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George Voutsadakis Categorical Abstract 
Algebraic Logic: 
Prealgebraicity and 
Protoalgebraicity 

Abstract. Two classes of 7r-institutions are studied whose properties are similar to 
those of the protoalgebraic deductive systems of Blok and Pigozzi. The first is the class 
of iV-protoalgebraic 7r-institutions and the second is the wider class of iV-prealgebraic 
7r-institutions. Several characterizations are provided. For instance, iV-prealgebraic tt- 
institutions are exactly those tt- institutions that satisfy monotonicity of the TV-Leibniz ope- 
rator on theory systems and A/-protoalgebraic 7r-institutions those that satisfy monotoni- 
city of the AT- Leibniz operator on theory families. Analogs of the correspondence property 
of Blok and Pigozzi for 7r-institutions are also introduced and their connections with pre- 
and protoalgebraicity are explored. Finally, relations of these two classes with the (J, N)- 
algebraic systems, introduced previously by the author as an analog of the «S-algebras 
of Font and Jansana, and with an analog of the Suszko operator of Czelakowski for n- 
institutions are also investigated. 

Keywords: algebraic logic, equivalent deductive systems, equivalent institutions, protoalge- 
braic logics, equivalential logics, algebraizable deductive systems, adjunctions, equivalent 
categories, algebraizable institutions, Leibniz operator, Tarski operator, Leibniz hierarchy. 
2000 AMS Subject Classification: Primary: 03G99, Secondary: 18C15, 68N30. 

1. Introduction 

One of the most important contributions of the theory of abstract algebraic 
logic, as developed by Czelakowski, Blok and Pigozzi and Font and Jansana, 
among others, has been the use of the Leibniz operator [3] in classifying 
logics in different steps of a hierarchy that roughly reflects the extent to 
which a logic may be studied using algebraic methods. The most important 
steps in this hierarchy, known as the Leibniz hierarchy, are the classes of 
protoalgebraic [2] (see also [7]), equivalential [6] and algebraizable [3] logics. 
The book by Czelakowski [8] and the survey article by Font, Jansana and 
Pigozzi [14] provide overviews of the theory and the Leibniz hierarchy. 
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A schematic representation of the different main levels is given below, where 
an arrow represents an inclusion relation between two classes. 

finitely algebraizable 

finitely equivalential algebraizable 

equivalential weakly algebraizable 

protoalgebraic 

As shown in the diagram, the class of protoalgebraic logics is the widest 
of all classes and is located at the bottom of the Leibniz hierarchy. There is, 
by now, enough evidence in the literature to suggest, as Font, Jansana and 
Pigozzi put it in [14], that the protoalgebraic logics "constitute the main 
class of logics for which the advanced methods of universal algebra can be 
applied to their matrices to give strong and interesting results" . 

A taste of the strength of these results may be acquired by mentioning a 
few characterizing properties of protoalgebraic logics. First, by their original 
definition [2], a sentential logic S = (£, hs) is protoalgebraic if, for every 
theory T of <S, and all ̂ -formulas </>, ip € Fm£(V), 

(0, V) e n(T) implies T, (f) \-s ip, 

i.e., if two formulas are congruent modulo the Leibniz congruence ft(T), then 
they are interderivable modulo the theory T, for every theory T of <S. 

Another important property that turns out to be equivalent to protoal- 
gebraicity is the monotonicity of the Leibniz operator on the theories of the 
logic. More precisely, S is protoalgebraic iff, for all theories T\,T<i of <S, 

Ti C T2 implies ft(Ti) C Q(T2). 

Yet another characterization, closely related to the monotonicity of the Leib- 
niz operator, is meet-continuity of the Leibniz operator on the theories of 
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the logic. That is, S is protoalgebraic iff, for every collection {Ti}iei of 
theories of <S, 

f|n(ri) = n(nri). 
iei iei 

A more algebraic consequence of protoalgebraicity is that, for every £- 
algebra A = (A, £A), the lattice of all «S-filters on A including a given 
5-filter F is isomorphic to the lattice of all <S-filters on the quotient algebra 
A/nA(F) including the 5-filter F/nA(F). 

In terms of the Tarski operator £), introduced by Font and Jansana in 
[13], the protoalgebraicity of a sentential logic S may be characterized by 
the property that, for every theory T of <S, 

n(ST) = J2(T), 

where ST = (£, H-^t), is defined, for every $ U {(/>} C Fm£(F), by 

$ \-st (f) iff T, $ h$ 0. 

This characterization has the important consequence that S is protoalgebraic 
iff for any C- algebra A, every full model of S over A consists of a principal 
filter of the lattice of all S-filters on A (Theorem 3.4 of [13]). 

The present paper proposes an extension of the aforementioned results in 
order to cover the case of logical systems formalized as ̂ -institutions [12] (see 
also [15, 16]). It is the first paper dealing directly with introducing an analog 
for the 7r-institution framework of a specific class of the existing Leibniz 
hierarchy of sentential logics. However, it is one of the concluding papers 
of a long series undertaken by the author with the goal of adapting general 
definitions, methods and results widely applied to the theory of algebra- 
izability of deductive systems to 7r-institutions. In [18] (see also [19, 20, 21]) 
the first elements of the use of abstract algebraic logic methods for studying 
the algebraizability of institutional logics were presented. These included 
the notion of deductive equivalence between ̂ -institutions, that parallels the 
notion of equivalence for fc-deductive systems of [4], and a characterization 
of deductive equivalence using the theory categories of the ^-institutions, 
also adapted by similar results of [3] on algebraizable deductive systems. 
It also included the notion of an algebraic ?r-institution, based on concepts 
borrowed from categorical algebra, and that of an algebraizable ̂-institution. 
However, no analog of the Leibniz or the Tarski operator had been introduced 
and this made the efforts for creating close analogs of the main results of 
the theory of algebraizable deductive systems for ̂ -institutions impossible. 
The paper that did introduce such an analog for the first time was [22] (see 
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also [24] for an attempt at generalizing). After the theory was equipped with 
a Tarski operator, a series of results unfolded, paralleling the development of 
the theory of general algebraic semantics for sentential logics of [13]. In [23], 
the main elements of the model theory of 7r-institutions were presented from 
the point of view of a categorical algebraizability theory for 7r-institutions. 
Very important among these, were the notions of a min and of a full model 
of a 7r-institution, both borrowed by [13] and adapted to the categorical 
theory. Min models were called basic full models by Font and Jansana and 
the name was only modified for mnemonic purposes, but the close analogy 
remains. In [25], the notion of an (J, iV)-algebraic system was introduced, 
paralleling the notion of an <S-algebra from the sentential logic framework. 
This made possible the formulation of a theorem relating full models with 
appropriately chosen congruence systems (Theorem 13 of [25]), adapting the 
main Isomorphism Theorem 2.30 of [13]. Finally, in [27], the full models of 
a 7r-institution and their relation with various metalogical properties were 
studied. 

All the machinery developed in the theory so far is now put into motion 
in order to classify 7r-institutions into classes forming a categorical Leibniz 
hierarchy, paralleling the classification of deductive systems offered by ab- 
stract algebraic logic. In the present work, an analog of the lowest step, the 
class of protoalgebraic deductive systems, is introduced for 7r-institutions 
and several of the properties established for that class are either directly 
adapted and shown to be true for protoalgebraic 7r-institutions or are modi- 
fied and explored inside the 7r-institution framework. There is good evidence 
from the results established here (combined with the evidence gathered over 
the last two to three decades in the deductive system framework) that this 
may be the right class to be placed at the bottom of an institutional Leibniz 
hierarchy. 

Next, a brief outline of the contents of the paper is presented. In Sec- 
tion 2, the definition of the Tarski iV-congruence system of a ^-institution 
X [22] is adapted to obtain the Leibniz N- congruence system oil associated 
with a given axiom family of X. These two are in a relation similar to the 
one between Tarski and Leibniz congruences of sentential logics. A charac- 
terization of the Leibniz TV-congruence system of an axiom family is given, 
adapting the well-known characterization of the Leibniz congruence of Blok 
and Pigozzi [3] and the subsequent characterization of the Tarski operator 
of 7r-institutions of [22] that was inspired by it. In Section 3, the classes 
of N-prealgebmic and N- protoalgebraic 7r-institutions are defined. The defi- 
nitions follow the definition of protoalgebraic logics of Blok and Pigozzi [2]. 
The reason why two classes, instead of a single class, are investigated in 
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the 7r-institution context is that one may consider interderivability of two 
given sentences relative to all theory families (TV-protoalgebraicity) or just 
relative to all theory systems (iV-prealgebraicity), which form a subclass of 
the class of all theory families. Accordingly, iV-protoalgebraicity is chara- 
cterized by the monotonicity of the Leibniz iV-congruence system operator 
on all theory families of J, whereas iV-prealgebraicity is characterized by the 
monotonicity of the Leibniz TV-congruence system operator on the sublattice 
of theory systems. In Section 4, the correspondence property of Blok and 
Pigozzi [2] is adapted to 7r-institutions and the family N- correspondence and 
the system N- correspondence properties are introduced, together with their 
strong versions, also reflecting the aforementioned duality between families 
and systems. It is shown that the strong system iV-correspondence property 
implies iV-prealgebraicity, that the strong family AT-correspondence prop- 
erty implies iV-protoalgebraicity and, finally, that iV-protoalgebraicity im- 
plies the family iV-correspondence property in the interesting special case 
of a finitary iV-rule based 7r-institution, a concept first introduced in [31]. 
Besides establishing this hierarchy of 7r-institutions, another interesting re- 
sult of the investigations in Section 4 is that, given a finitary iV-rule based 
7V-protoalgebraic 7r-institution X and a theory system T of J, the lattice of 
all theory families of J containing T is isomorphic to the lattice of all theory 
families of 1? /VlN (T), an analog of a well-known property of protoalgebraic 
logics (see [2] and, also, the discussion on page 55 of [13]). In Section 5, 
a result of Font and Jansana relating the class Alg(<S) of <S-algebras, i.e., 
algebra reducts of reduced full models, and the class Alg*(<S) of the algebra 
reducts of the reduced matrices of a given sentential logic <S, is explored in 
the 7r-institution framework. (J, iV)-algebraic systems, introduced in [25] 
by the author as analogs of «S-algebras, come in handy, but an extension of 
the notion of an algebra in Alg*(«S) is also needed. This is introduced in 
the notion of an (I, N)*- algebraic system. Finally, in Section 6, an analog 
of the Suszko operator of Czelakowski [8] is introduced and its relation to 
the Leibniz TV-congruence system operator is explored for 7V-protoalgebraic 
vr-institutions. This provides an analog of Theorem 1.5.4 of [8]. 

Finally, it is mentioned that further properties of 7V-protoalgebraic tt- 
institutions are investigated in a companion paper [28]. There, the present 
line of research is continued with analogs of more syntactically oriented pro- 
perties of sentential logics that are connected to protoalgebraicity in various 
ways. Following similar leads from the general theory of sentential logics, 
analogs of the classes of equivalential logics of Czelakowski [6] and of weakly 
algebraizable logics of Czelakowski and Jansana [11] for the ^-institution 
framework are introduced and investigated in [30] and [29], respectively. 
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For all unexplained categorical notation, the reader is referred to any of 
the standard references [1, 5, 17]. 

2. Leibniz Congruence Systems 

To introduce Leibniz iV-congruence systems, which will play a crucial role in 
defining protoalgebraic 7r-institutions, we first recall the notion of a Tarski 
TV-congruence system and its characterization from [22] . 

Let Sign be a category and SEN : Sign -  Set a functor. The clone 
of all natural transformations on SEN is defined to be the locally small 
category with collection of objects {SENa : a an ordinal} and collection 
of morphisms r : SENa -  SEN^ /^-sequences of natural transformations 
n : SENa -> SEN. Composition 

fa:i<(3) ̂- _ (a, : j < 7) 
SEN" - - fa:i<(3) 
			 ^- SEN'3 

_ - - 
			 : - SEN^ 

is defined by 

(aj :j<-y)o(Ti:i<P) = ((Jjifa : i < /?)) : j < 7). 

A subcategory N of this category containing all objects of the form SENfc 
for k < a;, and all projection morphisms pk'% : SENfc - » SEN, i < /c, A: < a;, 
with p£* : SEN(E)fc -^ SEN(E) given by 

p^(0) = 0f, for all <?6SEN(E)fc, 

and such that, for every family {ti : SEN* -  SEN : i < 1} of natural 
transformations in TV, the sequence fa : i < 1) : SENfc - > SEN' is also in A/", 
is referred to as a category of natural transformations on SEN. 

Let Sign be a category, SEN : Sign - > Set be a functor and N be a 
category of natural transformations on SEN. Given E G |Sign|, an equi- 
valence relation 9% on SEN(E) is said to be an iV-congruence if, for all 
a : SEN* -+ SEN in N and all 0, <$ e SEN(S)*, 

0^-0 imply crs(^) 0£ tfuWO- 

A collection 0 = {(E, 0e) : E G |Sign|} is called an equivalence system of 
SEN if 

• 0£ is an equivalence relation on SEN(S), for all E 6 |Sign|, 
• SEN(/)2(0El) C 0E2, for all El5E2 G |Sign|,/ G Sign(Ei,E2). 
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If, in addition, N is a category of natural transformations on SEN and 
0E is an TV-congruence, for all S G |Sign|, then 8 is said to be an TV- 

congruence system of SEN. By ConN(SEN) is denoted the collection of 
all iV-congruence systems of SEN. 

Let now X = (Sign, SEN, {Cx;}£€|Sign|) be a 7r-institution. An equiva- 
lence system 6 of SEN is called a logical equivalence system of X if, for 

allSe|Sign|,0,V>€SEN(E), 

((/>, %j)) G <9E implies CE ((/>) = CE ( V>) • 

An iV-congruence system of SEN is a logical iV-congruence system of X 
if it is logical as an equivalence system of X. 

It is proven in [22] that the collection of all logical iV-congruence sys- 
tems of a given ^-institution X forms a complete lattice under signature- 
wise inclusion and the largest element of the lattice is termed the Tarski 
iV-congruence system of X and denoted by QN(X). Theorem 4 of [22] fully 
characterizes the Tarski iV-congruence system of a 7r-institution. 

Theorem 1. [Theorem 4 of [22]] Let X = (Sign, SEN, {CE}E€|Sign|) be a n- 
institution, N a category of natural transformations on SEN and E 6 |Sign|. 
Then (far/)) € £l£(T) if and only if, for all £' 6 |Sign|, all f € Sign(E, £'), 
all natural transformations r : SENfc - > SEN in N, all x = (xo> • • • > Xk-i) € 
SEN(£')fc, and all i < fc, 

CrE'(^(xo,..-,Xi-iJSEN(/)(0)Jx»+i,...,Xib-i)) = 

CE/(7s/(xo,.--,Xi-i,SEN(/)(^),x»+i,-.-,Xfc-i))- 
(i) 

Equation (i) will be abbreviated to 

Cs,(7s,(SEN(/)(*), x)) = Cjy (t* (SEN(/)(V0, x)), (") 

with implicit the understanding that SEN(/)(0), on the left hand side, and 
SEN(/)(/0), on the right hand side, may appear in a different than the first, 
but in the same, place in both sides of the equation. 

Let X = (Sign, SEN, C) be a ?r-institution and N a category of natural 
transformations on SEN. Recall from [27] that a collection T = {Tx;}EG|Sign| 
of subsets TE C SEN(E), E 6 |Sign|, is called an axiom system of J if 

SEN(/)(TEl)CTE2, for all E:,E2 G |Sign|,/ € Sign(E!,E2). (iii) 

An axiom system is called a theory system [26] if, in addition, TE is a 
E-theory, for every S G |Sign|. 
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To refer to a collection T = {T:c}EG|Sign| of subsets TE C SEN(E) that 
do not necessarily satisfy Condition (iii) we will use the term axiom family 
(and theory family, if T% is a E-theory, for every E 6 |Sign|). 

The collection ThFam(X) of theory families of a 7r-institution X ordered 
by signature- wise inclusion forms a complete lattice ThFam(X) and the 
same holds for the collection ThSys(J) of all theory systems under signature- 
wise inclusion. Moreover it is not very hard to see that ThSys(J) forms a 
complete sublattice of ThFam(X). 

Proposition 2.1. LetX = (Sign, SEN, C) be a it -institution. The lattice 
ThSys(X) = (ThSys(X), <) of all theory systems of I ordered by signature- 
wise inclusion is a complete sublattice of the complete lattice ThFam(X) = 

(ThFam(X), <) of all theory families of I ordered by signature-wise inclusion. 

Proof. It suffices to show that the signature-wise intersection 

{n^h^lSignl 
iei 

of a collection {Tl : i G /} of theory systems of X is also a theory system of 
X and that the maximum element of ThFam(J) is also in ThSys(J). 

For the intersection, if £i,E2 € |Sign|,/ € Sign(Ei,E2) and <f> € 
SEN(Ei), with <f> e C\ieiTh^ we Set 0 e Th^ for all i € J, whence, since 
T* is a theory system, SEN(/)(0) G T^, for all i G /, whence SEN (f )(</>) G 

f)ieiTh2 and' therefore {f)iei Tx}xe\Sign\ is a theory system of J. 
As far as the maximum element of ThFam(J) is concerned, it is the 

theory family {SEN(E)}£e|Sign|> which is clearly a theory system of J.  

An iV-congruence system 9 on SEN is said to be compatible with the 
axiom family T, if, for all E G |Sign|, 0£ is compatible with Ts in the usual 
sense, i.e., if, for all E G |Sign|,0, ^ G SEN(E), 

(^, V>) € 0e and (j) G TE implies ip G TE. 

The following proposition asserts that there always exists a largest N-con- 
gruence system on SEN that is compatible with a given axiom family T. 

Proposition 2.2. Let X = (Sign, SEN, {C£}£€|Sign|) be a tv -institution, 
T = {TE}S€|sign| an axiom family ofX and N a category of natural trans- 
formations on SEN. The collection ConN(T) of all N -congruence systems 
of X that are compatible with T forms a complete lattice ConN(T) under 
signature-wise inclusion. Moreover, ConN(T) is a principal ideal of the 
complete lattice ConN(SEN). 
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Proof. If 0\i e J, are in ConN(T), then f\ei0i e ConN(T), since, it is 
obviously an equivalence family of SEN, it is preserved by every morphism 
in Sign and by JV, since every 9l,i € /, is, and, finally, if (fail?) € Cliei^h 
and <j) e Te, then (<f>,il>) 6 0E, for all i € /, whence, since 0l is compatible 
with T, ^ 6 Is as well. Therefore Die/ ^ ^s a^so compatible with T. 

It suffices, therefore, to show that ConN(T) has a greatest element. The 
signature- wise union of every signature- wise directed subset of Con^T) is an 
upper bound for that subset in ConN(SEN) and it is in Con^T), since every 
member of the subset is. So, by Zorn's Lemma, Con^(T) has a maximal 
element. If 0 ^ ff are two such maximal elements, then, it is not difficult 
to verify that their join rj as iV-congruence systems of SEN is compatible 
with T. This, however, contradicts the maximality of 0 and 0', since, clearly, 
0 < r] and 01 < tj. Therefore, the maximal element of Con^(r) is a largest 
element. 

That ConN(T) is a principal ideal of the complete lattice ConN(SEN) 
follows easily from the proof above.  

The largest iV-congruence system on SEN that is compatible with an 
axiom family T is called the Leibniz iV-congruence system of T and is 
denoted by QN(T). 

The following result is an analog of Theorem 1 characterizing the Leib- 
niz TV-congruence system of an axiom family T of a 7r-institution 1. Recall 
the convention adopted in Equation (ii) as it will be in force in the state- 
ment of Proposition 2.3. Let it also be mentioned that the origin of all 
characterization theorems of this kind may be found in Blok and Pigozzi's 
characterization theorem of their Leibniz operator [3]. 

Proposition 2.3. Suppose 1 = (Sign, SEN, C) is a -k -institution, N a cat- 
egory of natural transformations on SEN and T = {Tx;}£G|sign| an axiom 
family of 1. Then, for all E G |Sign|,0,^ 6 SEN(E), (</>,</>> £ ^(r) 
iff, for all E' e |Sign|,/ e Sign(S,S/),a : SEN* -> SEN in N and 
xeSEN(X')k-\ 

aE,(SEN(/)(0),x)eTE, iff <MSEN(/)(V0,x)€2b/. 

Proof. Let 0 = {0£}£e|Sign| be defined, for all E e |Sign|, by 

fe = {<^^>:os/(SEN(/)(0),x)€TE/ iff <rE, (SEN(/) (</>), x) € Ife/, 
for all E' € |Sign|, / 6 Sign(S, S7), a : SEN* -> SEN in TV, 
xeSENtE')*"1} 
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#E is obviously an equivalence on SEN(S), for every £ € |Sign|. More- 
over, it is not difficult to see that it is an ^-congruence, since, for all 
<j>o,...,<t>n-i,ipo,..., Vn-i € SEN(S), such that {<t>i,ipi) € 0£,t < n, r : 
SEN" -+ SEN in N and all £' € |Sign|,/ € Sign(S,E'),a : SEN* -» SEN 
in iV, x € SEN(S')fc~1, we have 

aE,(SEN(/)(T£(0)),x)erE, iff <7E,te'(SEN(/)"(0)),x)erE, 
iff aE/(TS'(SEN(/)"(^)),x)€TE, 
iff aE,(SEN(/)(rc(V;)),x)er^. 

0 is an TV-congruence system, since it is preserved, by definition, by every 
morphism in Sign and it is easily seen to be compatible with T. Therefore, 
since QN(T) is the largest iV-congruence system with this property, we get 
that 6 < QN(T). 

To show the reverse system of inclusions, suppose E E |Sign|, (0, ip) € 
Q%(T). Let Er € |Sign|,/ 6 Sign(E,E;),<7 : SENfc -> SEN in TV and x € 
SEN(E/)fc~1. Then, since QN(T) is, by definition, an A/'-congruence system 
of I, we get that (SEN(/)(0),SEN(/)(^)> € ^(T)- Thus' since fiE'(T) is 
an iV-congruence on SEN(E/), we obtain 

(aE,(SEN(/)(0),x),c7E,(SEN(/)(^),x)) 6 n%(T). 

Therefore, since ClN(T) is compatible with T, we, finally, obtain 

<7S'(SEN(/)(0),x)erE/ iff (jfi/(SEN(/)W,x)€rE/. 

Hence (0,^> 6 0E and fiN(r) < (9.  

Proposition 2.3, combined with Theorem 1, has the following interesting 
corollary that relates the Tarski iV-congruence of a ^-institution with the 
collection of all Leibniz TV-congruences associated with its theory families. 
This fact was already established by Font and Jansana for sentential logics 
in Proposition 1.2 of [13] immediately following their introduction of the 
Tarski operator for sentential logics. 

Corollary 2.4. Let X = (Sign, SEN, C) be a n -institution and N a cate- 
gory of natural transformations on SEN. Then 

nN(X) = p| nN(T). 
TGThFam(J) 
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3. iV-Protoalgebraic 7r-Institutions 

Recall from Section 3 of [26] (see also [27]) that, given a ^-institution X = 

(Sign, SEN, C) and an axiom system T = {Tx}ze\Sign\ of J, the closure 

system CT on SEN is defined, for all E G |Sign|, $ U {</>} C SEN(E), by 

0€Cf($) iff ^6CE(TEU$). 

The notation X? is used for the ^-institution X? = (Sign, SEN, CT). 
We now work towards characterizing the least theory system of a given 

7r-institution X that includes a given theory system T of X and a given set 
of So-sentences 3>o> for some distinguished signature So G |Sign| of X. 

Let I = (Sign, SEN, C) be a 7r-institution, T = {rE}EG|Sign| a theory 
system of J, So G |Sign| and $0 C SEN(S0). Define, for all E G |Sign|, 

if0'*0* = C^(|J{SEN(/)($o) : / € Sign(E0,E)}). 

It is now shown that r<Eo'^o> = {T^Eo'*o)}E(E|Sign| is the least theory system 
of J that contains the theory system T and is such that $o Q ^e00> • 

Lemma 3.1. LetX= (Sign, SEN, C) be a re -institution, T = {Ts}E€|Sign| a 

theory system ofX. For every Eo € |Sign| and $0 Q SEN(E0), r<E°»*°> is 
the least theory system ofX such that 

1. T< T<Eo'$o> and 

2. s0cTg°'*0>. 

PROOF. First, it is clear that T^FOi*o) is a E-theory, for all S G |Sign|. More- 
over, r^o^o) js a theory system of X, since, for every Si,E2 G |Sign|,/ G 
Sign(Ei, E2), we have that 

SEN(/)(lf °'*0>) = 
= SEN(/)(C£(|J{SEN(5)($o) : 5 e Sign(Eo,2i)})) 
C Cg2(SEN(/)((J{SEN(p)($o) : 9 € Sign(Eo,E!)})) 
= 

Cg((J{SEN(/5)($o) : P € SignCScEa)}) 
C cg((J{SEN(/l)($0) : h € Sign(S0, E2)» 

Since it is clear that T < r<E°-*°) and that $0 C r^°'*0>, it suffices, now, 
to show that, if T" is a theory system of J that satisfies Conditions 1 and 2, 
then T<Eo'*°> < V. 
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We have, by Condition 2, $o Q T^ . Thus, since T" is a theory system, 
for every E 6 |Sign|, / € Sign(S0,S), we have SEN(/)($0) Q T^. Hence, 
by Condition 1, T% being a E-theory such that Ts C T^, 

C£(U{SEN(/)($0) = / € Sign(E0,S)}) C 3£. 

Therefore, by the definition of T&°>*°\ T^'*0* < T".  

In case $0 = {<£o} £ SEN(E0) is a singleton, then, in place of r<E°^*°^, 
the simplified notation T^0^ will be used for the least theory system of X 
containing the given theory system T and such that 0o G J^o° 

° . 

A 7r-institution J = (Sign, SEN, C), with TV a category of natural trans- 
formations on SEN, is said to be 7V-prealgebraic if, for every theory system 
T = {rE}Ee|Sign| of J, every E € |Sign| and all 0, </> € SEN(E), 

(0,V>)€fi£(r) implies r<E'*> = T<E^>. (iv) 

On the other hand, a vr-institution I = (Sign, SEN, C), with TV a ca- 
tegory of natural transformations on SEN, is said to be 7V-protoalgebraic 
if, for every theory family T = {Tx;}x;€|Sign| of J, every E € |Sign| and all 
<^eSEN(E), 

(4>,1>)ea%(T) implies CE(TEU {</>}) = CE(TEU{^}). (v) 

By Theorem 1, a ^-institution X = (Sign, SEN, C), with N a category 
of natural transformations on SEN, always satisfies the property QN(X) < 
A(J), i.e., if, for all E G |Sign|,</>, </> € SEN(S), 

<^)€fi£(C) implies CE(0) = CE(</>). (vi) 

Thus, Equation (v) may be viewed as a localized version of Property (vi), 
as applied to an arbitrary theory family T of X. 

The Leibniz operator QN, perceived as an operator from the collection of 
all theory systems to the collection of all iV-congruence systems, is monotonic 
iff X is iV-prealgebraic. On the other hand, £lN, perceived as an operator 
from the collection of all theory families to the collection of all iV-congruence 
systems, is monotonic iff X is Af-protoalgebraic. This characterization of 
iV-protoalgebraicity forms an analog of the well-known characterization of 
protoalgebraic logics by Blok and Pigozzi [2]. The characterizations of iV- 
prealgebraicity and iV-protoalgebraicity constitute the contents of the fol- 
lowing two lemmas. 
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Lemma 3.2. [Characterization of Prealgebraicity] Suppose that X = 

(Sign, SEN, C) is a -n -institution and N a category of natural transforma- 
tions on SEN. X is N-prealgebraic iff, for all theory systems Tl,T2 ofX, 

Tl<T2 implies SlN (Tl) < QN(T2). 

Proof. Suppose, first, that X is iV-prealgebraic and that T1 <T2. To show 
that ft^T1) < SlN{T2), it suffices to show, by the definition of QN, that 

^(T1) is compatible with T2. To this end, let <f>,ip e SEN(E), such that 

(0, V) € ^(T1) and 0 6 T2. Then, by 7V-prealgebraicity, T^ = t£*'*\ 
whence, we get 

%l) e T^ (by the definition of T1™) 
= T^*} (by the hypothesis) 
C T^ (by the hypothesis) 
= T| (by the definition of T2<E'</>> , since <j> € T|). 

Suppose, conversely, that, for every theory systems Tl,T2 of J, if T1 < T2, 
then ft^T1) < fiN(T2). To show that, in this case, X is AT-prealgebraic, 
suppose that T is a theory system of I and that (0,-0) 6 Q^(T). Then, by 
the monotonicity of QN on theory systems, (0,^) e £)£(T<E'^). But, by 
definition of T^^\ <\> 6 T^ \ whence, by the compatibility property of 

f^(T<E'*>), ^ e Tf '0>. By symmetry 0 G T<?'+\ whence T<E^> = T^\ 
by the minimality of t^^\T^^\ as expressed by Lemma 3.1. Hence X is 
iV-prealgebraic.  

Lemma 3.3 characterizes 7V-protoalgebraicity in terms of the monotonic- 
ity of the Leinbiz operator QN on arbitrary theory families of a 7r-institution. 

Lemma 3.3. [Characterization of Protoalgebraicity] LetX = (Sign, SEN, C) 
be a it -institution and N a category of natural transformations on SEN. X 
is N-protoalgebraic iff, for all theory families Tl,T2 ofX, 

T1 < T2 implies ^(T1) < QN(T2). 

Proof. Suppose, first, that X is 7V-protoalgebraic and that T1 < T2. To 
show that ft^T1) < ^^(r2), it suffices to show, by the definition of QN, 
that ^^(r1) is compatible with T2. To this end, let <£,V € SEN(E), such 
that (0,-0) € ^e^1) and 0 € T|. Then, by iV-protoalgebraicity, we obtain 



228 G. Voutsadakis 

CE(r^ U {</)}) = Cy,{T^ U {</>}), whence, we get 

1> e CE(2^u {</>}) 
= CS(T^ U {</>}) (by the hypothesis) 
C CE(T| U {(/)}) (by the hypothesis) 
= T2 (since 0eT2). 

Suppose, conversely, that, for all theory families Tl,T2 oil, if T1 < T2, 
then ft^T1) < ft^T2). To show that, in this case, X is JV-protoalgebraic, 
let T be a theory family of J and suppose that (</>,?/>) € ^xfCO. Consider 
the theory family T^^ with r[<E>^] = {T^^^si^, where 

T[(^)]_f rE/, ifs^s 
E/ "I cE(rEu {(/>}), ifE/ = E 

Then, since (</>,rl>) G fi^(T), by the monotonicity of QN on theory families, 
we obtain (</>,V>) € n%{T^W). But, by definition of T^^\ <f> € T^E>*>], 
whence, by the compatibility property of fiN, ^ 6 rjp'^1, i.e., ^ 6 CE(TE U 

{</>}). By symmetry 0 6 Ce(Te U {V7})? whence 1 is iV-protoalgebraic.  

The following corollary is now obtained, which one may also prove di- 
rectly from the relevant definitions, since every theory system is a theory 
family and the action of the iV-Leibniz operator on theory systems is the 
restriction of its action on theory families. 

Corollary 3.4. // a n -institution 1 = (Sign, SEN, C), with N a cate- 
gory of natural transformations on SEN, is N -protoalgebraic, then it is N- 
prealgebraic. 

That is the following two-step hierarchy of sub-protoalgebraic ?r-insti- 
tutions exists 

iV-Protoalgebraic (vii) 

iV-Prealgebraic 
It should be noted here that the prefix "JV- " cannot be avoided when 

referring to the notions of 7V-prealgebraicity and iV-protoalgebraicity, since 
TV, which plays the role of the "algebraic part", depends on the ^-institution 
but is not part of it. Hence the classification proposed is not a real classifi- 
cation of all 7r-institutions. In fact, on the one hand, for every Set-valued 
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functor SEN and every category of natural transformations TV on SEN, the 
sentence functor of all TV-protoalgebraic and TV-prealgebraic 7r-institutions 
is SEN. On the other hand, there can be two categories of natural trans- 
formations TV and TV' on SEN, such that X is TV-protoalgebraic but not 

TV'-protoalgebraic and similarly with prealgebraicity. 
The monotonicity of the Leibniz operator on theory systems and its 

monotonicity on theory families are equivalent, respectively, to its meet- 
continuity with respect to collections of theory systems and to its meet- 
continuity with respect to collections of theory families. 

Lemma 3.5. Suppose that X - (Sign, SEN, C) is a -n -institution and TV a 

category of natural transformations on SEN. X is 

1. N-prealgebraic iff, for every collection {T* : i e 1} of theory systems 
ofi,nN(nieITi) = nieInN(Ti). 

2. N-protoalgebraic iff, for every collection {Tl : i e 1} of theory fami- 
ues of i, fi^riie/r*) = nie/^cn- 

Proof. We only show the equivalence in Part 1. A similar argument estab- 
lishes that of Part 2. 

Suppose that X is TV-prealgebraic and {Tl : i € /} is a collection of 

theory systems of X. Then, we have f]ieI Tl <T\ for every i G /, whence, by 
Lemma 3.2, nN(f)ieI Tl) < ^N(Tl), for alii € J, and, hence, QN((\€l Tl) < 

fl^/fl^CT*). On the other hand, f]^^^) is an iV-congruence system 
of SEN that is compatible with every T\ Therefore, it is compatible with 

P|iG/Ti. This, together with the definition of the Leibniz TV-congruence 
system, yields that f]ieI ^(T1) < SlN(C[i€l T{).  

The reader is reminded that, given a ?r-institution 2", by Thm is denoted 
the theorem system of J, i.e., Thm = {ThmE}£€|Sign| = {C£(0)}£e|Sign|- 

Combining the Tarski TV-congruence system of X together with the Leib- 
niz TV-congruence systems of its theory systems, TV-prealgebraicity and TV- 

protoalgebraicity are connected by the following proposition, providing an 

interesting partial analog of Proposition 3.1 of [13]. 

Proposition 3.6. Suppose X = (Sign, SEN, C) is a it -institution and TV a 
category of natural transformations on SEN. The following conditions are 
related by 1 -  2 <-> 3 -  4: 

1. X is N-protoalgebraic. 
2. For every closure system C on SEN, such that C < C", QN(C) = 

^(Thm'), where Thm7 = {C^(0) : E e |Sign|}. 
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3. For all theory systems T ofX, hN(CT) = QN(T). 

4- X is N-prealgebraic. 

Proof. 1 - > 2: Assume that X is 7V-protoalgebraic. Suppose that C is a 
closure system on SEN, such that C < C \ and let Thm' = {C^(0) : 
E e |Sign|}. By the definition of the Leibniz and of the Tarski 

iV-congruence systems, it is clear that QN(C) < iV^Thm'). For 
the reverse inclusion, note that for every theory family T1 of C", 
we have that Thm' < T7', whence, by the TV-protoalgebraicity of 
I and Lemma 3.3, ft^(Thm') < QN(T). Therefore ftN(Thm') < 

f|T/ nN(T) = £iN(C'), the last equality holding by Corollary 2.4. 

2 -  3: This is obvious, since C < CT and T is the theorem system of CT . 

3 -  2: This is also obvious, since, for all closure systems C on SEN, such 
that C < C", the theorem system Thm' of C" is a theory system of 
1 and CThm/ = C. 

3-^4: Let T, V be theory systems of J, such that T < T. Then V is 
a theory family of J7 ', whence QN(T) = £lN(T?) < QN(T), by 
hypothesis and by Corollary 2.4. Therefore, by Lemma 3.2, I is 

7V-prealgebraic.  

4. The Correspondence Property 

Protoalgebraicity allows the formulation of a correspondence between the 

theory families of a finitary iV-rule based vr-institution X containing a given 
theory system T and the theory families of the quotient of the induced tt- 
institution X? by its logical iV-congruence system QN(T). To formalize this 
result, we first remind the reader of some of the relevant definitions and 
results from previous work. 

Recall, once more, from Proposition 2 of [27], that by X? is denoted 
the 7r-institution X? = (Sign, SEN, CT) induced by a 7r-institution X = 

(Sign, SEN, C) and one of its axiom systems T. It is important to note 
that this construction is only valid if T is an axiom system but cannot be 
carried out if T is an arbitrary axiom family. Obviously, if V is a theory 
family of 2^, then T < T1 . Therefore, if X is iV-protoalgebraic, we get 
that CtN(T) < nN(T'). This shows that CtN(T) is an iV-congruence system 
of SEN that is compatible with CT, i.e., CtN(T) is a logical AT-congruence 
system of X7". This may also be seen directly by using the implication 1 - » 3 
of Proposition 3.6, since the Tarski TV-congruence system of a 7r-institution 
is, by definition, a logical TV-congruence system. Thus, by Proposition 22 



CAAL: Prealgebraicity and Protoalgebraicity 231 

of [22], for X iV-protoalgebraic, it makes sense to define the logical quotient 
7r-institution i1 /QN(T) of 2? by QN(T). The possibility of carrying out 
this construction in the case of iV-protoalgebraic ̂ -institutions is the main 
motivation why they (and not the iV-prealgebraic ones) are at the focus of 
our investigations in the present paper and its companion [28]. 

In Definition 2.3 and Theorem 2.4 of [2], Blok and Pigozzi gave a chara- 
cterization of protoalgebraic deductive systems in terms of the correspon- 
dence property. Their definition is adapted here to the 7r-institution frame- 
work and, as a consequence, the system iV-correspondence property, the 
family iV-correspondence property and their strong versions are formulated 
for 7r-institutions. Inspired by the characterization theorem for protoalge- 
braic deductive systems in terms of the correspondence property, we for- 
mulate two results, one relating JV-prealgebraic 7r-institutions to the system 
iV-correspondence property and the other relating iV-protoalgebraicity to 
the family iV-correspondence property. These two results seem to reveal a 
refinement of the hierarchy for 7r-institutions, given in Diagram (vii), that 
partially contracts when one restricts attention to the vr-institutions associ- 
ated with sentential logics as in [22], Corollaries 5 and 6, since in that case 
there is no distinction between theory systems and theory families. How- 
ever, it is worth noting that these 7r-institutions have the trivial one-element 
category as their signature category, i.e., they do not take into account the 
algebra endomorphisms of the algebra reduct of the logical system consid- 
ered. If the endomorphisms are included in the signature category, then 
one immediately passes beyond the scope of the part of abstract algebraic 
logic based on the sentential logic framework (the traditional universal alge- 
braic part). This is because, in the sentential logic framework, there is no 
mechanism for dealing with the endomorphisms in the object language. 

It is worthwhile adding here that, if Is is the canonical ^-institution as- 
sociated with a sentential logic S in the sense of [19], Section 3, or [20], Sec- 
tion 2.1, then the notions of iV-prealgebraicity and iV-protoalgebraicity for 
7r-institutions of this form do not coincide, since theory families of Is are just 
theories of the sentential logic S whereas theory systems of Is are theories 
of S that are closed under substitutions. For instance, it is known that the 

{A, V}-fragment of classical propositional logic CPCav is not protoalgebraic 
and hence is not iV-protoalgebraic. But it is 7V-prealgebraic, since there are 
only two theory systems, {0} and {Fmc(V)}, which renders QN monotonic 
on theory systems. Therefore, despite the fact that iV-prealgebraicity is not 
as well behaved as iV-protoalgebraicity, its study may contribute something 
new to the study of sentential logics. 
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Next, it is shown, in preparation for further discussion, that inverse im- 
ages of theory families of 7r-institutions under singleton semi-interpretations 
are also theory families and that inverse images of theory systems under sin- 
gleton semi-interpretations are also theory systems. Recall from [22], Section 
4, the definition of a singleton semi-interpretation. 

Lemma 4.1. Suppose that! = (Sign, SEN, C), I7 = (Sign', SEN', C") are 
two 7T -institutions and (F, a) : 1}-S1' a singleton semi-interpretation. 

1. IfT is a theory family ofT, then a~l{Tf) = 
{^1(^F(E))}sG|Sign| 

is a theory family of I. 

2. IfT is a theory system of!1, then a"1^') = 
{as1(^(E))}E€|Sign| 

is a theory system of I. 

Proof. 1. For this part, it suffices to show that, for all £ € |Sign|, 
if </> € C^a^HTLj^)), then <f> € o^l(T'F^). Suppose, to this end, 
that <j) e C^(a^}(TfF{E))). Then, we have 

C C'^ia^iT^))) (since(F,a):JKJ') 
C C^(E)(r^(E)) (set-theoretic) 
= 

T^(E) (Tf a theory family). 

Thus, we have indeed that (f) e ^1(^F(E))* 
2. That ^s1(-^F(E)) ls a ^-theory was shown in the first part. Thus, it 

remains to show that a~1(T/) is a theory system. To this end, let 
Ei,E2 6 |Sign| and / E Sign(Ei,E2). Then we have 

aE2(SEN(/)(aE;(T;(Ei)))) 
= 

SEN/(F(/))(oEl(as11(IJ.(El)))) 
(a a natural transformation) 

C SEN/(F(/))(r^(Ei)) (set-theory) 
C TLE2, (Tf a theory system) 

whence, we get that SEN(/)(aE;(r;(Ei))) C a^T^) 
and oTl(T') is indeed a theory system.  

Next, the system and the family ̂ "-correspondence properties and their 
strong counterparts are introduced. 

Let X = (Sign, SEN, C) be a ?r-institution and TV a category of natural 
transformations on SEN. X is said to have the system iV-correspondence 
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property if, for every category Sign', every functor SEN' : Sign' -  Set and 

category of natural transformations N' on SEN', every surjective (iV, 7V')- 
epimorphic translation (F, a) : SEN ->se SEN', if C"min denotes the closure 
system of the (F, a)-min (iV, iV')-model of X on SEN', then for every theory 
system T oil and every S € |Sign|, 

"EHCSSteCTE))) = CE(TE UcZHCfifam)- 
1 is said to have the strong system TV-correspondence property if it 
has the system TV-correspondence property and, in addition, for every theory 
system T oil, if C'min denotes the (ISign,7r^(T))-min (^ Arn"(T))-model 
of JonSENQN(T),then 

(7rQNW)-l(C'm[n(®))<T. 

1 is said to have the family iV-correspondence property if the same 
condition as in the system iV-correspondence property holds with T ranging 
over arbitrary theory families of X, i.e., if, for every category Sign', every 
functor SEN' : Sign' - * Set and category of natural transformations N' 
on SEN', every surjective (iV, 7V')-epimorphic translation (F, a) : SEN - >se 
SEN', if C"min denotes the closure system of the (F, a)-min (TV, iV')-model 
of I on SEN', then, for every theory family T oil and every E 6 |Sign|, 

^'(^(oeCTe))) = Ce(Te Ua^CC^CG))). 

J is said to have the strong family iV-correspondence property if it 
has the family TV-correspondence property and, in addition, for every theory 
family T of J, if C'min denotes the (ISign,7rnN(T))-min (iV, A^N(r))-model 
of JonSEN^(T),then 

(7r^(T)rl(c/min(0))<T> 

We aim at showing that 

• the strong system iV-correspondence property implies iV-prealgebra- 
icity, 

• the strong family TV-correspondence property implies iV-protoalgeb- 
raicity and 

• in case X is finitary and iV-rule based, then iV-protoalgebraicity im- 
plies the family iV-correspondence property. 
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For the proofs of these results, some auxiliary lemmas will be used. These 
lemmas help formulate partial analogs for 7r-institutions of the two directions 
of the equivalence presented in Lemma 1.11 (iii) of [2]. 

Given a singleton translation (F, a) : SEN - »s SEN', recall, before pro- 
ceeding to the first lemma, the definition of the equivalence system 8^F'a\ 
from Section 6 of [22]. 
LEMMA 4.2. Let X = (Sign, SEN, C) be a it -institution, with N a category 
of natural transformations on SEN, and suppose that (F, a) : X - »se SEN' is 
a surjective (N,N')-epimorphic translation. If C'mm denotes the (F, a) -rain 
(N,Nf) -model ofl on SEN', then, for every theory family T ofl, 

^{C'^ia^T*))) = TE, for every E € |Sign|, 

implies that 6^F'°^ is compatible with T. 

Proof. Suppose that T e ThFam(J), such that 

<*vHCw)(<*e(Tz))) = TE, for every E e |Sign|. 

To show the compatibility of 0<F'a) with T, suppose that E 6 |Sign| and 

<l>,rl>e SEN(E), such that (0,</>) E 6{^a) and (j) <E TE. Then, we have, by the 
hypothesis, that aE(0) 6 a^{T^) = 

^^(^(Te)), whence, since (0,V>) G 

4F'a>, we get that aE(</>) € C^(aE(rE)), i.e., t/> € a^C^aE(TE))) 
= 

TE. Hence 0<F'a> is compatible with T.  

Recall, now, before proceeding to the second lemma, the definition of the 
closure system CR induced by a collection R of iV-rules of inference on a 
sentence functor SEN, where AT" is a category of natural transformations on 
SEN, defined via Proposition 2.2 of [31]. Recall also Definition 2.3 of [31], 
the definition of an N- rule based 7r-institution I = (Sign, SEN, C), with N 
a category of natural transformations on SEN. 

LEMMA 4.3. Let X = (Sign, SEN, C), with N a category of natural trans- 
formations on SEN, be a finitary N-rule based n -institution, and R an N- 
rule base forX. Suppose that (F,a) : X -+se SEN' is a surjective (N,N1)- 
epimorphic translation. If C'mm denotes the (F,a)-min (N,Nf) -model ofX 
on SEN', and R' corresponds to R via the (N, N')-epimorphic property, then 
C"min <CR' . 

PROOF. Suppose that CR' is the closure system on SEN' induced by R' as 
in Proposition 2.2 of [31]. To show that C"min < CR' , it suffices, by the 
minimality of C/min, to show that CR' is an (N, iV)-model of I via (F, a). 
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To this end, suppose that E € |Sign|,$ U {</>} C SEN(E), such that 
(j) € Ce($). Thus, by the finitarity of T, there exists * C^ $, such that 
</> G Ce(\I/). Now, by the AT-rule basedness, there exists a finitary N- 
rule (A» and $ 6 SEN(E)W, such that X^{$) C * and aE(0) = 0. 
Therefore, a£(-Xs(0)) C aE(\P) and o:e(0"s(<?)) = <*e(0). This implies 
that ^(E)(qje(^)) Q <*e(*) and ^Jr(s)(as(0)) 

= #£(</>)• Hence, since 

(X',a'> € #', aE(0) 6 C^E)(aE(*)) C C$E)(aE($)), which shows that 

CRf is a model of I via (F,q) and, therefore, by the minimality of C"min, 
that C/min < CRf. m 

Finally, the third lemma in the series, whose proof depends on Lemma 
4.3, is a partial converse to Lemma 4.2. 

LEMMA 4.4. Let X = (Sign, SEN, C) be a finitary N -rule based it -institution, 
where N is a category of natural transformations on SEN, and suppose that 

(F,a) :l-+se SEN' is a surjective {N,N')-epimorphic translation. If C"min 
denotes the (F,a)-min (N,N')-model ofX on SEN', then, for every theory 
family T of I, if 0^°^ is compatible with T, then 

^'(^(^(Te))) = TE, for every S € |Sign|. 

PROOF. Suppose that 0<F'a) is compatible with T. It will be shown, first, 
that oly,{Ty) is an F(E)-theory, for every E 6 |Sign|, i.e., that 

C^(aE(TE)) = osCZfc). (viii) 

To see this, we show that, if R is an iV-rule base of J, then as (2s) is closed 
under the iV'-rules R! and, then, use Lemma 4.3. 

To see that aE(Ts) is closed under the iV'-rules i?', suppose that 

({rV1,...,^-1},*) 

is an TV-rule in R and that ip e SEN/(F(E))u;, such that r£(E)($ € aE(TE), 
for all i < n. Then, by surjectivity of (F,a), there exists $ e SEN(S)u;, 
such that c*e(</>) = </>• Therefore, t^(E)(«e(0)) € as(rs), for all i < n, 

whence, Q^eC^eC^)) € <2e(7e), for all i < n. Now, using the compatibility 
of 0(F>a> with T, we obtain that r^((j)) G Te, for every i < n, whence, 
since ({r0^1, . . . ,rn~l},a) is an AT'-rule of J, we get that cte(</>) G Te. 
Hence aE(<7E(<?)) ̂ ^e(Te), i.e., a'F^(ax(<£)) € aE(Ts), which yields that 

aF(E)(^) ^ as(^s)- Thus, o:e(Te) is closed under all iV'-rules in Rl \ showing 
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that aE(TE) is an F(E)-theory of CR' . But, by Lemma 4.3, C'min < CR\ 
which implies that aE(TE) is also an F(S)-theory of C"min. This finishes the 
proof of Equation (viii). 

Now we have 

*eH^)(*e(Te))) 
= c^W^)) (by Equation (viii)) 
= Ty, (by the compatibility of 0<F'a> with T). 

 

This result yields the following corollary, showing that, in the case of a 
finitary TV-rule based ̂ -institution X the ordinary and the strong versions 
of the system and of the family iV-correspondence properties collapse to a 
single version. 

Corollary 4.5. Let X = (Sign, SEN, C), with N a category of natural 
transformations on SEN, be a finitary N-rule based tt -institution. 

1. X has the strong system N -correspondence property if and only if it 
has the system N -correspondence property. 

2. X has the strong family N -correspondence property if and only if it 
has the family N -correspondence property. 

PROOF. We will show that, if T is a theory family of X and if C"min denotes 
the (Isign,7r^(T))-min (iV,iV^(T))-model of X on SEN^T\ then 

(7r^(T))-i(cgnin(0)) Q T^ for aU E e |s.gn|^ 

We have that 0(lsiSn^N (T)) = ft^(T), whence it is compatible with T and, 
thus, by Lemma 4.4, we have that, for all E € |Sign|, 

Therefore 

(7rJ-(T)}-1(c,min(0)) = (irn* (T)rl(c,min(7r^(T)(0))) 
C (4N(T^C?H4N{T)(Tz))) = rE. 

 

Next, it will be shown that if a ^-institution X has the strong system 
iV-correspondence property, then it is iV-prealgebraic. This result forms a 
partial analog of part (in) =3> (z) of Theorem 2.4 of [2]. 
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Theorem 2. Let X = (Sign, SEN, C) be a is -institution and N a cate- 
gory of natural transformations on SEN. // X has the strong system N- 
correspondence property then it is N-prealgebraic. 

Proof. Suppose that X has the strong system iV-correspondence property 
and consider theory systems Tl,T2 of J, such that T1 < T2. Let Cmin 
denote the closure system of the (Isign> nQ (Tl))-min (iV, NQ (Tl))-model of 
X on SENfi (T ) . Then, by the strong system iV-correspondence property, 
for all E e |Sign|, 

and also (^"^^(Cg^W)) = T^. Therefore, we have that 

= cE(r|ur^) 
= C!c(Ig) 
= ?!• 

This shows, by Lemma 4.2, that the Leibniz TV-congruence system fi^T1) 
is compatible with T2 and, therefore, that ft^T1) < ^^(r2), proving that 
X is indeed iV-prealgebraic.  

Combined with Corollary 4.5, Theorem 2 immediately yields 

Corollary 4.6. Let X = (Sign, SEN, C), with N a category of natural 
transformations on SEN, be a finitary, N-rule based it -institution. IfX has 
the system N -correspondence property, then it is N-prealgebraic. 

Now, it will be shown that every ̂ -institution having the strong family 
iV-correspondence property is 7V-protoalgebraic and that every 7V-protoal- 
gebraic 7r-institution has the family ̂ /-correspondence property. This result 
forms a partial analog of (i) & (in) of Theorem 2.4 of [2]. 

Theorem 3. Let X = (Sign, SEN, C) be a tt -institution and N a category 
of natural transformations on SEN. 

1. If X has the strong family N -correspondence property then it is N- 
protoalgebraic. 

2. If X is finitary, N-rule based and N -protoalgebraic, then X has the 
family N -correspondence property. 
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Proof. The proof of the first part is carried out by following mutatis mu- 
tandis the steps in the proof of Theorem 2, but replacing system by family 
everywhere. So we will only prove carefully the second part. 

Suppose, next, that J is a finitary, TV-rule based, 7V-protoalgebraic vr-insti- 
tution. Let Sign' be a category, SEN' : Sign' - > Set a functor, N' a category 
of natural transformations on SEN' and (F, a) : SEN - >se SEN' a surjective 
(iV, iV')-epimorphic translation. Let T be a theory system of J. Denote by 
C"min the closure system of the (F, a)-min (AT, JV')-model of J on SEN'. We 
do have, for all £ € |Sign|, TE C a^iC^ia^T^))), and since C£g)(0) C 

C^(aE(TE)), 
we get that a? &$$)&)) Q a^^aE(TE))). 

This shows that 

CE(TE UojH^W)) C ̂ H^^CTe))). 

Suppose, on the other hand, that T" is a theory family of J, such that 
T,a-1(C'min(0)) < T (recall that a-1(C"min(0)) is a theory family of J by 
Lemma 4.1). Then 0<F'a> is compatible with a"1^"11'"^)). Thus, 0<F>Q> < 
nJV(a-1(C"lnin(0))). On the other hand, QN{a-1(Clndn^))) < nN(T'), by 
A^-protoalgebraicity. Therefore, ̂ <F'a> < nN(T'), and, since ConjV(T/) is an 
ideal of ConiV(SEN) generated by QN(T'), we obtain that 
0(F,<x) 6 ConN(T'). Thus, 9^a) is compatible with T', whence, we get, by 
Lemma 4.4, that oi^} (C'^){aT.{T^))) 

= TE. Hence, T < T implies that 

a-^C^CastTs))) C TE. Therefore, a^1 (C'^ia^Tj:))) is contained in 
all S-theories that contain both T% and a^,1 (C'wg)(®)) an(i, thus, 

^'(^"(^(Te))) C Ce(Te U^x(C?S(0))).  

It follows from Theorem 3, combined with Corollary 4.5, that iV-protoal- 
gebraicity and the family iV-correspondence property are equivalent once 
attention is restricted to finitary iV-rule based ^-institutions. This result 
forms a perfect analog of (i) «=> (Hi) of Theorem 2.4 of [2]. 

Corollary 4.7. Let X = (Sign, SEN, C), with N a category of natural 
transformations on SEN, be a finitary N-rule based n -institution. X has the 
family N -correspondence property if and only if it is N-protoalgebraic. 

Theorems 2 and 3 reveal the existence of the following refinement of the 
hierarchy of Diagram (vii) for classes of ?r-institutions: 
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Strong iV-Family Correspondence 

Strong TV-System Correspondence AT-Protoalgebraic 

^^ Finitary, iV-Rule Based 

iV-Prealgebraic iV-Family Correspondence (^x) 

Now, the following correspondence between theory family lattices may 
be established, which adapts Theorem 2.5 of [2] to vr-institutions. 

Corollary 4.8. Suppose that X = (Sign, SEN, C), with N a category 
of natural transformations on SEN, is a finitary, N-rule based, N-proto- 
algebraic n -institution and T a theory system ofX. Then V h-> T'/Qn(T) 
establishes a lattice isomorphism between the lattice of all theory families of 
X <-containing T and the lattice of all theory families ofX?/VtN{T). 

Proof. By the JV-protoalgebraicity of 1 it follows that T *-+ T'/QN(T) 
is well-defined, since, by Theorem 3, J has the family iV-correspondence 
property, which yields that T'/QN(T) is a theory family of l?/nN(T). It 
is straightforward to see that T" h-> T'/Qn(T) is order preserving. The 
mapping T" -> {0 : 0/fi£(T) 6 T"}, for all theory families T" oil?/SlN(T), 
is its inverse mapping and it is also order preserving.  

The isomorphism of Corollary 4.8 yields also an isomorphism between 
the lattice of all theory systems of X <-containing T and the lattice of all 
theory systems oiJ^/Q^iT). 

Corollary 4.9. Suppose that X = (Sign, SEN, C) is an N-protoalgebraic 
7T -institution and T a theory system ofX. Then V t-> T'/QN(T) estab- 
lishes a lattice isomorphism between the lattice of all theory systems of X 
<-containing T and the lattice of all theory systems ofXT/QN(T). 
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5. The Tarski Operator and Algebraic Systems 

Recall from [25] that, given a 7r-institution X = (Sign, SEN, C) and a cate- 
gory N of natural transformations on SEN, an (J, iV)-algebraic system is 
a functor SEN' : Sign' - > Set, such that there exists a singleton (JV, N1)- 
epimorphic translation (F, a) : SEN - >se SEN', such that the (F, a)-min 
(AT, N')-mode\ of J on SEN' is N'-reduced. The class of all (J, iV)-algebraic 
systems was denoted by Alg^(2"). 

Let X = (Sign, SEN, C) be a 7r-institution and TV a category of natural 
transformations on SEN. A functor SEN' : Sign' -  Set is said to be an 
(I, iV)*-algebraic system if there exist a category N' of natural transfor- 
mations on SEN', an (AT, iV)-epimorphic translation (F, a) : SEN ->*c SEN' 
and a theory family T of the (F, a)-min (N, N')-mode\ J'min of J on SEN', 
such that nN'(T') = ASEN/. The collection of all (J, iV)*-algebraic systems 
is denoted by AlgN(J)*. 

Those functors SEN' in AlgN(I) and in Alg^T)*, such that an (F,a)- 
min (iV, iV')-model J/min witnessing the membership is TV'-protoalgebraic are 
called (X,N)P- and (J, iV)*p-algebraic systems, respectively. The collection 
of all (J, iV)p-algebraic systems is denoted by Alg^T)^ and the collection 
of all (X, AT)*P-algebraic systems by Alg^Z)"*. 

Note that there could possibly exist two categories of natural transfor- 
mations N1 and N" on SEN', an (iV, iV')-epimorphic translation (F, a) : 
SEN -+se SEN' and an (iV, iV")-epimorphic translation (G,/3) : SEN -+se 
SEN', such that both the (F,a)-min (N,N')-model and the (G,/?)-min 
(JV, JV/;)-model of J on SEN' witness the membership of SEN' to AlgiV(X) 
(or Alg^J)*), the first being AT'-protoalgebraic and the second not being 
7V"-protoalgebraic. That is the reason why in the preceding paragraph the 
indefinite article "an" was used in reference to the witnessing model. 

It is now shown that, for every ̂ -institution X = (Sign, SEN, C), with 
N a category of natural transformations on SEN, the class of all (J, N)*- 
algebraic systems is a subclass of the class of all (J, iV)-algebraic systems. 
Thus, in particular, the class of all (J, iV)*p-algebraic systems is a subclass 
of the class of all (J, iV)p-algebraic systems. On the other hand, if SEN' 
is an (X, 7V)p-algebraic system, then it is also an (X, 7V)*p-algebraic system. 
Thus, the class of all ( J, iV)p-algebraic systems coincides with the class of all 
(J, iV)*p-algebraic systems. This is an analog of Proposition 3.2 of [13] for 
7r-institutions. (See also Theorem 3.4 of [14].) Note, however, the difference 
between the two cases. Roughly speaking, in the model theory of sentential 
logics every model of a protoalgebraic sentential logic is itself protoalgebraic, 
whereas this is not necessarily true in the model theory of 7r-institutions. 
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It is true, however, for models via surjective logical morphisms as will be 
shown in Proposition 5.5. 

This result is proved, following [13], by first showing that, for any n- 
institution X = (Sign, SEN, C), with N a category of natural transforma- 
tions on SEN, the class of all (X, 7V)*-algebraic systems is contained in the 
class of all (J, iV)-algebraic systems. This is the analog of Proposition 2.24 of 

[13]. Then, it is shown that TV'-protoalgebraicity forces the reverse inclusion. 

Proposition 5.1. Let X - (Sign, SEN, C) be a tt -institution and N a cat- 

egory of natural transformations on SEN. Then Alg^J)* C Alg^T). 

PROOF. Let SEN' : Sign' - Set be a functor in Alg^X)*. Suppose that 

(F, a) : SEN ->se SEN' is an (iV, A/^-epimorphic translation and that T is 
a theory family of the (F,a)-min (TV, A^-model X'm[n of I on SEN', such 
that QN'(T) = ASen'. We obviously have QN' (Ifmin) < QN' (V) and, thus, 
we obtain nN'(X'min) = ASEN/. Therefore, J'min is TV'-reduced and, by the 
definition of Alg"(J), SEN' is in AlgN(J).  

Proposition 5.1 immediately yields 

Corollary 5.2. Let X = (Sign, SEN, C) be a -n -institution and N a cate- 

gory of natural transformations on SEN. Then AlgN(J)*p C A\gN(X)p. 

The two classes compared in Corollary 5.2 are actually identical. 

Proposition 5.3. Let X = (Sign, SEN, C) be a it -institution and N a cate- 

gory of natural transformations on SEN. Then A\gN(I)*p = AlgN(T)p. 

Proof. Since, by Corollary 5.2, we have A\gN(X)*p C A\gN(I)p, it suffices 
to show that AlgN(J)P C AlgN(I)**\ To this end, let SEN' : Sign' -+ Set be 
in Alg^(J)p. Then, there exists an (AT, 7V')-epimorphic translation (F, a) : 
SEN -+se SEN', such that the (F,a)-min (AT, JV')-model I'min of X on SEN' 
is iV'-reduced and iV'-protoalgebraic. Thus, on the one hand, QN' (X'mm) = 

ASEN' and, on the other, by Proposition 3.6, ^'(Thm') = QN'(Tmin), 
where Thm' is the theorem system of J'min. Hence ^'(Thm') = ASEN/ and 
SEN' is in A\gN(X)*p.  

Next, a proposition (Proposition 5.5) is formulated to the effect that ev- 

ery (iV, 7V')-model X1 of an iV-protoalgebraic ̂ -institution X via a surjective 
(TV, iV')-logical morphism is iV'-protoalgebraic. Proposition 5.5 needs for its 

proof Lemma 5.4, which shows, roughly speaking, that the Leibniz operator 
commutes with inverse surjective logical morphisms. Lemma 5.5 will pro- 
vide the monotonicity of the Leibniz operator ClN on the theory families 
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of an (TV, N')-model X1 of a 7r-institution X via a surjective ( JV, iV')-logical 
morphism, given the monotonicity of fi^ on the theory families of X. 

Lemma 5.4. Let X = (Sign, SEN, C) be a it -institution, N a category of 
natural transformations on SEN and X1 = (Sign7, SEN7, C;) an (N,N')~ 
model ofX via a surjective (iV, N') -logical morphism (F, a) : I}-seXf. Then, 
for every theory family T of X' and every E € |Sign|, ^(a'1^')) = 

c>eW('e)(T7)). 

PROOF. First, note that, by Lemma 4.1, a~1(T') is a theory family of J, 
whence ftg(a-1(T')) is well-defined. 

For all S € |Sign|,</> € SEN(S), we have that, for all £' € |Sign|,/ 6 
Sign(S, E'), a : SENfc -» SEN in N and x € SEN(E/)fc~1, 

as,(^'(SEN(/)(0),x))€r;(E,) 

iff ^(E/)(a|,(SEN(/)(^),x)) € rF(sl) 
iff ^^asKSENl/)^)),^?1^)) € r^(E0 
iff </F(E/)(SEN/(F(/))(QE(0)),a*71(je)) 6^,) 

iff, by surjectivity and by the (iV, A^')-epimorphic property of (F, a), for 
all E" € |Sign'|,/' € Sign'(F(E),S"),o-' : SEN/fc -+ SEN' in N', f € 
SEN^E")*"1, 4«(SEN'(/')(aEW), j?) € 

3^,,. 
Now, using the characterization of Leibniz iV-congruence systems, given 

in Proposition 2.3, and the string of equivalences presented above, we get 
that, for all E € |Sign| and all <f>,xp € SEN(S), (cp,ip) 6 ng(a-1(Iv)) if 
and only if, for all E' € |Sign|, / € Sign(E, E'), <r : SENfc -» SEN in JV and 
X€SEN(£')fc-\ 

(7E,(SEN(/)(^), x) 6 a^CTV)) iff osy(SEN(/)(V), x) € cc^iT^), 

which holds if and only if, for all E' € |Sign|, / € Sign(S, E'), ° : SENfc -+ 
SEN in AT and x € SEN(E')fc"1, 

aE,(^'(SEN(/)(^), x)) € rnjy) iff aE/((Tsv(SEN(/)(V), x)) € r;(E,}, 

which is equivalent to, for all E" € |Sign'|,/' 6 Sign'(F(E),E"),o-' : 
SEN'fc -» SEN' in N', x' € SEN'(E")fc-1, 

aE,,(SEN'(/')(aE(^)),x*')€rE,, iff aE»(SEN'(/')(aE(t/;)),x') € TE,,, 

i.e., if and only if (aE(</»), as(V)> € n^E)(2v).  
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Now Lemma 5.4 is used to show, roughly speaking, that protoalgebraicity 
is preserved by surjective logical morphisms, by showing that monotonicity 
of the Leibniz operator is transferred to models via surjective logical mor- 
phisms. 

Proposition 5.5. Let 1 = (Sign, SEN, C) be a ir -institution, N a category 
of natural transformations on SEN and T = (Sign7, SEN', C) an {N,N')- 
model ofX via a surjective (iV, Nf)-logical morphism (F, a) : I)-seI'. IfX is 
N -protoalgebraic, then T is N' -protoalgebraic. 

PROOF. Suppose that T',T" are theory families of J', such that T < T" . 
Consider the theory families orl{T'),oTl(T") of J. We obviously have 

oTl(T') < a~l{T"), whence, by the 7V-protoalgebraicity of J, 

fi*(a-1(T')) < SlN{oT\T")). 

Thus, Lemma 5.4, combined with the surjectivity of (F, a), yields that 

QN'(T') < nN'(T') and T is indeed ^-protoalgebraic.  

Given a ^-institution J = (Sign, SEN, C) and N a category of natural 
transformations on SEN, and, in view of Propositions 5.5 and 5.3, those 
functors SEN' in AlgN(J) and in Alg*(J)*, such that an (F, a)-min (AT, N')- 
model X/mm witnessing the membership is via a surjective (TV, iV^-logical 
morphism are called (J, N)s- and (J, iV)*s-algebraic systems, respectively. 
The collection of (I, iV)s-algebraic systems is denoted by AlgiV(X)s and of 

(J, iV)*s-algebraic systems by AlgN(J)*s. 
The reader is advised to look back at the remarks made about the use 

of the indefinite article "an" towards the beginning of this section, when 

AlgN(l)p and A\gN(I)*p were defined. The same remarks apply in these 
case as well. 

Using these definitions, together with Proposition 5.5, and carrying out 
a proof almost identical to the proof of Proposition 5.3, we obtain 

Corollary 5.6. Let 1 = (Sign, SEN, C), with N a category of natural 

transformations on SEN, be an N -protoalgebraic ?r -institution. Then 

A\gN(i)*s = A\gN(iy. 

Note that, unlike the models referred to in Proposition 5.3, whose pro- 
perties are not intrinsically related to the properties of J, those referred to 
in Corollary 5.6 are in fact models that can be determined based entirely 
on the 7r-institution J at hand. This makes the result of Corollary 5.6 more 
attractive than that of Proposition 5.3. 
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6. Suszko Congruence Systems 

In the case of deductive systems, the equality of the Suszko operator with 
the Leibniz operator provides a necessary and sufficient condition for pro- 
toalgebraicity. This is the content of Theorem 1.5.4 of [8]. An analog of this 
theorem, providing a characterization of iV-protoalgebraic 7r-institutions in 
terms of the iV-Suszko operator, is provided in Proposition 6.4. The ele- 
ments of the theory of Section 1.5 of [8] that are needed to describe this 
partial analog of Theorem 1.5.4 are presented in this section. 

Before the exposition, a notational clarification: Czelakowski [8] uses 
the symbol S to denote the Suszko operator. Since E is heavily used in the 
present context to denote an arbitrary signature in |Sign|, we will denote the 
institutional operator corresponding to the Suszko operator of Czelakowski 
with 0 instead of E. Also recall, once more, the notational convention in 
effect from Equation (ii), since it will be once more in effect in the formulation 
of the definition of the institutional Suszko operator. 

Let 1 = (Sign, SEN, C) be a 7r-institution, N a category of natural 
transformations on SEN and T = {Tx;}£€|Sign| a theory family of X. Define 
the family of binary relations QN(T) = {©£ (T)}Ee|sign| by letting, for all 
Ee|Sign|,0,</>€SEN(E), 

(</>,</>> ee£(r) iff 
Cv(T*. U fe(SEN(/)(0,x)}) = CE'(TE, U fo/(SEN(/)W0,x)}), 

(x) 
for all E' 6 |Sign|,/ G Sign(S, E'),a : SEN* -> SEN in N and x € 
SEN(SOfc"1. 

It turns out that ©^(T), as defined above, is an iV-congruence system 
on SEN that is compatible with the theory family T. 

Proposition 6.1. Letl= (Sign, SEN, C) be air -institution, N a category 
of natural transformations on SEN and T = {7E}£e|Sign| a theory family of 
J. Then @N(T) is an N -congruence system on SEN that is compatible with 
the theory family T. 

Proof. First, it is clear that, for all E e |Sign|, ©^(T) is an equivalence 
relation on SEN(E). It is not very difficult to see that QN(T) is invariant 
under signature morphisms, whence QN(T) is an equivalence system on SEN. 
To show that it is an iV-congruence system on SEN, let r : SEN72 - > SEN be 
in TV, E € |Sign| and 0,^6 SEN(E)n. If (^,^) € e£(T),t < n, then, for 
all S' 6 |Sign|,/ 6 Sign(E,E'),a : SEN* -> SEN in N, x € SENtS')*"1, 
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and alii < n, 

Cv{Tv U W(SEN(/)(&),*)}) = CE,(TE, U {aE,(SEN(/)(^),x)». 

Hence, we have 

Cv{Tv Ufe(SEN(/)(7s(^),x)}) = 

= CSy(rE/U{a&(7fi/(SEN(/)w(0)),x)}) 
= CE,(TE, U {aE,(rE,(SEN(/)(^o), SEN(/)(0i), . . . , 

SEN(/)(0n_!)),x)}) 

= CE,(TE,U{aE,(SEN(/)(rE(^)),x)}) 

and, therefore, (rE(0),rE(^)) G 0E(T) and 0N(T) is an iV-congruence 
system on SEN. 

Finally, to show compatibility with T, suppose that E G |Sign|,</>, ̂ G 
SEN(E), such that (0,V>) G 0E(T), and <f> G TE. Taking a = i, the identity 
natural transformation, and / = iE, the identity signature morphism, in 
Condition (x), we get that, CE(TE U {(/)}) = CE(TE U {V>})> whence, since 
<j) € Tx and TE is a E-theory, we get that CE(rE U {^}) = TE. Therefore 
if) G TE, which shows that 6N(r) is compatible with T.  

QN(T) will be called the Suszko iV-congruence system correspon- 
ding to the theory family T. 0N, when viewed as an operator on the theory 
families of the ̂ -institution X, is called the iV-Suszko operator and, some- 
times denoted by Qj or 0^ if the closure system on SEN needs to be made 
transparent. 

Proposition 6.1 and the definition of the Leibniz iV-congruence system 
QN(T) of the theory family T immediately yield the following 

Corollary 6.2. Letl = (Sign, SEN, C) be a 7r -institution, N a category 
of natural transformations on SEN. Then @N(T) < QN(T), for every theory 
family T = {TE}EG|Sign| of I. 

The Suszko operator, unlike the Leibniz operator, and similarly with the 
deductive system framework, is always monotone on theory families of a 
7r-institution. 

Proposition 6.3. Let 2= (Sign, SEN, C) be air -institution, N a category 
of natural transformations on SEN. Then QN{Tl) < 0N(T2), for all theory 
families Tl,T2 ofl, such that T1 < T2. 
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PROOF. Let £ € |Sign|,0,V> € SEN(E) and suppose that (<f>,ip) € ©j^T1). 
Then 

cE,(rE, u {^(sen(/)(<^), x)}) = cE,(rE, u {^(sen(/)(v), *)}), 
for all E' € |Sign|,/ € Sign(E,E'),0- : SEN* -> SEN in iV and x € 
SENCE*)*"1. Therefore, 

<te,(SEN(/)(£),x) € Cs,(^,U{aEKSEN(/)(^),x)}) 
C CE,(r|,u{^(SEN(/)(^),x)}). 

This proves that 

CE,(T|, U foy(SEN(/)(0, x)}) C CE,(r|, U {aE,(SEN(/)(V>), *)}). 

The reverse inclusion follows by symmetry.  

Similarly with Theorem 1.5.3 of [8], the iV-Suszko operator 6^ of a 
7r-institution J may be characterized as the operator yielding the largest 
iV-congruence system, such that, when it identifies two E-sentences </> and 
$, then </) and i/> satisfy Cz(Tx U {</>}) = Ce(Te U {?/>}). 

Theorem 4. Le^ J = (Sign, SEN, C) be a it-institution, N a category of 
natural transformations on SEN. Suppose that, for every theory family T 
of I, ON(T) is an N -congruence system on SEN, such that, for all E £ 
|SignU,V€SEN(S), 

(4>,il>)eOg(T) implies CE(TE U W) = CE(TE U W). (xi) 

Then ON(T) < eN{T), for all theory families T of I. 

PROOF. Suppose that ON(T) is an iV-congruence system on SEN, satisfying 
Condition (xi), and that E 6 \Sign\, frip € SEN(E), such that {<f>,ip) € 
O^(T). Since ON(T) is an equivalence system on SEN, we have that, for 
all S' € |Sign|,/ € Sign(E,E'), <SEN(/)(<£),SEN(/)(V0> € Og,{T). Since 
ON(T) is an JV-congruence system on SEN, we get, for all a : SEN* -> SEN 
in iV and all x € SEN(S')fc~1, 

(^(SEN(/)(^),x),^(SEN(/)(^),x)> € Og,(T). 

Therefore, by the condition of the hypothesis, we obtain that 

Cv(Tx> U {as/(SEN(/)(0, *)}) = Cv(Tv U {aE-(SEN(/)(^),x)}), 

i.e., that (4>,^) € 0^(T). Therefore ON(T) < eN(T). m 
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And, finally, the analog of Theorem 1.5.4 of [8] for vr-institutions is now 
presented. 

Proposition 6.4. Let 1 = (Sign, SEN, C) be a it -institution, N a category 
of natural transformations on SEN. 1 is N-protoalgebraic if and only if for 
every theory family T ofl, 9N(T) = Q,N(T). 

Proof. The right-to-left implication is an easy consequence of Lemma 3.3 
and Proposition 6.3. 

Suppose, conversely, that 1 is JV-protoalgebraic. We have, by Corollary 
6.2, that QN(T) < QN(T), for all theory families T oil. So it suffices to 
prove that reverse system of inclusions. To this end, following the proof of 
Theorem 1.10 of [9], Theorem 4 will be used. According to Theorem 4, given 
a theory family T oil, to show that CtN(T) < 67V(T), it suffices to show 
that, for every theory family T of J, all E G |Sign| and all 0,V € SEN(E), 
{(j),il)) e QN(T) implies CE(TE U {</>}) = Ce(Te U {ip}). But this is exactly 
the condition in the definition of iV-protoalgebraicity.  
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