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The widespread and rapid proliferation of logical systems in several areas of computer science has led to a resurgence of interest in
various methods for combining logical systems and in investigations into the properties inherited by the resulting combinations.
One of the oldest such methods is fibring. In fibring the shared connectives of the combined logics inherit properties from both
component logical systems, and this leads often to inconsistencies. To deal with such undesired effects, Sernadas et al. (2011, 2012)
have recently introduced a novel way of combining logics, calledmeet-combination, in which the combined connectives share only
the common logical properties they enjoy in the component systems. In their investigations they provide a sound and concretely
complete calculus for the meet-combination based on available sound and complete calculi for the component systems. In this
work, an effort is made to abstract those results to a categorical level amenable to categorical abstract algebraic logic techniques.

1. Introduction

The widespread and rapid proliferation of logical systems in
several areas of computer science has led to a resurgence of
interest in various methods for combining logical systems
and in investigations into the properties inherited by the
resulting combinations. One of the oldest methods for com-
bining connectives is fibring [1]. In fibring one combines
two logical systems by possibly imposing some sharing
of common connectives or identification of connectives
from the constituent logical systems. When such interaction
occurs, the combined connectives inherit all properties of
the components from both logical systems, and this leads
often to inconsistencies. A typical example of this strong
interaction is the combination of an intuitionistic negation
from one logical system with a classical negation from
another. The combined connective behaves like a classical
negation, and this outcome defeats any intended purpose for
the combination. Fibring has been studied substantially since
its original introduction, and both its virtues and its vices are
relatively well understood. For instance in [2], fibring was
presented as a categorical construction (see also [3]), in [4]
fibred logical systemswere investigated from the point of view
of preserving completeness, in [5] some work was carried out

on the effect of fibring in logics belonging to specific classes
of the classical abstract algebraic logic hierarchy [6–8], and
more recently, in [9] fibring was employed to obtain some
modal logics, first considered in [10], in a structured way and
to draw some conclusions regarding their algebraic character.

To avoid some of the drawbacks and undesired effects
involved in the application of fibring, Sernadas et al. [11,
12] introduced, recently, another way of combining logical
systems, called meet-combination, in which the combined
connectives, instead of inheriting all properties they enjoy in
the component logical systems, inherit only those properties
that are common to both connectives. A very illuminating
example of the difference that this entails as contrasted to
the fibring method consists of the result of combining two
logics L∧ and L∨, one including a classical conjunction ∧
and one including a classical disjunction ∨, with the intention
of obtaining a combined connective “identifying” these two
connectives from the component logics. Roughly speaking, if
fibring is used, then, since in the combination the combined
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connective [∧∨] has all properties that are enjoyed by each of
the connectives in either logic, the derivation

𝜙
𝜙 [∧∨] 𝜓 (by the Property of Disjunction in L2)

𝜓 (by the Property of Conjunction in L1)
(1)

shows that in the combined logic a single formula entails all
other formulas; that is, there are only two possible theories,
the empty theory and the entire set of formulas. On the
other hand, this derivation would not be valid in the meet-
combination of the two logics, since the afore-used Properties
of Disjunction and Conjunction inL2 andL1, respectively,
are not shared by ∧ in L1 and by ∨ in L2, respectively.
Commutativity, however, is a shared property, whence the
derived rule 𝜙[∧∨]𝜓/𝜓[∧∨]𝜙 is a derived rule of the meet-
combination.

In [11] Sernadas et al. start from a given logical system
L with a Hilbert style calculus and with a matrix semantics
and define a new logic L× that incorporates all meet-
combinations of connectives of L of the same arity. More-
over, this system includes in a canonical way the connectives
of the original logical system. Roughly speaking, the Hilbert
calculus of the combination consists of all old Hilbert rules
plus two new rules that ensure that the combined connectives
inherit the commonproperties of the component connectives
and only those properties.Thematrix semantics consists, also
roughly speaking, of the direct squares of the matrices in the
original matrix semantics. In the main results, [11, Theorems
3.9 and 3.13], it is shown that soundness and a special form
of completeness, called concrete completeness, are inherited
in L× from L. Moreover, Sernadas et al. [11] investigate in
some detail the case of classical propositional logic, which
constitutes the main motivation and paradigmatic example
behind their work. Based on classical propositional calculus,
they present several interesting examples, which, in addition,
serve as illustrations for various sensitive points of the general
theory.

In the present paper, we adapt the framework of [11] to a
categorical level, using notions and techniques of categorical
abstract algebraic logic [13, 14]. Our main goal is providing
a framework in which, starting from a 𝜋-institution whose
closure system is axiomatized by a set of rules of inference, we
may construct a new 𝜋-institution that includes, in a precise
technical sense, natural transformations corresponding to
meet-combinations of operations available in the original 𝜋-
institution. The closure system of this new 𝜋-institution is
created by essentially mimicking the process of [11] to create
a new set of rules of inference, suitable for the new sentence
functor, and by using this new set of rules to define the
inferences in the newly created structure. Under conditions
analogous to those imposed by Sernadas et al. in [11], we
are also able to establish a form of soundness and a form
of restricted completeness for the new system, with respect
to a suitably constructed matrix system semantics, under
the proviso that these properties are satisfied by the original
system.

We close this section by providing an outline of the
contents of the paper. In Section 2, we introduce the basic

notions underlying the framework in which our work will be
carried out. The inspiration comes from categorical abstract
algebraic logic [13, 14] and, more specifically, uses the notion
of a category of natural transformations on a given sentence
functor and, implicitly, many aspects of the theory of 𝑁-
rule based 𝜋-institutions, where 𝑁 is a category of natural
transformations on the sentence functor of the 𝜋-institution
under consideration. A recent reference on this material is
[15].The reader should be aware that basic categorical notions
are used rather heavily, but the elementary references to the
subject [16–18] should be enough for necessary terminology
and notation.

In Section 3 the basic constructions that take after
corresponding constructions in [11] are presented. Here the
meet-combination of logical systems refers to logical systems
based on sentence functors, whose “signatures” are categories
of natural transformations on the sentence functors and
whose rules of inference and model classes are all categorical
in nature. The goal is to work in a framework that would be
amenable to categorical abstract algebraic logic methods and
techniques so as to be able to consider aspects drawing from
both theories.

In Sections 4 and 5, we show that a form of soundness and
a form of restricted completeness are inherited by the meet-
combination, subject to the condition that it is present in the
components being combined. These results yield also results
on conservativeness and on consistency, which are presented
in Section 6.

Finally, based on the thorough work of [11], we present in
Section 7 some examples showcasing various aspects of the
general theory.These examples are relevant to both the theory
developed in [11] and to its extension elaborated on in the
present paper and, whenever appropriate, we draw attention
to points where the two theories overlap and points where
some differences occur.

2. Basic Framework

In the sequel we consider an arbitrary but fixed category Sign,
called the category of signatures, and an arbitrary but fixed
Set-valued functor SEN : Sign → Set, called the sentence
functor. Also into the picture in a critical way will be an
arbitrary but fixed category 𝑁 of natural transformations on
SEN, which we view as the clone of all algebraic operations
on SEN. We remind the reader here of the precise definition
of such a category, as presented, for example, in [15]. The
clone of all natural transformations on SEN is defined to be
the locally small category with collection of objects {SEN𝛼 :
𝛼 an ordinal} and collection of morphisms 𝜏 : SEN𝛼 →
SEN𝛽𝛽-sequences of natural transformations 𝜏𝑖 : SEN𝛼 →
SEN. Composition

SEN𝛼
⟨𝜏𝑖:𝑖<𝛽⟩→ SEN𝛽

⟨𝜎𝑗 :𝑗<𝛾⟩→ SEN𝛾 (2)

is defined by

⟨𝜎𝑗 : 𝑗 < 𝛾⟩ ∘ ⟨𝜏𝑖 : 𝑖 < 𝛽⟩ = ⟨𝜎𝑗 (⟨𝜏𝑖 : 𝑖 < 𝛽⟩) : 𝑗 < 𝛾⟩ . (3)
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A subcategory𝑁 of this category containing all objects of the
form SEN𝑘 for 𝑘 < 𝜔, and all projection morphisms 𝑝𝑘,𝑖 :
SEN𝑘 → SEN, 𝑖 < 𝑘, 𝑘 < 𝜔, with 𝑝𝑘,𝑖Σ : SEN(Σ)𝑘 → SEN(Σ)
given by

𝑝𝑘,𝑖Σ (�⃗�) = 𝜙𝑖, ∀�⃗� ∈ SEN(Σ)𝑘, (4)

and such that, for every family {𝜏𝑖 : SEN𝑘 → SEN : 𝑖 < 𝑙}
of natural transformations in 𝑁, the sequence ⟨𝜏𝑖 : 𝑖 < 𝑙⟩ :
SEN𝑘 → SEN𝑙 is also in 𝑁, is referred to as a category of
natural transformations on SEN.

A natural transformation 𝜎 : SEN𝑛 → SEN in 𝑁 is
called a constant if, for all Σ ∈ |Sign| and all �⃗�, �⃗� ∈ SEN(Σ)𝑛,

𝜎Σ (�⃗�) = 𝜎Σ (�⃗�) . (5)

If 𝜎 : SEN𝑛 → SEN is a constant, then we set 𝜎Σ :=
𝜎Σ(�⃗�), to denote the value of the constant in SEN(Σ), which
is independent of �⃗� ∈ SEN(Σ)𝑛.

An 𝑁-rule of inference or simply an 𝑁-rule is a pair of
the form ⟨{𝜎0, . . . , 𝜎𝑛−1}, 𝜏⟩, sometimes written more legibly
𝜎0, . . . , 𝜎𝑛−1/𝜏, where 𝜎0, . . . , 𝜎𝑛−1, 𝜏 are natural transforma-
tions in𝑁. The elements 𝜎𝑖, 𝑖 < 𝑛, are called the premises and
𝜏 the conclusion of the rule.

An 𝑁-Hilbert calculus R is a set of 𝑁-rules. Using
the 𝑁-rules in R, one may define derivations of a natural
transformation𝜎 in𝑁 from a setΔ of natural transformations
in 𝑁. Such a derivation is denoted by Δ⊢R𝜎. If the calculus
R is fixed and clear in a particular context, we might simply
write Δ ⊢ 𝜎.

Given two functors SEN : Sign → Set and SEN :
Sign → Set, with categories of natural transformations
𝑁,𝑁 on SEN, SEN, respectively, a pair ⟨𝐹, 𝛼⟩, where 𝐹 :
Sign → Sign is a functor and 𝛼 : SEN → SEN ∘ 𝐹 is
a natural transformation, is called a translation from SEN
to SEN. Moreover, it is said to be (𝑁,𝑁)-epimorphic if
there exists a correspondence 𝜎 → 𝜎 between the natural
transformations in𝑁 and𝑁 that preserves projections (and,
thus, also arities), such that, for all 𝜎 : SEN𝑘 → SEN , all
Σ ∈ |Sign| and all �⃗� ∈ SEN(Σ)𝑘,

𝛼Σ (𝜎Σ (�⃗�)) = 𝜎𝐹(Σ) (𝛼𝑘Σ (�⃗�)) . (6)

An (𝑁,𝑁)-epimorphic translation from SEN to SEN will
be denoted by ⟨𝐹, 𝛼⟩ : SEN → SEN, with the relevant
categories 𝑁,𝑁 of natural transformations on SEN, SEN,
respectively, understood from context.

An𝑁-algebraic systemA = ⟨SEN, ⟨𝐹, 𝛼⟩⟩ consists of
(i) a functor SEN : Sign → Set, with a category 𝑁 of

natural transformations on SEN;
(ii) an (𝑁,𝑁)-epimorphic translation ⟨𝐹, 𝛼⟩ : SEN →

SEN.

An 𝑁-matrix system or, simply, 𝑁-matrix A = ⟨A, 𝑇⟩ is a
pair consisting of

(i) an𝑁-algebraic systemA = ⟨SEN, ⟨𝐹, 𝛼⟩⟩;

(ii) an axiom family 𝑇 ∈ AxFam(SEN) on SEN, that
is, a collection 𝑇 = {𝑇Σ}Σ∈|Sign| of subsets 𝑇Σ ⊆
SEN(Σ), Σ ∈ |Sign|.

We perceive of the elements of SEN(𝐹(Σ)) as truth values
for evaluating the natural transformations in 𝑁 and those of
𝑇𝐹(Σ) as being the designated ones. An 𝑁-matrix semantics
M is a class of 𝑁-matrices. Given a natural transformation
𝜎 : SEN𝑘 → SEN in𝑁, we set

𝜎Σ (𝑓 (�⃗�)) := 𝜎Σ (SEN(𝑓)𝑘 (�⃗�)) , (7)

where 𝑓 ∈ Sign(Σ, Σ) and �⃗� ∈ SEN(Σ)𝑘. The matrix A =
⟨A, 𝑇⟩ satisfies 𝜎 at �⃗� ∈ SEN(Σ)𝑘 under 𝑓 ∈ Sign(Σ, Σ),
written A⊨Σ𝜎[�⃗�, 𝑓], if 𝛼Σ(𝜎Σ(𝑓(�⃗�))) ∈ 𝑇𝐹(Σ). An 𝑁-rule
𝜎0, . . . , 𝜎𝑛−1/𝜏 is a rule of an𝑁-matrix semanticsM, written

𝜎0, . . . , 𝜎𝑛−1⊨M𝜏, (8)

ifA⊨Σ𝜎𝑖[�⃗�, 𝑓], for all 𝑖 < 𝑛, impliesA⊨Σ𝜏[�⃗�, 𝑓], for every𝑁-
matrix A ∈ M, all Σ ∈ |Sign|, all Σ-assignments �⃗� in A, and
all 𝑓 ∈ Sign(Σ, Σ). If the semantics is clear from context, we
simply write 𝜎0, . . . , 𝜎𝑛−1 ⊨ 𝜏.

In the remainder of this paper, by a logical system,
or simply a logic, we understand a pentuple L =
⟨Sign, SEN, 𝑁,R,M⟩, where

(i) Sign is a category;
(ii) SEN : Sign → Set is a sentence functor;
(iii) 𝑁 is a category of natural transformations on SEN;
(iv) R is an𝑁-Hilbert calculus;
(v) M is a𝑁-matrix semantics.

3. Meet-Combinations

Let L = ⟨Sign, SEN, 𝑁,R,M⟩ be a logical system. Define
the product logical system or, simply, product logic L× =
⟨Sign, SEN×, 𝑁×,R×,M×⟩ as follows:

the logicL× has the same signature category Sign asL.
The sentence functor SEN× : Sign → Set is defined by

setting

SEN× (Σ) = SEN (Σ) × SEN (Σ) , (9)

for all Σ ∈ |Sign|, and, similarly, for morphisms.
The category𝑁× of natural transformations on SEN× has

the same objects as 𝑁 and its morphisms (SEN × SEN)𝑛 ≅
SEN𝑛 × SEN𝑛 into SEN × SEN are pairs �⃗� = ⟨𝜎, 𝜎⟩ of
natural transformations𝜎, 𝜎 : SEN𝑛 → SEN in𝑁.We call
the members of𝑁× the combined natural transformations or
combined operations or, following [11], but rather apologetic
for abusing terminology, combined connectives.

Given 𝜎 : SEN𝑘 → SEN in 𝑁, we set 𝜎 = ⟨𝜎, 𝜎⟩ in 𝑁×
and, accordingly, given �⃗� = ⟨𝜎, 𝜎⟩ in𝑁×, we set

𝜎 = ⟨𝜎, 𝜎⟩ , 𝜎 = ⟨𝜎, 𝜎⟩. (10)
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Every𝑁-rule 𝑟 = 𝜎0, . . . , 𝜎𝑛−1/𝜏 gives rise to an𝑁×-rule

𝑟 = 𝜎0, . . . , 𝜎𝑛−1
𝜏 . (11)

The calculus R× is an “enrichment” of R in the sense that
it contains all rules of the form 𝑟, for 𝑟 ∈ R, and some
additional 𝑁×-rules devised for dealing with the combined
operations:

(i) for each �⃗� : (SEN×)𝑘 → SEN× in𝑁×, the lifting rule
(LFT)

𝜎, 𝜎
�⃗�

(12)

is included in R× to enforce inheritance by �⃗� in L×

of all the common properties of 𝜎 and 𝜎 inL;

(ii) for each constant �⃗� : (SEN×)𝑘 → SEN× in 𝑁×, the
special colifting rules (cLFT)

�⃗�
𝜎 ,

�⃗�
𝜎

(13)

are included in R× to enforce that �⃗� should enjoy in
L× only those properties that are common properties
of 𝜎 and 𝜎 inL.

The reason for allowing only the special co-lifting rules (i.e.,
ones that admit only constants), rather than the (general) co-
lifting rules, is that, unless this restriction is imposed, the
rules are not in general sound. This will become apparent in
the analysis to follow.

Before introducing the semantics M× of L×, we show,
following [11], that given constant natural transformations
𝜎, 𝜎 : (SEN×)𝑘 → SEN× in 𝑁, the two combined
constructors ⟨𝜎, 𝜎⟩ and ⟨𝜎, 𝜎⟩ are closely related.

Theorem 1 (Sernadas, Sernadas, and Rasga). Let L =
⟨Sign, SEN, 𝑁, 𝑅,M⟩ be a logical system. Consider a constant
natural transformation �⃗� = ⟨𝜎, 𝜎⟩ : (SEN×)𝑘 → SEN× in
𝑁× and set ←𝜎 = ⟨𝜎, 𝜎⟩. Then �⃗� and ←𝜎 are interderivable in
L×.

Proof. Apply first cLFT twice and then LFT, in each direction.
One gets the following proof:

(�⃗�/𝜎) (�⃗�/𝜎)
←𝜎 . (14)

Let A𝛼 = ⟨SEN, ⟨𝐹, 𝛼⟩⟩ and A𝛽 = ⟨SEN, ⟨𝐹, 𝛽⟩⟩ be 𝑁-
algebraic systemswith the same underlying sentence functors
and the same signature functor component 𝐹 : Sign →
Sign. Let SEN× = SEN × SEN : Sign → Set be defined,
for all Σ ∈ |Sign|, by

SEN× (Σ) = SEN (Σ) × SEN (Σ) , (15)

and similarly for morphisms, and let ⟨𝐹, 𝛼 × 𝛽⟩ : SEN× →
SEN× be given, for all Σ ∈ |Sign|, by

(𝛼 × 𝛽)Σ (𝜙, 𝜓) = ⟨𝛼Σ (𝜙) , 𝛽Σ (𝜓)⟩ ,

∀ ⟨𝜙, 𝜓⟩ ∈ SEN× (Σ) .
(16)

Denote byA𝛼×𝛽 the𝑁×-algebraic system

A
𝛼×𝛽 = ⟨SEN×, ⟨𝐹, 𝛼 × 𝛽⟩⟩ . (17)

Moreover, given two 𝑁-matrix systems A𝛼 = ⟨A𝛼, 𝑇𝛼⟩ and
A𝛽 = ⟨A𝛽, 𝑇𝛽⟩, let

A
𝛼×𝛽 = ⟨A𝛼×𝛽, 𝑇𝛼×𝛽⟩, (18)

where 𝑇𝛼×𝛽 = {𝑇𝛼×𝛽Σ }Σ∈|Sign|, such that, for all Σ ∈ |Sign|,

𝑇𝛼×𝛽Σ = 𝑇𝛼Σ × 𝑇𝛽Σ . (19)

The semantics M× is the class consisting of all 𝑁×-
matrix systems of the form A𝛼×𝛽, for A𝛼,A𝛽 ∈ M,
having underlying𝑁-algebraic systemsA𝛼,A𝛽, respectively,
with the same underlying sentence functors and the same
signature functor components. The semantics M× will be
called the product semantics, taking after [11].

Finally, we let ⊢× and ⊨× stand for satisfaction and entail-
ment in the product logicL× = ⟨Sign, SEN×, 𝑁×,R×,M×⟩.

4. Soundness

Recall that, given a natural transformation 𝜎 : SEN𝑘 →
SEN in 𝑁, we use the notation 𝜎 to denote the natural
transformation 𝜎 = ⟨𝜎, 𝜎⟩ in𝑁×.

Proposition 2. Let L = ⟨Sign, SEN, 𝑁,R,M⟩ be a
logical system and consider the product system L× =
⟨Sign, SEN×, 𝑁×,R×,M×⟩. Suppose that 𝜎 : SEN𝑘 → SEN
in 𝑁, Σ ∈ |Sign| and �⃗� ∈ SEN×(Σ)𝑘, where the 𝑖th component
⃗𝜙𝑖 of �⃗� is ⃗𝜙𝑖 = ⟨ ⃗𝜙𝑖 , ⃗𝜙𝑖 ⟩, for all 𝑖 < 𝑘. Then

𝜎Σ (�⃗�) = ⟨𝜎Σ ( ⃗𝜙) , 𝜎Σ ( ⃗𝜙)⟩ . (20)

Moreover, for all A𝛼 = ⟨⟨SEN, ⟨𝐹, 𝛼⟩⟩, 𝑇𝛼⟩, A𝛽 =
⟨⟨SEN, ⟨𝐹, 𝛽⟩⟩, 𝑇𝛽⟩ ∈ M, all Σ ∈ |Sign| and all 𝑓 ∈
Sign(Σ, Σ),

A
𝛼×𝛽⊨Σ𝜎 [�⃗�, 𝑓] iff A

𝛼⊨Σ𝜎 [ ⃗𝜙, 𝑓] , A𝛽⊨Σ𝜎 [ ⃗𝜙, 𝑓] .
(21)

Proof. We have the following equivalences:

A
𝛼×𝛽⊨Σ𝜎 [�⃗�, 𝑓] (22)

iff (𝛼 × 𝛽)Σ(𝜎Σ(𝑓(�⃗�))) ∈ 𝑇𝛼×𝛽
𝐹(Σ)
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iff 𝛼Σ(𝜎Σ(𝑓( ⃗𝜙))) ∈ 𝑇𝛼𝐹(Σ) and 𝛽Σ(𝜎Σ(𝑓( ⃗𝜙))) ∈
𝑇𝛽
𝐹(Σ)

,

iffA𝛼⊨Σ𝜎[ ⃗𝜙, 𝑓], andA𝛽⊨Σ𝜎[ ⃗𝜙, 𝑓].
This proves the Proposition.

Proposition 3. Let L = ⟨Sign, SEN, 𝑁,R,M⟩ be a logical
system. If the 𝑁-rule ⟨{𝜎0, . . . , 𝜎𝑛−1}, 𝜏⟩ is sound in L, then
the𝑁×-rule ⟨{𝜎0, . . . , 𝜎𝑛−1},𝜏⟩ is sound inL×.

Proof. Suppose that A𝛼 = ⟨⟨SEN, ⟨𝐹, 𝛼⟩⟩, 𝑇𝛼⟩ and A𝛽 =
⟨⟨SEN, ⟨𝐹, 𝛽⟩⟩, 𝑇𝛽⟩ are in M so that A𝛼×𝛽 ∈ M×, Σ, Σ ∈
|Sign|, �⃗� ∈ SEN× (Σ)𝑘, and 𝑓 ∈ Sign(Σ, Σ), such that
A𝛼×𝛽⊨Σ𝜎𝑖[�⃗�, 𝑓], for all 𝑖 < 𝑛. Then, by Proposition 2,

A
𝛼⊨Σ𝜎𝑖 [ ⃗𝜙, 𝑓] , A

𝛽⊨Σ𝜎𝑖 [ ⃗𝜙, 𝑓] , (23)

for all 𝑖 < 𝑛.Thus, by soundness of ⟨{𝜎0, . . . , 𝜎𝑛−1}, 𝜏⟩ inL, we
get thatA𝛼⊨Σ𝜏[ ⃗𝜙, 𝑓] andA𝛽⊨Σ𝜏[ ⃗𝜙, 𝑓]. Therefore, again by
Proposition 2, A𝛼×𝛽⊨Σ𝜏[�⃗�, 𝑓] and, hence, ⟨{𝜎0, . . . , 𝜎𝑛−1}, 𝜏⟩
is sound forL×.

Let �⃗� : (SEN×)𝑘 → SEN× be in 𝑁× and suppose that
Σ, Σ ∈ |Sign|, �⃗� ∈ SEN×(Σ)𝑘 and 𝑓 ∈ Sign(Σ, Σ). Then, by
the definition of �⃗�,

�⃗�Σ (𝑓 (�⃗�)) = ⟨𝜎Σ (𝑓 ( ⃗𝜙)) , 𝜎Σ (𝑓 ( ⃗𝜙))⟩

= ⟨𝜎Σ(𝑓 (�⃗�)), 𝜎Σ(𝑓 (�⃗�))⟩ .
(24)

Proposition 4. Let L = ⟨Sign, SEN, 𝑁,R,M⟩ be a
logical system. The lifting rule LFT is sound in L× =
⟨Sign, SEN×, 𝑁×,R×,M×⟩.

Proof. Suppose that �⃗� in𝑁×,A𝛼×𝛽 ∈ M×, Σ ∈ |Sign| and �⃗� ∈
SEN×(Σ), such that, for some Σ ∈ |Sign| and 𝑓 ∈ Sign(Σ, Σ),

A
𝛼×𝛽⊨Σ𝜎 [�⃗�, 𝑓] , A

𝛼×𝛽⊨Σ𝜎 [�⃗�, 𝑓] . (25)

This implies that (𝛼 × 𝛽)Σ(𝜎Σ(𝑓(�⃗�))) ∈ 𝑇𝛼×𝛽
𝐹(Σ)

and
(𝛼 × 𝛽)Σ(𝜎Σ(𝑓(�⃗�))) ∈ 𝑇𝛼×𝛽

𝐹(Σ)
. These imply that (𝛼 ×

𝛽)Σ(⟨𝜎Σ(𝑓(�⃗�))
, 𝜎Σ(𝑓(�⃗�))

⟩) ∈ 𝑇𝛼×𝛽
𝐹(Σ)

, whence, by (24),

(𝛼 × 𝛽)Σ (�⃗�Σ (𝑓 (�⃗�))) ∈ 𝑇𝛼×𝛽
𝐹(Σ). (26)

This proves the soundness of lifting.

Let Sign be a category and SEN : Sign → Set a sentence
functor with 𝑁 a category of natural transformations on
SEN. Recall that a natural transformation 𝜎 : SEN𝑘 →
SEN is called a constant if, for all Σ ∈ |Sign|, all �⃗�, �⃗� ∈
SEN(Σ)𝑘𝜎Σ(�⃗�) = 𝜎Σ(�⃗�) and that we use the notation 𝜎Σ :=
𝜎Σ(�⃗�), for this value, which is independent of �⃗� ∈ SEN(Σ)𝑘.

A class of 𝑁-matrix systems M is said to be a 𝑐-
semantics if, for all A𝛼 = ⟨⟨SEN, ⟨𝐹, 𝛼⟩⟩, 𝑇𝛼⟩ and A𝛽 =

⟨⟨SEN, ⟨𝐹, 𝛽⟩⟩, 𝑇𝛽⟩ inM, every constant 𝜎 : SEN𝑘 → SEN
in𝑁 and all Σ ∈ |Sign|,

𝛼Σ (𝜎Σ) ∈ 𝑇𝛼𝐹(Σ), iff 𝛽Σ (𝜎Σ) ∈ 𝑇𝛽
𝐹(Σ)

. (27)

Intuitively, a semantics M is a 𝑐-semantics if and only if
every constant is consistently interpreted as true or false
under all matrix systems in the semantics, that is, under all
combinations of interpretations and designated truth values
included in the semantics.

Proposition 5. Let L = ⟨Sign, SEN, 𝑁,R,M⟩ be a logical
system, where M is a 𝑐-semantics. For all constants �⃗� :
(SEN×)𝑘 → SEN× in𝑁×, the special co-lifting rules

�⃗�
𝜎 ,

�⃗�
𝜎

(28)

are sound inL× = ⟨Sign, SEN×, 𝑁×,R×,M×⟩.

Proof. Let A𝛼×𝛽 ∈ M×, �⃗� a constant in 𝑁×, Σ ∈ |Sign|,
and �⃗� ∈ SEN×(Σ)𝑘, such that, for some Σ ∈ |Sign| and
𝑓 ∈ Sign(Σ, Σ),

A
𝛼×𝛽⊨Σ�⃗� [�⃗�, 𝑓] . (29)

Then (recalling the notation for constants) (𝛼 × 𝛽)Σ(�⃗�Σ) ∈
𝑇𝛼×𝛽
𝐹(Σ)

, whence

𝛼Σ (𝜎Σ) ∈ 𝑇𝛼
𝐹(Σ), 𝛽Σ (𝜎Σ) ∈ 𝑇𝛽

𝐹(Σ)
. (30)

Since M is a 𝑐-semantics, we get that the four following
relations hold:

𝛼Σ (𝜎Σ) ∈ 𝑇𝛼
𝐹(Σ), 𝛽Σ (𝜎Σ) ∈ 𝑇𝛽

𝐹(Σ),

𝛼Σ (𝜎Σ) ∈ 𝑇𝛼
𝐹(Σ), 𝛽Σ (𝜎Σ) ∈ 𝑇𝛽

𝐹(Σ).
(31)

Therefore, we obtain that

A
𝛼×𝛽⊨Σ𝜎 [�⃗�, 𝑓] , A

𝛼×𝛽⊨Σ𝜎 [�⃗�, 𝑓] , (32)

which show that the special co-lifting rules are sound inL×.

Theorem 6 (soundness). LetL = ⟨Sign, SEN, 𝑁,R,M⟩ be a
logical system,whereM is a 𝑐-semantics. IfL is sound, then the
product logicL× = ⟨Sign, SEN×, 𝑁×,R×,M×⟩ is also sound.

Proof. Wehave shown in Proposition 3 that all rules inherited
by L are sound in L×. By Proposition 4, the lifting rule is
sound in L× and, since M is assumed to be a 𝑐-semantics,
by Proposition 5, the special co-lifting rules are sound inL×.
Therefore the product logicL× is also sound.

5. c-Completeness

A logic L = ⟨Sign, SEN, 𝑁,R,M⟩ is 𝑐-complete if it is
complete with respect to constant natural transformations.
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More precisely, for all sets Δ ∪ {𝜎} of constants in𝑁, we have
that

Δ ⊨ 𝜎 implies Δ ⊢ 𝜎. (33)

Proposition 7. If a logic L = ⟨Sign, SEN, 𝑁,R,M⟩ is 𝑐-
complete, then, for all sets of constants Δ ∪ {𝜎} in𝑁,

Δ⊬×𝜎 implies Δ⊭×𝜎. (34)

Proof. Suppose that Δ⊬×𝜎. Then, since R× includes all 𝑁×-
rules of the form 𝑟, for all 𝑟 ∈ R, we get thatΔ ⊬ 𝜎.Therefore,
by the 𝑐-completeness of L, we get that Δ ⊭ 𝜎. Thus, there
exists a modelA𝛼 = ⟨⟨SEN, ⟨𝐹, 𝛼⟩⟩, 𝑇𝛼⟩ ∈ M, together with
Σ, Σ ∈ |Sign|, �⃗� ∈ SEN(Σ)𝑘 and 𝑓 ∈ Sign(Σ, Σ), such that
A𝛼⊨ΣΔ[�⃗�, 𝑓] and A𝛼⊭Σ𝜎[�⃗�, 𝑓]. Hence, the model A𝛼×𝛼 ∈
M× is such thatA𝛼×𝛼⊨×ΣΔ[⟨�⃗�, �⃗�⟩, 𝑓] andA𝛼×𝛼⊭×Σ𝜎[⟨�⃗�, �⃗�⟩, 𝑓].
Therefore Δ⊭×𝜎, showing thatL× is also 𝑐-complete.

Proposition 8. LetL = ⟨Sign, SEN, 𝑁,R,M⟩ be a logic and
suppose that, for some Δ ∪ {𝜎, 𝜏} in𝑁,

(Δ⊬×𝜎 implies Δ⊭×𝜎) , (Δ⊬×𝜏 implies Δ⊭×𝜏) .
(35)

Then it is also the case that

Δ⊬× ⟨𝜎, 𝜏⟩ implies Δ⊭× ⟨𝜎, 𝜏⟩ . (36)

Proof. Suppose that Δ⊬×⟨𝜎, 𝜏⟩. By the lifting rule, we must
have Δ⊬×𝜎 or Δ⊬×𝜏. Therefore, by hypothesis, Δ⊭×𝜎 or Δ⊭×𝜏.
Suppose, without loss of generality, that the first holds. Thus,
there exists a model A𝛼×𝛽 ∈ M×, Σ, Σ ∈ |Sign|, �⃗� ∈
SEN×(Σ)𝑘 and 𝑓 ∈ Sign(Σ, Σ), such that

(𝛼 × 𝛽)Σ (ΔΣ (𝑓 (�⃗�))) ⊆ 𝑇𝛼×𝛽
𝐹(Σ),

(𝛼 × 𝛽)Σ (𝜎Σ (𝑓 (�⃗�))) ∉ 𝑇𝛼×𝛽
𝐹(Σ).

(37)

Thus, we must have

𝛼Σ (ΔΣ (𝑓 ( ⃗𝜙))) ⊆ 𝑇𝛼
𝐹(Σ),

𝛼Σ (𝜎Σ (𝑓 ( ⃗𝜙))) ∉ 𝑇𝛼
𝐹(Σ)

(38)

or

𝛽Σ (ΔΣ (𝑓 ( ⃗𝜙))) ⊆ 𝑇𝛽
𝐹(Σ),

𝛽Σ (𝜎Σ (𝑓 ( ⃗𝜙))) ∉ 𝑇𝛽
𝐹(Σ).

(39)

This implies that either A𝛼×𝛼 or A𝛽×𝛽 bears witness to
Δ⊭×⟨𝜎, 𝜏⟩ and concludes the proof.

To formulate the following proposition we introduce a
convenient notation: given a set Δ of natural transformations
in𝑁×, we write

Δ = {𝜎 : �⃗� ∈ Δ} , Δ = {𝜎 : �⃗� ∈ Δ} . (40)

Proposition 9. LetL = ⟨Sign, SEN, 𝑁,R,M⟩ be a logic and
suppose for some set of constants Δ ∪ {�⃗�} in𝑁×

Δ ∪ Δ⊬×�⃗� implies Δ ∪ Δ⊭×�⃗�. (41)

Then it is also the case that

Δ⊬×�⃗� implies Δ⊭×�⃗�. (42)

Proof. If Δ⊬×�⃗�, then, by the special co-lifting property, Δ ∪
Δ⊬×�⃗�. Thus, by hypothesis, Δ ∪ Δ⊭×�⃗�. Hence, there exists
A𝛼×𝛽 ∈ M×, Σ, Σ ∈ |Sign|, �⃗� ∈ SEN×(Σ)𝑘 and 𝑓 ∈
Sign(Σ, Σ), such that

(𝛼 × 𝛽)Σ ((Δ
 ∪ Δ)

Σ
(𝑓 (�⃗�))) ⊆ 𝑇𝛼×𝛽

𝐹(Σ)
, (43)

while, at the same time,

(𝛼 × 𝛽)Σ (�⃗�Σ (𝑓 (�⃗�))) ∉ 𝑇𝛼×𝛽
𝐹(Σ). (44)

These relations imply that

(𝛼 × 𝛽)Σ (ΔΣ (𝑓 (�⃗�))) ⊆ 𝑇𝛼×𝛽
𝐹(Σ) but

(𝛼 × 𝛽)Σ (�⃗�Σ (𝑓 (�⃗�))) ∉ 𝑇𝛼×𝛽
𝐹(Σ),

(45)

whence Δ⊭×�⃗�.

Theorem 10 (𝑐-completeness). If the logic L =
⟨Sign, SEN, 𝑁,R,M⟩ is 𝑐-complete, then the product
logicL× = ⟨Sign, SEN×, 𝑁×,R×,M×⟩ is 𝑐-complete also.

Proof. IfL is 𝑐-complete, then, by Proposition 7, we get that,
for all sets of constants Δ ∪ {𝜎} in𝑁,

Δ⊬×𝜎 implies Δ⊭×𝜎. (46)

Thus, by Proposition 8, for all sets of constants Δ ∪ {𝜎, 𝜏} in
𝑁,

Δ⊬× ⟨𝜎, 𝜏⟩ implies Δ⊭× ⟨𝜎, 𝜏⟩ . (47)

Finally, by Proposition 9, we get that, for all sets of constants
Δ ∪ {�⃗�} in𝑁×,

Δ⊬×�⃗� implies Δ⊭×�⃗�. (48)

This proves thatL× is 𝑐-complete.

6. Conservativeness and Consistency

Theorem 11 (conservativeness). Let L =
⟨Sign, SEN, 𝑁,R,M⟩ be a logic. For every set of natural
transformations Δ ∪ {𝜎} in𝑁,

Δ⊨×𝜎 implies Δ ⊨ 𝜎. (49)
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Proof. Suppose Δ⊨×𝜎. If A𝛼 = ⟨⟨SEN, ⟨𝐹, 𝛼⟩⟩, 𝑇𝛼⟩ is such
that, for some Σ, Σ ∈ |Sign|, �⃗� ∈ SEN(Σ)𝑘, 𝑓 ∈ Sign(Σ, Σ),
A𝛼⊨ΣΔ[�⃗�, 𝑓], then, we get that A𝛼×𝛼⊨×ΣΔ[ ⃗𝜙2, 𝑓], whence, by
the hypothesis,A𝛼×𝛼⊨×Σ𝜎[ ⃗𝜙2, 𝑓], and, therefore,A𝛼⊨Σ𝜎[�⃗�, 𝑓].
This shows that Δ ⊨ 𝜎.

Theorem 12 (consistency). If the logic L =
⟨Sign, SEN, 𝑁,R,M⟩ is consistent, then so is the product logic
L× = ⟨Sign, SEN×, 𝑁×,R×,M×⟩.

Proof. This follows directly from conservativeness.

7. Examples from Classical Propositional Logic

We present a simple example, essentially borrowed from [11],
with the twofold goal of, first, seeing how the theory of [11]
can be easily accommodated in the categorical framework
(becoming actually a trivial case) and, second, showcasing the
difference between the soundness of special co-lifting and the
lack of soundness obtained by allowing the full power of the
general co-lifting rule.

Suppose, first, thatL = ⟨Sign, SEN, 𝑁,R,M⟩ is a logic,
such that 𝑁 contains two binary natural transformations
∧, ∨ : SEN2 → SEN and two constants T, F that obey the
usual laws of conjunction, disjunction, truth, and falsity of
classical propositional logic. Then, if A,B ∈ {T, F}2, we have
that

⟨∧, ∨⟩ (A,B) ⊢× ⟨∧, ∨⟩ (B,A) . (50)

This can be shown by observing that the hypothesis yields,
by special co-lifting, ⟨∧, ∧⟩(A,B) and ⟨∨, ∨⟩(A,B).These,
by following usual derivations in L, yield ⟨∧, ∧⟩(B,A)
and ⟨∨, ∨⟩(B,A), whence, by lifting, we finally obtain the
conclusion. In fact, if we arrange forM to consist, essentially,
of Boolean algebras and evaluations together with Boolean
filters, it is the case that

⟨∧, ∨⟩ ⊨× ⟨∧, ∨⟩ (𝑝1,1, 𝑝1,0) , (51)

where 𝑝1,0, 𝑝1,1 : (SEN×)2 → SEN× are the two projection
natural transformations; that is, “commutativity” is valid in
general, not just for constants. However, the derivation (50)
cannot be inferred directly from this using 𝑐-completeness,
since there are nonconstant natural transformations involved.

To illustrate, using the same example, that the general co-
lifting rule fails, wemay employ Booleanmodels to show that

⟨∧, ∨⟩ ⊭× ⟨∧, ∧⟩ . (52)

In fact, note that

⟨∧, ∨⟩Σ ((1, 0) , (1, 1)) = (∧Σ (1, 1) , ∨Σ (0, 1)) = (1, 1) , (53)

whereas

⟨∧, ∧⟩Σ ((1, 0) , (1, 1)) = (∧Σ (1, 1) , ∧Σ (0, 1)) = (1, 0) , (54)

the first belonging to the product filter of 2-element Boolean
algebras, the second failing to do so.

Note, next, that

⟨∧, ∨⟩ (⟨T, F⟩ , ⟨T,T⟩) ⊭× ⟨∨, ∧⟩ (⟨T, F⟩ , ⟨T,T⟩) . (55)

A straightforward computation shows that in the direct
product of 2-element Boolean algebras, the left-hand side
evaluates to (1, 1), whereas the right-hand side to (1, 0). Even
though this serves as a counterexample for an analog of
Theorem 1 concerning the exchangeability of components in
the context of [11], this problem does not arise in our context.
In fact, our reformulation of [11, Theorem 2.1] in the form of
Theorem 1 would only ensure that

⟨∧, ∨⟩ (⟨T, F⟩ , ⟨T,T⟩) ⊨× ⟨∨, ∧⟩ (⟨F,T⟩ , ⟨T,T⟩) . (56)

Suppose now that inL = ⟨Sign, SEN, 𝑁,R,M⟩, one has
the, possibly derived, rule 𝜎/𝜏, where 𝜎, 𝜏 are both constants
in𝑁. Then it can be shown that

⟨𝜎, 𝜏⟩ ⊣ ⊢×𝜎. (57)

In fact, ⟨𝜎, 𝜏⟩⊢×𝜎 follows from the special co-lifting, whereas
lifting helps establish the opposite direction

(𝜎/𝜎) (𝜎/𝜏)
⟨𝜎, 𝜏⟩ . (58)

Finally, if one has available in L a disjunction ∨ and an
implication → , both behaving classically, then, since both
derived rules

𝑝1,1 ⊢ ∨, 𝑝1,1 ⊢→ (59)

are rules of L, one obtains the rule 𝑝1,1⊢×⟨∨, → ⟩ in L× by
an application of lifting.

We close with a generally phrased (rather informally
formulated) problem that would be of interest in the context
developed in the present work from the point of view of
abstract algebraic logic. For more details on the motivations
and the state of the art in that theory, as well as the precise
definitions and more insights on the notions employed in the
phrasing of this problem, the reader is referred to [13–15] and
further references therein.

Problem for Investigation. Suppose that we have some knowl-
edge about the algebraic classification of the 𝜋-institution
I = ⟨Sign, SEN, 𝐶R⟩, where L = ⟨Sign, SEN, 𝑁,R,M⟩ is
a logic in the sense of the present paper, possibly satisfying
some additional conditions. The closure system 𝐶R is the
system induced by the set R of 𝑁-rules, as detailed in, for
example, [15]. What corresponding information may then
be drawn about the 𝜋-institution I = ⟨Sign, SEN×, 𝐶R×⟩,
that corresponds, in a similar manner, to the product logic
L× = ⟨Sign, SEN×, 𝑁×,R×,M×⟩?
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