorem dealing with
the concept of logical implication based on structure systems rather than on first-
order structures.

Further work is to follow the current developments. Many of the issues and results
on the model theory of equality-free first-order logic, as investigated by Elgueta, are
currently under investigation in the framework of structure systems.

For general concepts and notation from category theory the reader is referred
to any of [1, 4, 22]. For an overview of the current state of affairs in abstract
algebraic logic the review article [20], the monograph [19] and the book [8] are all
excellent references. To follow recent developments on the categorical side of the
subject the reader may refer to the series of papers [26–29] (see also additional
references therein). Standard references on model theory are the books by Chang
and Keisler [7], Hodges [21], Marker [23] and Doets [13], whereas references for
Universal Algebra, both of which include the Homomorphism Theorem, the Second
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Isomorphism Theorem and the Correspondence Theorem, are the books by Burris
and Sankappanavar [5] and by McKenzie et al. [24].

2 Congruence Systems of Structure Systems

Recall from [31] that a clone category is a category F, with objects all finite
natural numbers, that is isomorphic to the category of natural transformations N
on a given functor SEN : Sign → Set (see [29] for the definition of a category of
natural transformations on a set-valued functor) via an isomorphism that preserves
projections, and, as a consequence, also preserves objects. A (structure system)
language is a triple L = 〈F, R, ρ〉, where F is a clone category, R is a nonempty
set of relation symbols and ρ : R → ω is an arity function. An L- (structure) system
A = 〈SENA, 〈NA, FA〉, RA〉 is a triple consisting of

– A functor SENA : SignA → Set,
– a category of natural transformations NA on SENA, such that F : F → NA is a

surjective functor that preserves all projections pkl : k → 1, k ∈ ω, l < k, and
– RA = {rA : r ∈ R} a family of relation systems on SENA indexed by R, such that

rA is n-ary if ρ(r) = n.

Let A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system. A (binary) relation system θ =
{θ�}�∈|SignA| is said to be an NA- congruence system of A if θ is an NA-congruence
system on SENA that satisfies, for all r ∈ RA, with ρ(r) = n, all � ∈ |SignA| and all
�φ, �ψ ∈ SENA(�)n,

�φ ∈ rA
� and �φ θn

�
�ψ imply �ψ ∈ rA

� .

The collection of all NA-congruence systems on A will be denoted by ConNA

(A).
By the definition of ConNA

(A), we obviously have ConNA

(A) ⊆ ConNA

(SENA).
The following proposition forms an analog of Proposition 2.1 of [14] and describes
ConNA

(A) as it sits inside the larger class ConNA

(SENA).
It should also be mentioned that Proposition 1 generalizes Proposition 2.3 of [29]

in the same sense that its precursor, Proposition 2.1 of [14], generalizes the classical
result of Blok and Pigozzi [2].

Proposition 1 For every L-system A = 〈SENA, 〈NA, FA〉, RA〉, the partially or-
dered set ConNA

(A) = 〈ConNA

(A),≤〉 is a principal ideal of the complete lattice
ConNA

(SENA).

Proof It is clear that, if θ ≤ η and η ∈ ConNA

(A), then also θ ∈ ConNA

(A). Thus, it
suffices to show that, for any collection {θ i}i∈I of NA-congruences of A, their join
∨

i∈I θ i in ConNA

(SENA) is in ConNA

(A).
Indeed, the join

∨
i∈I θ i is computed signature-wise, where, for each signature

� ∈ |SignA|, ∨
i∈I θ i

� is given in the usual universal algebraic way. Therefore, the
compatibility of

∨
i∈I θ i

� with rA
� follows by the compatibility of θ i

�, i ∈ I, with rA
� , for

every r ∈ R. This holding for all � ∈ |SignA| shows that
∨

i∈I θ i is compatible with all
rA, for r ∈ R, i.e., that

∨
i∈I θ i indeed belongs to ConNA

(A). �	
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The largest NA-congruence system of the system A will be denoted by 	NA

(A).
With that notation, Proposition 1 says that

ConNA

(A) =
{
θ ∈ ConNA

(SENA) : θ ≤ 	NA

(A)
}

.

Several observations may be made about 	NA

(A).

– If, for some relation symbol r ∈ R, rA 
= ∇SENA

and rA 
= ∅, then 	NA

(A) 
=
∇SENA

.
– If A contains a binary relation system that satisfies the axioms of equality, then

	NA

(A) coincides with that relation system.

A system A = 〈SENA, 〈NA, FA〉, RA〉 is said to be NA- reduced if

ConNA

(A) =
{

SENA

}
.

This is equivalent to 	NA

(A) = 
SENA

.
Notice, also, that, if L has equality, then any L-system is reduced.
Recall from [31] the notion of an L-system morphism 〈F, α〉 : A → B from an L-

system A to an L-system B and that of a strict (called strong in [31]; the two terms
will be used interchangeably) L-system morphism 〈F, α〉 : A →s B. If L is clear from
context, the terms system morphism and strict system morphism are sometimes used
in place of L-system morphism and strict L-system morphism, respectively.

Suppose that A = 〈SENA, 〈NA, FA〉, RA〉, B = 〈SENB, 〈NB, FB〉, RB〉 are two
L-systems and 〈F, α〉 : A → B is an L-system morphism. The kernel of 〈F, α〉 is
defined by

Ker(〈F, α〉) = α−1
(

SENB

)
=

{
α−1

�

(

SENB

F(�)

)}

�∈|SignA|
.

A characterization of the notion of a congruence system in terms of the notion
of kernel of system morphisms is given now. The first lemma provides the first part
of this characterization. It forms an analog of Lemma 2.2 of [14] in the context of
structure systems.

Lemma 2 Let A = 〈SENA, 〈NA, FA〉, RA〉,B = 〈SENB, 〈NB, FB〉, RB〉 be two L-
structure systems and 〈F, α〉 : 〈SENA, 〈NA, FA〉〉 → 〈SENB, 〈NB, FB〉〉 an algebraic
L-morphism. If 〈F, α〉 : A →s B, then Ker(〈F, α〉) ∈ ConNA

(A). Conversely, if
Ker(〈F, α〉) ∈ ConNA

(A), and α�(rA
� ) = rB

F(�), for all � ∈ |SignA| and all r ∈ R, then
〈F, α〉 : A →s B.

Proof Essentially as in the proof of Proposition 26 of [26] we may show that
Ker(〈F, α〉) is an NA-congruence system on SENA. So it suffices to show that if
〈F, α〉 is strict, then Ker(〈F, α〉) is also an NA-congruence system of A. To this end,
suppose that r ∈ R, such that ρ(r) = n, and � ∈ |SignA|, �φ, �ψ ∈ SENA(�)n, such that
�φ ∈ rA

� and �φ Ker(〈F, α〉)n
�

�ψ . Then α�( �φ) ∈ rB
F(�) and α�( �φ) = α�( �ψ). Therefore

α�( �ψ) ∈ rB
F(�), whence, by the strictness of 〈F, α〉, we obtain that �ψ ∈ rA

� . This proves
that Ker(〈F, α〉) is an NA-congruence system of A.

Suppose, conversely, that Ker(〈F, α〉) ∈ ConNA

(A), and α�(rA
� ) = rB

F(�), for all

� ∈ |SignA| and all r ∈ R.
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If � ∈ |SignA| and �φ ∈ SENA(�)n, such that �φ ∈ rA
� , then α�( �φ) ∈ α�(rA

� ) = rB
F(�).

Conversely, if α�( �φ) ∈ rB
F(�), then α�( �φ) ∈ α�(rA

� ), whence, there exists �ψ ∈ rA
� ,

such that α�( �φ) = α�( �ψ). Hence, by the compatibility of Ker(〈F, α〉) with rA, we get
that �φ ∈ rA

� .
Thus �φ ∈ rA

� if and only if α�( �φ) ∈ rB
F(�) showing that 〈F, α〉 is a strict structure

morphism. �	

The following lemma reveals a relationship between the congruence systems of a
given system and those of a subsystem. It forms an analog for systems of Lemma 2.3
of [14].

Lemma 3 Let A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system and B = 〈SENB,

〈NB, FB〉, RB〉 ⊆ A. For every binary relation system θA on SENA, define θB =
{θB

� }�∈|SignB| by setting, for all � ∈ |SignB|,

θB
� := θA

� ∩ ∇SENB

� .

Then θA ∈ ConNA

(A) implies θB ∈ ConNB

(B).

Proof By the definition of θB and that of a subfunctor, it is fairly easy to see that
θB is an NB-congruence system on SENB. Now the compatibility of θA with rA

together with the definition of a subsystem yield that θB is compatible with rB, for
every r ∈ R. Therefore θB is indeed an NB-congruence system of B. �	

In the next lemma, it is shown, roughly speaking, that strict L-system morphisms
carry congruence systems on their codomain to congruence systems on their domain
and that reductive L-system morphisms, with isomorphic functor components, carry
congruence systems on their domain that include their kernel to congruence systems
on their codomain. This result forms an analog of Lemma 2.4 of [14] in the context
of L-systems.

Lemma 4 Let A = 〈SENA, 〈NA, FA〉, RA〉,B = 〈SENB, 〈NB, FB〉, RB〉 be two L-
structure systems and suppose that 〈F, α〉 : A →s B is a strict system morphism.

1. If θ ∈ ConNB

(B), then α−1(θ) ∈ ConNA

(A).
2. If, moreover, 〈F, α〉 : A �s B is a reductive morphism, with F an isomorphism,

then θ ∈ ConNA

(A) and Ker(〈F, α〉) ≤ θ imply that α(θ) ∈ ConNB

(B).

Proof

1. It is not difficult to verify that, if θ ∈ ConNB

(SENB), then α−1(θ) ∈
ConNA

(SENA). Suppose, in addition, that θB is compatible with rB, for all r ∈ R.
Now, let r ∈ R, ρ(r) = n, � ∈ |SignA|, �φ, �ψ ∈ SENA(�)n, such that �φ ∈ rA

� and
�φα−1

� (θB
F(�))

�ψ . Then, we have that α�( �φ) ∈ rB
F(�) and α�( �φ)θB

F(�)α�( �ψ). Hence, by
the compatibility of θB, we get that α�( �ψ) ∈ rB

F(�). Therefore, by the strictness of
〈F, α〉, we obtain that �ψ ∈ rA

� . Hence θA is also compatible with rA, for all r ∈ R,
implying that θA ∈ ConNA

(A).
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2. We leave up to the reader in this case also the fact that, if θ ∈ ConNA

(SENA),
then α(θ) ∈ ConNA

(SENB). As in the proof of Lemma 2.4 of [14], the hypothesis
Ker(〈F, α〉) ≤ θ is used to show the transitivity of the binary relation system
α(θ). To show that α(θ) is an NB-congruence system of B, suppose that r ∈ R,

with ρ(r) = n, and by surjectivity, that � ∈ |SignA|, �φ, �ψ ∈ SENA(�)n, such that
α�( �φ) ∈ rB

F(�) and �φθA
�

�ψ . Thus, by strictness, �φ ∈ rA
� and �φθA

�
�ψ, whence, by the

compatibility of θA with rA, we get that �ψ ∈ rA
� , showing that α�( �ψ) ∈ rB

F(�). Thus

α�(θA
� ) is in fact compatible with rB

F(�), for all r ∈ R and all � ∈ |SignA|. �	

Finally, in an analog of Theorem 2.5 of [14], it is shown that, a reductive L-
system morphism, with an isomorphic functor component, carries largest congruence
systems to largest congruence systems in both directions, i.e., more specifically, it
carries the largest congruence system on its domain to the largest congruence system
on its codomain and vice-versa.

Theorem 5 Let A = 〈SENA, 〈NA, FA〉, RA〉,B = 〈SENB, 〈NB, FB〉, RB〉 be two
L-structure systems. If 〈F, α〉 : A �s B is a reductive system morphism, with F an
isomorphism, then the following hold:

1. α−1(	NB

(B)) = 	NA

(A).
2. α(	NA

(A)) = 	NB

(B).

Proof

1. We have, by Part 1 of Lemma 4, that α−1(	NB

(B)) ∈ ConNA

(A). It suffices to
show that it is in fact the largest NA-congruence system in ConNA

(A). Suppose
to this end, that θ ∈ ConNA

(A). By Lemma 2, we also have that Ker(〈F, α〉) ∈
ConNA

(A). Thus, we may consider the join θ ′ = θ ∨ Ker(〈F, α〉) in ConNA

(A).
Now, by Part 2 of Lemma 4, we have that α(θ ′) ∈ ConNB

(B). Hence α(θ) ≤
α(θ ′) ≤ 	NB

(B). This implies that θ ≤α−1(α(θ))≤α−1(	NB

(B)), showing that
α−1(	NB

(B)) is indeed the largest NA-congruence system of A and, therefore,
that α−1(	NB

(B)) = 	NA

(A).
2. For this part, notice, first, that, by Part 2 of Lemma 4, α(	NA

(A)) is an NB-
congruence system on B. Thus, it suffices to show that it is the largest NB-
congruence system on B. Let, to this end, θ ∈ ConNB

(B). Then, by Part 1 of
Lemma 4, α−1(θ) ∈ ConNA

(A), and, therefore, α−1(θ) ≤ 	NA

(A). Thus,
using the surjectivity of 〈F, α〉, we get that θ = α(α−1(θ)) ≤ α(	NA

(A)). Hence
	NB

(B) = α(	NA

(A)). �	

3 Leibniz Equality

In this section, following the work of Elgueta [14], it is shown that the concept of the
largest congruence system of a given structure system is the algebraic counterpart of
the logical concept of equality in the sense of Leibniz.

We use the notation and terminology of [31], which followed that of [14], except
that instead of considering terms of the form t ∈ F(n, 1), we endow the language
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with a countable collection of variables V = {v0, v1, v2, . . .}, that will be denoted
metatheoretically, as customary, by x, y, z, . . ., and we consider terms of the form
t(�x), for t ∈ F(n, 1) and �x a vector consisting of n variables. The quantifiers will refer,
accordingly, to the variables instead of to the place in the term as was the case in [31].
Let us mention that the seemingly more rigid framework of [31] does not induce loss
of generality because one may change the number of arguments of a given natural
transformation by introducing ‘dummy’ variables and, as a result, may refer to the
same argument by two different places in two different, but essentially equivalent,
natural transformations.

With this notation, a Leibniz formula over L or a Leibniz L-formula is a formula
of the form β(x, y) with two free variables, such that, for some atomic formula γ (x, �z)

with at least one free variable x,

β(x, y) := (∀�z)(γ (x, �z) ↔ γ (y, �z)),

where by (∀�z) is denoted the string of universal quantifications (∀z0) . . . (∀zk−1),
where k is the length of the vector �z.

We are now ready to prove an analog of Theorem 2.6 of [14] to the effect that,
for every L-system A = 〈SENA, 〈NA, FA〉, RA〉, every � ∈ |SignA| and all φ, ψ ∈
SENA(�), φ and ψ are in the same �-class modulo 	NA

(A) iff all their images under
SignA-morphisms satisfy all Leibniz L-formulas in A.

Theorem 6 Let A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system, � ∈ |SignA|, φ, ψ ∈
SENA(�). Then 〈φ, ψ〉 ∈ 	NA

� (A) if and only if, for all Leibniz L-formulas β(x, y)

A |=�′ β(x, y)[SEN( f )(φ), SEN( f )(ψ)],
for all �′ ∈ |SignA|, f ∈ SignA(�,�′).

Proof Define the relation system θ = {θ�}�∈|SignA| by setting, for all � ∈ |SignA|,
θ� = {〈φ,ψ〉 : A |=�′ β(x, y)[SEN( f )(φ), SEN( f )(ψ)],

for all �′ ∈ |SignA|, f ∈ SignA(�,�′), β(x, y) Leibniz}.
It is not difficult to see that θ� is an equivalence relation on SENA(�), for all
� ∈ |SignA|. To see that it is also an NA-congruence, we use the method used in the
proof of Theorem 2.6 of [14]. Suppose that σ : (SENA)n → SENA is a natural trans-
formation in NA and that �φ, �ψ ∈ SENA(�)n, such that �φ θn

�
�ψ . By the transitivity of

θ� , it suffices to prove that, for all i < n,

σ�(ψ0, . . . , ψi−1, φi, . . . , φn−1) θ� σ�(ψ0, . . . , ψi, φi+1, . . . , φn−1). (1)

Consider, to this end, a Leibniz L-formula β(x, y). Let w0, . . . , wn−1 be a
list of distinct variables not in β. Let δ be the formula that results from
β by simultaneously substituting σ(w0, . . . , wi−1, x, wi+1, . . . , wn−1) for x and
σ(w0, . . . , wi−1, y, wi+1, . . . , wn−1) for y in β. Then, we have that

A |=�′ β(x, y)[SENA( f )(σ�(ψ0, . . . , ψi−1, φi, . . . , φn−1)),

SENA( f )(σ�(ψ0, . . . , ψi, φi+1, . . . , φn−1))]
if and only if
A |=�′ δ(x, y, w0, . . . , wn−1)[SENA( f )(ψi), SENA( f )(φi), SENA( f )(ψ0),

. . . , SENA( f )(ψi−1), SENA( f )(φi+1), . . . , SENA( f )(φn−1)],
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which is true, since (∀ �w)δ(x, y, �w) is a Leibniz L-formula and 〈φi, ψi〉 ∈ θ� . Thus
Condition (1) has been proved, which shows that, in fact, θ� is an NA-congruence
on SENA(�).

Next, to show that θ is an NA-congruence system on SENA, suppose that �1, �2 ∈
|SignA|, f ∈ SignA(�1, �2) and φ,ψ ∈ SENA(�1), such that 〈φ, ψ〉 ∈ θ�1 . Thus, for
all �′ ∈ |SignA|, g ∈ SignA(�1, �

′), and all Leibniz L-formulas β(x, y), we have

A |=�′ β(x, y)[SENA(g)(φ), SENA(g)(ψ)].

�1 �2
�f

�′

g
�

�
�
��

h
�

�
�

��

Thus, for all h ∈ SignA(�2, �
′), we get that

A |=�′ β(x, y)
[
SENA(hf )(φ), SENA(hf )(ψ)

]
,

whence, for all �′ ∈ |SignA|, h ∈ SignA(�2, �
′),

A |=�′ β(x, y)
[
SENA(h)(SENA( f )(φ)), SENA(h)(SENA( f )(ψ))

]
,

and, therefore, 〈SENA( f )(φ), SENA( f )(ψ)〉 ∈ θ�2 , i.e., θ is indeed an NA-
congruence system on SENA.

Finally, to see that θ is an NA-congruence system of A, let r ∈ R, with ρ(r) = n,

� ∈ |SignA|, �φ, �ψ ∈ SENA(�)n, such that �φ ∈ rA
� , �φ θn

�
�ψ . Consider the atomic

formula
γ (x, �z) = r(z0, . . . , zi−1, x, zi+1, . . . , zn−1)

and let, as before, β(x, y) = (∀�z)(γ (x, �z) ↔ γ (y, �z)). Then, since 〈φi, ψi〉 ∈ θ�, we
have that, for every �′ ∈ |SignA|, f ∈ SignA(�, �′),

A |=�′ β(x, y)
[
SENA( f )(φi), SENA( f )(ψi)

]
.

Therefore

〈ψ0, . . . , ψi−1, φi, . . . , φn−1〉 ∈ rA
� iff 〈ψ0, . . . , ψi, φi+1, . . . , φn−1〉 ∈ rA

� .

This holding for all i < n yields that �φ ∈ rA
� if and only if �ψ ∈ rA

� , whence θ is an NA-
congruence system of A. And 	NA

(A) being the largest NA-congruence system of A

yields that θ ≤ 	NA

(A).
To show the system of reverse inclusions, suppose that � ∈ |SignA|, φ, ψ ∈

SENA(�), such that 〈φ, ψ〉 ∈ 	NA

� (A). Let, also �′ ∈ |SignA|, f ∈ SignA(�, �′) and
�χ ∈ SENA(�′)n−1. If t0(x, �z), . . . , tk−1(x, �z) are terms, whose variables are among
x, z0, . . . , zn−1, then we have

〈
tAi�′

(
SENA( f )(φ), �χ

)
, tAi�′

(
SENA( f )(ψ), �χ

)〉
∈ 	NA

�′ (A), for all i < k,
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whence, the compatibility of 	NA

(A) with relation systems implies that, for any k-ary
relation symbol r ∈ R,

A |=�′ r(t0(x, �z), . . . , tk−1(x, �z)) ↔
r(t0(y, �z), . . . , tk−1(y, �z))

[
SENA( f )(φ), SENA( f )(ψ), �χ

]
,

and, therefore, we obtain A |=�′ β(x, y)[SENA( f )(φ), SENA( f )(ψ)], for every
Leibniz L-formula β(x, y). Hence, we conclude that 〈φ, ψ〉 ∈ θ�, which proves that
	NA

(A) ≤ θ . Thus, we have that θ = 	NA

(A), as was to be shown. �	

Theorem 6 has as a corollary an analog of Corollary 2.7 of [14], stating that
the atomic formula γ (x, �z) in the Leibniz formulas may be replaced by arbitrary
elementary predicates.

Corollary 7 Let A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system, � ∈ |SignA|, and φ,

ψ ∈ SENA(�). Then 〈φ, ψ〉 ∈ 	NA

� (A) if and only if, for all L-formulas α(x, �z)

A |=�′ α(x, �z)[SEN( f )(φ), �χ] iff A |=�′ α(x, �z)[SEN( f )(ψ), �χ]
for all �′ ∈ |SignA|, f ∈ SignA(�,�′) and �χ ∈ SENA(�′)n, where n is the length of �z.

	NA

(A) will be called the Leibniz NA- congruence system of A, following the
terminology of [14] and the close analogies between universal abstract algebraic
logic, that inspired the developments in [14], and categorical abstract algebraic logic,
the basis of the current developments.

4 Quotient Systems and Homomorphism Theorems

Given an L-system A = 〈SENA, 〈NA, FA〉, RA〉 and an NA-congruence system θ of
A, we define the triple Aθ = 〈SENAθ

, 〈NAθ

, FAθ 〉, RAθ 〉 by setting:

– SENAθ

and NAθ

are as already defined in [26].
– FAθ : F → NAθ

is given by FAθ = (FA)θ , where θ : NA → NAθ

denotes the quo-
tient map, mapping a natural transformation to its quotient, as defined in [26].

– Finally, for all r ∈ R, with ρ(r) = n, we define rAθ

by setting, for all � ∈ |SignA|,
�φ ∈ SENA(�)n,

rAθ

� =
{ �φ/θ� : �φ ∈ rA

�

}
.

Because θ is assumed to be in ConNA

(A), all the definitions above are independent
of the choice of representatives and the triple Aθ is also an L-system. It is called the
quotient system of A modulo θ and is sometimes also denoted by A/θ .

The next proposition forms a generalization of Proposition 3.1 of [14] and is
closely related to Proposition 23 of [26]. It states that, given an L-system and one
of its congruence systems, there is a natural projection morphism from the system to
its quotient system which is reductive and whose kernel is the congruence system θ .
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Proposition 8 Let A = 〈SENA, 〈NA, FA〉, RA〉 be an L-system and θ ∈ ConNA

(A).
Then, the natural projection translation 〈ISign, π

θ 〉 : SENA → SENAθ

is a reductive
morphism 〈ISign, π

θ 〉 : A �s Aθ , such that Ker(〈ISign, π
θ 〉) = θ .

Proof It is easy to see that the claim is true, since the part dealing with the (NA, NAθ

)-
epimorphic property has already been established in [26], the part dealing with the
reduction is clear by the definition of the relation systems in Aθ and the part dealing
with the kernel follows easily from the definitions of the kernel and of πθ . �	

Finally, a lemma is presented that will be used to prove the analog of the Ho-
momorphism Theorem for L-systems. This lemma forms an analog of Lemma 3.2 of
[14].

Lemma 9 Suppose that A = 〈SENA, 〈NA, FA〉, RA〉, B = 〈SENB, 〈NB, FB〉, RB〉
and C = 〈SENC, 〈NC, FC〉, RC〉 are L-systems, such that SignA = SignB = Sign. Let
also 〈ISign, α〉 : A �s B be a reductive system morphism and 〈G, β〉 : A → C a system
morphism, such that Ker(〈ISign, α〉) ≤ Ker(〈G, β〉). Then, there exists a system mor-
phism 〈G, γ 〉 : B → C, such that 〈G, β〉 = 〈G, γ 〉〈ISign, α〉. Moreover, 〈G, γ 〉 is strong
if and only if 〈G, β〉 is strong.

A B�〈ISign, α〉

C

〈G, β〉
�

�
�
��

〈G, γ 〉
�

�
�

��

Proof Define γ : SENB → SENC ◦ G, by letting, for al � ∈ |Sign|, γ� : SENB(�) →
SENC(G(�)) be given, for all φ ∈ SENB(�), by

γ�(φ) = β�(ψ), where ψ ∈ SENA(�) is such that α�(ψ) = φ.

By surjectivity of 〈ISign, α〉, such a ψ always exists and, by the condition Ker(〈ISign,

α〉) ≤ Ker(〈G, β〉), the value γ�(φ) is independent of the choice of ψ ∈ SENA(�),

such that α�(ψ) = φ.
It is now shown that γ is a natural transformation. To this end, suppose that

�1, �2 ∈ |Sign|, f ∈ Sign(�1, �2) and φ ∈ SENB(�1). Then, for ψ ∈ SENA(�1), such
that α�1(ψ) = φ,

SENB(�2) SENC(G(�2))
�

γ�2

SENB(�1) SENC(G(�1))
�γ�1

�
SENB( f )

�
SENC(G( f ))
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SENC(G( f ))(γ�1(φ)) = SENC(G( f ))(β�1(ψ))

SENA(�2) SENC(G(�2))
�

β�2

SENA(�1) SENC(G(�1))
�β�1

�
SENA( f )

�
SENC(G( f ))

= β�2

(
SENA( f )(ψ)

)

= γ�2

(
SENB( f )(φ)

)
,

where the last equation follows from

SENA(�2) SENB(�2)
�

α�2

SENA(�1) SENB(�1)
�α�1

�
SENA( f )

�
SENB( f )

α�2

(
SENA( f )(ψ)

)
= SENB( f )(α�1(ψ))

= SENB( f )(φ).

To see that 〈G, γ 〉 : SENB → SENC is an (NB, NC)-epimorphic translation, con-
sider σ ∈F(n, 1), �∈|Sign| and �φ∈SENB(�)n. Let �ψ∈SENA(�)n, such that
α�( �ψ) = �φ. Then, we have

γ�

(
σB

�

( �φ
))

= γ�

(
σB

�

(
α�

( �ψ
)))

= γ�

(
α�

(
σA

�

( �ψ
)))

= β�

(
σA

�

( �ψ
))

= σC
G(�)

(
β�

( �ψ
))

= σC
G(�)

(
γ�

( �φ
))

.

To conclude this part of the proof, 〈G, γ 〉 : B → C must be shown to be a system
morphism. To this end, let r ∈ R, with ρ(r) = n, � ∈ |Sign| and �φ ∈ SENB(�)n. Sup-
pose, also, that �ψ ∈ SENA(�), such that α�( �ψ) = �φ. Now, if �φ ∈ rB

� , then α�( �ψ) ∈
rB
� , whence, by the strength of 〈ISign, α〉, �ψ ∈ rA

� and, therefore, since 〈G, β〉 is a
system morphism, β�( �ψ) ∈ rC

G(�). But this yields, by the definition of γ , that γ�( �φ) ∈
rC

G(�) and, hence, 〈G, γ 〉 is also a system morphism.
Finally, for the last statement, it must be shown that 〈G, γ 〉 : B → C is strong if

and only if 〈G, β〉 : A → C is strong.
Suppose, first, that 〈G, β〉 is strong and let r ∈ R, with ρ(r) = n, � ∈ |Sign|, �φ ∈

SENB(�)n and �ψ ∈ SENA(�)n, such that α�( �ψ) = �φ. If γ�( �φ) ∈ rC
G(�), then, by the

definition of γ , β�( �ψ) ∈ rC
G(�). Thus, by the strength of 〈G, β〉, �ψ ∈ rA

� . Therefore,
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since 〈ISign, α〉 is a system morphism, α�( �ψ) ∈ rB
� , whence �φ ∈ rB

� . Thus 〈G, γ 〉 is
also a strong system morphism.

Suppose, conversely, that 〈G, γ 〉 is strong and let r ∈ R, with ρ(r) = n, � ∈ |Sign|
and �φ ∈ SENA(�)n, such that β�( �φ) ∈ rC

G(�). Then, by the definition of γ , γ�(α�( �φ)) ∈
rC

G(�). Hence, by the strength of 〈G, γ 〉, α�( �φ) ∈ rB
� . Therefore, by the strength of

〈ISign, α〉, �φ ∈ rA
� , which shows that 〈G, β〉 must also be strong. �	

Next, the Homomorphism Theorem, an analog of Theorem 3.3 of [14], says that,
given two L-systems A and B, and a reductive system morphism 〈F, α〉 : A �s B,
there exists a reductive system morphism 〈F, β〉 : Aθ �s B, where by θ is denoted
the Ker(〈F, α〉) to simplify notation.

Theorem 10 (Homomorphism Theorem) Suppose that A = 〈SENA, 〈NA, FA〉, RA〉,
B = 〈SENB, 〈NB, FB〉, RB〉 are two L-systems and 〈F, α〉 : A �s B a reductive
system morphism. Then, there exists a reductive system morphism 〈F, β〉:AKer(〈F,α〉)�s

B, such that the following triangle commutes:

A B�〈F, α〉

A/Ker(〈F, α〉)

〈ISignA , π 〈F,α〉〉
�

�
�
��

〈F, β〉
�

�
�
��

Proof It is not difficult to verify that, if 〈F, α〉 : A �s B is a reductive system mor-
phism, then Ker(〈F, α〉) is an NA-congruence system on A. Therefore, by Proposi-
tion 8, 〈ISignA , π 〈F,α〉〉 : A → A/Ker(〈F, α〉) is a reductive system morphism, such that
Ker(〈ISignA , π 〈F,α〉〉) = Ker(〈F, α〉). Hence, the existence of 〈F, β〉 follows by applying
Lemma 9. �	

Now, an analog of the second Isomorphism Theorem will be given for the frame-
work of L-systems. It says that, given two NA-congruence systems θ, η of an L-system
A, such that θ ≤ η, the pair 〈ISignA , α〉 : (A/θ)/(η/θ) → A/η, given, for all � ∈ |SignA|
and all φ ∈ SENA(�), by

α�((φ/θ�)/(η�/θ�)) = φ/η�,

is an isomorphism of L-systems.
A lemma is needed first to the effect that η/θ is an NA-congruence system on A/θ .

Lemma 11 Suppose that A = 〈SENA, 〈NA, FA〉, RA〉 is anL-system and θ, η ∈ ConNA ·
(A) two NA-congruence systems of A, such that θ ≤ η. Then, the family η/θ =
{η�/θ�}�∈|SignA| is an NAθ

-congruence system of A/θ .

Proof By Part 1 of Theorem 28 of [26], it suffices to show that, given r ∈ R, with
ρ(r) = n, � ∈ |SignA|, �φ, �ψ ∈ SENA(�)n, if 〈 �φ/θ�, �ψ/θ�〉 ∈ η�/θ� and �φ/θ� ∈ rAθ

� ,

then also �ψ/θ� ∈ rAθ

� . So, suppose that 〈 �φ/θ�, �ψ/θ�〉 ∈ η�/θ� and �φ/θ� ∈ rAθ

� . Then
〈 �φ, �ψ〉 ∈ η� and �φ ∈ rA

� . Hence, since η ∈ ConNA

(A), we get that �ψ ∈ rA
� , whence

�ψ/θ� ∈ rAθ

� . Thus η/θ is in fact an NAθ

-congruence system of Aθ . �	
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With Lemma 11 at hand, we are now ready to prove the Second Isomorphism
Theorem, paralleling the Second Isomorphism Theorem of Universal Algebra (see,
e.g., Theorem 6.15 of [5]).

Theorem 12 (Second Isomorphism Theorem) Let A = 〈SENA, 〈NA, FA〉, RA〉 be an
L-system and θ, η ∈ ConNA

(A) two NA-congruence systems of A, such that θ ≤ η.
Then, the pair 〈ISignA , α〉 : (A/θ)/(η/θ) → A/η, defined, by letting, for all � ∈ |SignA|,

α� : (SENA(�)/θ�)/(η�/θ�) → SENA(�)/η�

be given by

α�((φ/θ�)/(η�/θ�)) = φ/η�, for all φ ∈ SENA(�),

is an L-system isomorphism.

Proof It has been shown in Part 2 of Theorem 28 of [26] that 〈ISignA , α〉 : SENAθ

/

(η/θ) → SENAη

is an (Nθη/θ

, Nη)-epimorphic translation. Thus, it suffices to show
that, given r ∈ R, with ρ(r) = n, � ∈ |SignA| and �φ ∈ SENA(�)n,

�φ/θ� ∈ rAθ

� iff ( �φ/θ�)(η�/θ�) ∈ rAθ /(η/θ)

� . (2)

But, given Lemma 11, Equivalence (2) follows directly from the definition of a
quotient L-system. �	

Finally, the Correspondence Theorem, an analog of the classical Correspondence
Theorem of Universal Algebra for L-systems (see, e.g., Theorem 6.20 of [5]), is now
presented.

Theorem 13 (Correspondence Theorem) Suppose that A = 〈SENA, 〈NA, FA〉, RA〉
is an L-system and θ ∈ ConNA

(A) an NA-congruence system of A. Then, the mapping

κ : [θ, ∇] → ConNAθ

(A/θ), defined by

κ(η) = η/θ, for all η ∈ [θ, ∇],

is an isomorphism between the sublattice [θ,∇] of ConNA

(A) and the lattice ConNAθ

(A/θ).

Proof Lemma 11 shows that this mapping is well-defined. To see that it is one-to-
one, suppose that η, ζ ∈ [θ, ∇], such that η 
= ζ . Then, there exists, without loss of
generality, � ∈ |SignA| and φ, ψ ∈ SENA(�), such that 〈φ, ψ〉 ∈ η� but 〈φ, ψ〉 
∈ ζ� .
Hence, we have 〈φ/θ�, ψ/θ�〉 ∈ η�/θ�, but 〈φ/θ�, ψ/θ�〉 
∈ ζ�/θ� . This shows that
η/θ 
= ζ/θ . Thus κ is indeed one-to-one.
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To see that κ is also onto, suppose that ζ ∈ ConNAθ

(A/θ). Then, let

A A/θ�
〈ISignA , πθ 〉

Aθ /ζ�
〈ISignA , πζ 〉

η = Ker(〈ISignA , πζ 〉 ◦ 〈ISignA , πθ 〉). Then η ∈ ConNA

(A) and we have, for all � ∈
|SignA|, φ, ψ ∈ SENA(�),

〈φ/θ�,ψ/θ�〉 ∈ η�/θ� iff 〈φ, ψ〉 ∈ η�

iff 〈φ/θ�, ψ/θ�〉 ∈ ζ�,

whence ζ = η/θ = κ(η) and κ is onto.
Finally, if η, ζ ∈ [θ, ∇], we have η ≤ ζ if and only if η/θ ≤ ζ/θ if and only if κ(η) ≤

κ(ζ ), whence κ : [θ, ∇] → ConNAθ

(A/θ) is a lattice isomorphism. �	

5 Leibniz Quotient of a Structure System

Given an L-system A = 〈SENA, 〈NA, FA〉, RA〉, the quotient system of A modulo
	NA

(A) is called the Leibniz quotient of A. Adopting the notation used in [26, 29], we
denote A/	NA

(A) by ANA

. Sometimes, to simplify notation and following [2, 14, 19],
we may use A∗ instead of ANA

. This deviation from the established notation 	N for
the Leibniz N-congruence system operator of [29] has a firm justification. In the case
of a π -institution I = 〈Sign, SEN, C〉, with a category N of natural transformations
on SEN, the category N is not part of the data of the π -institution, and, therefore,
it has to be part of the notation in the Leibniz operator. However, NA is part of the
definition of an L-system and, as a consequence, it need not be made explicit when
considering the Leibniz quotient of A. So the notation A∗ suffices.

At this point another remark concerning notation is in order. The same conven-
tion, as above, could have been adopted for the Leibniz NA-congruence system of an
L-system A. So 	(A) may be used in place of 	NA

(A), since NA is an integral part of
the tuple in the definition of A. Similarly Con(A) may be used instead of ConNA

(A)

for the same reasons. However, one may not replace ConNA

(SENA) by Con(SENA).
It is for this reason that the more traditional and, in this case, somewhat redundant,
notation was adopted and used in the previous sections.

We will also use the notation φ∗ to denote the element φ/	�(A) ∈ SENA(�)/	� ·
(A), for � ∈ |SignA|.

Proposition 8 has the following corollary:

Corollary 14 Given an L-system A, the Leibniz quotient A∗ is a reduction of A via
the reductive system morphism 〈ISignA , π	(A)〉 : A �s A∗.

Also, the Correspondence Theorem 13 has the following corollary:

Corollary 15 Given an L-system A, the Leibniz quotient A∗ is a reduced system.
Therefore A∗∗ ∼= A∗.
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Following Elgueta [14], we provide, next, an analog of Proposition 3.4 of [14] for
L-systems, showing that, in the present context as well, the Leibniz quotient A∗ of an
L-system A is minimal in that it forms a reduction of any other reduction of A.

Proposition 16 Suppose that A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉,
RB〉 are L-systems and 〈F, α〉 : A �s B a reductive system morphism, with
F : SignA → SignB an isomorphism. Define 〈F∗, α∗〉 by letting F∗ = F and

α∗ : SENA/	NA

(A) → SENB/	NB

(B) ◦ F∗

be given, for all � ∈ |SignA|, by

α∗
�(φ∗) = α�(φ)∗, for all φ ∈ SENA(�).

A∗ B∗�〈F∗, α∗〉

A B�〈F, α〉

�

〈ISignA , πNA〉
�

〈ISignB , πNB〉

Then 〈F∗, α∗〉 : A∗ → B∗ is an isomorphism of L-systems.

Proof We first show that α∗ : SENA/	NA

(A) → SENB/	NB

(B) ◦ F∗ is well de-
fined. Indeed, if � ∈ |SignA|, φ, ψ ∈ SENA(�), such that φ∗ = ψ∗, then 〈φ, ψ〉 ∈
	NA

� (A), whence, by Part 2 of Theorem 5, 〈α�(φ), α�(ψ)〉 ∈ 	NB

F(�)(B) and, hence
α�(φ)∗= α�(ψ)∗. Therefore, α∗

�(φ∗) is independent of the choice of the representa-
tive from the class of φ∗ and α∗

� is well-defined.
Next, to see that α∗ : SENA/	NA

(A) → SENB/	NB

(B) ◦ F∗ is a natural trans-
formation, consider �1, �2 ∈ |SignA|, f ∈ SignA(�1, �2) and φ ∈ SENA(�1). We then
have

SENA(�2)/	NA

(A) SENB(F(�2))/	NB

(B)�
α∗

�2

SENA(�1)/	NA

(A) SENB(F(�1))/	NB

(B)�α∗
�1

�

SENA( f )/	NA

(A)

�

SENB(F( f ))/	NB

(B)
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SENB(F( f ))/	NB

(B)(α∗
�1

(φ∗))
= SENB(F( f ))/	NB

(B)
(
α∗

�1

(
φ/	NA

�1
(A)

))

= SENB(F( f ))/	NB

(B)
(
α�1(φ)/	NB

F(�1)
(B)

)

= SENB(F( f ))(α�1(φ))/	NB

F(�2)
(B)

SENA(�2) SENB(F(�2))
�

α�2

SENA(�1) SENB(F(�1))
�α�1

�
SENA( f )

�
SENB(F( f ))

= α�2(SENA( f )(φ))/	NB

F(�2)
(B)

= α∗
�2

(
SENA( f )(φ)/	NA

�2
(A)

)

= α∗
�2

(
SENA( f )/	NA

(A)
(
φ/	NA

�1
(A)

))

= α∗
�2

(
SENA( f )/	NA

(A)(φ∗)
)

.

To see that 〈F∗, α∗〉 : SENA/	(A) → SENB/	(B) is an (NA	(A)

, NB	(B)

)-
epimorphic translation, let σ ∈ F(n, 1), � ∈ |SignA|, �φ ∈ SENA(�)n. Then, we have

α∗
�

(

σ
	NA

(A)
� ( �φ∗)

)

= α∗
�

(
σA

� ( �φ)/	NA

� (A)
)

= α�

(
σA

� ( �φ)
)

/	NB

F(�)(B)

= σB
F(�)

(
α�( �φ)

)
/	NB

F(�)(B)

= σ
	NB

(B)

F(�)

(
α�( �φ)/	NB

F(�)(B)
)

= σ
	NB

(B)

F(�)

(
α∗

�( �φ∗)
)

.

To see that 〈F, α∗〉 : A∗ → B∗ is strong, let r ∈ R, with ρ(r) = n, � ∈ |SignA|, �φ ∈
SENA(�)n. Then, we have

�φ∗ ∈ rA∗
� iff �φ ∈ rA

�

iff α�( �φ) ∈ rB
F(�)

iff α�( �φ)∗ ∈ rB∗
F(�)

iff α∗
�( �φ∗) ∈ rB∗

F(�).

Finally, α� : SENA(�)/	�(A) → SENB(F(�))/	F(�)(B) is a bijection, for all � ∈
|SignA|, since, if φ,ψ ∈ SENA(�), such that α∗

�(φ∗) = α∗
�(ψ∗), we have α�(φ)∗ =

α�(ψ)∗, whence we obtain 〈α�(φ), α�(ψ)〉 ∈ 	NB

F(�)(B), and, therefore, by Part 1 of

Theorem 2.5, 〈φ, ψ〉 ∈ 	NA

� (A), i.e., φ∗ = ψ∗. �	
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Corollary 17 Suppose that A = 〈SENA, 〈NA, FA〉, RA〉 and B = 〈SENB, 〈NB, FB〉,
RB〉 are L-systems. If B is a reduction of A via an 〈F, α〉 : A �s B, with F an
isomorphism, then A∗ is also a reduction of B. Also, if A ∼= B, then A∗ ∼= B∗.

A∗ B∗�〈F∗, α∗〉

A B�〈F, α〉

�

〈ISignA , πNA〉
�

〈ISignB , πNB〉

�

6 The Completeness Theorem for L-Systems

Recall from [31] that, given a set � of L-formulas, we define

Mod(�) = {A : A |= γ for all γ ∈ �}.

Now taking after [14], define, also,

Mod∗(�) = {A ∈ Mod(�) : A is reduced}.

We call Mod(�) and Mod∗(�) the abstract model class and the reduced model class
of �, respectively. As in the case of ordinary first-order structures, if one introduces
the class operator

L(K) = {A : A ∼= B∗ for some B ∈ K},

then, by Proposition 6 of [31], we get that Mod∗(�) = L(Mod(�)).
The operator L is called the reduction operator. A class K of L-systems is said to be

an abstract class if it is closed under expansions and reductions. It is called a reduced
class if it is obtained by some class by applying the reduction operator. The entire
class of reduced L-systems is called a reduced semantics to differentiate it from the
entire class of all L-systems, which is referred to as abstract semantics.

In the same way that the notation � |= α is used to indicate that, for all L-systems
A = 〈SENA, 〈NA, FA〉, RA〉, all � ∈ |SignA| and all �φ ∈ SENA(�)ω,

A |=� �[ �φ] implies A |=� α[ �φ],

we use the notation � |=∗ α to indicate that for all reduced L-systems A = 〈SENA,

〈NA, FA〉, RA〉, all � ∈ |SignA| and all �φ ∈ SENA(�)ω,

A |=� �[ �φ] implies A |=� α[ �φ],
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Then Gödel’s Completeness Theorem has the following alternative formulation:

Theorem 18 (Completeness Theorem) Let � ∪ {α} ⊆ FmL(V) be a collection of L-
sentences. Then

� � α iff � |= α iff � |=∗ α.

Proof The second equivalence follows from Proposition 6 of [31]. By the soundness
part of Gödel’s Completeness Theorem, we have that � � α implies, for all A =
〈SENA, 〈NA, FA〉, RA〉 and all � ∈ |SignA|, A |=� � implies that A |=� α. There-
fore, we obtain, by the definition of |= that � |= α. Conversely, if � |= α, then, since
ordinary first-order L-structures form a subclass of the class of all L-systems, we get
that � |= α in the ordinary first-order sense and, therefore, by the completeness part
of Gödel’s Completeness Theorem, we obtain that � � α. �	

We intend to continue the work presented in this paper with the goal of abstracting
several of Elgueta’s results to the present framework. Elgueta’s results generalize
well-known results of the theory of models of first-order logic to the equality-free
context. The present framework leads to further generalization of these results to a
multi-signature equality-free context.

Acknowledgements Thanks to Don Pigozzi, Janusz Czelakowski, Josep Maria Font and Ramon
Jansana for inspiration and support. Thanks go also to Raimon Elgueta and to Pillar Dellunde, whose
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