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c©Birkhäuser Verlag, Basel, 2006 Algebra Universalis

n-closure systems and n-closure operators

George Voutsadakis

This paper is dedicated to Walter Taylor.

Abstract. It is very well known and permeating the whole of mathematics that a closure
operator on a given set gives rise to a closure system, whose constituent sets form a complete
lattice under inclusion, and vice-versa. Recent work of Wille on triadic concept analysis
and subsequent work by the author on polyadic concept analysis led to the introduction
of complete trilattices and complete n-lattices, respectively, that generalize complete lat-
tices and capture the order-theoretic structure of the collection of concepts associated with
polyadic formal contexts. In the present paper, polyadic closure operators and polyadic
closure systems are introduced and they are shown to be in a relationship similar to the
one that exists between ordinary (dyadic) closure operators and ordinary (dyadic) closure
systems. Finally, the algebraic case is given some special consideration.

1. Background: Closure operators and n-ordered Sets

This section contains a brief account of the well-known correspondence between
closure operators and closure systems and of the notion of an n-ordered set. Our
main source for the former is [3] (see also [2]) and for the latter [10] (see also [9] for
the triadic case).

Given a set X, a family L of subsets of X, such that

• X ∈ L and
• {Ai : i ∈ I} ⊆ L implies

⋂
i∈I Ai ∈ L,

is said to be a closure system or a topped intersection structure and it forms a
complete lattice under inclusion. The meet and join, respectively, are given by

∧

i∈I

Ai =
⋂
i∈I

Ai,
∨

i∈I

Ai =
⋂ {

B ∈ L :
⋃
i∈I

Ai ⊆ B
}
.

On the other hand, given a set X, a closure operator on X is a function C : P(X) →
P(X), such that, for all A,B ⊆ X,

• A ⊆ C(A), (C is inflationary)
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• A ⊆ B implies C(A) ⊆ C(B) (C is monotonic) and
• C(C(A)) = C(A) (C is idempotent).

Theorem 2.21 of [3] establishes a correspondence between closure systems and clo-
sure operators given by sending a closure operator C to the closure system

LC = {A ⊆ X : C(A) = A}
and the closure system L to the closure operator CL, such that for all A ⊆ X,

CL(A) =
⋂{B ∈ L : A ⊆ B}.

This correspondence restricts to a correspondence between algebraic closure systems
and algebraic closure operators. A closure system is said to be algebraic if the union
of any directed subfamily of sets in the closure system is also closed. A closure
operator is algebraic if, for all A ⊆ X,

C(A) =
⋃{C(B) : B ⊆ω A},

where ⊆ω denotes the “finite subset” relation. Theorem 3.8 of [3] shows that C

is an algebraic closure operator on X if and only if LC , as defined above, is an
algebraic closure system.

Besides this correspondence between closure systems and closure operators, also
of interest to us will be a specific way of generating a closure operator using what are
called Galois connections. Given two sets X and Y , two mappings f : P(X) → P(Y )
and g : P(Y ) → P(X) are said to form a Galois connection if and only if, for all
A ⊆ X and B ⊆ Y , we have

A ⊆ g(B) iff B ⊆ f(A).

Another equivalent formulation of a Galois connection is that f and g satisfy the
following four conditions:

• A1 ⊆ A2 implies f(A2) ⊆ f(A1) for all A1, A2 ⊆ X,
• B1 ⊆ B2 implies g(B2) ⊆ g(B1) for all B1, B2 ⊆ Y ,
• A ⊆ g(f(A)) for all A ⊆ X,
• B ⊆ f(g(B)) for all B ⊆ Y .

Every Galois connection gives rise to a closure operator on X, defined by C(A) =
g(f(A)) for all A ⊆ X. The reader familiar with formal concept analysis will rec-
ognize in Galois connections the process that, starting from a formal context, gives
rise to the concept lattice associated with the formal context (see [7, 8] and also
[4]). An extension of this process [9] gives rise, starting from a triadic formal con-
text, to the complete trilattice of formal concepts associated to the triadic context
and, more generally in [10], starting from an n-adic formal context, to the complete
n-lattice of its n-adic formal concepts.
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A brief account of some aspects of n-ordered sets that will be needed in what
follows is now given. For more details on the material reviewed here the reader is
referred to [9] and [1] for the triadic case and to [10, 11] for the general n-adic case.
Related to the topic is the more recent work [12].

An ordinal structure P = 〈P,�1,�2, . . . ,�n〉 is a relational structure whose n

relations are quasiorders. Let ∼i = �i ∩ �i for i = 1, 2, . . . , n. An n-ordered set
P = 〈P,�1, . . . ,�n〉 is an ordinal structure, such that for all x, y ∈ P and all
{i1, i2, . . . , in} = {1, 2, . . . , n},
(1) x ∼i1 y, . . . , x ∼in

y imply x = y (Uniqueness Condition)
(2) x �i1 y, . . . , x �in−1 y imply x �in

y (Antiordinal Dependency)

Each quasiorder �i induces an order ≤i on the set of equivalence classes P/∼i =
{[x]i : x ∈ P}, i = 1, 2, . . . , n, where [x]i = {y ∈ P : x ∼i y}.

Let P = 〈P,�1,�2, . . . ,�n〉 be an n-ordered set, {j1, j2, . . . , jn} = {1, 2, . . . , n}
and X1,X2, . . . , Xn−1 ⊆ P .

An element b ∈ P is called a (jn−1, . . . , j1)-bound of (Xn−1,Xn−2, . . . , X1) if
xi �ji

b, for all xi ∈ Xi and all i = 1, . . . , n−1. The set of all (jn−1, . . . , j1)-bounds
of (Xn−1, . . . , X1) is denoted by (Xn−1, . . . , X1)(jn−1,...,j1).

A (jn−1, . . . , j1)-bound l ∈ (Xn−1, . . . , X1)(jn−1,...,j1) of (Xn−1, . . . , X1) is called
a (jn−1, . . . , j1)-limit of (Xn−1, . . . , X1) if l �jn

b, for all (jn−1, . . . , j1)-bounds
b ∈ (Xn−1, . . . , X1)(jn−1,...,j1). The set of all (jn−1, . . . , j1)-limits of (Xn−1, . . . , X1)
is denoted by (Xn−1, . . . , X1)(jn−1,...,j1).

Proposition 1.1. Let P = 〈P,�1, . . . ,�n〉 be an n-ordered set, X1, . . . , Xn−1 ⊆ P

and {j1, . . . , jn} = {1, . . . , n}. Then there exists at most one (jn−1, . . . , j1)-limit l̄

of (Xn−1, . . . , X1) satisfying

(C) l̄ is the largest in �j2 among the largest limits in �j3 among · · · among the
largest limits in �jn−1 among the largest limits in �jn

or, equivalently,
(C′) l̄ is the smallest in �j1 among the largest limits in �j3 among · · · among the

largest limits in �jn−1 among the largest limits in �jn
.

Proposition 1.1 follows relatively easily by combining the definition of an n-
ordered set with those of a bound and of a limit.

If a (jn−1, . . . , j1)-limit satisfying the statement in Proposition 1.1 exists,
it is called the (jn−1, . . . , j1)-join of (Xn−1, . . . , X1) and will be denoted by
∇jn−1,...,j1(Xn−1, . . . , X1).

A complete n-lattice L = 〈L,�1, . . . ,�n〉 is an n-ordered set in which all
(jn−1, . . . , j1)-joins ∇jn−1,...,j1(Xn−1, . . . , X1) exist, for all X1, . . . , Xn−1 ⊆ L and
all {j1, . . . , jn} = {1, . . . , n}. A complete n-lattice is bounded by

0jn
:= ∇jn−1,...,j1(L, . . . , L),

where {j1, . . . , jn} = {1, . . . , n}.
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Recall from [10] that, given an n-adic context (K1, . . . ,Kn, Y ) and Xi ⊆ Kji
, i =

1, . . . , n−1, by bjn−1,...,j1(Xn−1, . . . , X1) is denoted the n-adic concept (C1, . . . , Cn)
with the property that it has the largest j2-component among all n-adic con-
cepts with the largest j3-component among those with the largest j4-component
· · · among all those with the largest jn-component among those satisfying Xi ⊆
Ci, i 
= jn. In other words, bjn−1,...,j1 is an operator that can be used to form the
(jn−1, . . . , j1)-join of n-adic concepts under the component-wise quasi-orderings. It
is generated by first closing with respect to the jn-th component, then closing with
respect to the jn−1-st component, etc, down to finally closing with respect to the
j1-st component. More precisely, we have

bjn−1,...,j1(Xn−1, . . . , X1)jn
=

{xjn
∈ Kjn

: (x1, . . . , xn) ∈ Y, for all xi ∈ Xi, i 
= jn},
and, if, for all i = k + 1, . . . , n, Zji

= bjn−1,...,j1(Xn−1, . . . , X1)ji
has already been

defined,

bjn−1,...,j1(Xn−1, . . . , X1)jk
= {xjk

∈ Kjk
: (x1, . . . , xn) ∈ Y,

for all xji
∈ Xi, i < k, and xji

∈ Zji
, i > k},

for all k = 1, . . . , n − 1. The ordinal structure of the n-adic concepts of an n-adic
formal context forms a complete n-lattice and is the prototypical example that gave
rise to the notion of a complete n-lattice.

2. n-closure systems and n-closure operators

Definition 2.1. Let K1,K2, . . . ,Kn be arbitrary sets. An n-closure operator is a
mapping C from P(K1) × · · · × P(Kn−1) to P(K1) × · · · × P(Kn) such that the
following conditions hold:

(1) If C(X1, . . . , Xn−1) = (A1, . . . , An) and x ∈ Xi, then x ∈ Ai for all
i = 1, . . . , n − 1.

(2) If C(X1, . . . , Xn−1) = (A1, . . . , An), C(Y1, . . . , Yn−1) = (B1, . . . , Bn) and
Xi ⊆ Yi, for i = 1, . . . , n − 1, then Bn ⊆ An.

(3) If C(X1, . . . , Xn−1) = (A1, . . . , An), C(Y1, . . . , Yn−1) = (B1, . . . , Bn) and
for k = 1, . . . , n − 1, we have Xi ⊆ Yi, i ≤ k, and Ai = Bi, i > k,

then Bk ⊆ Ak.

(4) If C(X1, . . . , Xn−1) = (A1, . . . , An), C(Y1, . . . , Yn−1) = (B1, . . . , Bn) and
for k = 1, . . . , n, we have Ai ⊆ Bi, for i 
= k, then Bk ⊆ Ak.

(5) If C(X1, . . . , Xn−1) = (A1, . . . , An), then C(A1, . . . , An−1) = (A1, . . . , An).

If C(X1, . . . , Xn−1) = (A1, . . . , An), then we adopt the notation

Ci(X1, . . . , Xn−1) := Ai, i = 1, . . . , n,
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with the warning that this is just a notational convention and it is not meant to
imply that Ci is a closure operator in the traditional sense.

A few comments are now given on the conditions in Definition 2.1. First, from
the point of view of an ordinary closure operator, the close relationship of Condition
1 with the property of being inflationary and that of Condition 5 with idempotency
should be noted. Monotonicity is not given by a single condition in Definition 2.1
because in the ordinary (dyadic) case, i.e., when n = 2, it is inferred by Conditions
2 and 4. On the other hand, from the point of view of n-ordered sets, Conditions
4 and 5, taken jointly, imply that the collection of all closed n-tuples form an n-
ordered set under component-wise inclusions. This is because Condition 4 reflects
the antiordinal dependency law of n-ordered sets and because, in this context, the
uniqueness condition holds automatically. Condition 1 provides the bound property
of (n − 1, . . . , 1)-joins in an n-ordered set. In turn, Condition 2 supplies the limit
property of (n − 1, . . . , 1)-joins and Condition 3 yields the remaining properties of
an (n − 1, . . . , 1)-join in the same context.

Given n sets K1, . . . ,Kn and Ai, Bi ⊆ Ki, i = 1, . . . , n, define ⊆i for i = 1, . . . , n

by
(A1, . . . , An) ⊆i (B1, . . . , Bn) iff Ai ⊆ Bi.

Definition 2.2. Let K1, . . . ,Kn be n sets. An n-closure system L is defined to be
a collection of n-tuples of subsets L ⊆ P(K1) × · · · × P(Kn), such that,

(1) (A1, . . . , An) ⊆i (B1, . . . , Bn), i 
= k, imply (B1, . . . , Bn) ⊆k (A1, . . . , An), for
all k = 1, . . . , n,

(2) for all Xi ⊆ Ki, i = 1, . . . , n − 1, there exists unique A = (A1, . . . , An) ∈ L
such that A has the largest second component among all n-tuples in L with the
largest third component among · · · among all n-tuples with the largest n-th
component among all n-tuples B = (B1, . . . , Bn) in L such that Xi ⊆ Bi, i =
1, . . . , n − 1.

Using a notation like the one introduced in [9] and adopted in [10], we denote
the element A ∈ L of Condition 2 in Definition 2.2 by bn−1,...,1(Xn−1, . . . , X1).

Now, some explanations concerning Definition 2.2 are provided. Consider the
relational structure L = 〈L,⊆1, . . . ,⊆n〉. It is easy to see that L is an ordinal
structure, i.e., that ⊆i is a quasi-order, for all i = 1, . . . , n. Furthermore, in L the
uniqueness condition holds automatically, since, if (A1, . . . , An) ∼i (B1, . . . , Bn)
for some i = 1, . . . , n, then Ai ⊆ Bi and Bi ⊆ Ai, whence Ai = Bi. Therefore, if
(A1, . . . , An) ∼i (B1, . . . , Bn) for all i = 1, . . . , n, then (A1, . . . , An) = (B1, . . . , Bn).
Finally, Condition 1 in Definition 2.2 requires that L satisfy the antiordinal de-
pendency law. Therefore, Condition 1 implies that L is an n-ordered set. Be-
cause, by Condition 1, L is an n-ordered set, it makes sense to ask whether
(n − 1, . . . , 1)-joins exist in L. Condition 2 in Definition 2.2 requires that they
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do, and, in fact, gives a specific way of finding them. This process is described
briefly here. It is not very transparent in the phrasing of Condition 2, but might
be clear to readers familiar with polyadic concept analysis or complete n-lattices.
Given Ai ⊆ L, i = 1, . . . , n − 1, the (n − 1, . . . , 1)-join of (An−1, . . . ,A1) is the
unique element bn−1,...,1(Xn−1, . . . , X1), whose existence is required by Condition
2 of Definition 2.2, for

Xi :=
⋃{Ai : (A1, . . . , An) ∈ Ai}, for all i = 1, . . . , n − 1.

Another interesting observation that can be made concerning Definition 2.2 is
that its second condition is equivalent to a collection of complex interdependent
closure conditions on the components of L. These conditions would make the
definition look more similar in flavor to the one of ordinary (dyadic) closure systems,
but would have been much more complicated to formulate. We glance at this line
of thought now and postpone further discussion on the dyadic case until the last
section. Condition 2 implies, for instance, that, given Bi ⊆ Ki, i = 2, . . . , n − 1, if
the collection A ⊆ L with

A = {(A1, . . . , An) ∈ A : Ai = Bi, i = 2, . . . , n − 1}
is nonempty, then it satisfies

(
⋂{A1 : (A1, . . . , An) ∈ A}, B2, . . . , Bn−1,

⋃{An : (A1, . . . , An) ∈ A}) ∈ A,

since this n-tuple is necessarily the unique n-tuple B in L, such that B has the
largest second component among all n-tuples in L with the largest third component
among · · · among all n-tuples with the largest n-th component among all n-tuples
F = (F1, . . . , Fn) in L such that

⋂{A1 : (A1, . . . , An) ∈ A} ⊆ F1, B2 ⊆ F2, . . . , Bn−1 ⊆ Fn−1.

The following lemma shows how an n-closure system arises from a given n-closure
operator. This situation parallels the well-known relationship between ordinary
closure operators and closure systems.

Lemma 2.3. Suppose that C : P(K1)× · · · × P(Kn−1) → P(K1)× · · · × P(Kn) is
an n-closure operator. Then the collection

L = {(A1, . . . , An) ∈ P(K1) × · · · × P(Kn) : C(A1, . . . , An−1) = (A1, . . . , An)}
is an n-closure system.

Proof. First suppose that for (A1, . . . , An), (B1, . . . , Bn) ∈ L, we have (A1, . . . , An)
⊆i (B1, . . . , Bn) for all i 
= k, for some k = 1, . . . , n. Therefore, we obtain, by the
definition of L, that C(A1, . . . , An−1) ⊆i C(B1, . . . , Bn−1) for all i 
= k. Therefore,
by Condition 4 of the definition of an n-closure operator, we obtain that Bk ⊆ Ak,
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whence (B1, . . . , Bn) ⊆k (A1, . . . , An), and Condition 1 in the definition of an n-
closure system holds.

Finally, for Condition 2 of an n-closure system, suppose that Xi ⊆ Ki, i =
1, . . . , n − 1. It will be shown that there exists J ∈ L such that

Xi ⊆ Ji, i = 1, . . . , n − 1, (1)

and such that it has the largest second component among all those n-tuples in
L with the largest third component, and so on, among all n-tuples in L with the
largest n-th component among all n-tuples in L satisfying (1). Because of Condition
5 of the definition of an n-closure operator, it suffices to show that the n-tuple

(J1, . . . , Jn) := C(X1, . . . , Xn−1) ∈ L
satisfies the required property. By Condition 1 of the definition of an n-closure
operator, we get that Xi ⊆ Ci(X1, . . . , Xn−1), i.e., that Xi ⊆ Ji, for all i =
1, . . . , n− 1. Suppose next that A = (A1, . . . , An) is another n-tuple in L such that
Xi ⊆ Ai, i = 1, . . . , n − 1. Then, by Condition 5 in the definition of an n-closure
operator, we get that A = C(A1, . . . , An−1), whence we obtain, by Condition 2 and
the assumption that Xi ⊆ Ai, i = 1, . . . , n − 1, that An ⊆ Jn. This shows that Jn

is the largest possible among all candidate An’s. Next, suppose, in addition, that
A is an n-tuple that has the largest n-th component among all n-tuples satisfying
(1). We must have An = Jn. Then, by Conditions 3 and 5 of the definition of an
n-closure operator, we get that An−1 ⊆ Jn−1. We continue down to n − 2, . . . , 2
in the same way, finally obtaining that C(X1, . . . , Xn−1) is the unique n-tuple in
L that has the largest second component among all n-tuples with the largest third
component, etc., among all those with the largest n-th component among all those
satisfying Property (1).

Hence Condition 2 of the definition of an n-closure system is also satisfied and
L is indeed an n-closure system. �

Given an n-closure operator C, the n-closure system L of Lemma 2.3 will be
denoted by LC following similar notation adopted in [3] for the dyadic case.

Next, it is shown, again in parallel with the case of ordinary closure systems
and closure operators, that an n-closure system gives rise to an n-closure opera-
tor. Before stating the relevant lemma, the reader is reminded that the notation
bn−1,...,1(Xn−1, . . . , X1) was introduced to denote the unique element in L provided
by Condition 2 in the definition of an n-closure system.

Lemma 2.4. Suppose that L ⊆ P(K1)× · · · × P(Kn) is an n-closure system. The
mapping C : P(K1) × · · · × P(Kn−1) → P(K1) × · · · × P(Kn), given by

C(X1, . . . , Xn−1) = bn−1,...,1(Xn−1, . . . , X1),

for all Xi ⊆ Ki, i = 1, . . . , n − 1, is an n-closure operator.
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Proof. Suppose that Xi ⊆ Ki for all i = 1, . . . , n − 1, and consider x ∈ Xi for
some i = 1, . . . , n − 1. Since, by the definition of bn−1,...,1(Xn−1, . . . , X1), we have
that Xi ⊆ bn−1,...,1(Xn−1, . . . , X1)i, we get that x ∈ Xi ⊆ Ci(X1, . . . , Xn) and
Condition 1 of the definition of an n-closure operator is satisfied.

Next suppose that Xi, Yi ⊆ Ki for all i = 1, . . . , n − 1, and let (A1, . . . , An) =
C(X1, . . . , Xn−1) and (B1, . . . , Bn) = C(Y1, . . . , Yn−1). If Xi ⊆ Yi for all i =
1, . . . , n− 1, then bn−1,...,1(Yn−1, . . . , Y1), which is, by definition, an (n− 1, . . . , 1)-
bound of (Yn−1, . . . , Y1), must also be an (n − 1, . . . , 1)-bound of (Xn−1, . . . , X1).
Therefore, by the limit property in the definition of bn−1,...,1(Xn−1, . . . , X1), we get
that

Bn = bn−1,...,1(Yn−1, . . . , Y1)n ⊆ bn−1,...,1(Xn−1, . . . , X1)n = An.

So Condition 2 of the definition of an n-closure operator is satisfied.
For Condition 3, it must be shown that if, (A1, . . . , An) = C(X1, . . . , Xn−1),

(B1, . . . , Bn) = C(Y1, . . . , Yn−1), and for some k = 1, . . . , n− 1, we have that Xi ⊆
Yi for all i ≤ k and Ai = Bi for all i > k, then Bk ⊆ Ak. Indeed, this must be the
case, by the (n−1, . . . , 1)-join property in the definition of bn−1,...,1(Xn−1, . . . , X1)
and the fact that (A1, . . . , An) = bn−1,...,1(Xn−1, . . . , X1).

Condition 4 is a straightforward consequence of Condition 1 in the definition of
an n-closure system and of the fact that bn−1,...,1(Xn−1, . . . , X1) ∈ L.

To show that Condition 5 is satisfied, suppose that

(A1, . . . , An) = bn−1,...,1(Xn−1, . . . , X1)

and consider the two n-tuples bn−1,...,1(An−1, . . . , A1) and bn−1,...,1(Xn−1, . . . , X1).
Since Xi ⊆ Ai for all i = 1, . . . , n − 1, we get, by the limit property of the n-tuple
bn−1,...,1(Xn−1, . . . , X1), that

bn−1,...,1(An−1, . . . , A1)n ⊆ bn−1,...,1(Xn−1, . . . , X1)n = An.

On the other hand, (A1, . . . , An) is an n-tuple in L, that is an (n− 1, . . . , 1)-bound
of (An−1, . . . , A1), whence, by the limit property of bn−1,...,1(An−1, . . . , A1), we
have that An ⊆ bn−1,...,1(An−1, . . . , A1)n. This proves that

bn−1,...,1(An−1, . . . , A1)n = bn−1,...,1(Xn−1, . . . , X1)n.

Now, by Condition 3 of the definition of an n-closure operator, that has already
been shown to hold, we obtain that

bn−1,...,1(An−1, . . . , A1)n−1 ⊆ bn−1,...,1(Xn−1, . . . , X1)n−1 = An−1,

whence, once more by the join property of bn−1,...,1(An−1, . . . , A1), we obtain that

bn−1,...,1(An−1, . . . , A1)n−1 = bn−1,...,1(Xn−1, . . . , X1)n−1.

Work now in the same way down to n = 2. This will then conclude the proof that
bn−1,...,1(An−1, . . . , A1) = bn−1,...,1(Xn−1, . . . , X1) holds, i.e., that C is idempotent.
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All conditions in the definition of an n-closure operator having been demon-
strated, we conclude that C is indeed an n-closure operator. �

Given an n-closure system L, the n-closure operator C associated with it, via
Lemma 2.4, will be denoted by CL, also following the notation of [3].

The two processes described in Lemmas 2.3 and 2.4 are inverses of each other
much in the same way that closure operators and closure systems are inverse con-
structions in the ordinary (2-dimensional) lattice theory (see, e.g. [3]).

Theorem 2.5. Let C be an n-closure operator. Then the n-closure operator CLC

is identical with C. Similarly, given an n-closure system L, the n-closure system
LCL is identical with L.

Proof. Suppose, first, that C : P(K1)×· · ·×P(Kn−1) → P(K1)×· · ·×P(Kn) is an
n-closure operator. Pass to the n-closure system LC = {C(X1, . . . , Xn−1) : Xi ⊆
Ki, i = 1, . . . , n − 1} and consider the n-closure operator CLC

:= bn−1,...,1. In the
proof of Lemma 2.3 it was established that CLC

= C.
Suppose, similarly, that L ⊆ P(K1) × · · · × P(Kn) is an n-closure system.

Pass to the n-closure operator CL := bn−1,...,1. If A = (A1, . . . , An) ∈ L,
then A = bn−1,...,1(An−1, . . . , A1), whence A ∈ LCL . On the other hand, if
A ∈ LCL , then A = CL(A1, . . . , An−1) := bn−1,...,1(An−1, . . . , A1), whence A ∈ L.
Therefore L=LCL . �

3. Algebraic n-closure systems and n-closure operators

Definition 3.1. An n-closure operator

C : P(K1) × · · · × P(Kn−1) → P(K1) × · · · × P(Kn)

is said to be algebraic if, for all Xi ⊆ Ki, i = 1, . . . , n − 1, we have that

Ci(X1, . . . , Xn−1) =
⋃

Yi⊆ωXi,
i=1,...,n−1

Ci(Y1, . . . , Yn−1),

for all i = 1, . . . , n − 1.

In order to define the corresponding notion for an n-closure system, the notion
of an i-directed set in an n-ordered space is needed.

Let S be a non-empty subset of an n-ordered set P = 〈P,�1, . . . ,�n〉. S is said
to be i-directed if, for every finite subset F ⊆ S, there exists z ∈ S such that s �i z

for all s ∈ F . As a consequence, S is i-directed, for all i = 1, . . . , n− 1, if, for every
finite subset F ⊆ S, there exist z1, . . . , zn−1 ∈ S, such that, for all s ∈ F , s �i zi,
for all i = 1, . . . , n − 1.
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Definition 3.2. Let L ⊆ P(K1) × · · · × P(Kn) be an n-closure system. L is
said to be algebraic if, for every collection A ⊆ L such that A is i-directed for all
i = 1, . . . , n−1, there exists (a necessarily unique) B = (B1, . . . , Bn) ∈ L such that

Bi =
⋃{Ai : (A1, . . . , An) ∈ A}, for all i = 1, . . . , n − 1.

The next theorem relates algebraic n-closure systems and algebraic n-closure
operators. It is an analog of a well-known theorem relating ordinary algebraic
closure systems with ordinary algebraic closure operators (see [3], Theorem 3.8).

Theorem 3.3. Let C be an n-closure operator and L the associated n-closure
system as related by Theorem 2.5. Then the following are equivalent:

(1) C is an algebraic n-closure operator.
(2) For all directed families {Xi

j}j∈Ji
⊆ P(Ki), i = 1, . . . , n − 1, we have that

Ci(
⋃

j∈J1

X1
j , . . . ,

⋃
j∈Jn−1

Xn−1
j ) =

⋃{Ci(X1
j1 , . . . , X

n−1
jn−1

) : ji ∈ Ji, i = 1, . . . , n − 1},

for all i = 1, . . . , n − 1.
(3) L is an algebraic n-closure system.

Proof. (1 → 2) Suppose that C : P(K1)×· · ·×P(Kn−1) → P(K1)×· · ·×P(Kn) is
an algebraic n-closure operator and consider directed families {Xi

j}j∈Ji
⊆ P(Ki),

i = 1, . . . , n − 1. Definition 3.1 immediately implies that an algebraic n-closure
operator is monotonic in each of the first n − 1 coordinates, i.e., if Xi ⊆ Yi for all
i = 1, . . . , n− 1, then Ci(X1, . . . , Xn−1) ⊆ Ci(Y1, . . . , Yn−1) for all i = 1, . . . , n− 1.
Therefore, we get that

⋃{Ci(X1
j1 , . . . , X

n
jn

) : ji ∈ Ji, i = 1, . . . , n − 1} ⊆ Ci(
⋃

j∈J1

X1
j , . . . ,

⋃
j∈Jn−1

Xn−1
j ),

for all i = 1, . . . , n − 1.
Suppose, conversely, that xi ∈ Ci(

⋃
j∈J1

X1
j , . . . ,

⋃
j∈Jn−1

Xn−1
j ). Then, since C

is algebraic, there exist finite subsets Xi ⊆ ⋃
j∈Ji

Xi
j , i = 1, . . . , n − 1, such that

xi ∈ Ci(X1, . . . , Xn−1). But, by hypothesis, {Xi
j}j∈Ji

is directed, whence there
exist ji ∈ Ji such that Xi ⊆ Xi

ji
, i = 1, . . . , n − 1. Therefore, we obtain, again by

monotonicity, that x ∈ Ci(X1
j1

, . . . , Xn−1
jn−1

). Hence, we get

Ci(
⋃

j∈J1

X1
j , . . . ,

⋃
j∈Jn−1

Xn−1
j ) ⊆ ⋃{Ci(X1

j1 , . . . , X
n−1
jn−1

) : ji ∈ Ji, i = 1, . . . , n − 1},

for all i = 1, . . . , n − 1.

(2 → 3) Suppose now that for all directed families {Xi
j}j∈Ji

⊆ P(Ki), i = 1, . . . , n−
1, we have that

Ci(
⋃

j∈J1

X1
j , . . . ,

⋃
j∈Jn−1

Xn−1
j ) =

⋃{Ci(X1
j1 , . . . , X

n−1
jn−1

) : ji ∈ Ji, i = 1, . . . , n − 1},
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for all i = 1, . . . , n − 1. To show that L is an algebraic n-closure system, it suffices
to show, in view of Theorem 2.5, that, given A ⊆ L, such that A is i-directed, for
all i = 1, . . . , n − 1,

Ci(
⋃

A∈A
A1, . . . ,

⋃
A∈A

An−1) =
⋃

A∈A
Ai, for all i = 1, . . . , n − 1.

Since the right-to-left inclusion is obvious, suppose that for some x ∈ Ki, x ∈
Ci(

⋃
A∈A A1, . . . ,

⋃
A∈A An−1). Then, by the hypothesis,

x ∈ ⋃{Ci(A1
1, . . . , A

n−1
n−1) : A1, . . . , An−1 ∈ A}.

Now, find, by directedness in all components, A ∈ A, such that
⋃n−1

j=1 Aj
i ⊆ Ai,

for all i = 1, . . . , n − 1. Then we have Ci(A1
1, . . . , A

n−1
n−1) ⊆ Ci(A1, . . . , An−1) = Ai.

This shows that
⋃{Ci(A1

1, . . . , A
n−1
n−1) : A1, . . . , An−1 ∈ A} ⊆ ⋃

A∈A
Ai,

whence x ∈ ⋃
A∈A Ai, as was to be shown.

(3 → 1) Suppose now that L is an algebraic n-closure system. Let Xi ⊆ Ki, i =
1, . . . , n − 1. We need to show that

Ci(X1, . . . , Xn−1) =
⋃

Yi⊆ωXi,
i=1,...,n−1

Ci(Y1, . . . , Yn−1),

for all i = 1, . . . , n−1. Right-to-left inclusion is obvious. For left-to-right inclusion,
a similar trick with the one that is used in the dyadic case is employed. Set

A = {C(Y1, . . . , Yn−1) : Yi ⊆ω Xi : i = 1, . . . , n − 1}.
Then, noting that A is i-directed for all i = 1, . . . , n − 1, we obtain, taking
into account the hypothesis, Ci(X1, . . . , Xn−1) ⊆ Ci(

⋃
A∈A A1, . . . ,

⋃
A∈A An−1) =⋃

A∈A Ai. Therefore C is an algebraic n-closure operator. �

4. Complete n-semilattices

In this section abstract algebraic structures, called complete n-semilattices, are
introduced and they are shown to be related to n-closure operators in the same way
as complete lattices are related to closure operators in the dyadic case. Similarly,
algebraic n-semilattices are introduced and shown to be related to algebraic n-
closure operators in a way analogous to the way algebraic lattices are related to
algebraic closure operators.

Definition 4.1. An n-ordered set L = 〈L,�1, . . . ,�n〉 is called a complete n-
semilattice if, for all X1, . . . , Xn−1 ⊆ L, we have that ∇n−1,...,1(Xn−1, . . . , X1), the
(n − 1, . . . , 1)-join of (Xn−1, . . . , X1), exists in L.
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From the definition of an n-closure system, it follows directly that an n-closure
system forms a complete n-semilattice under component-wise inclusions.

Proposition 4.2. Suppose L ⊆ P(K1)× · · · ×P(Kn) is an n-closure system; then
〈L, ⊆1, . . . ,⊆n〉 is a complete n-semilattice.

What is more interesting is that, by analogy with the dyadic case, every complete
n-semilattice may be represented as the complete n-semilattice of closed sets of an n-
closure system. The representation is analogous to the representation of a complete
lattice, via the principal ideals generated by its elements, as the complete lattice of
the closed sets of a closure system. This representation is sketched in Exercise 2.9
of [3]. The proof in the n-adic case is analogous to the dyadic one.

Theorem 4.3. Suppose that L = 〈L,�1, . . . ,�n〉 is a complete n-semilattice.
Then, there exists an n-closure system L ⊆ P(L)n, such that 〈L,⊆1, . . . ,⊆n〉 is
n-order isomorphic to L.

Proof. Given an element x ∈ L, denote by (x]i the �i-order ideal generated by x

in L, i.e.,

(x]i = {y ∈ L : y �i x}, for all i = 1, . . . , n.

Consider the mapping C : P(L)n−1 → P(L)n given by

C(X1, . . . , Xn−1) =
(
(∇n−1,...,1(Xn−1, . . . , X1)]1, . . . , (∇n−1,...,1(Xn−1, . . . , X1)]n

)
.

It will be shown that C is an n-closure operator and that L ∼= 〈LC ,⊆1, . . . ,⊆n〉.
First we show that C is an n-closure operator, i.e., that all five conditions of

Definition 2.1 are satisfied.
For Condition 1, suppose that X1, . . . , Xn−1 ⊆ L, fix i = 1, . . . , n and let

x ∈ Xi. Then, by the bound property of the (n − 1, . . . , 1)-join, we have that
x �i ∇n−1,...,1(Xn−1, . . . , X1), whence x ∈ (∇n−1,...,1(Xn−1, . . . , X1)]i, i.e., x ∈
Ci(X1, . . . , Xn−1).

For Condition 2, suppose that X1, . . . , Xn−1, Y1, . . . , Yn−1 ⊆ L, with Xi ⊆ Yi,
for all i = 1, . . . , n − 1. Then, for all i = 1, . . . , n − 1, and all x ∈ Xi, we
have that x ∈ Yi, whence, by the bound property of ∇n−1,...,1(Yn−1, . . . , Y1), we
obtain that ∇n−1,...,1(Yn−1, . . . , Y1) is an (n − 1, . . . , 1)-bound of (Xn−1, . . . , X1),
and, therefore, by the limit property of ∇n−1,...,1(Xn−1, . . . , X1), we obtain that
∇n−1,...,1(Yn−1, . . . , Y1) �n ∇n−1,...,1(Xn−1, . . . , X1). This shows that

(∇n−1,...,1(Yn−1, . . . , Y1)]n ⊆ (∇n−1,...,1(Xn−1, . . . , X1)]n,

i.e., that Cn(Y1, . . . , Yn−1) ⊆ Cn(X1, . . . , Xn−1).
For Condition 3, suppose that X1, . . . , Xn−1, Y1, . . . , Yn−1 ⊆ L, with Xi ⊆ Yi,

for all i ≤ k and that Ci(X1, . . . , Xn−1) = Ci(Y1, . . . , Yn−1), for all i > k. The last
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condition implies that, for all i > k, we have that

(∇n−1,...,1(Xn−1, . . . , X1)]i = (∇n−1,...,1(Yn−1, . . . , Y1)]i,

i.e., that ∇n−1,...,1(Xn−1, . . . , X1) ∼i ∇n−1,...,1(Yn−1, . . . , Y1). The first condition
and these last conditions show that ∇n−1,...,1(Yn−1, . . . , Y1) is an (n − 1, . . . , 1)-
bound of (Xn−1, . . . , X1), whence, by the join property of the joins, we get that
∇n−1,...,1(Yn−1, . . . , Y1) �k ∇n−1,...,1(Xn−1, . . . , X1). But this yields

(∇n−1,...,1(Yn−1, . . . , Y1)]k ⊆ (∇n−1,...,1(Xn−1, . . . , X1)]k,

i.e., that Ck(Y1, . . . , Yn−1) ⊆ Ck(X1, . . . , Xn−1).
Condition 4 is easier. Suppose that X1, . . . , Xn−1, Y1, . . . , Yn−1 ⊆ L, with

Ci(X1, . . . , Xn−1) = Ci(Y1, . . . , Yn−1), for all i 
= k. Then, we get that

(∇n−1,...,1(Xn−1, . . . , X1)]i ⊆ (∇n−1,...,1(Yn−1, . . . , Y1)]i,

for all i 
= k. Thus, we have that

∇n−1,...,1(Xn−1, . . . , X1) �i ∇n−1,...,1(Yn−1, . . . , Y1),

for all i 
= k. Thus, by the antiordinal dependency law in L, we obtain that

∇n−1,...,1(Yn−1, . . . , Y1) �k ∇n−1,...,1(Xn−1, . . . , X1),

which yields

(∇n−1,...,1(Yn−1, . . . , Y1)]k ⊆ (∇n−1,...,1(Xn−1, . . . , X1)]k,

i.e., Ck(Y1, . . . , Yn−1) ⊆ Ck(X1, . . . , Xn−1).
Last, for Condition 5, it should be verified that, for all X1, . . . , Xn−1 ⊆ L and

all i = 1, . . . , n, we have that

∇n−1,...,1((∇n−1,...,1(Xn−1, . . . , X1)]n−1, . . . , (∇n−1,...,1(Xn−1, . . . , X1)]1) =
∇n−1,...,1(Xn−1, . . . , X1).

This identity is not difficult to verify based on the bound, the limit and join prop-
erties of (n − 1, . . . , 1)-joins in L.

We can now conclude that C is indeed an n-closure operator and, therefore,
that LC is an n-closure system. It suffices now to show that LC , ordered by the
coordinate-wise inclusions, forms a complete n-semilattice that is isomorphic to L.

To show that L ∼= 〈LC ,⊆1, . . . ,⊆n〉, consider the mapping φ : L → LC , defined
by

φ(x) = ((x]1, . . . , (x]n), for all x ∈ L.

It is injective, since, if x, y ∈ L, with φ(x) = φ(y), then x ∼i y, for all i = 1, . . . , n,
and, by the uniqueness condition, x = y. It is surjective, since, if (A1, . . . , An) ∈ LC ,
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then C(A1, . . . , An−1) = (A1, . . . , An), whence Ci(A1, . . . , An−1) = Ai. This shows
that Ai = (∇n−1,...,1(An−1, . . . , A1)]i, for all i = 1, . . . , n, i.e.,

(A1, . . . , An) = φ(∇n−1,...,1(An−1, . . . , A1)).

Finally, φ is an order isomorphism: x �i y iff (x]i ⊆ (y]i iff φ(x) ⊆i φ(y). �

Next, the algebraic case is considered. Compact elements of a complete n-
semilattice are introduced first and pave the way for the introduction of algebraic
n-semilattices.

Definition 4.4. Let L = 〈L,�1, . . . ,�n〉 be a complete n-semilattice. An element
x ∈ L is said to be compact if, for all D ⊆ L, with D i-directed, for all i =
1, . . . , n − 1,

(∀i = 1, . . . , n − 1)(x �i ∇n−1,...,1(D, . . . ,D))
implies (∃d ∈ D)(∀i = 1, . . . , n − 1)(x �i d).

The complete n-semilattice L is said to be an algebraic n-semilattice if every element
x ∈ L can be expressed as the (n− 1, . . . , 1)-join ∇n−1,...,1(A, . . . , A), where A is a
collection of compact elements.

Next, it is shown that, if L ⊆ P(K1) × · · · × P(Kn) is an algebraic n-closure
system and CL is the associated algebraic n-closure operator, then an element
(A1, . . . , An) ∈ L is compact if and only if it is of the form CL(Y1, . . . , Yn−1) for
some Yi ⊆ω Ki, i = 1, . . . , n− 1. As a consequence, we will be able to show that an
algebraic n-closure operator gives rise to an algebraic n-semilattice.

Lemma 4.5. Suppose that C : P(K1) × · · · × P(Kn−1) → P(K1) × · · · × P(Kn)
is an algebraic n-closure operator. A closed n-tuple (A1, . . . , An) of C is compact
in 〈LC ,⊆1, . . . ,⊆n〉 if and only if there exist Yi ⊆ω Ki, i = 1, . . . , n − 1, such that
(A1, . . . , An) = C(Y1, . . . , Yn−1).

Proof. Suppose, first, that (A1, . . . , An) = C(Y1, . . . , Yn−1), for some Yi ⊆ω Ki, i =
1, . . . , n − 1. Let D ⊆ LC be a collection of closed subsets that is i-directed for all
i = 1, . . . , n, and such that

(A1, . . . , An) ⊆i ∇n−1,...,1(D, . . . ,D) = C(
⋃

D∈D
D1, . . . ,

⋃

D∈D
Dn−1)

for all i = 1, . . . , n − 1. Then, we have that

C(Y1, . . . , Yn−1) ⊆i C(
⋃

D∈D
D1, . . . ,

⋃
D∈D

Dn−1)

for all i = 1, . . . , n − 1. Therefore, we obtain, for all i = 1, . . . , n − 1, that Yi ⊆
Ci(Y1, . . . , Yn−1) =

⋃
D∈D Di, and, since Yi is finite and D is i-directed, there exists

Di ∈ D, such that Yi ⊆ Di
i. Since, this holds, for all i = 1, . . . , n − 1, and D is

i-directed, for all i = 1, . . . , n − 1, we can find D ∈ D, such that Dj
i ⊆ Di for



Vol. 55, 2006 n-closure systems and n-closure operators 383

all j = 1, . . . , n − 1 and all i = 1, . . . , n − 1. This shows that Yi ⊆ Di for all
i = 1, . . . , n − 1, whence, by the monotonicity of an algebraic n-closure operator,
we obtain that (A1, . . . , An) = C(Y1, . . . , Yn−1) ⊆i D for all i = 1, . . . , n − 1, and
(A1, . . . , An) is compact in LC .

If, conversely, (A1, . . . , An) is compact in LC , then, since

(A1, . . . , An) =
⋃{Ci(Y1, . . . , Yn−1) : Yi ⊆ω Ai, i = 1, . . . , n − 1},

we get that there exists Yi ⊆ω Ai, i = 1, . . . , n− 1, such that Ai ⊆ Ci(Y1, . . . , Yn−1)
for all i = 1, . . . , n − 1. But, by monotonicity, we have Ci(Y1, . . . , Yn−1) ⊆ Ai for
all i = 1, . . . , n − 1. Therefore Ai = Ci(Y1, . . . , Yn−1), for all i = 1, . . . , n − 1, and
this, finally, yields that (A1, . . . , An) = C(Y1, . . . , Yn−1), as was to be shown. �

Proposition 4.6. If L ⊆ P(K1) × · · · × P(Kn) is an algebraic n-closure system,
then 〈L,⊆1, . . . ,⊆n〉 is an algebraic n-semilattice.

Proof. By Proposition 4.2, 〈L,⊆1, . . . ,⊆n〉 is a complete n-semilattice. By Lemma
4.5, its compact elements are exactly those of the form C(Y1, . . . , Yn−1), for some
Yi ⊆ω Ki, i = 1, . . . , n − 1. Therefore, since for every (A1, . . . , An) ∈ L we have
that

Ai =
⋃{Ci(Y1, . . . , Yn−1) : Yi ⊆ω Ai : i = 1, . . . , n − 1},

we conclude that 〈L,⊆1, . . . ,⊆n〉 is indeed an algebraic n-semilattice. �

Unfortunately, we were not able to show that the analogous result to Theorem
4.3 for algebraic n-semilattices holds, i.e., that every algebraic n-semilattice is the
complete n-semilattice of the closed sets of an algebraic n-closure operator ordered
under component-wise inclusion. We leave this as an open problem for future
investigation.

Open Problem. Suppose that L = 〈L,�1, . . . ,�n〉 is an algebraic n-semilattice.
Does there exist an algebraic n-closure system L, such that 〈L,⊆1, . . . ,⊆n〉 is n-
order isomorphic to L?

5. Brief discussion of the dyadic case

It is shown briefly in this section how the n-closure systems and the n-closure op-
erators of the present work capture the ordinary closure operators and the ordinary
closure systems in the dyadic case. In other words, it is shown that the 2-closure
systems are the closure systems in the usual sense and the 2-closure operators are
the ordinary closure operators and, moreover, that, in that case, Theorem 2.5 re-
duces to the well-known Theorem 2.21 of [3], establishing a bijective correspondence
between closure systems and closure operators.
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These facts have been alluded to several times during the development in the
previous sections when ordinary closure systems and ordinary closure operators
have been referred to as dyadic.

According to the definition, a 2-closure operator is a mapping C : P(K1) →
P(K1) × P(K2), such that

(1) X1 ⊆ C1(X1), for all X1 ⊆ K1,
(2) if X1 ⊆ Y1, then C2(Y1) ⊆ C2(X1), for all X1, Y1 ⊆ K1,
(3) if X1 ⊆ Y1 and C2(X1) = C2(Y1), then C1(Y1) ⊆ C1(X1), for all X1, Y1 ⊆ K1,
(4) if C1(X1) ⊆ C1(Y1), then C2(Y1) ⊆ C2(X1) and, conversely, if C2(X1) ⊆

C2(Y1), then C1(Y1) ⊆ C1(X1), for all X1, Y1 ⊆ K1, and, finally,
(5) C(C1(X1)) = C(X1), for all X1 ⊆ K1.

These conditions imply the three conditions that establish that C1 is a closure
operator on K1. The property of being inflationary is Property 1. Property 5
yields idempotency. Monotonicity is implied by Condition 2 and the second part
of Condition 4, taken jointly.

Conversely, every ordinary closure operator C : P(K) → P(K) on a set K gives
rise to a dyadic closure operator C ′ : P(K) → P(K)×P(K) in the present sense if
one defines

C ′
1(X) := C(X), C ′

2(X) = C(X)′, for all X ⊆ K,

where, by Y ′ is denoted the complement of Y in K, for all Y ⊆ K. It is not difficult
to verify (and the reader is invited to do so) that, defined in this way, C ′ satisfies
all five properties of a dyadic closure operator given above.

Consider, on the other hand, the definition of a 2-closure system. A subset
L ⊆ P(K1) × P(K2) is a 2-closure system if

(1) A1 ⊆ B1 implies B2 ⊆ A2 and, conversely, A2 ⊆ B2 implies B1 ⊆ A1 for all
(A1, A2), (B1, B2) ∈ L, and

(2) for all X1 ⊆ K1, there exists (A1, A2) ∈ L, such that X1 ⊆ A1 and (A1, A2) is
the unique pair in L with the largest second coordinate among all pairs whose
first coordinate contains X1.

Condition 2 is the usual closure under intersections condition for the closed sets of
a closure system. In fact, given Condition 1, it says that, for all X1 ∈ K1, there
exists a first coordinate A1 of a closed pair (A1, A2), such that X1 ⊆ A1 and A1 is
the smallest among all B1 with the same property. So it must be that

A1 =
⋂{B1 : (B1, B2) ∈ L and X1 ⊆ B1}.

Since X ⊆ K1 is arbitrary, this shows that the collection of all first components
of closed pairs is closed under arbitrary intersections and {A1 : (A1, A2) ∈ L} is a
closure system in the usual sense.
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Finally, a few remarks on the algebraic case are in order. Note that, in the dyadic
case, the condition C1(X1) =

⋃
Y1⊆ωX1

C1(Y1) is exactly the condition defining alge-
braicity for an ordinary (2-dimensional) closure operator. Moreover, the condition
b1(

⋃
A1∈A1

A1)1 =
⋃

A1∈A1
A1, for every directed collection A1 ⊆ L, is equiva-

lent, in the two dimensions, to the condition requiring that the union of a directed
family of closed sets of a closure system be a closed set. Therefore it amounts to
the algebraicity of a (2-dimensional) closure system. Therefore Theorem 3.3 is an
n-dimensional analog of Theorem 3.8 of [3], a well-known result on the correspon-
dence between ordinary algebraic closure systems and ordinary algebraic closure
operators (in 2 dimensions).
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