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.1 Introduction

The goal of the present work is to continue the study of N -Leibniz theory

systems of a given N -protoalgebraic π-institution that was initiated in [24],

along the lines of the theory of Leibniz filters of a protoalgebraic sentential

logic of [10]. In [10], Font and Jansana studied the Leibniz filters of a

protoalgebraic logic S = 〈L,`S〉. For such a logic, the Leibniz operator

need not be injective on the collection of S-filters on an L-algebra A. It is

therefore reasonable to single out those S-filters F on A that are included

in every S-filter on A having the same Leibniz congruence as F . These are

the Leibniz S-filters of A.

The work of Font and Jansana may be split into two major parts. In

the first part, the study of general properties of Leibniz filters is undertaken

and, in the second, the study of properties of the sentential logic S+ defined

by all those S-matrices of the form 〈A, F 〉, with F Leibniz, is carried out.

Font and Jansana called the logic S+ the strong version of the protoalge-

braic logic S. They were led to the introduction of S+ by their motivation

to explain a phenomenon observed in a variety of specific examples, e.g.,

modal logic, quantum logic and many-valued logic, among others, in which

logics come naturally in pairs, one stronger than the other, but with the

same theorems. It turns out that in these examples the strongest logic of

the pair is the strong version of the other logic in this specific formal sense.

Jansana in [14] continues the study started in [10].

The author in [24], inspired by [10], started a similar study of the N -

Leibniz theory systems of an N -protoalgebraic π-institution [22, 23]. [24]

covered the analogous development for π-institutions of the first part of

the work of [10]. In [25] some additional results were obtained on the

basic theory. The present work has the role of extending the categorical

theory along the lines of the second part of [10]. Thus, the aim is to

introduce an analog of the strong version of a protoalgebraic sentential

logic for π-institutions, study its properties and relate these results to the

logical and the explicit definability of Leibniz theory systems in the context

of π-institutions.

Before embarking on a brief review of the results presented in [24] on

N -Leibniz theory systems, we remind the reader of the definition of a π-

institution and of that of an N -protoalgebraic π-institution, which consti-

tute the backbone of the framework in which the studies started in [24] and
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continued here are taking place. Recall from [8] (see also [12, 13]) that a

π-institution I is a triple I = 〈Sign,SEN, C〉, such that

(i) Sign is a category, whose objects are called signatures;

(ii) SEN : Sign→ Set, is a set-valued functor from the category Sign of

signatures, called the sentence functor and giving, for each signature

Σ, a set whose elements are called sentences over that signature Σ or

Σ-sentences;

(iii) CΣ : P(SEN(Σ)) → P(SEN(Σ)), for each Σ ∈ |Sign|, is a mapping,

called Σ-closure, such that

(a) A ⊆ CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(b) CΣ(CΣ(A)) = CΣ(A), for all Σ ∈ |Sign|, A ⊆ SEN(Σ),

(c) CΣ(A) ⊆ CΣ(B), for all Σ ∈ |Sign|, A ⊆ B ⊆ SEN(Σ),

(d) SEN(f)(CΣ1
(A)) ⊆ CΣ2

(SEN(f)(A)), for all Σ1,Σ2 ∈ |Sign|,

f ∈ Sign(Σ1,Σ2), A ⊆ SEN(Σ1).

A subset TΣ ⊆ SEN(Σ) is called a Σ-theory of I if it is closed, i.e., if

CΣ(TΣ) = TΣ. The collection of all Σ-theories of I is denoted by ThΣ(I). A

collection T = {TΣ}Σ∈|Sign| of subsets TΣ ⊆ SEN(Σ),Σ ∈ |Sign|, is called

an axiom family of I. It is called an axiom system of I if, in addition,

for all Σ1,Σ2 ∈ |Sign| and all f ∈ Sign(Σ1,Σ2), SEN(f)(TΣ1
) ⊆ TΣ2

. A

collection T = {TΣ}Σ∈|Sign| of subsets TΣ ⊆ SEN(Σ),Σ ∈ |Sign|, is called a

theory family of I if TΣ is a Σ-theory, for all Σ ∈ |Sign|. It is called a theory

system of I if, in addition, it is an axiom system. The collection ThFam(I)

of theory families of a π-institution I ordered by signature-wise inclusion

≤ forms a complete lattice ThFam(I) = 〈ThFam(I),≤〉 and the same

holds for the collection ThSys(I) of all theory systems under signature-

wise inclusion. Moreover, it is not very hard to see that ThSys(I) forms

a complete sublattice of ThFam(I).

Suppose, now, that Sign is a category and SEN : Sign → Set is an

arbitrary functor. Recall from [22] (this is a corrected version of the original

definition given in [16]) that the clone of all natural transformations on

SEN is defined to be the locally small category with collection of objects

{SENα : α an ordinal} and collection of morphisms τ : SENα → SENβ

β-sequences of natural transformations τi : SENα → SEN. Composition
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SENα SENβ-〈τi : i < β〉
SENγ-〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.

A subcategory N of this category with objects all objects of the form SENk

for k < ω, and containing all projection morphisms pk,i : SENk → SEN, i <

k, k < ω, with pk,i
Σ : SEN(Σ)k → SEN(Σ) given by

p
k,i
Σ (~φ) = φi, for all ~φ ∈ SEN(Σ)k,

and such that, for every family {τi : SENk → SEN : i < l} of natural

transformations in N , the sequence 〈τi : i < l〉 : SENk → SENl is also in

N , is referred to as a category of natural transformations on SEN.

Given a functor SEN : Sign→ Set, a collection θ = {θΣ}Σ∈|Sign|, such

that θΣ is an equivalence relation on SEN(Σ), for all Σ ∈ |Sign|, is called

an equivalence family on SEN. If, in addition, for all Σ1,Σ2 ∈ |Sign|,

f ∈ Sign(Σ1,Σ2), θ satisfies SEN(f)2(θΣ1
) ⊆ θΣ2

, then θ is said to be an

equivalence system on SEN. IfN is a category of natural transformations on

SEN and an equivalence system θ on SEN satisfies, for all σ : SENn → SEN

in N , all Σ ∈ |Sign| and all φ0, ψ0, . . . , φn−1, ψn−1 ∈ SEN(Σ),

〈φi, ψi〉 ∈ θΣ, i < n, imply 〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1〉 ∈ θΣ,

then θ is a said to be an N -congruence system on SEN. An N -congruence

system θ on SEN is said to be a logical N -congruence system of a π-

institution I = 〈Sign,SEN, C〉 if, for all Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ θΣ implies CΣ(φ) = CΣ(ψ).

It was shown in [16] that, under the signature-wise inclusion ≤, the collec-

tion ConN (I) of all logical N -congruence systems of I forms a complete

lattice ConN (I), whence, there exists a largest logical N -congruence sys-

tem of I, which is denoted by Ω̃N (I) and is called the Tarski N -congruence

system of I.

An N -congruence system θ on SEN is said to be compatible with the

axiom family T , if, for all Σ ∈ |Sign|, θΣ is compatible with TΣ in the usual
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sense, i.e., if, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), 〈φ, ψ〉 ∈ θΣ and φ ∈ TΣ

imply that ψ ∈ TΣ. It was shown in Proposition 2.3 of [22] that there

always exists a largest N -congruence system on SEN that is compatible

with a given axiom family T . It is called the Leibniz N -congruence system

of T and denoted by ΩN (T ).

In [22] Leibniz N -congruence systems are used to define the notion of

an N -protoalgebraic π-institution. Namely, a π-institution

I = 〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, is said to be N -

protoalgebraic if, for every theory family T = {TΣ}Σ∈|Sign| of I, every

Σ ∈ |Sign| and all φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ ΩN
Σ (T ) implies CΣ(TΣ ∪ {φ}) = CΣ(TΣ ∪ {ψ}).

In Lemma 3.8 of [22], it is shown that a π-institution I = 〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, is N -protoalgebraic,

if and only if, for all T, T ′ ∈ ThFam(I), we have that

T ≤ T ′ implies ΩN (T ) ≤ ΩN(T ′),

i.e., if and only if the N -Leibniz operator on the collection of all theory

families of I is monotonic. Some other equivalent conditions are provided

in [22], which also studies some additional properties of N -protoalgebraic

π-institutions. A further study of N -protoalgebraicity is contained in [23]

and the interested reader is advised to consult these two references.

In the remaining of this Introduction, some of the results presented in

[24] on the N -Leibniz theory systems of an N -protoalgebraic π-institution

are briefly reviewed. References to the corresponding results of [24] are

provided, when appropriate, so that the interested reader may consult the

proofs presented there.

Consider an N -protoalgebraic π-institution I = 〈Sign,SEN, C〉, with

N a category of natural transformations on SEN. A theory family T =

{TΣ}Σ∈|Sign| is said to be an N -Leibniz theory family of I, if, for every

theory family T ′ = {T ′
Σ}Σ∈|Sign| of I, such that ΩN (T ) = ΩN (T ′), we have

T ≤ T ′. It was shown in Theorem 4.3 of [25] that, for I N -protoalgebraic,

every N -Leibniz theory family is actually an N -Leibniz theory system.
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Therefore, no need for the special notation ThFamN (I) for N -Leibniz the-

ory families arizes and the notation ThSysN (I), introduced in [24], covers

also N -Leibniz theory families.

It may be shown, as was done in Proposition 1 of [24] for theory systems,

that, given any theory family T in an N -protoalgebraic π-institution, there

exists a unique N -Leibniz theory family TN , which by Theorem 4.3 of [25]

is a theory system, such that ΩN (TN ) = ΩN (T ). For the proof of this result,

consult the proof of Proposition 1 of [24] (see also Proposition 4.2 of [25]).

As a consequence of the definition and of this fact, we have that T N ≤ T

and that an arbitrary theory family T is N -Leibniz if and only if T N = T .

Suppose, now, that I = 〈Sign,SEN, C〉, with N a category of natu-

ral transformations on SEN, is an N -protoalgebraic π-institution and that

〈F, α〉 : SEN →se SEN′ is a surjective (N,N ′)-epimorphic translation. It

was shown in Proposition 5.22 of [22] that the 〈F, α〉-min (N,N ′)-model

I ′min of I on SEN′ is N ′-protoalgebraic. In Theorem 3 of [24], an analog

of Theorem 3 of [10] for π-institutions, it was shown that the N ′-Leibniz

operator is an isomorphism between the lattice of all N ′-Leibniz theory sys-

tems of I ′min and that of all AlgN (I)-N ′-congruence systems θ on SEN′,

where θ is an AlgN (I)-N ′-congruence system because the 〈F, πθ
Fα〉-min

model of I on SEN′θ is N ′θ-reduced. One obtains as a corollary of this

result, combined with Theorem 4.3 of [25], that, given an N -protoalgebraic

π-institution I = 〈Sign,SEN, C〉 and a theory family T of I, T N is the

largest N -Leibniz theory system ≤-contained in T . Therefore, if I is an

N -protoalgebraic π-institution, then, for all theory families T, T ′ of I, such

that T ≤ T ′, we obtain that TN ≤ T ′N .

In the final result of [24], it was shown that, if I = 〈Sign,SEN, C〉 is

an N -protoalgebraic π-institution, the collection ThSysN (I) forms a join-

complete subsemilattice of the complete lattice ThSys(I) = 〈ThSys(I),≤〉

of all theory systems of I. This result forms an analog of Proposition 13 of

[10] in the context of π-institutions.

For all unexplained categorical terminology and notation the reader is

referred to any of [1, 4, 15]. For background on the theory of abstract alge-

braic logic and discussion of the classes of the abstract algebraic hierarchy,

including the class of protoalgebraic logics, the reader is referred to the

review article [11], the monograph [9] and the book [6]. (Among the most

important original sources are [2], [5], [7], [3].) More specifically, for the

theory of the Leibniz filters of a protoalgebraic sentential logic see [10] and
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the sequel [14]. For a full account of the categorical theory, leading to the

results presented in this paper, see [16]-[25] in the given order.

.2 Strong Version I+N of I

Given an N -protoalgebraic π-institution I = 〈Sign,SEN, C〉, a functor

SEN′ : Sign′ → Set, with N ′ a category of natural transformations on

SEN′, and a surjective (N,N ′)-epimorphic translation 〈F, α〉 : SEN →se

SEN′, the collection of all theory systems of the 〈F, α〉-min (N,N ′)-model

of I on SEN′ will be used often in what follows. It will be denoted by

ThSys
〈F,α〉
I (SEN′). On the other hand, by ThSys

〈F,α〉N
′

I (SEN′) will be de-

noted the collection of all N ′-Leibniz filters of the 〈F, α〉-min (N,N ′)-model

of I on SEN′.

Also, given two functors SEN : Sign → Set and SEN′ : Sign′ → Set,

with categories of natural transformations N and N ′ on SEN and SEN′,

respectively, a prominent role will be played by the surjective (N,N ′)-

epimorphic translations 〈F, α〉 : SEN →se SEN′, with isomorphic functor

components F : Sign → Sign′. These translations will be called isosur-

jective (N,N ′)-epimorphic translations in the sequel.

Suppose that I = 〈Sign,SEN, C〉 is a π-institution, with N a category

of natural transformations on SEN. Consider the following collection F of

isosurjective (N,N ′)-epimorphic translations

F = {〈F, α〉 : I →se SEN′ : 〈F, α〉 isosurjective (N,N ′)-epimorphic

for some SEN′, N ′}.

Now let T ′ denote the collection of all N ′-Leibniz theory systems of all min

(N,N ′)-models of I via isosurjective (N,N ′)-logical morphisms:

T ′ = {T ′ ∈ ThSys
〈F,α〉N

′

I (SEN′) : 〈F, α〉 ∈ F}.

Set

T = {α−1(T ′) : T ′ ∈ T ′}

= {α−1(T ′) : T ′ ∈ ThSys
〈F,α〉N

′

I (SEN′), 〈F, α〉 ∈ F} (1)

and note that every element in T is a theory system of I. Therefore, it

makes sense to consider the largest closure system C+N of I, such that T ⊆
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ThSys(C+N ). The corresponding smallest closed set system corresponding

to C+N will be denoted by C+N and this notational convention, borrowed

from [9], will be followed throughout for other closure systems as well.

Definition 2.1 Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -protoalgebraic π-institution. De-

note by I+N = 〈Sign,SEN, C+N 〉 the π-institution, whose closure system

C+N is the closure system on SEN generated by the collection T of theory

systems of I displayed in (1). I+N will be called the N -strong version of

the N -protoalgebraic π-institution I.

Sometimes, the N -strong version of I is just referred to as the strong

version, when the category N of natural transformations is clear from con-

text and there is no possibility of confusion.

It is more difficult in the case of N -protoalgebraic π-institutions than

it is in the sentential logic framework, but one may still prove that, if I

is N -weakly algebraizable (see [26] for an exposition on N -weak algebraiz-

ability), i.e., if ΩN is also injective on theory systems, then ThSys(I+N ) =

ThSys(I). This is the content of the following proposition, only a partial

analog of Proposition 16 of [10] for π-institutions.

Proposition 2.2 If I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, is an N -weakly algebraizable π-institution, then

ThSys(I+N ) = ThSys(I).

Proof. Since every T ∈ T is a theory system of I, the least closure

system generated by T is always included in C. Hence ThSys(I+N ) ⊆

ThSys(I) always holds.

It suffices, therefore, to show that, if I is N -weakly algebraizable, then

ThSys(I) ⊆ ThSys(I+N ). Since I is N -weakly algebraizable, ThSysN (I) =

ThSys(I). Therefore, considering the isosurjective (N,N)-epimorphic

translation 〈ISign, ι〉 : I →se SEN, we get that ThSys(I) = ThSysN (I) ⊆

T ⊆ ThSys(I+N ). �

A technical lemma will now be presented that will help us show that

the Leibniz theory system of every theory system of a min model of a π-

institution via an isosurjective translation is a theory system of the min

model of the strong version of the π-institution via the same translation.
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The lemma asserts that, given an isosurjective translation 〈F, α〉 from the

sentence functor SEN of a π-institution I to a functor SEN′, and an axiom

family T ′ on SEN′, if α−1(T ′) is a theory family of I, then T ′ is a theory

family of the 〈F, α〉-min model of I on SEN′.

Lemma 2.3 Suppose that I = 〈Sign,SEN, C〉 is a π-institution with

N a category of natural transformations on SEN. Let SEN′ : Sign′ →

Set be a functor, with N ′ a category of natural transformations on SEN′,

〈F, α〉 : SEN →se SEN′ an isosurjective (N,N ′)-epimorphic translation

and I ′ = 〈Sign′,SEN′, C ′〉 the 〈F, α〉-min (N,N ′)-model of I on SEN′. If

Σ ∈ |Sign| and T ′
F (Σ) ⊆ SEN′(F (Σ)), such that α−1

Σ (T ′
F (Σ)) ∈ ThΣ(I), then

T ′
F (Σ) ∈ ThF (Σ)(I

′).

Proof. Suppose that T ′ is an axiom family on SEN′, such that α−1(T ′)∈

ThFam(I). To see that T ′ ∈ ThFam
〈F,α〉
I (SEN′), it suffices to show that

there exists an (N,N ′)-model I ′ = 〈Sign′,SEN′, C ′〉 of I on SEN′ via

〈F, α〉, such that T ′ ∈ ThFam(I ′), since, then, T ′ will also be a theory

family of the 〈F, α〉-min (N,N ′)-model of I on SEN′.

To this end, and taking into account both the surjectivity of 〈F, α〉 and

the fact that F is an isomorphism, let C ′ = {C′Σ′}Σ′∈|Sign′|, with C′
F (Σ) =

{T ′
F (Σ) ⊆ SEN′(F (Σ)) : α−1

Σ (T ′
F (Σ)) ∈ ThΣ(I)}, for all Σ ∈ |Sign|. It

is easy to see that, for all Σ ∈ |Sign|, C ′
F (Σ) is a closed set system on

SEN′(F (Σ)). We have indeed that SEN′(F (Σ)) ∈ C ′
F (Σ) and, moreover, for

all T i
F (Σ) ∈ C

′
F (Σ), i ∈ I, since α−1

Σ (T i
F (Σ)) ∈ ThΣ(I), for all i ∈ I, we get

that α−1
Σ (

⋂
i∈I T

i
F (Σ)) =

⋂
i∈I α

−1
Σ (T i

F (Σ)) ∈ ThΣ(I), whence
⋂

i∈I T
i
F (Σ) ∈

C′
F (Σ) and C′

F (Σ) is a closed set system.

C′ is also structural. To see this, suppose, using the surjectivity of

〈F, α〉, that Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and Φ ⊆ SEN(Σ). Then

SEN′(F (f))(C ′
F (Σ)(αΣ(Φ)))

= SEN′(F (f))(
⋂
{T ′

F (Σ) ∈ C
′
F (Σ) : αΣ(Φ) ⊆ T ′

F (Σ)})

⊆
⋂
{SEN′(F (f))(T ′

F (Σ)) : T ′
F (Σ) ∈ C

′
F (Σ), αΣ(Φ) ⊆ T ′

F (Σ)}

⊆
⋂
{C ′

F (Σ′)(SEN′(F (f))(T ′
F (Σ))) : T ′

F (Σ) ∈ C
′
F (Σ), αΣ(Φ) ⊆ T ′

F (Σ)}

⊆
⋂
{C ′

F (Σ′)(SEN′(F (f))(SEN′(F (f))−1(T ′
F (Σ′)))) :

T ′
F (Σ′) ∈ C

′
F (Σ′),SEN′(F (f))(αΣ(Φ)) ⊆ T ′

F (Σ′)}

⊆
⋂
{T ′

F (Σ′) ∈ C
′
F (Σ′) : SEN′(F (f))(αΣ(Φ)) ⊆ T ′

F (Σ′)}

= C ′
F (Σ′)(SEN′(F (f))(αΣ(Φ))).



28 GEORGE VOUTSADAKIS

Thus C′ is structural and, therefore, a closure system on SEN′.

Finally, it suffices to show that 〈F, α〉 : I〉−seI ′ is an (N,N ′)-logical

morphism, i.e., that I ′ is an (N,N ′)-model of I via 〈F, α〉. To this end,

suppose that Σ ∈ |Sign| and Φ ∪ {φ} ⊆ SEN(Σ), such that φ ∈ CΣ(Φ).

Thus, we have

φ ∈ CΣ(Φ)

=
⋂
{TΣ ∈ ThΣ(I) : Φ ⊆ TΣ}

⊆
⋂
{α−1

Σ (T ′
F (Σ)) : T ′

F (Σ) ∈ C
′
F (Σ),Φ ⊆ α

−1
Σ (T ′

F (Σ))}

= α−1
Σ (

⋂
{T ′

F (Σ) ∈ C
′
F (Σ) : αΣ(Φ) ⊆ T ′

F (Σ)})

= α−1
Σ (C ′

F (Σ)(αΣ(Φ)),

which shows that αΣ(φ) ∈ C ′
F (Σ)(αΣ(Φ)) and concludes the proof that

〈F, α〉 : I〉−seI ′ is an (N,N ′)-logical morphism. Thus, I ′ is indeed an

(N,N ′)-model of I via 〈F, α〉.

Now, since, by hypothesis, α−1(T ′) ∈ ThFam(I), we get, by the def-

inition of I ′, that T ′ ∈ ThFam(I ′), concluding the proof of the Lemma.

�

The result announced before Lemma 2.3 is now presented. It will prove

useful in many of the proofs involving models of I and I+N in what follows.

It says that the Leibniz theory system of every theory system of a min model

of I via an isosurjective translation is a theory system of the min model of

I+N via the same translation.

Lemma 2.4 Suppose I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, is an N -protoalgebraic π-institution. For every

functor SEN′ : Sign′ → Set, with N ′ a category of natural transformations

on SEN′ and 〈F, α〉 : SEN →se SEN′ an isosurjective (N,N ′)-epimorphic

translation, if T ∈ ThSys
〈F,α〉
I (SEN′), then TN ′

∈ ThSys
〈F,α〉

I+N
(SEN′).

Proof. Suppose that T ∈ ThSys
〈F,α〉
I (SEN′). Then, since 〈F, α〉 is

isosusrjective, we obtain

TN ′

∈ ThSys
〈F,α〉N

′

I (SEN′) ⊆ T ′.

Therefore α−1(TN ′

) ∈ T ⊆ ThSys(I+N ). Thus, by Lemma 2.3 and the

isosurjectivity of 〈F, α〉, we get that TN ′

∈ ThSys
〈F,α〉

I+N
(SEN′). �
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The following Proposition, an analog of Proposition 18 of [10], exhibits

some properties of I+N for an N -protoalgebraic π-institution I. The last

part of Proposition 18 of [10] has been separated and it is formulated as

Proposition 2.6, since its statement is rather long in the present context

and it may be easier to read independently.

Note the following variation of a notation first used in [22]. Given a π-

institution I = 〈Sign,SEN, C〉, with N a category of natural transforma-

tions on SEN, an (I, N)-algebraic system is a functor SEN′ : Sign′ → Set,

equipped with a category N ′ of natural transformations on SEN′, such that

there exists an (N,N ′)-epimorphic translation 〈F, α〉 : SEN→se SEN′, such

that the 〈F, α〉-min (N,N ′)-model of I on SEN′ is N ′-reduced. The class of

all (I, N)-algebraic systems is denoted by AlgN (I). Those (I, N)-algebraic

systems SEN′ for which the (N,N ′)-epimorphic translation 〈F, α〉 witness-

ing the membership in AlgN (I) is surjective form the subclass AlgN (I)s of

AlgN (I) and those for which the (N,N ′)-epimorphic translation 〈F, α〉 is

isosurjective form the subclass AlgN (I)is. Thus, we have that AlgN (I)is ⊆

AlgN (I)s ⊆ AlgN (I).

A similar notational convention will be applied to the collection AlgN(I)∗,

which was also introduced for the first time in [22]. This notation refers to

the collection of all (I, N)∗-algebraic systems. These are defined to be func-

tors SEN′ : Sign′ → Set, equipped with a category N ′ of natural transfor-

mations on SEN′, such that there exists an (N,N ′)-epimorphic translation

〈F, α〉 : SEN →se SEN′ and a theory family T ′ of the 〈F, α〉-min (N,N ′)-

model of I on SEN′, such that ΩN ′

(T ′) = ∆SEN′

. The subcollection of

all those (I, N)∗-algebraic systems SEN′ for which the (N,N ′)-epimorphic

translation 〈F, α〉 witnessing the membership in AlgN (I)∗ is isosurjective

will be denoted by AlgN (I)∗is.

Proposition 2.5 Suppose I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -protoalgebraic π-institution. Then

1. C ≤ C+N or, equivalently, C+N ≤ C;

2. ThSysN (I) ⊆ ThSys(I+N ) ⊆ ThSys(I);

3. AlgN (I+N )is = AlgN (I)is;

4. I+N is N -protoalgebraic.
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Proof.

1. This part is clear, since C is a closure system on SEN, such that T ⊆

ThSys(C), whence, by the minimality of C+N , we get that C+N ≤ C.

2. This is also clear from the definitions involved. The key is that C+N

is generated by T and ThSysN (I) ⊆ T , which immediately yields the

first inclusion, and, for the same reason, since T ⊆ ThSys(I), the

second inclusion follows.

3. Suppose that SEN′ : Sign′ → Set is in AlgN (I)is via the isosurjective

(N,N ′)-epimorphic translation 〈F, α〉 : I →se SEN′. Then, by an

easy modification of Corollary 5.28 of [22], we get that SEN′ : Sign′ →

Set is in AlgN (I)∗is. Thus, there exists a theory system T of the

〈F, α〉-min (N,N ′)-model of I on SEN′, such that ΩN ′

(T ) = ∆SEN′

.

Therefore, since 〈F, α〉 is isosurjective, we obtain, by Lemma 2.4,

that TN ′

is a theory system of the 〈F, α〉-min (N,N ′)-model of I+N

on SEN′, such that ΩN ′

(TN ′

) = ∆SEN′

. This shows that SEN′ is also

in AlgN (I+N )∗is ⊆ AlgN (I+N )is. The reverse inclusion is trivial,

since the 〈F, α〉-min (N,N ′)-model of I+N on SEN′ is weaker than

the 〈F, α〉-min (N,N ′)-model of I on SEN′.

4. This immediately follows from the fact that C ≤ C+N . �

In Proposition 2.6, an analog of the last part of Proposition 18 of [10]

is formulated. It affirms that the process of passing from a π-institution to

its strong version preserves theorem systems.

Proposition 2.6 Suppose I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -protoalgebraic π-institution. For

every functor SEN′ : Sign′ → Set, with N ′ a category of natural trans-

formations on SEN′, and 〈F, α〉 : SEN→se SEN′ an isosurjective (N,N ′)-

epimorphic translation, the theorem system of the 〈F, α〉-min (N,N ′)-model

of I+N on SEN′ is equal to the theorem system of the 〈F, α〉-min (N,N ′)-

model of I on SEN′. In particular, I+N has the same theorem system as

I.

Proof. Suppose that T is the theorem system of the 〈F, α〉-min (N,N ′)-

model of I+N on SEN′. Clearly, T is also a theory system of the 〈F, α〉-min
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(N,N ′)-model of I on SEN′. Suppose that T ′ is another theory system of

the 〈F, α〉-min (N,N ′)-model of I on SEN′, such that T ′ ≤ T . Then we

have that T ′N ′

≤ T, whence, since 〈F, α〉 is isosurjective, by Lemma 2.4

and by the minimality of T, we get that T ′N ′

= T . This shows that T ≤ T ′

and, therefore, T ′ = T and T is the theorem system of the 〈F, α〉-min

(N,N ′)-model of I on SEN′.

The last statement follows by considering the special case of the isosur-

jective (N,N)-epimorphic translation 〈ISign, ι〉 : SEN→se SEN. �

As in the sentential context, the second part of Proposition 2.5 moti-

vates the question of when one has ThSys(I+N ) = ThSysN (I). We prove

here an analog of Theorem 19 of [10] that answers this question.

Theorem 2.7 Suppose I = 〈Sign,SEN, C〉, with N a category of nat-

ural transformations on SEN, is an N -protoalgebraic π-institution. Then

the following statements are equivalent:

1. For all functors SEN′ : Sign′ → Set and isosurjective (N,N ′)-

epimorphic translations 〈F, α〉 : SEN→se SEN′, ThSys
〈F,α〉

I+N
(SEN′) =

ThSys
〈F,α〉N

′

I (SEN′).

2. ThSys(I+N ) = ThSysN (I).

3. I+N is N -weakly algebraizable.

Proof.

1→ 2 Consider in Part 1 the special case of the isosurjective (N,N)-epimor-

phic translation 〈ISign, ι〉 : SEN→se SEN.

2→ 3 Note that I+N isN -protoalgebraic by Part 4 of Proposition 2.5. Thus,

it suffices to show that ΩN is injective on the theory systems of I+N .

This, however, follows immediately by Part 2, together with Theorem

3 of [24].

3→ 1 The inclusion ThSys
〈F,α〉N

′

I (SEN′) ⊆ ThSys
〈F,α〉

I+N
(SEN′) always holds,

by Lemma 2.4, since 〈F, α〉 is isosurjective.

To show the reverse inclusion, suppose that T ∈ ThSys
〈F,α〉

I+N
(SEN′).

Then also T ∈ ThSys
〈F,α〉
I (SEN′). Now, considering TN ′

, we get
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that ΩN ′

(T ) = ΩN ′

(TN ′

) and, since, again by Lemma 2.4, TN ′

∈

ThSys
〈F,α〉

I+N
(SEN′) as well and I+N is N -weakly algebraizable, we ob-

tain that T = TN ′

. Therefore T ∈ ThSys
〈F,α〉N

′

I (SEN′). �

Furthermore, it can be shown that the three equivalent conditions of

Theorem 2.7 imply closure of the collection of all N ′-Leibniz theory systems

under signature-wise intersections.

Proposition 2.8 Suppose I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -protoalgebraic π-institution satis-

fying any of the equivalent statements of Theorem 2.7. Then, the following

two equivalent statements hold:

1. For all functors SEN′ : Sign′ → Set, with N ′ a category of natural

transformations on SEN′, and isosurjective (N,N ′)-epimorphic trans-

lations 〈F, α〉 : SEN →se SEN′, ThSys
〈F,α〉N

′

I (SEN′) is closed under

signature-wise intersections.

2. For all functors SEN′ : Sign′ → Set, with N ′ a category of natural

transformations on SEN′, and isosurjective (N,N ′)-epimorphic trans-

lations 〈F, α〉 : SEN→se SEN′, ThSys
〈F,α〉N

′

I (SEN′) forms a complete

≤-sublattice of the lattice ThSys
〈F,α〉
I (SEN′)=〈ThSys

〈F,α〉
I (SEN′),≤〉.

Proof. That the first statement of Theorem 2.7 implies Condition 1

follows from the fact that the collection ThSys
〈F,α〉

I+N
(SEN′) of all theory sys-

tems of the 〈F, α〉-min (N,N ′)-model of I+N on SEN′ is always closed under

signature-wise intersections and the fact that, by the first statement of The-

orem 2.7, the two collections ThSys
〈F,α〉N

′

I (SEN′) and ThSys
〈F,α〉

I+N
(SEN′) are

identical. To show the equivalence of Conditions 1 and 2, use Proposition

11 of [24]. �

Corollary 2.9 forms an analog of Proposition 20 of [10] for π-institutions.

In particular, its last part provides an alternative characterization of the

N ′-Leibniz theory system TN ′

associated with a given theory system T

in terms of the strong version I+N of the π-institution I, in case I+N is

N -weakly algebraizable.
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Corollary 2.9 Suppose I = 〈Sign,SEN, C〉, with N a category of nat-

ural transformations on SEN, is an N -protoalgebraic π-institution that sat-

isfies any of the equivalent statements of Theorem 2.7. Then, for all func-

tors SEN′ : Sign′ → Set and isosurjective (N,N ′)-epimorphic translations

〈F, α〉 : SEN→se SEN′,

1. if ThSys
〈F,α〉
I (SEN′) is closed under unions of directed subfamilies of

theory systems, then ThSys
〈F,α〉

I+N
(SEN′) has the same property;

2. for all T ∈ ThSys
〈F,α〉
I (SEN′), T is N ′-Leibniz if and only if T ∈

ThSys
〈F,α〉

I+N
(SEN′);

3. for all T ∈ ThSys
〈F,α〉
I (SEN′), TN ′

is the largest theory system in

ThSys
〈F,α〉

I+N
(SEN′) that is ≤-included in T .

Proof.

1. By Proposition 11 of [24], if ThSys
〈F,α〉
I (SEN′) is closed under unions

of directed subfamilies of theory systems, then so is

ThSys
〈F,α〉N

′

I (SEN′). But, by Part 1 of Theorem 2.7, this last col-

lection is equal to ThSys
〈F,α〉

I+N
(SEN′).

2. Again by Part 1 of Theorem 2.7, we have T ∈ ThSys
〈F,α〉N

′

I (SEN′) if

and only if T ∈ ThSys
〈F,α〉

I+N
(SEN′).

3. By Corollary 4 of [24], TN ′

is the largest theory system in

ThSys
〈F,α〉N

′

I (SEN′), ≤-included in T . But ThSys
〈F,α〉N

′

I (SEN′) =

ThSys
〈F,α〉

I+N
(SEN′). �

For the needs of this paper, call a π-institution I = 〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, N -equivalential if

there exists a subcollection E of natural transformations ε : SEN2 → SEN

in N , such that E explicitly defines N -Leibniz congruence systems

of theory families of I, i.e., such that, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ ΩN
Σ (T ) iff EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′ ,

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′).
(2)

The π-institutions that are called N -equivalential here were introduced for

the first time in [27], where they were called syntactically N -equivalential.
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Following similar conventions followed in [26], Condition (2) will be abbre-

viated to

〈φ, ψ〉 ∈ ΩN
Σ (T ) iff (∀f)(EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′).

It can be seen that if a π-institution is N -equivalential, in this sense, then

it is N -protoalgebraic.

Proposition 2.10 Suppose that I = 〈Sign,SEN, C〉, with N a cate-

gory of natural transformations on SEN, is N -equivalential. Then I is

N -protoalgebraic.

Proof. Suppose that T, T ′ are theory families of I, such that T ≤ T ′.

Then, for all Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

〈φ, ψ〉 ∈ ΩN
Σ (T ) iff (∀f)(EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′)

implies (∀f)(EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ T ′
Σ′)

iff 〈φ, ψ〉 ∈ ΩN
Σ (T ′),

i.e., ΩN is monotone on theory families and, therefore, I is N -protoalge-

braic, by Lemma 3.8 of [22]. �

Furthermore, a π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, will be said to be N -algebraizable if

and only if I is N -equivalential and N -weakly algebraizable.

These two classes of π-institutions will be introduced and studied in

more detail elsewhere.

Proposition 2.11 Suppose I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -equivalential π-institution. Then

I satisfies any of the equivalent statements of Theorem 2.7 if and only if

I+N is N -algebraizable.

Proof. Since, by Proposition 2.10, N -equivalential π-institutions are

N -protoalgebraic, it suffices, by Part 1 of Proposition 2.5, to put together

the definition of N -algebraizability and Part 3 of Theorem 2.7. �
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.3 Definability of N-Leibniz Theory Families

Definition 3.1 A π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, has explicitly definable N -Leibniz

theory systems if there exists a collection X of natural transformations

σ : SEN → SEN in N , such that, for all functors SEN′ : Sign′ → Set,

all surjective (N,N ′)-epimorphic translations 〈F, α〉 : SEN →se SEN′, all

T ∈ ThFam
〈F,α〉
I (SEN′) and all Σ ∈ |Sign′|,

TN ′

Σ = {φ ∈ SEN′(Σ) : X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′ ,

for all Σ′ ∈ |Sign′|, f ∈ Sign′(Σ,Σ′)}, (3)

where by X ′ is denoted the collection of natural transformations on SEN′

corresponding to X via the (N,N ′)-epimorphic property and by X ′
Σ(φ) is

denoted the collection X ′
Σ(φ) = {σ′Σ(φ) : σ′ ∈ X ′}.

Once more, using the same notational convention adopted previously,

Equation (3) may be rewritten more compactly in the form

TN ′

Σ = {φ ∈ SEN′(Σ) : (∀f)(X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′)}.

Definition 3.2 A π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, has logically definable N -Leibniz

theory systems if there exists a collection X of natural transformations

σ : SEN→ SEN in N , such that, for all functors SEN′ : Sign′ → Set, all

surjective (N,N ′)-epimorphic translations 〈F, α〉 : SEN→se SEN′, and all

T ∈ ThFam
〈F,α〉
I (SEN′), T is N ′-Leibniz if and only if

(∀Σ ∈ |Sign′|)(∀φ ∈ SEN′(Σ))(φ ∈ TΣ ⇒ (∀f)(X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′)).

(4)

As was the case with Condition (3), the quantification (∀f) abbreviates

the quantification (∀Σ′ ∈ |Sign′|)(∀f ∈ Sign′(Σ,Σ′)) to save space. Hope-

fully no confusion will arise, since it is usually clear from context to which

category Sign′ it refers.

In view of Theorem 9 of [25], we may obtain the following proposition

and corollary providing characterizations of explicit and logical definability,

respectively, in terms of the largest theory system
←−
T contained in a given

theory family T in the context of N -protoalgebraicity. See [25] for the
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original definition of
←−
T and its significance in categorical abstract algebraic

logic. We recall the definition here for the reader’s convenience. Let I =

〈Sign,SEN, C〉 be a π-institution and T = {TΣ}Σ∈|Sign| a theory family of

I. Then
←−
T = {

←−
T Σ}Σ∈|Sign| is defined, for all Σ ∈ |Sign|, by

←−
T Σ =

⋂
{SEN(f)−1(TΣ′) : Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′)}.

It is shown in Proposition 2.1 of [25] that
←−
T is a theory system of I, for all

T ∈ ThFam(I), and in Proposition 2.2 of [25] that it is, in fact, the largest

theory system of I that is ≤-included in the theory family T .

Proposition 3.3 An N -protoalgebraic π-institution

I = 〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, has explicitly de-

finable N -Leibniz theory systems if and only if there exists a collection X

of natural transformations σ : SEN → SEN in N , such that, for all func-

tors SEN′ : Sign′ → Set, all surjective (N,N ′)-epimorphic translations

〈F, α〉 : SEN→se SEN′ and all T ∈ ThFam
〈F,α〉
I (SEN′),

TN ′

Σ = {φ ∈ SEN′(Σ) : X ′
Σ(φ) ⊆

←−
T Σ}, for all Σ ∈ |Sign′|. (5)

Proof. Suppose, first, that I = 〈Sign,SEN, C〉 has explicitly definable

N -Leibniz theory systems via a collection X of natural transformations

σ : SEN → SEN in N . Then, for all functors SEN′ : Sign′ → Set,

all surjective (N,N ′)-epimorphic translations 〈F, α〉 : SEN →se SEN′, all

T ∈ ThFam
〈F,α〉
I (SEN′) and all Σ ∈ |Sign′|, φ ∈ SEN′(Σ),

φ ∈ TN ′

Σ iff (∀f)(X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′)

iff (∀f)(SEN′(f)(X ′
Σ(φ)) ⊆ TΣ′)

iff (∀f)(X ′
Σ(φ) ⊆ SEN′(f)−1(TΣ′))

iff X ′
Σ(φ) ⊆

⋂
f SEN′(f)−1(TΣ′)

iff X ′
Σ(φ) ⊆

←−
T Σ.

Suppose, conversely, that there exists a collection X of natural transfor-

mations σ : SEN → SEN in N , such that, for all functors SEN′ : Sign′ →

Set, all surjective (N,N ′)-epimorphic translations 〈F, α〉 : SEN →se SEN′

and all T ∈ ThFam
〈F,α〉
I (SEN′), Equation (5) holds. Then, for all func-

tors SEN′ : Sign′ → Set, all surjective (N,N ′)-epimorphic translations



CAAL: STRONG VERSION OF A π-INSTITUTION 37

〈F, α〉 : SEN→se SEN′, all T ∈ ThFam
〈F,α〉
I (SEN′), all Σ ∈ |Sign′| and all

φ ∈ SEN′(Σ), follow the chain of equivalences

φ ∈ TN ′

Σ iff X ′
Σ(φ) ⊆

←−
T Σ

iff X ′
Σ(φ) ⊆

⋂
f SEN′(f)−1(TΣ′)

iff (∀f)(X ′
Σ(φ) ⊆ SEN′(f)−1(TΣ′))

iff (∀f)(SEN′(f)(X ′
Σ(φ)) ⊆ TΣ′)

iff (∀f)(X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′).

�

For logical definability, we have the following corollary of Proposition

3.3.

Corollary 3.4 An N -protoalgebraic π-institution I = 〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, has logically defin-

able N -Leibniz theory systems if and only if there exists a collection X of

natural transformations σ : SEN → SEN in N , such that, for all functors

SEN′ : Sign′ → Set, all surjective (N,N ′)-epimorphic translations 〈F, α〉 :

SEN→se SEN′ and all T ∈ ThFam
〈F,α〉
I (SEN′), T ∈ ThSys

〈F,α〉N
′

I (SEN′) if

and only if

(∀Σ ∈ |Sign′|)(∀φ ∈ SEN′(Σ))(φ ∈ TΣ =⇒ X ′
Σ(φ) ⊆

←−
T Σ). (6)

Proof. Use the relevant definitions together with Proposition 3.3. �

In the next proposition, an analog of Proposition 29 of [10] for π-

institutions, it is shown that explicit definability implies logical definability

and, furthermore, explicit definability implies closure of Leibniz theory sys-

tems under signature-wise intersections.

Proposition 3.5 Suppose that I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is an N -protoalgebraic π-institution

that has its N -Leibniz theory systems explicitly definable by a subcollection

X of natural transformations in N . Then

1. I has its N -Leibniz theory systems logically definable by X and

2. the two equivalent conditions of Proposition 2.8 hold.

Proof.
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1. Suppose that I has its N -Leibniz theory systems explicitly definable

by a subcollection X of natural transformations in N . Consider T ∈

ThFam
〈F,α〉
I (SEN′). Then

TN ′

Σ = {φ ∈ SEN′(Σ) : (∀f)(X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′)},

for all Σ ∈ |Sign′|. Thus, taking into account the fact that TN ′

≤ T

always holds, we have that T is N ′-Leibniz if and only if T ≤ TN ′

if and only if, for all Σ ∈ |Sign′|, φ ∈ SEN′(Σ), φ ∈ TΣ implies

(∀f)(X ′
Σ′(SEN′(f)(φ)) ⊆ TΣ′). This is Condition (4). Thus I has its

N -Leibniz theory systems logically definable by X.

2. Suppose that SEN′ : Sign′ → Set is a functor, with N ′ a category

of natural transformations on SEN′, and 〈F, α〉 : SEN →se SEN′

an isosurjective (N,N ′)-epimorphic translation. Then, for all T i ∈

ThSys
〈F,α〉
I (SEN′), i ∈ I, and all Σ ∈ |Sign′|, we have that

←−−−⋂

i∈I

T i
Σ =

⋂

i∈I

←−
T i

Σ.

Indeed,

←−−−⋂

i∈I

T i
Σ =

⋂
f∈Sign′(Σ,Σ′) SEN′(f)−1(

⋂
i∈I T

i
Σ′)

=
⋂

f∈Sign′(Σ,Σ′)

⋂
i∈I SEN′(f)−1(T i

Σ′)

=
⋂

i∈I

⋂
f∈Sign′(Σ,Σ′) SEN′(f)−1(T i

Σ′)

=
⋂

i∈I

←−
T i

Σ.

Now suppose that T i ∈ ThSys
〈F,α〉N

′

I (SEN′), i ∈ I. Then, by Part

1, since N -Leibniz theory systems are logically definable by X, we

obtain, by Corollary 3.4, that, for all Σ ∈ |Sign′| and all φ ∈ SEN′(Σ),

φ ∈ T i
Σ implies X ′

Σ(φ) ⊆
←−
T i

Σ. This yields that, for all Σ ∈ |Sign′| and

all φ ∈ SEN′(Σ), φ ∈
⋂

i∈I T
i
Σ implies X ′

Σ(φ) ⊆
⋂

i∈I

←−
T i

Σ, which, by

what was shown above, implies that X ′
Σ(φ) ⊆

←−−−⋂

i∈I

T i
Σ. Thus, again

by the hypothesis, Part 1, and Corollary 3.4, we get that
⋂

i∈I T
i ∈

ThSys
〈F,α〉N

′

I (SEN′). �



CAAL: STRONG VERSION OF A π-INSTITUTION 39

The following proposition shows that, under the assumptions of N -

protoalgebraicity and explicit definability of N -Leibniz theory systems, N -

equivalentiality of I+N implies N -equivalentiality of I. This is an analog

of Proposition 30 of [10].

Proposition 3.6 Suppose that I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is an N -protoalgebraic π-institution

that has its N -Leibniz theory systems explicitly definable by a subcollection

X of natural transformations in N . If I+N is N -equivalential, then I is

also N -equivalential.

Proof. Suppose that X explicitly defines N -Leibniz theory systems

of I and that E is a collection of natural transformations on SEN, that

defines N -Leibniz congruence systems of theory families of I+N . Suppose

that T ∈ ThFam(I),Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ). Then

〈φ, ψ〉 ∈ ΩN
Σ (T )

iff 〈φ, ψ〉 ∈ ΩN
Σ (TN ) (since ΩN (T ) = ΩN (TN ))

iff (∀f)(EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TN
Σ′ )

(by hypothesis, since TN ∈ ThSys(I+N ))

iff (∀f)(∀g)(XΣ′′(SEN(g)(EΣ′(SEN(f)(φ),SEN(f)(ψ)))) ⊆ TΣ′′)

(by hypothesis, since X defines N -Leibniz theory systems)

iff (∀f)(∀g)(XΣ′′(EΣ′′(SEN(gf)(φ),SEN(gf)(ψ))) ⊆ TΣ′′)

SEN(Σ′′)2 SEN(Σ′′)-
EΣ′′

SEN(Σ′)2 SEN(Σ′)-EΣ′

?

SEN(g)2

?

SEN(g)

iff (∀f)(XΣ′(EΣ′(SEN(f)(φ),SEN(f)(ψ))) ⊆ TΣ′).

Therefore I is also N -equivalential, with X ◦ E being a set of natural

transformations in N that define N -Leibniz congruences of theory families

of I. �

Let I = 〈Sign,SEN, C〉 be a π-institution. Given Σ ∈ |Sign|,Φ∪{φ} ⊆

SEN(Σ), we use the following abbreviation

Φ |=
ThSysN (I)
Σ φ iff (∀T ∈ ThSysN (I))(Φ ⊆ TΣ =⇒ φ ∈ TΣ).
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The reader is cautioned that |=ThSysN (I) is not necessarily structural, i.e.,

it does not necessarily hold, given Σ,Σ′ ∈ |Sign| and f ∈ Sign(Σ,Σ′), that

Φ |=
ThSysN (I)
Σ φ implies SEN(f)(Φ) |=

ThSysN (I)
Σ′ SEN(f)(φ).

In the next lemma, a few properties that were given in the sentential

context in Lemma 31 of [10] are now adapted to the present context. As

pointed out by Czelakowski and Jansana in [10], these properties abstract

some of the properties of modal operators in modal logic.

Lemma 3.7 Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -protoalgebraic π-institution that

has its N -Leibniz theory systems explicitly definable by a subcollection X of

natural transformations in N . Then the following conditions hold, for all

Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

1. If φ ∈ CΣ(Φ), then, for every T ∈ ThFam(I),

(∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′) =⇒ (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′).

2. For all T ∈ ThFam(I), (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′) =⇒ φ ∈ TΣ.

3. φ |=
ThSysN (I)
Σ XΣ(φ).

4. For all T ∈ ThFam(I),

(∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′) =⇒ (∀f)(SEN(f)(XΣ(XΣ(φ))) ⊆ TΣ′).

Proof.

1. Suppose that φ ∈ CΣ(Φ) and let T ∈ ThFam(I), such that

(∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′). Then, by explicit definability, Φ ⊆ TN
Σ ,

whence, since φ ∈ CΣ(Φ), φ ∈ TN
Σ , which yields, by explicit definabil-

ity, (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′).

2. Let T ∈ ThFam(I), such that (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′). Then,

by explicit definability, φ ∈ TN
Σ ⊆ TΣ.

3. Given T ∈ ThSysN (I), we have φ ∈ TΣ implies φ ∈ TN
Σ , since

T = TN , for all T ∈ ThSysN (I), whence, by explicit definability,

(∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′). Therefore, by specializing to f = iΣ,

XΣ(φ) ⊆ TΣ and φ |=
ThSysN (I)
Σ XΣ(φ).
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4. Suppose that T ∈ ThFam(I), such that (∀f)(SEN(f)(XΣ(φ)) ⊆

TΣ′). Then, by explicit definability, φ ∈ TN
Σ , whence, by Part 3,

XΣ(φ) ⊆ TN
Σ and, therefore, again by explicit definability,

(∀f)(SEN(f)(XΣ(XΣ(φ))) ⊆ TΣ′). �

An analog of Theorem 32 of [10] is undertaken next. It provides a char-

acterization of explicit definability in terms of the closure of the collection

of all N -Leibniz theory systems under signature-wise intersections and of

two simple properties of the defining family of the natural transformations

in N .

Theorem 3.8 Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is an N -protoalgebraic π-institution. I

has its N -Leibniz theory systems explicitly definable by a subcollection X of

natural transformations in N if and only if

• any of the two equivalent conditions of Proposition 2.8 hold,

• for all T ∈ ThFam(I), {φ ∈ SEN(Σ) : (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′)}

is a Σ-theory, for all Σ ∈ |Sign|, and

• I satisfies, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ),

Φ |=
ThSysN (I)
Σ φ iff

(∀T ∈ ThFam(I))((∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′) =⇒

(∀f)(SEN(f)(φ) ∈ TΣ′)).

(7)

Proof. Suppose, first, that I has its N -Leibniz theory systems explic-

itly definable by a subcollection X of natural transformations in N . Then,

the two equivalent conditions of Proposition 2.8 hold, by Part 2 of Proposi-

tion 3.5, and the second condition of the statement is satisfied, since, for all

T ∈ ThFam(I) and all Σ ∈ |Sign|, {φ ∈ SEN(Σ) : (∀f)(SEN(f)(XΣ(φ)) ⊆

TΣ′)} = TN
Σ , by explicit definability. Therefore, it suffices to show that the

Equivalence (7) holds.

For the left-to-right implication, assume that Φ |=
ThSysN (I)
Σ φ and that

T ∈ ThFam(I), such that (∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′). Then, by explicit

definability, Φ ⊆ TN
Σ . Hence, by hypothesis, since TN ∈ ThSysN (I), φ ∈

TN
Σ , which yields that, for all f ∈ Sign(Σ,Σ′), SEN(f)(φ) ∈ TN

Σ′ ⊆ TΣ′ ,

which verifies the left-to-right implication in Condition (7).
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For the right-to-left implication, suppose that

(∀T ∈ ThFam(I))((∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′) =⇒

(∀f)(SEN(f)(φ) ∈ TΣ′))

and consider T ∈ ThSysN (I), such that Φ ⊆ TΣ. Since T is N -Leibniz, we

have T = TN , whence Φ ⊆ TN
Σ . Thus, by explicit definability,

(∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′).

Hence, by the hypothesis, (∀f)(SEN(f)(φ) ∈ TΣ′), implying φ ∈ TΣ, which

yields that Φ |=
ThSysN (I)
Σ φ.

Suppose, conversely, that the equivalent conditions of Proposition 2.8

hold, that for all T ∈ ThFam(I), {φ ∈ SEN(Σ) : (∀f)(SEN(f)(XΣ(φ)) ⊆

TΣ′)} is a Σ-theory, for all Σ ∈ |Sign|, and that Equivalence (7) holds. It

follows from Equivalence (7) that, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ),

φ |=
ThSysN (I)
Σ XΣ(φ). (8)

Now, given T ∈ ThFam(I), it suffices to show, by Corollary 4 of [24], that

the collection T ◦ = {T ◦
Σ}Σ∈|Sign|, with

T ◦
Σ = {φ ∈ SEN(Σ) : (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′)},

for all Σ ∈ |Sign|, is the largest N -Leibniz theory system ≤-contained in

T . This part of the proof is broken into five distinct steps. Namely, it is

shown, in order, that

• T ◦
Σ is a Σ-theory, for all Σ ∈ |Sign|,

• T ◦ is a theory system,

• T ◦ is an N -Leibniz theory system,

• T ◦ ≤ T and, finally,

• if T ′ ∈ ThSysN (I), such that T ′ ≤ T, then T ′ ≤ T ◦.

The first part is exactly the second condition in the hypothesis.
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For the second part, suppose that Σ,Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) and

φ ∈ T ◦
Σ. Then, by definition (∀g)(SEN(g)(XΣ(φ)) ⊆ TΣ′′).

Σ Σ′-f

Σ′′

g
@

@
@

@R

k

�
�

�
�	

SEN(Σ′) SEN(Σ′)-
XΣ′

SEN(Σ) SEN(Σ)-XΣ

?

SEN(f)

?

SEN(f)

This implies (∀k)(SEN(kf)(XΣ(φ)) ⊆ TΣ′′). Therefore

(∀k)(SEN(k)(XΣ′(SEN(f)(φ))) ⊆ TΣ′′),

which, by definition, yields SEN(f)(φ) ∈ T ◦
Σ′ . So T ◦ is a theory system.

For the third part, suppose to the contrary that T ◦ is not an N -Leibniz

theory system. Then, by the hypothesis and Proposition 2.8, there exists

Σ ∈ |Sign| and Φ ∪ {φ} ⊆ SEN(Σ), such that Φ |=
ThSysN (I)
Σ φ,Φ ⊆ T ◦

Σ and

φ 6∈ T ◦
Σ. Therefore, we get, by (8), Φ |=

ThSysN (I)
Σ XΣ(φ),Φ ⊆ T ◦

Σ, φ 6∈ T
◦
Σ.

Hence, by the hypothesis, we have

(∀T ∈ ThFam(I))((∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′) =⇒

(∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′)),

(∀f)(SEN(f)(XΣ(Φ)) ⊆ TΣ′) and ¬(∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′), which is

a contradiction. Therefore, T ◦ is in fact an N -Leibniz theory system.

For the fourth part, suppose that Σ ∈ |Sign|, φ ∈ SEN(Σ), such that

φ ∈ T ◦
Σ. Then (∀f)(SEN(f)(XΣ(φ)) ⊆ TΣ′). Now, by the Equivalence (7),

since φ |=
ThSysN (I)
Σ φ, we get that (∀f)(SEN(f)(φ) ∈ TΣ′). But this implies

that φ ∈ TΣ, whence T ◦
Σ ⊆ TΣ and, Σ being arbitrary, we obtain T ◦ ≤ T .

Finally, suppose that T ′ ∈ ThSysN (I), such that T ′ ≤ T , and Σ ∈

|Sign|, φ ∈ T ′
Σ. Then, by Relation (8), XΣ(φ) ∈ T ′

Σ, whence, for all Σ′ ∈

|Sign|, f ∈ Sign(Σ,Σ′),

SEN(f)(XΣ(φ)) ⊆ T ′
Σ′ ⊆ TΣ′ .

But this shows that φ ∈ T ◦
Σ, i.e., T ′

Σ ⊆ T
◦
Σ and, Σ being arbitrary, T ′ ≤ T ◦,

as was to be shown. �

Font and Jansana showed in Theorem 33 of [10] that, if a sentential

logic has its Leibniz filters logically definable by a collection Y of formulas
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satisfying the analog in that setting of Condition 1 of Lemma 3.7, then it has

its filters explicitly definable by a collection X of formulas that contains

all iterates of the formulas in Y . Unlike the situation in the sentential

logic framework, it was not possible to show that logical definability in the

context of N -protoalgebraic π-institutions implies explicit definability. It is,

moreover, conjectured that, in the framework of the present work, explicit

definability is a properly stronger property than logical definability. No

example to verify this is available at the present time.

.Acknowledgements

The theory of Leibniz filters was developed in its present form primarily by

Josep Maria Font and Ramon Jansana. The influence of their work on the

one presented here is obvious and very gratefully acknowledged. On a more

personal note, the works of Czelakowski, Blok and Pigozzi and Font and

Jansana have had an enormous influence on the categorical developments

and the author bears a great scientific debt. Warm thanks are also extended

to Charles Wells and to Giora Slutzki for their guidance and support over

many years.

.References

[1] Barr, M., and Wells, C., Category Theory for Computing Science, Third Edition,

Les Publications CRM, Montréal 1999.
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