
Order
DOI 10.1007/s11083-006-9048-7

Categorical Abstract Algebraic Logic: Ordered
Equational Logic and Algebraizable PoVarieties

George Voutsadakis

Received: 12 October 2005 / Accepted: 27 November 2006
© Springer Science + Business Media B.V. 2007

Abstract A syntactic apparatus is introduced for the study of the algebraic properties
of classes of partially ordered algebraic systems (a.k.a. partially ordered functors
(pofunctors)). A Birkhoff-style order HSP theorem and a Mal’cev-style order SLP
theorem are proved for partially ordered varieties and partially ordered quasiva-
rieties, respectively, of partially ordered algebraic systems based on this syntactic
apparatus. Finally, the notion of a finitely algebraizable partially-ordered quasi-
variety, in the spirit of Pałasińska and Pigozzi, is introduced and some of the
properties of these quasi-povarieties are explored in the categorical framework.
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1 Introduction

This paper contains the fourth (and final) installment on research concerning an
extension of some of the results on partially ordered varieties and quasi-varieties of
partially ordered universal algebras obtained by Pałasińska and Pigozzi in the context
of abstract algebraic logic and reported in Pigozzi’s lecture notes [26]. The original
motivation of Pałasińska and Pigozzi was the development of a part of the theory
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of abstract algebraic logic (AAL) suitable for handling logical implication in a way
analogous to the way logical equivalence is handled by the well-known (Leibniz and
Tarski) operator approach in AAL (see, for instance [2, 3, 6, 8, 20–22, 27] and the
surveys [7, 16, 17]). Since, in recent work by the author (see [32–41]), algebraic
systems were shown to play a role analogous to that of algebras in the study of
logical equivalence in the categorical framework, it is only natural to expect that
an approach towards logical implication analogous to that adopted by Pałasińska
and Pigozzi in [26] will involve the study of partially ordered algebraic systems or
partially ordered functors (pofunctors), as introduced and studied in the preceding
three papers of this series [42–44].

Since in both the introduction to [42] and the introduction to [43] a survey of
the basic results in [26], that inspired the present work, has been given, in this
Introduction, only a brief survey of the results of [42] and [43] will be provided.

In [42] the notion of a polarity ρ for a category of natural transformations N on
a given functor SEN is introduced. A functor SEN, with N a category of natural
transformations on SEN and ρ a polarity for N, may be endowed with different
quasi-ordered systems (qosystems) preserving ρ, that are termed ρ-qosystems. A pair
〈SEN,�〉, where � is such a ρ-qosystem is called a ρ-qofunctor (or a ρ-quasi-ordered
algebraic system). If � happens to be a partially-ordered system (posystem) then,
〈SEN,�〉 is termed a ρ-pofunctor (or a ρ-partially ordered algebraic system). An
N-congruence system θ on SEN is said to be compatible with a ρ-qosystem � if, for
all � ∈ |Sign|, φ, ψ, φ′, ψ ′ ∈ SEN(�), if φθ�φ′ and ψθ�ψ ′, then φ �� ψ implies that
φ′ �� ψ ′. Given a ρ-qosystem � on SEN and an N-congruence system θ on SEN,
that is compatible with �, one may construct the quotient functor SENθ and endow
it with a ρθ -qosystem �/θ , as is shown in Proposition 4 of [42].

On the other hand, a collection of functors SENi, i ∈ I, are said to have compatible
categories of natural transformations Ni on SENi, i ∈ I, if there exists a functor
SEN, with N a category of natural transformations on SEN, and surjective functors
Fi : N → Ni, i ∈ I, that preserve all projections. This also implies that the Fi’s
preserve the arities of the natural transformations involved. Given σ : SENk → SEN
in N, by σ i : (SENi)k → SENi will be denoted the image of σ under Fi, i ∈ I.
Moreover, the functors SENi, i ∈ I, are said to have compatible polarities ρi, i ∈ I,
for the compatible categories of natural transformations Ni, i ∈ I, if corresponding
transformations have the same polarity in corresponding argument places. If that is
the case, the functors SENi, i ∈ I, are said to be compatible. An (N, N′)-epimorphic
translation 〈F, α〉 : SEN →se SEN′ is said to be an order translation between two
pofunctors 〈SEN,�〉 and 〈SEN′,�′〉, denoted by 〈F, α〉 : 〈SEN,�〉 →p 〈SEN′,�′〉,
if it preserves polarities and also preserves the quasi-order systems , i.e., for all
� ∈ |Sign|, φ, ψ ∈ SEN(�),

φ �� ψ implies α�(φ) �′
F(�) α�(ψ).

Putting together the notion of a quotient outlined above with the notion of an order
translation between pofunctors, analogs of the usual Homomorphism, Isomorphism
and Correspondence Theorems of Universal Algebra have been established in [42]
for pofunctors (see Theorem 15, Corollary 16 and Theorem 19 of [42]).

The second installment of the work [43] switches gears and studies analogs of the
variety and quasi-variety closure operators in the context of classes of compatible
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pofunctors. It starts with the introduction of the notion of a sub-pofunctor of a given
pofunctor, continues with that of a product pofunctor of a collection of pofunctors,
goes on with the definition of the order filtered product of a collection of pofunctors
and, finally, introduces order direct limits, based on filtered products. One of the
basic theorems shows that the operation of taking homomorphic images of sub-
pofunctors of products of pofunctors is a closure operator on classes of compatible
pofunctors (Theorem 14 of [43]), as is the operation of taking sub-pofunctors of order
filtered products of pofunctors (Theorem 20 of [43]). These two operators will be
related to the generation of povarieties and quasi-povarieties of pofunctors in the
present paper in a way analogous to the way Birkhoff’s Theorem and Mal’cev’s
Theorem, respectively, relate the operators HSP and SPR to varieties and quasi-
varieties of universal algebras.

Another important result, an analog of the well-known Subdirect Representation
Theorem of Universal Algebra, that was presented in [44], says that every pofunctor
is order isomorphic to an order subdirect product of subdirectly irreducible pofunc-
tors (Theorem 2 of [44]).

To establish the relationship between the closure operators on classes of pofunc-
tors and the generation of povarieties and quasi-povarieties of pofunctors, mentioned
above, a syntactic apparatus in which inequations and quasi-inequations may be
expressed is developed in the next section, based on the operations provided in the
form of the natural transformations in the category N. Pofunctors form the natural
models of systems of inequations or quasi-inequations in a way directly reflecting the
way partially ordered algebras form the models of inequations and quasi-inequations
over the same signature in [26]. A class of compatible pofunctors is called a povariety
if it is the class of all models of some set of inidentities in this sense and a quasi-
povariety if it is the class of all models of a set of quasi-inidentities. The analog of
the HSP theorem says that a class of pofunctors of this form is a povariety iff it
is closed under the operation of taking homomorphic images of sub-pofunctors of
product pofunctors of collections of pofunctors in the class. Similarly, the analog
of the SLP theorem says that a class of pofunctors is a quasi-povariety iff it is
closed under taking sub-pofunctors of order direct limits of product pofunctors of
collections of pofunctors in the class. The paper continues with the introduction of
the notion of a finitely algebraizable quasi-povariety. Roughly speaking, these are
the quasi-povarieties for which there exist equations in two variables defining the
posystem on every pofunctor in the class. Some of the results shown to hold in the
context of algebraizable partially ordered varieties and quasi-varieties of universal
algebras in [26] are shown to have analogs in the framework of algebraizable
povarieties and quasi-povarieties of pofunctors in this section of the paper. In the
final section a few examples are presented illustrating some of the main concepts
on which our theory is based. The first example shows how the universal algebraic
theory of partially-ordered left-residuated monoids may be perceived as a special
case of the abstract categorical setting developed in the paper. It is a representative
example that illustrates a general method that may be applied to a wide range of
universal algebraic examples if one wishes to treat them as pofunctors. The following
two examples are drawn from the two paradigms that led to the development of
categorical abstract algebraic logic and, as such, are closer to the spirit of the potential
applications at the origin of the present work. The first of these deals with equational
logic and uses the presentation of its syntax as it was developed in [29] (resulting in
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a variant of the variety of the clone algebras of Taylor [28]). The second deals with
first-order logic and uses a presentation of its syntax as developed in [30, 31] leading
in a natural way to the introduction of a categorical class of pofunctors including all
cylindric algebras.

It should be mentioned at this point that a bulk of previous work has paved
the way for the development of the theory by Pałasińska and Pigozzi [26]. Sample
references include the work of Bloom [4] on varieties of ordered algebras, Mal’cev’s
work [24, 25] on quasi-varieties of first-order structures, Dellunde and Jansana’s
[9, 10] and Elgueta’s [13, 14] work on first-order structures defined without equality,
a special case of which are the structures defined using universal Horn logic without
equality, and Dunn’s work [11, 12] on gaggle theory. The book on partially ordered
algebraic structures by Fuchs [18] should also be mentioned.

Finally, a few general references on concepts used in this paper: for background
from category theory the reader is referred to any of [1, 5, 23], for an overview of
the current state of affairs in abstract algebraic logic the reader may consult the
review article [17], the monograph [16] and the book [7], whereas for more recent
developments on the categorical side of the subject the reader may refer to the series
of papers [32–41] in the given order.

2 Syntax and Semantics

Let SEN : Sign → Set be a functor and N a category of natural transformations on
SEN. Given a set X, the collection TeN(X) of N-terms in the variables X is defined
recursively as follows:

– x ∈ TeN(X), for all x ∈ X, and
– σ(t0, . . . , tn−1) ∈ TeN(X), for all σ : SENn → SEN in N and all t0, . . . , tn−1 ∈

TeN(X).

Moreover, given sets X and Y and a mapping f : X → Y, f induces a mapping
TeN( f ) : TeN(X) → TeN(Y), defined recursively on the structure of N-terms, by

– TeN( f )(x) = f (x), for all x ∈ X, and
– TeN( f )(σ (t0, . . . , tn−1)) = σ(TeN( f )(t0), . . . , TeN( f )(tn−1)), for all σ : SENn →

SEN in N and all t0, . . . , tn−1 ∈ TeN(X).

It is not difficult to see that, defined as above, TeN : Set → Set is a functor and that
it is equipped with a category N′ of natural transformations that is compatible with
N. By an N-term, we will understand a member of TeN(X), for some X ∈ |Set|.

Given a functor SEN, with N a category of natural transformations on SEN,

denote by 〈ISign, μ
N〉 : TeN ◦ SEN → SEN the surjective (N′, N)-epimorphic trans-

lation, defined by letting, for all � ∈ |Sign|, μN
� : TeN(SEN(�)) → SEN(�) be given

by recursion on the structure of N-terms:

– μN
� (φ) = φ, for all φ ∈ SEN(�), and

– μN
� (σ (t0, . . . , tn−1)) = σ�(μN

� (t0), . . . , μN
� (tn−1)), for all σ : SENn → SEN in N

and all t0, . . . , tn−1 ∈ TeN(SEN(�)).
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Furthermore, given SEN : Sign → Set, with N a category of natural transfor-
mations on SEN, an N-term s(�x) in the set of variables X, a � ∈ |Sign| and �φ ∈
SEN(�)X , denote by

s�( �φ) := μN
� (TeN( �φ)(s)).

This is the usual operation of substitution of elements of SEN(�) for variables. It is
obvious that s�( �φ) depends only on the values of the substitution �φ on the variables
�x appearing in s.

An N-inequation is a pair 〈s, t〉 of N-terms, also denoted by s � t. An N-
quasi-inequation is a nonempty sequence 〈s0 � t0, . . . , sn−1 � tn−1, u � v〉 of N-
inequations, usually denoted by s0 � t0, . . . , sn−1 � tn−1 → u � v. The N-inequations
si � ti, i < n, are called the premises of the N-quasi-inequation and u � v its
conclusion. N-inequations are identified with N-quasi-inequations with an empty set
of premises.

Consider a functor SEN : Sign → Set, with N a category of natural transforma-
tions on SEN, and ρ a polarity for N. A ρ-pofunctor 〈SEN,�〉 is said to satisfy the
N-inequation s(�x) � t(�x) at some �φ ∈ SEN(�)X , � ∈ |Sign|, if s�( �φ) �� t�( �φ). This
is also denoted by 〈SEN,�〉 |=� s(�x) � t(�x)[ �φ]. Similarly, the ρ-pofunctor 〈SEN,�〉
is said to satisfy an N-quasi-inequation at some �φ ∈ SEN(�)X , � ∈ |Sign|, if it does
not satisfy at least one of the premises at �φ or it satisfies the conclusion of the
N-quasi-inequation at �φ.

An N-quasi-inequation s0 � t0, . . . , sn−1 � tn−1 → u � v is said to be an N-quasi-
inidentity of the ρ-pofunctor 〈SEN,�〉, written

〈SEN,�〉 |= s0 � t0, . . . , sn−1 � tn−1 → u � v

if, for all � ∈ |Sign| and all �φ ∈ SEN(�)X , 〈SEN,�〉 |=� s0 � t0, . . . , sn−1 � tn−1 →
u � v[ �φ]. If this is the case, then 〈SEN,�〉 is called a model of the N-quasi-
inequation. If the N-quasi-inidentity happens to be an N-inequation, then it is called
an N-inidentity of the ρ-pofunctor 〈SEN,�〉.

Given a collection Q of N-quasi-inequations or N-inequations, the class of models
of all members of Q is denoted by Mod(Q).

Definition 1 Let Q be a class of compatible pofunctors. Q is called a ρ-partially
ordered quasi-variety or ρ- quasi-povariety, if Q = Mod(Q) for some set of N-quasi-
inequations Q. If Q happens to be a set of N-inequations, then Q is said to be a
ρ-partially ordered variety or a ρ-povariety.

Recall, now, from [43] that, given a class K of pofunctors and a ρ-pofunctor
〈SEN,�〉, all with compatible categories of natural transformations and compatible
polarities, by QoSysKρ(〈SEN,�〉) is denoted the collection

QoSysKρ(〈SEN,�〉) = {�′ ∈ QoSysρ(〈SEN,�〉) : 〈SEN,�〉/�′ ∈ K}.

The qosystems in QoSysKρ(〈SEN,�〉) are referred to as the K-ρ-qosystems of
〈SEN,�〉.
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Let K be a ρ-quasi-povariety and 〈SEN,�〉 a ρ-pofunctor, compatible with those
in K. Consider a binary relation system R on SEN. By the K-ρ-qosystem of 〈SEN,�〉
generated by R, in symbols 
K

ρ(R) is denoted the smallest K-ρ-qosystem of 〈SEN,�〉
that includes R, if such a ρ-qosystem exists, i.e.,


K
ρ(R) =

⋂
{�′ ∈ QoSysKρ(〈SEN,�〉) : R ≤ �′}.

As was shown in Proposition 3, Part 1, of [44], if PSD(K) ⊆ K, then QoSysKρ(〈SEN,�〉)
is closed under arbitrary intersections, whence, in that case, 
K

ρ(R) always exists.

3 Order HSP Theorem

In this section, we work towards establishing an analog of the well known HSP vari-
ety theorem of universal algebra in the context of compatible pofunctors. Theorem 4
also abstracts Theorem 3.14 of [26], the Order HSP Theorem of Pałasińska and
Pigozzi.

Lemma 2 Let K be a class of compatible pofunctors, such that SP(K) ⊆ K, and
〈SEN,�〉 a ρ-pofunctor in K. Consider the pofunctor 〈TeN ◦ SEN,�TeN◦SEN〉 and
let �′ be the smallest member of QoSysKρ(〈TeN ◦ SEN,�TeN◦SEN〉). Then, for all s(�x),

t(�x) ∈ TeN(X), � ∈ |Sign|, �φ ∈ SEN(�)X ,

s( �φ) �′
� t( �φ) implies s�( �φ) �� t�( �φ).

Proof Let � ∈ |Sign|, �φ ∈ SEN(�)X and suppose that s( �φ) �′
� t( �φ). Consider the

(N′, N)-epimorphic translation 〈ISign, μ
N〉 : TeN ◦ SEN →se SEN. Then, by the min-

imality of �′, since

OrdKer(〈ISign, μ
N〉) ∈ QoSysKρ(〈TeN ◦ SEN, �TeN◦SEN〉),

we obtain that

s( �φ) �′
� t( �φ) implies s( �φ) OrdKer�(〈ISign, μ

N〉) t( �φ)

iff μN
� (s( �φ)) �� μN

� (t( �φ))

iff s�( �φ) �� t�( �φ). ��

Theorem 3 Let K be a class of compatible pofunctors, such that SP(K) ⊆ K. Then, for
all s(�x), t(�x) ∈ TeN(X), s(�x) � t(�x) is an N-inidentity of K if and only if, for every
functor SEN : Sign → Set, with a compatible category N of natural transformations
on SEN and compatible polarity ρ for N with those in K, the pofunctor 〈TeN ◦
SEN,�TeN◦SEN〉, with � the smallest member of QoSysKρ(〈TeN ◦ SEN, �TeN◦SEN〉), is
such that, for all � ∈ |Sign|, �φ ∈ SEN(�)X , s( �φ) �� t( �φ).
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Proof Suppose, first, that s(�x) � t(�x) is an N-inidentity of K. Then, since 〈TeN ◦ SEN,

�TeN◦SEN〉/∼ ∈ K, we have that, for all � ∈ |Sign| and �φ ∈ SEN(�)X ,

s( �φ)/∼� = s∼( �φ/∼�)

��/∼� t∼( �φ/∼�)

= t( �φ)/∼�,

and, therefore, s( �φ) �� t( �φ).

Suppose, conversely, that, for every functor SEN : Sign → Set, with a compatible
category N of natural transformations on SEN and compatible polarity ρ for N, the
pofunctor 〈TeN ◦ SEN,�TeN◦SEN〉, with � the smallest member of QoSysKρ(〈TeN ◦
SEN,�TeN◦SEN〉), is such that, for all � ∈ |Sign|, �φ ∈ SEN(�)X , s( �φ) �� t( �φ). Then, if
〈Sign′,�′〉 ∈ K, � ∈ |Sign′| and �φ ∈ SEN′(�)X , the hypothesis implies the hypothesis
of Lemma 2, whence s�( �φ) �′

� t�( �φ). Therefore s(�x) � t(�x) is an N-inidentity of K.
��

Recall from [43] that the operator HSP of taking order homomorphic images of
order sub-pofunctors of order direct products is a closure operator on classes of
compatible pofunctors. In the next theorem, an analog of the Order HSP Theorem
3.14 of [26], closed classes of that form are characterized as being exactly the ordered
varieties of pofunctors.

Theorem 4 (Order HSP Theorem) A class K of compatible pofunctors is an ordered
variety if and only if it is closed under the formation of order homomorphic images,
order subalgebras and order direct products, i.e., iff HSP(K) = K.

Proof Suppose, first, that I is a collection of N-inidentities, such that K = Mod(I). It
suffices to show that H(K) ⊆ K, S(K) ⊆ K and P(K) ⊆ K.

For H(K) ⊆ K, suppose that 〈SEN,�〉, 〈SEN′,�′〉 are two pofunctors, such that
〈SEN, �〉 ∈ K and 〈F, α〉 : 〈SEN,�〉 →p 〈SEN′,�′〉 is a surjective order transla-
tion from 〈SEN,�〉 onto 〈SEN′,�′〉. Suppose that s(�x), t(�x) ∈ TeN(X), such that
s(�x) � t(�x) ∈ I and let �′ ∈ |Sign′| and �ψ ∈ SEN′(�′)X . Since 〈F, α〉 is surjective,
there exists � ∈ |Sign| and �φ ∈ SEN(�)X , such that F(�) = �′ and �ψ = α�( �φ).
Since 〈SEN,�〉 ∈ K, we get that s�( �φ) �� t�( �φ), whence, since 〈F, α〉 is an order
translation, we get that α�(s�( �φ)) �′

F(�) α�(t�( �φ)), and, thus, sF(�)(α�( �φ)) �′
F(�)

tF(�)(α�( �φ)) and, therefore s�′( �ψ) �′
�′ t�′( �ψ). Therefore 〈SEN′,�′〉 |= s(�x) � t(�x),

showing that 〈SEN′,�′〉 ∈ K.
For S(K) ⊆ K, suppose that 〈SEN,�〉, 〈SEN′,�′〉 are pofunctors such that

〈SEN′,�′〉 is a ρ-subpofunctor of the ρ-pofunctor 〈SEN,�〉∈K. Let s(�x)� t(�x)∈I
and consider �′ ∈ |Sign′|, �ψ ∈ SEN′(�′)X . Then, since 〈SEN,�〉 ∈ K, we have
that s�( �φ) �� t�( �φ), for all � ∈ |Sign|, �φ ∈ SEN(�)X . But, since 〈SEN′,�′〉 is a
sub-pofunctor of 〈SEN, �〉, we have that �′ ∈ |Sign′| ⊆ |Sign|, �ψ ∈ SEN′(�′)X ⊆
SEN(�′)X and �′

�′ = ��′ ∩ SEN′(�′)2, which give that s�′( �ψ) �′
�′ t�′( �ψ). Hence

〈SEN′,�′〉 |= s(�x) � t(�x) and 〈SEN′,�′〉 ∈ K.
Finally, for P(K) ⊆ K, suppose that 〈SENi,�i〉 ∈ K, for all i ∈ I. Consider s(�x) �

t(�x) ∈ I and let �i ∈ |Signi|, �φi ∈ SENi(�i)
X , for all i ∈ I. Then, we have s�i(

�φi) �i
�i

t�i(
�φi), for all i ∈ I. This yields immediately

∏
i∈I s�i(

�φi)
∏

i∈I �i
�i

∏
i∈I t�i(

�φi), and,
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therefore, s∏
i∈I �i(

�φ)
∏

i∈I �i∏
i∈I �i

t∏
i∈I �i(

�φ), where, �φ = 〈�φ(x) : x ∈ X〉, with �φ(x) =
〈�φi(x) : i ∈ I〉, for all x ∈ X. This shows that

∏
i∈I〈SENi,�i〉 |= s(�x) � t(�x), and,

hence,
∏

i∈I〈SENi,�i〉 ∈ K.
Suppose, conversely, that HSP(K) ⊆ K. Consider the collection I of all N-

inidentities that are satisfied by all pofunctors in K. Then, obviously K ⊆ Mod(I)
and it suffices to show the reverse inclusion, i.e., that Mod(I) ⊆ K. So, sup-
pose that 〈SEN,�〉 ∈ Mod(I). Consider the surjective order translation 〈ISign, μ

N〉 :
〈TeN ◦ SEN,�TeN◦SEN〉 →p 〈SEN,�〉. Then, let �′ be the smallest member of
QoSysKρ(〈TeN ◦ SEN, �TeN◦SEN〉). It exists, by Proposition 3 of [44], since SP(K) ⊆ K.
By Theorem 3, we obtain that, for all � ∈ |Sign|, s( �φ), t( �φ) ∈ TeN(SEN(�)), s( �φ) �′

�

t( �φ) implies s�( �φ) �� t�( �φ). Therefore, �′ ≤ OrdKer(〈ISign, μ
N〉), which, using the

Order Homomorphism Theorem, yields the existence of

〈G, β〉 : 〈TeN ◦ SEN,�TeN◦SEN〉/�′ → 〈SEN,�〉,
such that 〈ISign, μ

N〉 = 〈G, β〉 ◦ 〈ISign, π
∼′〉.

〈TeN ◦ SEN, �TeN◦SEN〉 〈TeN ◦ SEN, �TeN◦SEN〉/∼′�〈ISign, π
∼′〉

〈SEN,�〉

〈ISign, μ
N〉

�
�

�
�

�
�
��

〈G, β〉

�
�

�
�

�
�

��

Note that 〈G, β〉 is also a surjective order translation, whence 〈SEN,�〉 is a ho-
momorphic image of 〈TeN ◦ SEN,�TeN◦SEN〉/∼′. This, combined with the fact that
〈TeN ◦ SEN,�TeN◦SEN〉/∼′ ∈ K, gives 〈SEN,�〉 ∈ H(K) ⊆ K. ��

4 Order SLP Theorem

Let K be a class of pofunctors, such that SP(K) ⊆ K and SEN : Sign → Set a functor
with N a category of natural transformations on SEN and ρ a polarity for N,
both compatible with those of K. In the next lemma, the smallest member � of
QoSysKρ(〈TeN ◦ SEN, �TeN◦SEN〉) containing a specific relation system induced by a
finite collection of inequations is characterized. This characterization will play a
crucial role in the proof of the main theorem of the section, the Order SLP Theorem,
an abstraction of the corresponding Theorem 3.17 of [26].

Lemma 5 Let K be a class of pofunctors, such that SP(K) ⊆ K , and s0(�x) � t0(�x), . . . ,

sn−1(�x) � tn−1(�x) a finite set of N-inequations in the variables X. Given a functor
SEN : Sign → Set, with compatible category of natural transformations N and com-
patible polarity ρ for N with those in K, consider the relation system R = {R�}�∈|Sign|
on TeN ◦ SEN, defined, for all � ∈ |Sign|, by

R� = {〈si( �φ), ti( �φ)〉 : �φ ∈ SEN(�)X , i < n},
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and denote by 
K
ρ(R) the smallest member � of QoSysKρ(〈TeN ◦ SEN, �TeN◦SEN〉) such

that si( �φ) �� ti( �φ), for all � ∈ |Sign|, �φ ∈ SEN(�)X and i < n, i.e., such that R ≤ �.
For any N-inequation u(�x) � v(�x), the N-quasi-inequation

s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x)

is an N-quasi-inidentity of K if and only if, for every functor SEN : Sign → Set, � ∈
|Sign|, �φ ∈ SEN(�)X , u( �φ) 
K

ρ(R)� v( �φ).

Proof Let � := 
K
ρ(R). Then, by its definition, we have that, for all � ∈ |Sign|, �φ ∈

SEN(�)X , si( �φ)/∼� ��/∼� ti( �φ)/∼�, for all i < n, whence, it follows that

s∼
i ( �φ/∼�) ��/∼� t∼i ( �φ/∼�), i < n. (1)

Now, for the left-to-right implication, suppose that

s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x)

is an N-quasi-inidentity of K. Then, since 〈TeN ◦ SEN, �TeN◦SEN〉/� ∈ K, we obtain,
by Condition (1), u∼( �φ/∼�) ��/∼� v∼( �φ/∼�), whence u( �φ)/∼� ��/∼� v( �φ)/∼�,

which yields u( �φ) �� v( �φ).
For the right-to-left implication, suppose that for each functor SEN : Sign → Set,

� ∈ |Sign|, �φ ∈ SEN(�)X , u( �φ) 
K
ρ(R)� v( �φ). Let 〈SEN,�〉 ∈ K, � ∈ |Sign| and �φ ∈

SEN(�)X , such that si� ( �φ) �� ti� ( �φ), for all i < n. The qosystem OrdKer(〈ISign, μ
N〉)

is a member of QoSysKρ(〈TeN ◦ SEN, �TeN◦SEN〉) and R ≤ OrdKer(〈ISign, μ
N〉),

whence, by the minimality of 
K
ρ(R), we get that 
K

ρ(R) ≤ OrdKer(〈ISign, μ
N〉), and,

hence, by the hypothesis, u( �φ)OrdKer(〈ISign, μ
N〉)�v( �φ), which yields that u�( �φ) ��

v�( �φ). Therefore the N-quasi-inequation s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) →
u(�x) � v(�x) is an N-quasi-inidentity of K. ��

The next lemma, which will also be used in the proof of the Order SLP Theorem,
states that the quotient of a given pofunctor by the union of a collection of upward
directed qosystems is isomorphic to the order direct limit of the quotients of the
pofunctor by each of the qosystems in the directed collection by the system of
the natural surjective order translations from one quotient onto another, formed
by a larger qosystem. It forms an analog of Lemma 3.16 of [26] in the context of
pofunctors.

Recall the notation and terminology established for order direct limits of pofunc-
tors in Section 2 of [43].

Lemma 6 Let 〈SEN,�〉 be a ρ-pofunctor and K a collection of ρ-qosystems of
〈SEN,�〉 that is upward directed by signature-wise inclusion so that

⋃K is also a
ρ-qosystem. Then 〈SEN,�〉/ ⋃K is isomorphic to the order direct limit of the system
of ρ-pofunctors {〈SEN, �〉/�′ : �′ ∈ K} by the system of surjective order translations

F = 〈〈F�′,�′′
, α�′,�′′ 〉 : 〈SEN,�〉/�′

→p 〈SEN,�〉/�′′ : �′,�′′ ∈ K,�′ ≤ �′′〉,
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where, for all �′,�′′ ∈ K, F�′,�′′ = ISign and, for all � ∈ |Sign|, φ ∈ SEN(�),

α
�′,�′′
� (φ/∼′

�) = φ/∼′′
�.

Proof Given �′ ∈ K, let [�′) := {�′′ ∈ K : �′ ≤ �′′}. Now, set

D = {G ⊆ K : (∃�)([�) ⊆ G)}
and define 〈G, β〉 : 〈SEN,�〉 → limF

�′∈K〈SEN,�〉/∼′, for all � ∈ |Sign| and all φ ∈
SEN(�), by

β�(φ) =
D∏

�′∈K
φ/∼′

�.

〈G, β〉 is an order translation. To show this, it is first shown that it is (N,
∏D

�′∈K N∼′
)-

epimorphic and, then, that it preserves corresponding posystems.
We do have, for all σ : SENn → SEN, � ∈ |Sign| and φ0, . . . , φn−1 ∈ SEN(�),

β� (σ�(φ0, . . . , φn−1))

= ∏D
�′∈K σ�(φ0, . . . , φn−1)/∼′

�

= ∏D
�′∈K σ∼′

� (φ0/∼′
�, . . . , φn−1/∼′

�)

= ∏D
�′∈K σ∼′

∏
�′∈K �

(∏D
�′∈K φ0/∼′

�, . . . ,
∏D

�′∈K φn−1/∼′
�

)

= ∏D
�′∈K σ∼′

∏
�′∈K �

(
β�(φ0), . . . , β�(φn−1)

)

Hence 〈G, β〉 is (N,
∏D

�′∈K N∼′
)-epimorphic.

Moreover, for all � ∈ |Sign|, φ, ψ ∈ SEN(�),

φ �� ψ implies (∀�′ ∈ K)(φ/∼′
� �′

�/∼′
� ψ/∼′

�)

iff
∏

�′∈K φ/∼′
�

∏
�′∈K �′

�/∼′
�

∏
�′∈K ψ/∼′

�

implies
∏D

�′∈K φ/∼′
�

∏D
�′∈K �′/∼′∏

�′∈K �

∏D
�′∈K ψ/∼′

�

iff β�(φ)
∏D

�′∈K �′/∼′∏
�′∈K �

β�(ψ),

whence 〈G, β〉 is an order translation.
Next, it is shown that 〈G, β〉 is a surjective order translation. Recall that,

for all � ∈ |Sign|, every element of [limF
�′∈K〈SEN,�〉/∼′]∏�′∈K � is of the form

∏D
�′∈K φ�′/∼′

�, where, there exists �′′ ∈ K, such that α
�′′,�′
� (φ�′′/∼′′

�) = φ�′/∼′
�, for

all �′ ∈ K, with �′′ ≤ �′. Set ψ := φ�′′ . Then, for all �′ ≥ �′′, we have φ�′/∼′
� =

α
�′′,�′
� (φ�′′/∼′′

�) = ψ/∼′
� and, therefore,

∏
�′∈K ψ/∼′

� ≡D∏
�′∈K �

∏
�′∈K φ�′/∼′

�, i.e.,

β�(ψ) = ∏D
�′∈K φ�′/∼′

� , and 〈G, β〉 is indeed surjective.
Finally, the result will follow from the Order Isomorphism Theorem (Corollary 16

of [42]), if it is shown that

OrdKer(〈G, β〉) =
⋃

K.
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In fact, we have, for all � ∈ |Sign| and all φ,ψ ∈ SEN(�),

β�(φ)
∏D

�′∈K �′/∼′∏
�′∈K �

β�(ψ)

iff
∏D

�′∈K φ/∼′
�

∏D
�′∈K �′/∼′∏

�′∈K �

∏D
�′∈K ψ/∼′

�

iff (∃�′′)(∀�′ ≥ �′′)(φ/∼′
� �′

�/∼′
� ψ/∼′

�)

iff (∃�′′)(∀�′ ≥ �′′)(φ �′
� ψ)

iff φ (
⋃K)� ψ. ��

Having Lemmas 5 and 6 at hand, we proceed now with stating and proving
the Order SLP Theorem, the main theorem of this section, stating that a class
of compatible pofunctors is a quasi-povariety if and only if it is closed under the
formation of subpofunctors, order direct limits and order direct products. The Order
SLP Theorem abstracts the Order SLP Theorem for partially ordered universal
algebras of Pałasińska and Pigozzi (Theorem 3.14 of [26]).

Theorem 7 (Order SLP Theorem) A class K of compatible pofunctors is a quasi-
po-variety iff it is closed under the formation of subpofunctors, order direct limits and
direct products, i.e., iff SLP(K) = K.

Proof Suppose, first, that Q is a collection of N -quasi - inidentities , such that
K = Mod(Q). It suffices to show that S(K) ⊆ K and PR(K) ⊆ K, since order direct
products are special cases of order reduced products and order direct limits are
subpofunctors of order reduced products.

For S(K) ⊆ K, suppose that 〈SEN,�〉, 〈SEN′,�′〉 are pofunctors such that
〈SEN′,�′〉 is a ρ-subpofunctor of the ρ-pofunctor 〈SEN,�〉 ∈ K. Let

s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x) ∈ Q

and consider �′ ∈ |Sign′|, �ψ ∈ SEN′(�′)X , such that si�′ ( �ψ) �′
�′ ti�′ ( �ψ), for all i < n.

But, since 〈SEN,�〉 ∈ K, we have that si� ( �φ) �� ti� ( �φ), for all i < n, imply that
u�( �φ) �� v�( �φ), for all � ∈ |Sign|, �φ ∈ SEN(�)X . But, since 〈SEN′,�′〉 is a sub-
pofunctor of 〈SEN,�〉, we have that �′ ∈ |Sign′| ⊆ |Sign| and �ψ ∈ SEN′(�′)X ⊆
SEN(�′)X and �′

�′ = ��′ ∩ SEN′(�′)2, which give that u�′( �ψ) �′
�′ v�′( �ψ). Hence

〈SEN′,�′〉 |= s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x) and 〈SEN′,�′〉 ∈ K.
For PR(K) ⊆ K, suppose that 〈SENi,�i〉 ∈ K, for all i ∈ I, and let F be a proper

filter over I. Consider s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x) ∈ Q. We
have, for all �i ∈|Signi|, �φi ∈SENi(�i)

X , i∈ I, sj�i
( �φi) �i

�i
t j�i

( �φi), for all j<n, imply
that u�i(

�φi) �i
�i

v�i(
�φi). Now, consider �i ∈|Signi|, �φi ∈SENi(�i)

X , i∈ I, such that

sj∏i∈I �i

(
F∏

i∈I

�φi

)
F∏

i∈I

�i∏
i∈I �i

t j∏i∈I �i

(
F∏

i∈I

�φi

)
, for all j < n.

This is equivalent to

sj∏i∈I �i

(
∏

i∈I

�φi

)
/≡F∏

i∈I �i

F∏

i∈I

�i

∏
i∈I �i

t j∏i∈I �i

(
∏

i∈I

�φi

)
/≡F∏

i∈I �i
,
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for all j < n. Therefore {i ∈ I : sj�i
( �φi) �i

�i
t j�i

( �φi)} ∈ F, for all j < n, which yields
that

⋂
j<n{i ∈ I : sj�i

( �φi) �i
�i

t j�i
( �φi)} ∈ F. But note that, by our hypothesis,

{
i ∈ I : u�i(

�φi) �i
�i

v�i(
�φi)

}
⊇

⋂

j<n

{
i ∈ I : sj�i

( �φi) �i
�i

t j�i
( �φi)

}
,

and, therefore {i ∈ I : u�i(
�φi) �i

�i
v�i(

�φi)} ∈ F, which proves that

u∏
i∈I �i

(
F∏

i∈I

�φi

)
F∏

i∈I

�i∏
i∈I �i

v∏
i∈I �i

(
F∏

i∈I

�φi

)
.

Therefore
∏F

i∈I〈SENi,�i〉 |= s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x) and∏F
i∈I〈SENi,�i〉 ∈ K.
Suppose, conversely, that SLP(K) = K. Consider the collection Q of all N-quasi-

inidentities that are satisfied by all pofunctors in K. Then, obviously K ⊆ Mod(Q)

and it suffices to show the reverse inclusion, i.e., that Mod(Q) ⊆ K. So, suppose that
〈SEN,�〉 ∈ Mod(Q). Consider the surjective order translation 〈ISign, μ

N〉 : 〈TeN ◦
SEN,�TeN◦SEN〉 → 〈SEN,�〉. Let �′ = OrdKer(〈ISign, μ

N〉) and consider the rela-
tion system R = {R�}�∈|Sign| on TeN ◦ SEN, defined, for all � ∈ |Sign|, by

R� = {〈si( �φ), ti( �φ)〉 : �φ ∈ SEN(�)X , i < n},
where si� ( �φ) �′

� ti� ( �φ), for all � ∈ |Sign|, �φ ∈ SEN(�)X and all i < n. Let u(�x), v(�x)

be such that u( �φ) 
K
ρ(R)� v( �φ), for all functors SEN, all � ∈ |Sign|, all �φ ∈ SEN(�)X

and all collections R induced by 〈si(�x), ti(�x)〉, i < n, on SEN, as defined above. Then,
by Lemma 5,

s0(�x) � t0(�x), . . . , sn−1(�x) � tn−1(�x) → u(�x) � v(�x)

is an N-quasi-inidentity of K. But, by hypothesis, it is also an N-quasi-inidentity
of 〈SEN,�〉. Hence, since R ≤ �′, we have, for all � ∈ |Sign|, �φ ∈ SEN(�)X , and
all i < n, si( �φ) �′

� ti( �φ) giving si� ( �φ) �� ti� ( �φ), whence u�( �φ) �� v�( �φ) and, there-
fore, u( �φ) �′

� v( �φ). Thus, 
K
ρ(R) ≤ �′, for all R ≤ �′ induced by a finite set of

inequations, denoted R ≤f �′. Thus, �′ = ⋃
R≤f�′ 
K

ρ(R). Since, in addition, the
collection {
K

ρ(R) : R ≤f �′} is upward directed by signature-wise inclusions, we

conclude, by Lemma 6, that 〈SEN,�〉 = 〈TeN ◦ SEN,�TeN◦SEN〉/�′ is the order
direct limit of 〈〈TeN ◦ SEN,�TeN◦SEN〉/
K

ρ(R) : R ≤f �′〉. Therefore, since 〈TeN ◦
SEN,�TeN◦SEN〉/
K

ρ(R)∈K, for all R ≤f �′, we obtain that 〈SEN,�〉∈L(K)=K. ��

This result immediately implies

Corollary 8 A class K of compatible pofunctors is a quasi-povariety iff SPR(K) = K iff
SPPU(K) = K.

Recall that both SPR and SPPU were shown to be closure operators on classes
of compatible pofunctors in Theorem 18 of [43]. Thus, both Theorem 7 and
Corollary 8 serve in characterizing by logical, rather than algebraic, means the classes
of compatible pofunctors that these two closure operators generate.
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5 Algebraizable PoVarieties

Let SEN : Sign → Set be a functor, N a category of natural transformations on
SEN and ρ a polarity for N. Given a class K of pofunctors, compatible with SEN,
denote by

Alg(K) = {〈SEN,�SEN〉 : 〈SEN,�〉 ∈ K}.

Lemma 9 If K is a quasi-povariety, then Alg(K) is a quasi-variety.

Proof If K is closed under subpofunctors and order filtered products, then it is
not very difficult to verify that Alg(K) is also closed under subfunctors and filtered
products. Hence it is a quasi-variety on its own right. ��

In what follows, the notation SEN will sometimes be used to denote, except for
the functor SEN itself, also the pofunctor 〈SEN,�SEN〉.

Consider a quasivariety Q of functors (with compatible categories of natural
transformations) and SEN a functor with compatible category N of natural trans-
formations with those in Q but not necessarily in Q. Those N-congruence systems θ

on SEN, such that SENθ ∈ Q are called Q-N-congruence systems. Define

ConN
Q (SEN) = {θ ∈ ConN(SEN) : SENθ ∈ Q}.

It is next shown that, given a quasi-povariety K and a functor SEN, with compatible
category of natural transformations and compatible polarity with those of the pofunc-
tors in K, the passage from � to ∼ is a surjective mapping from QoSysKρ(〈SEN, �SEN〉)
onto ConN

Alg(K)(SEN). This forms an analog of Proposition 4.1 of [26] for quasi-
povarieties of pofunctors.

Proposition 10 Suppose that K is a quasi-povariety and SEN a functor compatible
with those in K. Then the mapping � �→ ∼ is a surjective mapping from QoSysKρ
(〈SEN,�SEN〉) onto ConN

Alg(K)(SEN).

Proof First, let � ∈ QoSysKρ(〈SEN,�SEN〉). This means, by the definition of QoSysKρ
(〈SEN,�SEN〉), that 〈SEN,�SEN〉/∼ ∈ K. And this, in turn, means, by taking into
account the definition of ConN

Alg(K)(SEN), that ∼ ∈ ConN
Alg(K)(SEN). Thus, � �→ ∼ is

a mapping from QoSysKρ(〈SEN, �SEN〉) into ConN
Alg(K)(SEN). To finish the proof, it

remains to show that � �→ ∼ maps QoSysKρ(〈SEN, �SEN〉) onto ConN
Alg(K)(SEN).

To this end, suppose that θ ∈ ConN
Alg(K)(SEN). Hence, by the definition of Alg(K)-

N-congruence systems, 〈SEN,�SEN〉/θ ∈ Alg(K). Thus, by the definition of Alg(K),

there exists a ρθ -posystem

� ∈ PoSysρθ (SENθ ),
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such that 〈SENθ ,�〉 ∈ K. Let �′ := (πθ )−1(�), where 〈ISign, π
θ 〉 : SEN → SENθ is

the natural projection translation. We have, for all � ∈ |Sign|, φ, ψ ∈ SEN(�),

φ ∼′
� ψ iff φ (πθ

�)−1(��) ∩ (πθ
�)−1(��) ψ

iff φ (πθ
�)−1(∼�) ψ

iff φ (πθ
�)−1(�SENθ

� ) ψ

iff φ θ� ψ,

i.e., ∼′ = θ and, therefore, �′/∼′ = �′/θ = �. This yields that 〈SEN, �SEN〉/∼′ =
〈SEN/∼′,�′/∼′〉 = 〈SENθ ,�〉 ∈ K. Therefore �′ ∈ QoSysKρ(〈SEN,�SEN〉), which,
taking into account that ∼′ = θ, yields the surjectivity of � �→ ∼ as a mapping from
QoSysKρ(〈SEN,�SEN〉) onto ConN

Alg(K)(SEN). ��

Next, following Definition 4.2 of [26], the key concept of an N-finitely algebraiz-
able quasi-povariety is introduced.

Definition 11 Consider a functor SEN, with N a category of natural transformations
on SEN and ρ a polarity for N. Let 〈SEN,�〉 be a ρ-pofunctor and S(x, y) ≈
T(x, y) = {si(x, y) ≈ ti(x, y) : i < n} a finite set of equations in two variables, where
si, ti : SEN2 → SEN are natural transformations in N. � is said to be N-definable by
S(x, y) ≈ T(x, y) if, for all � ∈ |Sign|, φ, ψ ∈ SEN(�),

φ �� ψ iff S�(φ,ψ) = T�(φ,ψ),

where S�(φ,ψ) = T�(φ,ψ) abbreviates the condition

(∀i < n)(si
�(φ,ψ) = ti

�(φ,ψ)).

A quasi-povariety K is N-finitely algebraizable if there exists a finite set of
N-equations S(x, y) ≈ T(x, y), as above, such that, for all 〈SEN′,�′〉 ∈ K, S′ ≈ T ′
defines �′, where by S′ ≈ T ′ are denoted the N′-equations that correspond to the
N-equations in S ≈ T via the compatibility property. In that case S ≈ T is called a
defining set of N-equations for K.

The following proposition reveals a tie between a defining set of N-equations in
an N-finitely algebraizable quasi-povariety K and the collection of K-ρ-qosystems of
members of K. It forms an analog of Proposition 4.3 of [26].

Proposition 12 Let K be an N-finitely algebraizable quasi-povariety with defining
N-equations S ≈ T. Then, for all 〈SEN,�〉 ∈ K, all �′ ∈ QoSysKρ(〈SEN,�〉), all
� ∈ |Sign| and all φ, ψ ∈ SEN(�),

φ �′
� ψ iff S�(φ,ψ) ∼′

� T�(φ,ψ).

Proof Suppose 〈SEN,�〉∈K, �′ ∈QoSysKρ(〈SEN,�〉), �∈|Sign| and φ,ψ ∈SEN(�).

We have

φ �′
� ψ iff φ/∼′

� �′
�/∼′

� ψ/∼′
�

iff S∼′
� (φ/∼′

�,ψ/∼′
�) = T∼′

� (φ/∼′
�,ψ/∼′

�)

iff S�(φ,ψ)/∼′
� = T�(φ,ψ)/∼′

�

iff S�(φ,ψ) ∼′
� T�(φ, ψ). ��
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Let K be an N-finitely algebraizable quasi-povariety with defining N-equations
S ≈ T. For every 〈SEN,�〉 ∈ K, all � ∈ |Sign|, φ, ψ ∈ SEN(�), we have that

φ = ψ iff φ �� ψ and ψ �� φ.

Therefore, we obtain, by Definition 11, that

φ = ψ iff S�(φ, ψ) = T�(φ,ψ) and S�(ψ, φ) = T�(ψ, φ).

Hence, if K is N-finitely algebraizable with defining N-equations S ≈ T, then
S(x, x) ≈ T(x, x) are N-identities of Alg(K) and the N-quasi-equation S(x, y) ≈
T(x, y), S(y, x) ≈ T(y, x) → x ≈ y is an N-quasi-identity of Alg(K).

Corollary 13, that follows, shows that, in case K is an N-finitely algebraiz-
able povariery, the mapping �′ �→ ∼′ of Proposition 10 is an injection between
QoSysKρ(〈SEN,�〉) and ConN

Alg(K)(SEN), for every pofunctor 〈SEN,�〉 ∈ K .

Corollary 13 Let K be an N-finitely algebraizable quasi-povariety.

1. For all SEN ∈ Alg(K), there exists unique ρ-posystem � of SEN, such that
〈SEN,�〉 ∈ K.

2. The mapping �′ �→ ∼′ from QoSysKρ(〈SEN,�〉) to ConN
Alg(K)(SEN) is injective, for

every pofunctor 〈SEN,�〉 ∈ K .

Proof For Part 1, note that, since, by hypothesis, K is an N-finitely algebraizable
quasi-povariety, there exists a finite set S(x, y) ≈ T(x, y) of defining N-equations for
K. Hence, if 〈SEN,�〉, 〈SEN,�′〉 ∈ K, then, for all � ∈ |Sign|, φ, ψ ∈ SEN(�), φ ��

ψ iff S�(φ,ψ) = T�(φ, ψ) iff φ �′
� ψ . Therefore � = �′.

For Part 2, suppose that �′,�′′ ∈ QoSysKρ(〈SEN,�〉), such that ∼′ = ∼′′. Then, we
have 〈SEN,�〉/∼′ = 〈SEN,�〉/∼′′, whence 〈SEN/∼′, �′/∼′〉 = 〈SEN/∼′′,�′′/∼′′〉.
Thus, since ∼′ = ∼′′, we get that

〈SEN/∼′,�′/∼′〉 = 〈SEN/∼′,�′′/∼′〉.

But both 〈SEN/∼′,�′/∼′〉 and 〈SEN/∼′, �′′/∼′〉 are in K, whence SEN/∼′ ∈
Alg(K) and, therefore, by Part 1, �′/∼′ = �′′/∼′, which yields that �′ = �′′. Thus,
the mapping �′ �→ ∼′ from the collection QoSysKρ(〈SEN,�〉) to ConN

Alg(K)(SEN) is
injective. ��

If an N-finitely algebraizable quasi-povariety K has a known axiomatization in
terms of a collection I of inidentities and a collection Q of quasi-inidentities, then
there is a way of discovering a collection of identities and quasi-identities that
axiomatize the quasivariety Alg(K), given by Lemma 9. The identities and quasi-
identities, presented below, form a straightforward translation in the present context
of the ones given by Pałasińska and Pigozzi in the context of finitely algebraizable
quasi-povarieties of universal poalgebras (see Proposition 4.6 of [26]).

Proposition 14 Let K be an N-finitely algebraizable quasi-povariety. If S ≈ T is a
defining set of N-equations for K, then the quasi-variety Alg(K) is defined by the
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following identities and quasi-identities, where I and Q are, respectively, any set of
N-inidentities and N-quasi-inidentities defining K:

S(x, x) ≈ T(x, x) (2)

S(x, y) ≈ T(x, y), S(y, z) ≈ T(y, z) → S(x, z) ≈ T(x, z) (3)

S(x, y) ≈ T(x, y) → S(σ (�z<i, x, �z>i), σ (�z<i, y, �z>i))

≈ T(σ (�z<i, x, �z>i), σ (�z<i, y, �z>i)),

σ : SENk → SEN in N, ρ(σ, i) = +. (4)

S(x, y) ≈ T(x, y) → S(σ (�z<i, y, �z>i), σ (�z<i, x, �z>i))

≈ T(σ (�z<i, y, �z>i), σ (�z<i, x, �z>i)),

σ : SENk → SEN in N, ρ(σ, i) = −. (5)

S(x, y) ≈ T(x, y), S(y, x) ≈ T(y, x) → x ≈ y (6)

S(s, t) ≈ T(s, t), s � t ∈ I (7)

S(s0, t0) ≈ T(s0, t0), . . . , S(sn−1, tn−1)

≈ T(sn−1, tn−1) → S(u, v) ≈ T(u, v),

s0 � t0, . . . , sn−1 � tn−1 → u � v ∈ Q. (8)

Proof Let E be the collection of N-equations and N-quasi Eqs. 2–8. It is not
difficult to see from the discussion following Proposition 12 that every SEN ∈ Alg(K)

does satisfy every N-equation and N-quasi-equation in the list. Thus Alg(K) ⊆
Mod(E). To see that the reverse inclusion also holds, let SEN ∈ Mod(E). Define
� = {��}�∈|Sign|, for all � ∈ |Sign|, φ, ψ ∈ SEN(�), by

φ �� ψ iff S�(φ, ψ) = T�(φ, ψ).

Then � is a ρ-qosystem of SEN, by Eqs. 2–5. It is a posystem, by Eq. 6, and
〈SEN,�〉 ∈ Mod(K), by Eqs. 7 and 8. Therefore SEN ∈ Alg(K). ��

Finally, some properties of N-finitely algebraizable quasi-povarieties are given,
detailing the connection between the lattices QoSysKρ(〈SEN, �〉) to ConN

Alg(K)(SEN),
for an arbitrary 〈SEN,�〉 ∈ K. This result forms a partial analog of Theorem 4.8 of
[26]. In the context of partially ordered quasi-povarieties of universal algebras, the
analogs of all three parts of Theorem 15 are shown to be equivalent to each other.
This, however, does not seem to be the case in this, more general, setting.

Theorem 15 Let K be a quasi-povariety. The following are related by 1 → 2 ↔ 3:

1. K is N-finitely algebraizable.
2. For all 〈SEN,�〉 ∈ K, �′ �→ ∼′ is an injective map from the set QoSysKρ(〈SEN,�〉)

to ConN
Alg(K)(SEN).

3. For all 〈SEN,�〉 ∈ K, �′ �→ ∼′ is an isomorphism from the lattice QoSysKρ
(〈SEN,�〉) to ConN

Alg(K)(SEN).
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Proof

1 → 2 By Corollary 13.
2 → 3 Assume that �′ �→ ∼′ is an injective map from QoSysKρ(〈SEN,�〉) to

ConAlg(K)(SEN). It is also an order-preserving mapping. To show that it is
surjective, observe that

QoSysKρ(〈SEN,�〉) = QoSysKρ(〈SEN, �SEN〉),

because, by the hypothesis 2, � is the unique ρ-posystem �′ on SEN, such
that 〈SEN,�′〉 ∈ K, and use Proposition 10.

3 → 2 Obvious. ��

6 Examples

In this section a few examples are presented to help illustrate some of the concepts
of the theory that was developed in the previous sections. First, it is shown how
all ordered varieties and quasi-varieties of universal algebras may be viewed as
special cases of ρ-quasi-povarieties and ρ-povarieties, respectively, in the sense of
this paper. Then, two examples of special interest to categorical abstract algebraic
logic (CAAL), that of equational logic and of first-order logic without terms, that
were the paradigms on which the initial development of CAAL was based, are
revisited in the present context. In a slightly different vein, despite the fact that, as
it was mentioned before the statement of Theorem 15, it does not seem likely that
the implication (2 ↔ 3) → 1 of Theorem 15 holds in general, we were, unfortunately,
unable to provide a counterexample proving this at the present time. As a result, this
question has to be left open for future investigation.

6.1 Povarieties and Quasi-Povarieties of Universal Algebras

Both the HSP and the SLP Theorem of Pałasińska and Pigozzi, Theorem 3.14 and
Theorem 3.17 of [26], are special cases of Theorem 7 and Theorem 4, respectively.
This may be easily seen if one identifies ordinary partially ordered algebras with
pofunctors over a trivial signature category. The sentence functor maps the single
signature object to the domain of the partially ordered algebra and the category N
of natural transformations consists of the entire clone of natural transformations
generated by the basic operations of the algebra. Polarities are the polarities in-
herited by those attached to the different arguments of the basic operations under
the composition compatibility property (see Section 2 of [42]). Since taking order
homomorphic images, order subpofunctors, order direct products and order direct
limits of a pofunctor or a collection of pofunctors with trivial signature categories
results to pofunctors with the same property, both classes coincide with the corre-
sponding classes generated by the corresponding operators in the universal algebraic
framework.

Thus, one may provide as concrete examples in the present framework some
appropriately modified examples from [26]. For instance, consider the partially-
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ordered left-residuated monoids (POLRMs), defined in [26] as those structures
A = 〈〈A, ·, ⇒, 1〉, ≤〉, where

– 〈A, ·, 1〉 is a monoid,
– 〈〈A, ·〉, ≤〉 is a poalgebra and
– For all a, b ∈ A, (∀z ∈ A)(z · a ≤ b iff z ≤ a ⇒ b).

It was shown in Proposition 2.2 of [26] that every POLRM is a ρ-poalgebra with
polarity ρ on ·, ⇒ satisfying ρ(·, 0) = ρ(·, 1) = ρ(⇒, 1) = + and ρ(⇒, 0) = −. Fur-
thermore, it was shown in Proposition 3.4 of [26] that POLRMs form a ρ-povariety
defined by the logical quasi-inidentities

x � x

x � y, y � z → x � z

x1 � x2, y1 � y2 → x1 · y1 � x2 · y2

x2 � x1, y1 � y2 → x1 ⇒ y1 � x2 ⇒ y2

and the extra-logical inidentities

(x · y) · z �� x · (y · z)

1 · x �� x

x · 1 �� x

x · (x ⇒ y) � y

y � x ⇒ x · y

It was also remarked in [26] that partially-ordered groups, i.e., structures of the form
〈〈G, ·,−1 , e〉, ≤〉, where

– 〈G, ·,−1 , e〉 is a group and
– ≤ is a partial ordering on G with respect to which · is monotone in both arguments

may be viewed as POLRMs 〈〈G, ·, ⇒, e〉,≤〉, where x ⇒ y := x−1 · y. In this
sense partially-ordered groups form a ρ-subpovariety of the class of POLRMs.
The two partially-ordered groups (seeing as POLRMs) 〈〈Z, +, −, 0〉, ≤〉 and
〈〈Z, +, −, 0〉, �Z〉, where Z is the set of integers and ≤ its natural ordering, show, via
an application of Corollary 13, that the ρ-povariety of partially ordered groups is not
algebraizable, which immediately implies, since it is a ρ-subpovariety of POLRMs,
that the ρ-povariety of POLRMs is not algebraizable either.

6.2 Equational Logic

One of the paradigmatic examples that motivated the development of both the
theory of institutions and the theory of categorical abstract algebraic logic was that
of equational logic. One may consider pofunctors with underlying sentence functor
the functor with domain the category of all algebraic signatures and mapping each
signature to the collection of all terms over that signature. Based on the main result
of [29], pofunctors of this form would correspond to ordered substitution algebras or
ordered clone algebras, with the term substitution algebra used to suggest a variant of
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the algebras of Feldman [15] and the term clone algebra a variant of the algebras of
Taylor [28]. We provide some more details here, based on the work presented in [29].

Recall from [29] that a chain set A is a family of sets A = {Ak : k ∈ ω}, such that
Ak ⊆ Ak+1, for every k ∈ ω. A chain set morphism f : A → B is a family of set
maps f = { fk : Ak → Bk : k ∈ ω}, such that the following diagram commutes, for
every k ∈ ω,

Ak Bk
�

fk

Ak+1 Bk+1
�fk+1

�
i

�
i

where by i : Ak ↪→ Ak+1 and i : Bk ↪→ Bk+1 are denoted the inclusion maps.
Given two chain set morphisms f : A → B and g : B → C we define their com-

posite gf : A → C to be the collection of maps gf = {gk fk : Ak → Ck : k ∈ ω}. With
this composition the collection of chain sets with chain set morphisms between them
forms a category, the category of chain sets, which is denoted by CSet.

The chain set of X-terms TmX(V) = {TmX(V)k : k ∈ ω} ∈ |CSet| is defined by
letting TmX(V)k be the smallest set with

– vi ∈ TmX(V)k, i < k,

– x(t0, . . . , tn−1) ∈ TmX(V)k, for all n ∈ ω, x ∈ Xn − Xn−1, t0, . . . , tn−1 ∈ TmX(V)k.

Given X, Y ∈ |CSet| and f : X → TmY(V) ∈ Mor(CSet) the chain set morphism
f ∗ : TmX(V) → TmY(V), with f ∗

k : TmX(V)k → TmY(V)k, for every k ∈ ω, is de-
fined by recursion on the structure of X-terms in the usual way.

The notation f : X ⇁ Y is used to denote a CSet-map f : X → TmY(V). Given
two such maps f : X ⇁ Y and g : Y ⇁ Z , their composition g ◦ f : X ⇁ Z is
defined to be the CSet-map

g ◦ f = g∗ f.

If, for every X ∈ |CSet|, jX : X ⇁ X, is defined by letting jXk : Xk → TmX(V)k

be given by

jXk(x) = x(v0, . . . , vk−1), for all x ∈ Xk − Xk−1,

then Sign, having collection of objects |CSet| and collections of morphisms

Sign(X, Y) = { f : X ⇁ Y : f ∈ CSet(X, TmY(V)},

for all X, Y ∈ |CSet|, with composition ◦ and X-identity jX , is a category.
The sentence functor SEN : CSet → Set is defined at the object level, for every

X ∈ |Sign|, by setting

SEN(X) =
∞⋃

k=0

TmX(V)k.
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and at the morphism level, given f : X ⇁ Y ∈ Mor(Sign), by letting SEN( f ) :
SEN(X) → SEN(Y) be given, for all t ∈ ⋃∞

k=0 TmX(V)k,

SEN( f )(t) = f ∗
k (t), if t ∈ TmX(V)k.

SEN( f ) is well-defined, because, if t ∈ TmX(V)k ∩ TmX(V)l, then f ∗
k (t) = f ∗

l (t), by
the definition of a CSet-morphism. Birkhoff’s equational logic is now obtained by
considering the category of natural transformations N on SEN corresponding to the
entire clone of operations generated by the basic operations of clone algebras, as
introduced and studied in [29], and by imposing positive polarities in all argument
places, i.e., the logical quasi-inidentities

x � x
x � y, y � z → x � z
x � x′, y0 � y′

0, . . . , yn−1 � y′
n−1→ Cn(x, y0, . . . , yn−1) � Cn(x′, y′

0, . . . , y′
n−1), for all n ∈ ω,

and the extra-logical quasi-inidentity

x � y → y � x.

These quasi-inidentities ensure that the ρ-qosystem on any member of this
ρ-quasi-povariety is an N-congruence relation on a substitution algebra whose
elements correspond to algebraic operations with fixed arities. Therefore, the
operations of these algebras are divided into equivalence classes that respect the
substitutivity property of terms for variables into term operations. The reader is
invited to compare the ρ-quasi-povariety briefly described here with the presentation
of the variety of algebras over a fixed signature as a quasi-povariety given in
Example 3.6 of [26]. The logical axioms of monotonicity for each of the fundamental
operations in the fixed signature in [26] are here replaced by a logical axiom scheme
stipulating monotonicity of the substitution operations.

6.3 First-order Logic Without Terms

In this section ⊆f will denote the finite subset relation and Pf the finite powerset
operator. Recall from [31] that a hierarchy of sets or, simply, an h-set A is a family
of sets A = {AP : P ∈ Pf(ω)}, such that AP ∩ AQ = AP∩Q, for every P, Q ⊂f ω.

By a morphism of h-sets or,simply, an h-set morphism f : A → B, is meant a
family of set maps f = { fP : AP → BP : P ∈ Pf(ω)}, such that the following diagram
commutes, for every P ⊆ Q ⊂f ω,

AP BP
�

fP

AQ BQ�fQ

�
i

�
i

where by i : AP ↪→ AQ and i : BP ↪→ BQ we denote the inclusion maps, i.e.,
fQ �AP= fP, for all P ⊆ Q ⊂f ω. Given two chain set morphisms f : A → B and
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g : B→C, their composite gf :A →C is a collection of maps gf ={gP fP : AP →CP :
P ∈ Pf(ω)}. With this composition the collection of h-sets with h-set morphisms
between them forms a category, the category of h-sets, which is denoted by HSet.

In the sequel, by L will be denoted the set of symbols {¬,∧} ∪ {∃k : k ∈ ω}, which
will be used as connectives and quantifiers, respectively, in the construction of the
formulas below. Given a set X, by X will be denoted an isomorphic copy of X
constructed in some canonical way. x will denote the copy of x ∈ X in the set X.

The h-set of X-formulas FmL(X) = {FmL(X)P : P ∈ Pf(ω)} ∈ |HSet| is defined
by letting FmL(X)P be the smallest set with

– vi ≈ v j ∈ FmL(X)P, for all i, j ∈ P,

– x ∈ FmL(X)P, for every x ∈ XP,

– ¬φ, φ1 ∧ φ2 ∈ FmL(X)P, for all φ, φ1, φ2 ∈ FmL(X)P,

– ∃kφ ∈ FmL(X)P, for every φ ∈ FmL(X)P∪{k}.

Moreover, given two h-sets X and Y, any h-set morphism f from X into the h-set
FmL(Y) may be extended to an h-set morphism f ∗ from FmL(X) into FmL(Y) by
recursion on the structure of X-formulas in the ordinary way. We write f : X ⇁ Y
to denote an HSet-morphism f : X → FmL(Y). Given two such maps f : X ⇁Y,

g : Y ⇁ Z , their composition g ◦ f : X ⇁ Z is defined to be the HSet-morphism
g ◦ f = g∗ f. If, for all X ∈ |HSet|, jX : X ⇁ X is given by jXP : XP → FmL(X)P,

with jXP(x) = x, for all x ∈ XP, then Sign, with collection of objects |HSet|
and collection of morphisms Sign(X, Y) = { f : X ⇁ Y : f ∈ HSet(X, FmL(Y))},
for all X, Y ∈ |HSet|, with composition ◦ and X-identity jX , is a category.

The sentence functor is defined at the object level, for every X ∈ |Sign|,
by setting SEN(X) = FmL(X)∅ and at the morphism level, given f : X ⇁ Y ∈
Mor(Sign), by letting SEN( f ) : SEN(X) → SEN(Y) be given, for all φ ∈ FmL(X)∅,
by SEN( f )(φ) = f ∗

∅ (φ).

By a result presented in [30], Sign is the Kleisli category of an algebraic theory
in monoid form that corresponds to the variety of all algebras over the signature
of cylindric algebras. The different sets that form the relational signatures become
then generators of corresponding absolutely free algebras. We may generate a
quasi-povariety of pofunctors that contains all pofunctors corresponding to cylindric
algebras by imposing the appropriate logical and extra-logical quasi-inidentities over
the cylindric signatures. The logical ones are

x � x

x � y, y � z → x � z

x1 � y1, x2 � y2 → x1 + x2 � y1 + y2

x1 � y1, x2 � y2 → x1 · x2 � y1 · y2

x � y → −y � −x

and the extra-logical ones consist of

x � y → y � x

together with all inidentities that form axioms of cylindric algebras (see, e.g.,
Section 3 of [30] and also [19]).
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27. Prucnal, T., Wroński, A.: An algebraic characterization of the notion of structural completeness.

Bull. Sect. Log. 3, 30–33 (1974)
28. Taylor, W.: Equational logic. Houst. J. Math. (1979)
29. Voutsadakis, G.: A categorical construction of a variety of clone algebras. Sci. Math. Jpn. 8,

215–225 (2003)
30. Voutsadakis, G.: On the categorical algebras of first-order logic. Sci. Math. Jpn. 10, 47–54 (2004)

http://www.math.iastate.edu/dpigozzi/
http://www.math.iastate.edu/dpigozzi/


Order

31. Voutsadakis, G.: Categorical abstract algebraic logic: categorical algebraization of first-order
logic without terms. Arch. Math. Log. 44(4), 473–491 (2005)

32. Voutsadakis, G.: Categorical abstract algebraic logic: Tarski congruence systems, logical mor-
phisms and logical quotients. Submitted to the Annals of Pure and Applied Logic. Available at
http://www.voutsadakis.com/RESEARCH/papers.html (Preprint)

33. Voutsadakis, G.: Categorical abstract algebraic logic: models of π-institutions. Notre Dame J.
Form. Log. 46(4), 439–460 (2005)

34. Voutsadakis, G.: Categorical abstract algebraic logic: generalized Tarski congruence systems.
Submitted to Theory and Applications of Categories. Available at http://www.voutsadakis.com/
RESEARCH/papers.html (Preprint)

35. Voutsadakis, G.: Categorical abstract algebraic logic: (I,N )-algebraic systems. Appl. Categ.
Struct. 13(3), 265–280 (2005)

36. Voutsadakis, G.: Categorical abstract algebraic logic: Gentzen π-Institutions. Available at
http://www.voutsadakis.com/RESEARCH/papers.html (Preprint)

37. Voutsadakis, G.: Categorical abstract algebraic logic: full models, frege systems and metalogical
properties. Rep. Math. Log. 41, 31–62 (2006)

38. Voutsadakis, G.: Categorical abstract algebraic logic: prealgebraicity and protoalgebraic-
ity. To appear in Studia Logica. Available at http://www.voutsadakis.com/RESEARCH/
papers.html (Preprint)

39. Voutsadakis, G.: Categorical abstract algebraic logic: more on protoalgebraicity. To appear
in the Notre Dame Journal of Formal Logic. Available at http://www.voutsadakis.com/
RESEARCH/papers.html (Preprint)

40. Voutsadakis, G.: Categorical abstract algebraic logic: protoalgebraicity and leibniz theory sys-
tems. Sci. Math. Jpn. 62(1), 109–117 (2005)

41. Voutsadakis, G.: Categorical abstract algebraic logic: the largest theory system included in a
theory family. Math. Log. Q. 52(3), 288–294 (2006)

42. Voutsadakis, G.: Categorical abstract algebraic logic: partially ordered algebraic systems. Appl.
Categ. Struct. 14(1), 81–98 (2006)

43. Voutsadakis, G.: Categorical abstract algebraic logic: closure operators on classes of
PoFunctors. Submitted to Algebra Universalis. Available at http://www.voutsadakis.com/
RESEARCH/papers.html (Preprint)

44. Voutsadakis, G.: Categorical abstract algebraic logic: subdirect representation of PoFunctors.
To appear in Communications in Algebra. Available at http://www.voutsadakis.com/
RESEARCH/papers.html (Preprint)

http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html
http://www.voutsadakis.com/RESEARCH/papers.html

	Categorical Abstract Algebraic Logic: Ordered Equational Logic and Algebraizable PoVarieties
	Abstract
	Introduction
	Syntax and Semantics
	Order HSP Theorem
	Order SLP Theorem
	Algebraizable PoVarieties
	Examples
	Povarieties and Quasi-Povarieties of Universal Algebras
	Equational Logic
	First-order Logic Without Terms

	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


