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A b s t r a c t. This paper has a two-fold purpose. On

the one hand, it introduces the concept of a syntactically

N -algebraizable π-institution, which generalizes in the con-

text of categorical abstract algebraic logic the notion of an

algebraizable logic of Blok and Pigozzi. On the other hand,

it has the purpose of comparing this important notion with

the weaker ones of an N -protoalgebraic and of a syntactically

N -equivalential π-institution and with the stronger one of

a regularly N -algebraizable π-institution. N -protoalgebraic

π-institutions and syntactically N -equivalential π-institutions

were previously introduced by the author and abstract in the

categorical framework the protoalgebraic logics of Blok and

Pigozzi and the equivalential logics of Prucnal and Wroński and

of Czelakowski. Regularly N -algebraizable π-institutions are

introduced in the present paper taking after work of Czelakowski
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and of Blok and Pigozzi in the sentential logic framework. On the

way to defining syntactically N -algebraizable π-institutions, the

important notion of an equational π-institution associated with a

given quasivariety of N -algebraic systems is also introduced. It is

based on the notion of an N -quasivariety imported recently from

the theory of Universal Algebra to the categorical level by the

author.

.1 Introduction

The purpose of this paper is to introduce the concept of a syntactically N -

algebraizable π-institution and to compare it to the weaker notions of an

N -protoalgebraic π-institution [18] and of a syntactically N -equivalential

π-institution [22] and to the stronger notion of a regularly N -algebraizable

π-institution, which will also be introduced in the present work. The notion

of a syntactically N -algebraizable π-institution adapts to the categorical

framework the notion of an algebraizable logic of Blok and Pigozzi [3].

This faithful adaptation has only become possible very recently due to the

advances in the theory of varieties and quasivarieties of N -algebraic systems

[20, 21, 23, 24]. Those advances were based on the work of Pa lasińska and

Pigozzi on the theory of varieties and quasivarieties of partially ordered

algebras (see [16]) in the framework of abstract algebraic logic.

In this introduction, some concepts and results from abstract algebraic

logic that inspired the current developments on the categorical side will be

reviewed and, then, an outline of the contents of the present paper will be

provided.

Let L be a fixed algebraic language and Q a quasivariety of L-algebras.

The equational deductive system, or 2-deductive system in the terminology

of k-deductive systems of [4], associated with the quasivariety Q is the

deductive system SQ = 〈L, |=Q〉, whose entailment relation

|=Q: P(Fm2
L(V )) → Fm2

L(V )

is the equational entailment relation induced by the class Q of L-algebras,

i.e., it is defined, for all E ∪ {φ ≈ ψ} ⊆ Fm2
L(V ), by E |=Q φ ≈ ψ if and

only if, for all A ∈ Q and all L-homomorphisms h : FmL(V ) → A, h(ǫ0) =
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h(ǫ1), for all ǫ0 ≈ ǫ1 ∈ E, imply that h(φ) = h(ψ). The set of theories

Th(SQ) of the 2-deductive system SQ coincides with the set CoQ(FmL(V ))

of Q-congruences on the formula algebra FmL(V ), i.e., those L-congruences

θ on FmL(V ), such that the quotient algebra FmL(V )/θ is in Q.

In the seminal monograph [3] Blok and Pigozzi made precise for the

first time the notion of an algebraizable logic. Besides the central role that

algebraizable logics have played by forming one of the best behaving classes

in the Leibniz hierarchy of logics, this monograph is generally acknowledged

to be the founding “manifesto” of the theory of abstract algebraic logic. In

this subtheory of algebraic logic, previous efforts and case-specific methods

and techniques employed for the algebraization of specific logics have been

unified and brought under a common general framework. One of the most

important concepts on which that of an algebraizable logic is based, is that

of an interpretation of the entailment relation of a given deductive system

into the equational entailment relation associated with a quasivariety of

algebras. Let S = 〈L,⊢S〉 be a deductive system and Q a quasivariety of

L-algebras. A translation from S into SQ = 〈L, |=Q〉 is a set of L-equations

K(x) ≈ L(x) = {κi(x) ≈ λi(x) : i < n} in one variable x. A translation of

S into SQ is said to be an interpretation if, for all Φ ∪ {φ} ⊆ FmL(V ),

Φ ⊢S φ if and only if K(Φ) ≈ L(Φ) |=Q K(φ) ≈ L(φ).

Similarly, a translation from SQ into S is a collection E = {ǫj(x, y) : j <

m} of L-formulas in two variables x, y. Such a translation is called an

interpretation if, for all Γ ≈ ∆ ∪ {φ ≈ ψ} ⊆ Fm2
L(V ),

Γ ≈ ∆ |=Q φ ≈ ψ if and only if E(Γ,∆) ⊢S E(φ,ψ).

Moreover, the two interpretations K ≈ L and E are said to be inverses of

one another if and only if, for all φ,ψ ∈ FmL(V ),

φ S⊣⊢S E(K(φ), L(φ)) and φ ≈ ψ Q=||=Q K(E(φ,ψ)) ≈ L(E(φ,ψ)).

A deductive system S = 〈L,⊢S〉 is said to be algebraizable (in the sense

of Blok and Pigozzi) if there exists an invertible interpretation K ≈ L

from S into SQ = 〈L, |=Q〉, for some quasivariety Q of L-algebras. In

that case, Q is called an equivalent quasivariety of S, the equations K ≈

L are called the defining equations and the formulas E the equivalence

formulas of the equivalence witnessing the algebraizability of S. Blok and
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Pigozzi showed that, if a deductive system S is algebraizable, then the

quasivariety Q is uniquely determined and they provided a list of very

important characterizations of algebraizability, that inspired a large amount

of the subsequent research in the field of abstract algebraic logic. Sections

4 and 5 of the present work will be devoted in revisiting the work of [3] and

abstracting it to the categorical level to cover logical systems formalized as

π-institutions.

One of the intrinsic characterizations of algebraizability provided in

Theorem 4.7 of [3] states that a deductive system S = 〈L,⊢S〉 is alge-

braizable if and only if there exist a system E of formulas in two vari-

ables and a system K ≈ L of equations in a single variable, such that

the following conditions hold, for all φ,ψ, χ ∈ FmL(V ), ω ∈ L, n-ary, and

φ0, ψ0, . . . , φn−1, ψn−1 ∈ FmL(V ):

1. ⊢S E(φ, φ);

2. E(φ,ψ) ⊢S E(ψ, φ);

3. E(φ,ψ), E(ψ,χ) ⊢S E(φ, χ);

4. E(φ0, ψ0), . . . , E(φn−1, ψn−1)⊢SE(ω(φ0, . . . , φn−1), ω(ψ0, . . . , ψn−1));

5. φ S⊣⊢S E(K(φ), L(φ)).

The existence of a system E of formulas in two variables satisfying the first

four conditions in this characterization defines the class of equivalential

logics, that were first introduced by Prucnal and Wroński [17] and subse-

quently studied in detail by Czelakowski [7, 8]. In turn, a superclass of the

class of equivalential logics consists of the deductive systems S = 〈L,⊢S〉,

that are such that there exists a system E of formulas in two variables,

satisfying, for all φ,ψ ∈ FmL(V ), the first condition above together with

6. φ,E(φ,ψ) ⊢S ψ (modus ponens)

These logics are called protoalgebraic and were introduced by Blok and

Pigozzi in [2]. Classes corresponding to the equivalential deductive systems

and to the protoalgebraic deductive systems have already been introduced

at the categorical level in [22] and [18], respectively, and the π-institutions

belonging to these two classes are called syntactically N -equivalential and

N -protoalgebraic, respectively. These two classes of π-institutions will be
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revisited and comparisons with the class of syntactically N -algebraizable

π-institutions will be made in Section 6 of the paper.

Finally, in Corollary 4.8 of [3], Blok and Pigozzi provide a sufficient

condition for the algebraizability of a deductive system S. According to this

corollary, if there exists a system E of formulas in two variables, such that a

deductive system S satisfies the first four conditions in the characterization

above and, also, Condition 6 and, for all φ,ψ ∈ FmL(V ),

7. φ,ψ ⊢S E(φ,ψ) (G-rule)

then S is algebraizable with set of equivalence formulasE and set of defining

equations x ≈ E(x, x). Deductive systems satisfying Conditions (1)-(4),(6)

and (7) are called regularly algebraizable and will be at the focus of our

investigations in Sections 7 and 8 of the present work.

We turn, now, to an overview of the contents of the present paper.

In Section 2, the reader is reminded of some general notions and results

from previous work in categorical abstract algebraic logic that will be useful

in better understanding the theory developed in the following sections.

Section 3 starts the main treatment with the definition of the N -free

equational π-institution IN−FEQ corresponding to a given sentence functor

SEN : Sign → Set, with a category N of natural transformations on SEN.

This π-institution captures the essence in the categorical framework of the

deductive system that Czelakowski and Pigozzi in [10] have called the free

equational logic. It is formulated in both a closure system and a proof-

theoretic form. After its introduction, it is shown that its theory families

exactly coincide with the N -congruence families on the functor SEN in the

ordinary sense of categorical abstract algebraic logic.

The study of IN−FEQ is followed by the introduction of the π-institution

IQ corresponding to a given quasivariety Q of N -algebraic systems. Qua-

sivarieties of N -algebraic systems were introduced in [24]. The notion of

a regular or surjectively generated quasivariety is introduced here formally

for the first time, but was implicit in the development of [25]. Given an

N -quasivariety Q, the π-institution IQ corresponds to the notion of an equa-

tional deductive system SQ, associated with a given universal algebraic

quasivariety Q, which is termed an applied equational logic in [10]. It is

shown that the theory families of IQ coincide with the N -congruence fam-

ilies θ = {θΣ}Σ∈|Sign| on SEN, that are such that SEN(Σ)/θΣ satisfies all

N -quasi-identities of Q, for every Σ ∈ |Sign|.
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Finally, in the concluding result of Section 3, it is proven that, given a

functor SEN, with N a category of natural transformations on SEN, such

that SEN2 is N -rule-based, and a closure system C ≥ CN−FEQ on SEN2

there always exists an N -quasivariety Q such that C = CQ as long as C is

finitary.

Section 4 starts with the definition of syntactically N -algebraizable π-

institutions. These are the finitary π-institutions whose consequence rela-

tions are interpretable into the consequence relations of N -quasivarieties

via invertible interpretations. The definition follows very closely the origi-

nal definition of an algebraizable deductive system of Blok and Pigozzi [3]

and captures its essence in the π-institution framework. Section 4 closes

with an analog in the categorical framework of Theorem 13 of [11], an

improvement of Theorem 2.17 of [3], that provides an axiomatization by

N -identities and N -quasi-identities of the equivalent N -quasivariety of a

syntactically N -algebraizable π-institution I, based on a given axiomatiza-

tion of the finitary consequence relation of I via N -axioms and N -rules of

inference.

Section 5 takes after the work of Blok and Pigozzi [3] and has the pur-

pose of showing that, if a π-institution is syntactically N -algebraizable,

then its equivalent N -quasivariety is unique. Blok and Pigozzi showed the

corresponding result for the deductive systems that they called algebraiz-

able and are now known as the finitary finitely algebraizable deductive

systems.

Section 6, on the other hand, is mostly a review section. It connects

the notion of syntactic N -algebraizability with those of N -protoalgebraicity

and of syntactic N -equivalentiality, that were introduced previously by the

author in [18] and [22], respectively. The goal here is to remind the reader

of the definitions and to reveal some of the connections between the three

notions.

Section 7 deals with regularly algebraizable π-institutions. It starts with

the definition of an analog of the well-known G-rule (see rule 7. above) in

the context of π-institutions. A π-institution I = 〈Sign,SEN, C〉, with N a

category of natural transformations on SEN, has theN -G-rule relative to an

N -equivalence system E if, for all Σ ∈ |Sign|, all φ,ψ ∈ SEN(Σ), and every

theory family T of I, φ,ψ ∈ TΣ implies that EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆

TΣ′ , for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′). The additional complexity in this

definition of the G-rule, as compared to the simpler definition in the senten-
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tial context, stems from the existence of the signature-changing morphisms

in the π-institution framework. However, it is easily seen that, in this

framework as well, a π-institution I has the N -G-rule if and only if, any

two Σ-sentences that belong to the Σ-component of a theory family T of I

are indistinguishable modulo the Σ-component of the Leibniz N -congruence

system ΩN (T ) corresponding to the theory family T . In another characteri-

zation of the N -G-rule, also inspired by a sentential analog, it is shown that

in a syntactically N -equivalential π-institution with an N -equivalence sys-

tem E, the G-rule holds if and only if, for every Σ ∈ |Sign|, all φ ∈ SEN(Σ)

and every theory family T of I, EΣ′(SEN(f)(φ),SEN(f)(t)) ⊆ TΣ′ , for

all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), where t is an arbitrary Σ-theorem of

I. Section 7 continues with the introduction of the notion of a systemic

π-institution. Roughly speaking, a π-institution I is systemic if every Σ-

theory of I is the Σ-component of a theory system of I. This notion is

shown to be equivalent to the notion of a theory invariant π-institution.

A π-institution is said to be theory invariant if, for every Σ ∈ |Sign| and

every Σ-theory TΣ, SEN(f)(TΣ) ⊆ TΣ, for all Sign-endomorphisms f of Σ.

Theorem 16 paves the way for the proof of one of the main results of Section

7 pertaining to regular algebraizability. It asserts, roughly speaking, that

an N -equivalence system of a syntactically N -equivalential π-institution

provides crucial help in interpreting the equational consequence relation of

a certain N -quasivariety into the consequence relation of the π-institution

itself. In Theorem 19, it is shown that a finitary, theory invariant and

finitely syntactically N -equivalential π-institution I, that

• has the G-rule,

• is such that N contains a constant natural transformation ⊤ : SEN →

SEN, with ⊤Σ(φ) := ⊤Σ ∈ ThmΣ, for every Σ ∈ |Sign| and all

φ ∈ SEN(Σ), and

• whose “associated algebraic counterpart” IAN

I is theory-invariant

is syntactically N -algebraizable. Such π-institutions are termed regularly

N -algebraizable.

Section 8 introduces relatively point-regular N -quasivarieties, an analog

in the categorical framework of the relatively point-regular quasivarieties

of universal algebras. The notion of the assertional π-institution associ-

ated with a given pointed N -quasivariety is also introduced in this section.
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Moreover, it is shown that for a pointed N -quasivariety Q, the closure sys-

tem of the assertional π-institution associated with Q is interpretable into

the closure system of the equational π-institution corresponding to Q. In

the concluding result of this section, it is proven that, if a π-institution is

regularly N -algebraizable, then it is the assertional π-institution of some

point-regular N -quasivariety. This is a partial analog of a characterization

of regularly algebraizable sentential logics due to Czelakowski and Pigozzi

and, independently, also to Blok and Raftery.

The paper ends with Section 9, that revisits the deduction-detachment

theorem in the categorical context and uses it to provide an axiomatiza-

tion of the equivalent N -quasivariety of a regularly N -algebraizable N -rule

based π-institution with a finite N -deduction-detachment system.

The interested reader may find an overview of the current state of affairs

in the field of abstract algebraic logic in the paper [13], the monograph

[12] and the book [9]. For all unexplained categorical notation, any of

the standard introductory references in category theory [1, 6, 15] may be

consulted.

.2 Preliminaries

In this section, some concepts and some results that were introduced previ-

ously in the theory of CAAL will be recalled. This exposition of background

information will, hopefully, facilitate the reading in the following sections.

Given a category Sign and a functor SEN : Sign → Set the clone

of all natural transformations on SEN is defined to be the locally small

category with collection of objects {SENα : α an ordinal} and collection

of morphisms τ : SENα → SENβ β-sequences of natural transformations

τi : SENα → SEN [18]. Composition

SENα SENβ-〈τi : i < β〉
SENγ-〈σj : j < γ〉

is defined by

〈σj : j < γ〉 ◦ 〈τi : i < β〉 = 〈σj(〈τi : i < β〉) : j < γ〉.

A subcategory N of this category with objects all objects of the form SENk

for k < ω, and containing all projection morphisms pk,i : SENk → SEN, i <
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k, k < ω, with pk,iΣ : SEN(Σ)k → SEN(Σ) given by

pk,iΣ (~φ) = φi, for all ~φ ∈ SEN(Σ)k,

and such that, for every family {τi : SENk → SEN : i < l} of natural

transformations in N , the sequence 〈τi : i < l〉 : SENk → SENl is also in

N , is referred to as a category of natural transformations on SEN.

Let SEN : Sign → Set be a functor and N a category of natural trans-

formations on SEN. In the sequel, the functor of N -terms with variables

in an arbitrary set X, that was presented in [24], will also be used. Given

a set X, the collection TeN (X) of N -terms in the variables X is defined

recursively as follows:

• x ∈ TeN (X), for all x ∈ X, and

• σ(t0, . . . , tn−1) ∈ TeN (X), for all σ : SENn → SEN in N and all

t0, . . . , tn−1 ∈ TeN (X).

Moreover, given sets X and Y and a mapping f : X → Y, f induces a

mapping TeN (f) : TeN (X) → TeN (Y ), defined recursively on the structure

of N -terms, by

• TeN (f)(x) = f(x), for all x ∈ X, and

• TeN (f)(σ(t0, . . . , tn−1)) = σ(TeN (f)(t0), . . . ,TeN (f)(tn−1)), for all

σ : SENn → SEN in N and all t0, . . . , tn−1 ∈ TeN (X).

It is not difficult to see that, defined as above, TeN : Set → Set is a functor

and that it is equipped with a category N t of natural transformations that

is compatible with N . By an N -term, we will understand a member of

TeN (X), for some X ∈ |Set|.

Given a functor SEN, with N a category of natural transformations on

SEN, denote by 〈ISign, µ
N 〉 : TeN ◦ SEN → SEN the surjective (N t, N)-

epimorphic translation, defined by letting, for all Σ ∈ |Sign|,

µNΣ : TeN (SEN(Σ)) → SEN(Σ)

be given by recursion on the structure of N -terms:

• µNΣ (φ) = φ, for all φ ∈ SEN(Σ), and
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• µNΣ (σ(t0, . . . , tn−1)) = σΣ(µNΣ (t0), . . . , µNΣ (tn−1)), for all σ : SENn →

SEN in N and all t0, . . . , tn−1 ∈ TeN (SEN(Σ)).

Furthermore, given SEN : Sign → Set, with N a category of natural

transformations on SEN, an N -term s(~x) in the set of variables X, a Σ ∈

|Sign| and ~φ ∈ SEN(Σ)X , denote by

sΣ(~φ) := µNΣ (TeN (~φ)(s)).

This is the usual operation of substitution of elements of SEN(Σ) for vari-

ables. It is obvious that sΣ(~φ) depends only on the values of the substitution
~φ on the variables ~x appearing in s.

An N -equation is a pair 〈s, t〉 of N -terms, also denoted by s ≈ t. An

N -quasiequation is a nonempty sequence 〈s0 ≈ t0, . . . , sn−1 ≈ tn−1, u ≈ v〉

of N -equations, usually denoted by s0 ≈ t0, . . . , sn−1 ≈ tn−1 → u ≈ v. The

N -equations si ≈ ti, i < n, are called the premises of the N -quasiequation

and u ≈ v its conclusion. N -equations are identified with N -quasiequations

with an empty set of premises.

Let SEN : Sign → Set be a functor, with N a category of natural

transformations on SEN. An N -algebraic system is a triple 〈SEN′, 〈N ′, F ′〉〉,

where SEN′ : Sign′ → Set is a functor, with N ′ a category of natural trans-

formations on SEN′, and F ′ : N → N ′ a surjective functor that preserves

the projections, i.e., such that

• F ′(SENk) = SEN′k, for all k ∈ ω, and

• F (pk,i) = pk,i, for all k ∈ ω, i < k, where the left pk,i refers to

the projection pk,i : SENk → SEN onto the i-th coordinate and the

right pk,i referes to the projection pk,i : SEN′k → SEN′ onto the i-th

coordinate.

The value of an N -term s(~x) at the tuple 〈Σ, ~φ〉 in the N -algebraic system

〈SEN′, 〈N ′, F ′〉〉, denoted by sΣ(~φ) is defined by recursion on the structure

of s by

• xΣ(~φ) = ~φ(x) and

• σ(t0, . . . , tn−1)Σ(~φ) = F ′(σ)Σ(t0Σ
(~φ), . . . , tn−1Σ

(~φ)), for all

σ : SENn → SEN in N and all t0, . . . , tn−1 ∈ TeN (X).
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The N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 satisfies the N -equation s ≈ t,

denoted

〈SEN′, 〈N ′, F ′〉〉 |= s ≈ t,

if, for all Σ ∈ |Sign′| and all ~φ ∈ SEN′(Σ)ω, sΣ(~φ) = tΣ(~φ). Similarly, the

N -algebraic system 〈SEN′, 〈N ′, F ′〉〉 satisfies the N -quasiequation
∧
i<n s

i ≈

ti → s ≈ t, denoted

〈SEN′, 〈N ′, F ′〉〉 |=
∧

i<n

si ≈ ti → s ≈ t,

if, for all Σ ∈ |Sign′| and all ~φ ∈ SEN′(Σ)ω, either siΣ(~φ) 6= tiΣ(~φ), for

some i < n, or sΣ(~φ) = tΣ(~φ). An N -variety or a variety of N -algebraic

systems is a class of N -algebraic systems that is axiomatized by a collec-

tion of N -equations. An N -quasivariety or a quasivariety of N -algebraic

systems is a class of N -algebraic systems that is axiomatized by a col-

lection of N -quasiequations. In [24] it has been shown that a class Q

of N -algebraic systems is an N -variety if and only if HSP(Q) = Q and

that a class Q of N -algebraic systems is an N -quasivariety if and only if

SLP(Q) = Q. The reader is referred to that paper for more details on the

closure operators on classes of N -algebraic systems that are involved in

this Birkhoff-style and this Mal’cev-style characterizations of N -varieties

and N -quasivarieties, respectively. Given an N -quasivariety Q, the N -core

of Q, denoted by corN (Q), is the subclass of Q consisting of all those N -

algebraic systems 〈SEN′, 〈N ′, F ′〉〉 ∈ Q, such that, there exists a surjective

(N,N ′)-epimorphic translation 〈F,α〉 : SEN →se SEN′. Q is called N -

surjectively generated or N -regular if it is generated as an N -quasivariety

by a subclass of its N -core.

Let SEN : Sign → Set be a functor, with N a category of natural

transformations on SEN. Then by an N -rule of inference, or, simply,

an N -rule, of SEN it is understood a member r of the cartesian prod-

uct P(TeN (V )) × TeN (V ). Such a rule is denoted by r = 〈X,σ〉, where

X ⊆ TeN (V ) and σ ∈ TeN (V ). The length of the N -rule r = 〈X,σ〉 is the

cardinal number |r| = |X|+. An axiom family T = {TΣ}Σ∈|Sign| on SEN

(i.e., TΣ ⊆ SEN(Σ), for all Σ ∈ |Sign|,) is said to be closed under the N -

rule r = 〈X,σ〉 if, for all Σ ∈ |Sign|, and all ~φ ∈ SEN(Σ)V , if XΣ(~φ) ⊆ TΣ,

then σΣ(~φ) ∈ TΣ. If T is closed under the rule r, then, we also say that r

preserves the axiom family T . An N -rule r = 〈X,σ〉 of SEN is an N -rule
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of the π-institution I = 〈Sign,SEN, C〉 or of the closure system C on SEN

if σΣ(~φ) ⊆ CΣ(XΣ(~φ)), for all Σ ∈ |Sign|, ~φ ∈ SEN(Σ)V . If this is the case,

then r is said to be sound for I or for C. Let SEN : Sign → Set be a

functor and N a category of natural transformations on SEN. A closure

system C on SEN and the corresponding π-institution I = 〈Sign,SEN, C〉

are said to be N -rule-based if, for all Σ ∈ |Sign|,Φ ∪ {φ} ⊆ SEN(Σ), such

that φ ∈ CΣ(Φ), there exists an N -rule 〈X,σ〉 of C of length at most |Φ|+,

and ~ψ ∈ SEN(Σ)V , such that XΣ(~ψ) ⊆ Φ and σΣ(~ψ) = φ, i.e., such that φ

follows from Φ by an application of 〈X,σ〉. A functor SEN : Sign → Set,

with N a category of natural transformations on SEN, is said to be N -rule

based if every finitary closure system C on SEN is N -rule based. Given

a finitary N -rule based π-institution I = 〈Sign,SEN, C〉, Σ ∈ |Sign| and

φ0, . . . , φn−1, φ ∈ SEN(Σ), such that φ ∈ CΣ(φ0, . . . , φn−1), it is common

to denote by σ〈Σ,φ0〉, . . . , σ〈Σ,φn−1〉, σ〈Σ,φ〉 : SENk → SEN the natural trans-

formations in N , such that

1. 〈{σ〈Σ,φi〉 : i < n}, σ〈Σ,φ〉〉 is an N -rule of inference of I and

2. there exists ~χ ∈ SEN(Σ)k, such that σ
〈Σ,φi〉
Σ (~χ) = φi, i < n, and

σ
〈Σ,φ〉
Σ (~χ) = φ.

.3 Equational π-Institutions

Let SEN : Sign → Set be a functor, with N a category of natural transfor-

mations on SEN. Define the triple IN−FEQ = 〈Sign,SEN2, CN−FEQ〉 by

letting, for all Σ ∈ |Sign|, CN−FEQ
Σ be the least closure operator, such that

1. 〈φ, φ〉 ∈ CN−FEQ
Σ (∅), for all φ ∈ SEN(Σ),

2. 〈ψ, φ〉 ∈ CN−FEQ
Σ (〈φ,ψ〉), for all φ,ψ ∈ SEN(Σ),

3. 〈φ, χ〉 ∈ CN−FEQ
Σ (〈φ,ψ〉, 〈ψ,χ〉), for all φ,ψ, χ ∈ SEN(Σ),

4. 〈σΣ(~φ), σΣ(~ψ)〉 ∈ CN−FEQ
Σ (〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉), for all

σ : SENn → SEN in N and all φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ).

A proof-theoretic reformulation of the definition of CN−FEQ
Σ may also

be given. Let E∪{〈φ,ψ〉} ⊆ SEN(Σ)2. Say that 〈φ,ψ〉 Σ-directly follows

from E in CN−FEQ, if either
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1. 〈ψ, φ〉 ∈ E or

2. 〈φ, χ〉, 〈χ,ψ〉 ∈ E, for some χ ∈ SEN(Σ), or

3. there exist σ : SENn → SEN in N and ~φ, ~ψ ∈ SEN(Σ)n, such that

φ = σΣ(~φ), ψ = σΣ(~ψ) and 〈φi, ψi〉 ∈ E, for all i < n.

Then, a Σ-proof of 〈φ,ψ〉 from E in CN−FEQ is a finite sequence

〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉, 〈φn, ψn〉 = 〈φ,ψ〉,

in SEN(Σ)2, such that, for all k ≤ n, either φk = ψk or 〈φk, ψk〉 Σ-directly

follows from {〈φ0, ψ0〉, . . . , 〈φk−1, ψk−1〉} in CN−FEQ.

It is not at all difficult to show that, for all Σ ∈ |Sign| and all E ∪

{〈φ,ψ〉} ⊆ SEN(Σ)2, 〈φ,ψ〉 ∈ CN−FEQ
Σ (E) if and only if there exists a

Σ-proof of 〈φ,ψ〉 from E in CN−FEQ. We sketch the argument which

is a standard proof-theoretic argument in mathematical logic. Let CΣ :

P(SEN(Σ)2) → P(SEN(Σ)2) be defined, for all E ⊆ SEN(Σ)2, by

CΣ(E) = {〈φ,ψ〉 ∈ SEN(Σ)2 :

there exists a Σ-proof of 〈φ,ψ〉 from E in CN−FEQ}.

It can be shown by induction on the length of a Σ-proof that, if 〈φ,ψ〉 ∈

CΣ(E), then 〈φ,ψ〉 ∈ CN−FEQ
Σ (E). On the other hand, it may also be

shown that CΣ is a closure operator on SEN(Σ)2, that satisfies Conditions

1-4 of the definition of CN−FEQ
Σ . Thus, by the minimality of CN−FEQ

Σ , one

obtains that, if 〈φ,ψ〉 ∈ CN−FEQ
Σ (E), then 〈φ,ψ〉 ∈ CΣ(E). Thus, the two

closure operators CN−FEQ
Σ and CΣ on SEN(Σ)2 coincide.

It is shown, next, that IN−FEQ is a π-institution and that the theory

families of IN−FEQ coincide with the N -congruence families on SEN. As a

consequence, one also obtains that the theory systems of IN−FEQ coincide

with the N -congruence systems on SEN.

Proposition 1. Let SEN : Sign → Set be a functor, with N a category

of natural transformations on SEN. Then

IN−FEQ = 〈Sign,SEN2, CN−FEQ〉

is a finitary π-institution.
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Proof. Since, by definition CN−FEQ
Σ is a closure operator on SEN(Σ)2,

it suffices to show that CN−FEQ is structural. The key observation is that

each of the four rules defining CN−FEQ is structural and, therefore, for all

Σ,Σ′ ∈ |Sign|, all f ∈ Sign(Σ,Σ′) and all E ∪ {〈φ,ψ〉} ⊆ SEN(Σ)2, any

Σ-proof of 〈φ,ψ〉 from E in CN−FEQ may be easily converted to a Σ′-proof

of 〈SEN(f)(φ),SEN(f)(ψ)〉 from SEN(f)(E) in CN−FEQ. In fact, we need

only apply SEN(f)2 to all pairs in the original Σ-proof to get a Σ′-proof.

�

The π-institution IN−FEQ is called the N -free equational π-institu-

tion on SEN.

Proposition 2. Let SEN : Sign → Set be a functor, with N a category

of natural transformations on SEN. Then ThFam(IN−FEQ)=ConfN (SEN),

where by ConfN (SEN) is denoted the collection of all N -congruence families

on SEN.

Proof. Suppose that θ ∈ ThFam(IN−FEQ). It suffices to show that, for

all Σ ∈ |Sign|, θΣ is an N -congruence relation on SEN(Σ). By Properties

1-3 of the definition of CN−FEQ
Σ , θΣ is an equivalence relation on SEN(Σ).

Finally, by Property 4 of the definition of CN−FEQ
Σ , we get that θΣ is

preserved by all natural transformations in N and, therefore, it is in fact

an N -congruence relation on SEN(Σ).

Suppose, conversely, that θ ∈ ConfN (SEN). It suffices to show that

θΣ = CN−FEQ
Σ (θΣ), for all Σ ∈ |Sign|. To this end, suppose that φ,ψ ∈

SEN(Σ), with 〈φ,ψ〉 ∈ CN−FEQ
Σ (θΣ). Using the definition of CN−FEQ and

recursion on the number of steps in a Σ-proof of 〈φ,ψ〉 from θΣ in CN−FEQ,

one of the following must hold:

1. φ = ψ. In this case, since θΣ is reflexive, we must have 〈φ,ψ〉 ∈ θΣ.

2. 〈ψ, φ〉 ∈ θΣ, whence, since θΣ is symmetric, we get that 〈φ,ψ〉 ∈ θΣ.

3. 〈φ, χ〉, 〈χ,ψ〉 ∈ θΣ, for some χ ∈ SEN(Σ), whence, since θΣ is transi-

tive, we must have 〈φ,ψ〉 ∈ θΣ.

4. There exist σ : SENn → SEN in N and ~φ, ~ψ ∈ SEN(Σ)n, such that

φ = σΣ(~φ), ψ = σΣ(~ψ) and 〈φi, ψi〉 ∈ θΣ, for all i < n. Thus, since

θΣ is an N -congruence relation on SEN(Σ), we get that 〈φ,ψ〉 =

〈σΣ(~φ), σΣ(~ψ)〉 ∈ θΣ.
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This concludes the proof that θΣ = CN−FEQ
Σ (θΣ), showing that

θ ∈ ThFam(IN−FEQ). �

Corollary 3. Let SEN : Sign → Set be a functor, with N a category

of natural transformations on SEN. Then ThSys(IN−FEQ) = ConN (SEN).

Suppose that SEN : Sign → Set is a functor and N a category of

natural transformations on SEN. Let Q be a quasivariety of N -algebraic

systems. Q will be said to be surjectively generated or regular if it

is generated by a subclass K ⊆ Q, such that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ K,

there exists at least one surjective (N,N ′)-epimorphic translation 〈F,α〉 :

SEN →se SEN′. A class K of N -algebraic systems having this property will

be termed a surjective class

Recall from [25], that, given a functor SEN : Sign → Set, with N a

category of natural transformations on SEN, and an N -quasivariety Q, the

N -core of Q, denoted by corN (Q), is the subclass K ⊆ Q of all those N -

algebraic systems 〈SEN′, 〈N ′, F ′〉〉 ∈ K, that are such that there exists at

least one surjective (N,N ′)-epimorphic translation 〈F,α〉 : SEN →se SEN′.

Regular N -quasivarieties have the following characterization in terms of

their core:

Proposition 4. Let SEN : Sign → Set, with N a category of natu-

ral transformations on SEN, be a functor and Q an N -quasivariety of N -

algebraic systems. Q is a regular quasivariety if and only if Q = Q(corN (Q)),

where, for any class K of N -algebraic systems, by Q(K) is denoted the N -

quasivariety generated by K.

Proof. Suppose that Q is a regular N -quasivariety. Then, there exists a

surjective class K ⊆ Q, such that Q = Q(K). Notice that, since K is surjective,

K ⊆ corN (Q), whence we obtain that Q = Q(K) ⊆ Q(corN (Q)) ⊆ Q and,

therefore, Q = Q(corN (Q)).

Suppose, conversely, that Q = Q(corN (Q)). But, then, since, by defini-

tion, corN (Q) is a surjective class, we get that Q is a regular N -quasivariety.

�

Given an N -quasivariety Q, define the triple IQ = 〈Sign,SEN2, CQ〉 by

letting, for all Σ ∈ |Sign|, CQ

Σ be the smallest closure operator on SEN(Σ)2

that, in addition to the four rules satisfied by CN−FEQ, it also satisfies,
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5. 〈σΣ(~φ), τΣ(~φ)〉 ∈ CQ

Σ(∅), for all ~φ ∈ SEN(Σ)k, for every N -identity

σ ≈ τ of Q,

6. 〈σΣ(~φ), τΣ(~φ)〉 ∈ CQ

Σ(〈σ0
Σ(~φ), τ0

Σ(~φ)〉, . . . , 〈σn−1
Σ (~φ), τn−1

Σ (~φ)〉), for all
~φ ∈ SEN(Σ)k, for every N -quasi-identity

∧
i<n σ

i ≈ τ i → σ ≈ τ of Q.

Again, we provide a proof-theoretic version of CQ. Given E∪{〈φ,ψ〉} ⊆

SEN(Σ)2, it is said that 〈φ,ψ〉 Σ-directly follows from E in CQ if either

〈φ,ψ〉 Σ-directly follows from E in CN−FEQ or, there exist

σ0, . . . , σn−1, τ0, . . . , τn−1, σ, τ : SENk → SEN

in N , with Q |=
∧
i<n σ

i ≈ τ i → σ ≈ τ , and ~φ ∈ SEN(Σ)k, such that

φ = σΣ(~φ), ψ = τΣ(~φ) and 〈σiΣ(~φ), τ iΣ(~φ)〉 ∈ E, for all i < n.

A Σ-proof of 〈φ,ψ〉 from E in CQ is a finite sequence

〈φ0, ψ0〉, . . . , 〈φm−1, ψm−1〉, 〈φm, ψm〉 = 〈φ,ψ〉,

in SEN(Σ)2, such that, for all i ≤ m, either φi = ψi, or there exist σ, τ :

SENk → SEN in N , with Q |= σ ≈ τ , and ~χ ∈ SEN(Σ)k, such that

φi = σΣ(~χ) and ψi = τΣ(~χ), or 〈φi, ψi〉 Σ-directly follows from {〈φ0, ψ0〉, . . . ,

〈φi−1, ψi−1〉} in CQ.

It is also not difficult to see that, for all Σ ∈ |Sign| and all E∪{〈φ,ψ〉} ⊆

SEN(Σ)2, 〈φ,ψ〉 ∈ CQ

Σ(E) if and only if there exists a Σ-proof of 〈φ,ψ〉

from E in CQ. The details of the proof of this statement are very similar to

those of the proof of the corresponding statement about CN−FEQ and will,

therefore, be omitted.

Proposition 5. Let SEN : Sign → Set be a functor, with N a category

of natural transformations on SEN. If Q is an N -quasivariety, then IQ =

〈Sign,SEN2, CQ〉 is a finitary π-institution.

Proof. Very similar to the proof of Proposition 1. �

Now it is not very hard to see that the theory families of IQ are exactly

the Q-N -congruence families on SEN, i.e., those N -congruence families θ

on SEN for which, for every Σ ∈ |Sign|, the quotient SEN(Σ)/θΣ satisfies

all N -quasi-identities of Q. The collection of all such congruence families is

denoted by ConfNQ (SEN). Therefore, the theory systems of IQ coincide with

the Q-N -congruence systems on SEN, i.e., those N -congruence systems θ
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on SEN, such that the quotient 〈SENθ, 〈N θ, F θ〉〉 ∈ Q. Similarly with the

notation followed for Q-N -congruence families, the collection of all Q-N -

congruence systems is denoted by ConNQ (SEN).

Proposition 6. Let SEN : Sign → Set be a functor, with N a cate-

gory of natural transformations on SEN, and Q an N -quasivariety. Then

ThFam(IQ) = ConfNQ (SEN) and, consequently, ThSys(IQ) = ConNQ (SEN).

Proof. Clearly, we have that

ThFam(IQ) ⊆ ThFam(IN−FEQ) = ConfN (SEN),

by Proposition 2. So, for left-to-right inclusion, it suffices to show that,

if θ ∈ ThFam(IQ), then, for all Σ ∈ |Sign|, SEN(Σ)/θΣ satisfies all N -

quasi-identities of Q. To this end, let, first, σ, τ : SENk → SEN in N be

such that Q |= σ ≈ τ . Then, for all ~φ ∈ SEN(Σ)k, 〈σΣ(~φ), τΣ(~φ)〉 ∈ CQ

Σ(∅).

Thus, since θ ∈ ThFam(IQ), we must have 〈σΣ(~φ), τΣ(~φ)〉 ∈ θΣ. Hence

σθΣ(~φ/θΣ) = τ θΣ(~φ/θΣ), which shows that SEN(Σ)/θΣ satisfies σ ≈ τ . Let,

next, σ0, . . . , σn−1, τ0, . . . , τn−1, σ, τ : SENk → SEN in N be such that

Q |=
∧
i<n σ

i ≈ τ i → σ ≈ τ . Then, if SEN(Σ)/θΣ satisfies
∧
i<n σ

i ≈ τ i,

we have that, for all ~φ ∈ SEN(Σ)k, σi
θ

Σ (~φ/θΣ) = τ i
θ

Σ (~φ/θΣ), i < n. Thus,

〈σiΣ(~φ), τ iΣ(~φ)〉 ∈ θΣ, for all i < n. Since θ ∈ ThFam(IQ) and Q |=
∧
i<n σ

i ≈

τ i → σ ≈ τ , we get that 〈σΣ(~φ), τΣ(~φ)〉 ∈ θΣ. This yields that σθΣ(~φ/θΣ) =

τ θΣ(~φ/θΣ), showing that SEN(Σ)/θΣ satisfies
∧
i<n σ

i ≈ τ i → σ ≈ τ .

For the right-to-left inclusion, notice, again, that

ConfNQ (SEN) ⊆ ConfN (SEN) = ThFam(IN−FEQ),

by Proposition 2. Thus, it suffices to show that, if θ ∈ ConfNQ (SEN), then

the theory family θ of IN−FEQ is also closed under the two extra rules of

IQ. To this end, suppose that φ,ψ ∈ SEN(Σ), with 〈φ,ψ〉 ∈ CQ

Σ(θΣ). Using

the definition of CQ and recursion on the number of steps in a Σ-proof of

〈φ,ψ〉 from θΣ in CQ, one of the following cases must hold:

1. φ = ψ or 〈ψ, φ〉 ∈ θΣ or 〈φ, χ〉, 〈χ,ψ〉 ∈ θΣ, for some χ ∈ SEN(Σ), or

there exist σ : SENn → SEN in N and ~φ, ~ψ ∈ SEN(Σ)n, such that

φ = σΣ(~φ), ψ = σΣ(~ψ) and 〈φi, ψi〉 ∈ θΣ, for all i < n, and all these

cases are handled by the fact that IQ is closed under all the rules of

IN−FEQ.
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2. There exist σ, τ : SENk → SEN in N , such that Q |= σ ≈ τ ,

and ~φ ∈ SEN(Σ)k, such that φ = σΣ(~φ), ψ = τΣ(~φ). Then, since

Q |= σ ≈ τ , we have that SEN(Σ)/θΣ satisfies σ ≈ τ , i.e., for

all ~ψ ∈ SEN(Σ)k, σθΣ(~ψ/θΣ) = τ θΣ(~ψ/θΣ), which is equivalent to

〈σΣ(~ψ), τΣ(~ψ)〉 ∈ θΣ. Choosing for ~ψ the specific vector ~φ, we get

that 〈φ,ψ〉 = 〈σΣ(~φ), τΣ(~φ)〉 ∈ θΣ.

3. There exist σ0, . . . , σn−1, τ0, . . . , τn−1, σ, τ : SENk → SEN, such that

Q |=
∧
i<n σ

i ≈ τ i → σ ≈ τ , and ~φ ∈ SEN(Σ)k, such that

〈σiΣ(~φ), τ iΣ(~φ)〉 ∈ θΣ, for all i < n,

and φ = σΣ(~φ), ψ = τΣ(~φ). Then we have that, for all i < n,

σi
θ

Σ (~φ/θΣ) = τ i
θ

Σ (~φ/θΣ), whence, since SEN(Σ)/θΣ satisfies
∧
i<n σ

i ≈

τ i → σ ≈ τ , we get that σθΣ(~φ/θΣ) = τ θΣ(~φ/θΣ), i.e., that 〈φ,ψ〉 =

〈σΣ(~φ), τΣ(~φ)〉 ∈ θΣ. �

Suppose that SEN : Sign → Set is a functor, with N a category of

natural transformations on SEN. In the following theorem a characteriza-

tion is obtained of all closure systems on SEN including the closure system

CN−FEQ that are of the form CQ, for some quasivariety Q of N -algebraic

systems, under the hypothesis that SEN2 : Sign → Set is N -rule-based.

They are exactly those closure systems that are finitary.

Recall that an N -rule based functor is a functor SEN : Sign → Set

such that, every finitary closure system C on SEN is N -rule based.

Theorem 7. Let SEN : Sign → Set, with N a category of natural

transformations on SEN2, be a functor, such that SEN2 is N -rule-based,

and C ≥ CN−FEQ a closure system on SEN. Then C = CQ, for some

N -quasi-variety Q if and only if C is finitary.

Proof. If C = CQ, then, by Proposition 5, we have that C is finitary.

Suppose, conversely, that C ≥ CN−FEQ is a finitary closure system on

SEN2. Let Q be the N -quasivariety axiomatized by

1. the N -identities σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉, for all Σ ∈ |Sign| and all 〈φ,ψ〉 ∈

CΣ(∅), and

2. the N -quasi-identities
∧
i<n σ

〈Σ,φi〉 ≈ σ〈Σ,ψi〉 → σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉, for

all Σ ∈ |Sign| and all φ0, . . . , φn−1, ψ0, . . . , ψn−1, φ, ψ ∈ SEN(Σ), such
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that

〈φ,ψ〉 ∈ CΣ(〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉).

It will be shown that CΣ = CQ

Σ, for all Σ ∈ |Sign|. To this end, fix

Σ ∈ |Sign| and suppose, first, that E ∪ {〈φ,ψ〉} ⊆ SEN(Σ)2, such that

〈φ,ψ〉 ∈ CΣ(E). Then, there exist, by finitarity, φ0, ψ0, . . . , φn−1, ψn−1 ∈

SEN(Σ)2, such that 〈φ,ψ〉 ∈ CΣ(〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉). Hence, since

SEN2 is N -rule-based and C is a finitary closure system on SEN2, there

exist σ〈Σ,φi〉, σ〈Σ,ψi〉, σ〈Σ,φ〉, σ〈Σ,ψ〉 : SENk → SEN, i < n, and ~χ ∈ SEN(Σ)k,

such that

• 〈{〈σ〈Σ,φ0〉, σ〈Σ,ψ0〉〉, . . . ,〈σ〈Σ,φn−1〉, σ〈Σ,ψn−1〉〉},〈σ〈Σ,φ〉, σ〈Σ,ψ〉〉〉 is anN -

rule of C and

• σ
〈Σ,φi〉
Σ (~χ) = φi, σ

〈Σ,ψi〉
Σ (~χ) = ψi, σ

〈Σ,φ〉
Σ (~χ) = φ, σ

〈Σ,ψ〉
Σ (~χ) = ψ, for all

i < n.

These two conditions, taken together with the hypothesis that

∧

i<n

σ〈Σ,φi〉 ≈ σ〈Σ,ψi〉 → σ〈Σ,φ〉 ≈ σ〈Σ,ψ〉

is an N -quasi-identity of Q and the definition of CQ, imply that

〈σ
〈Σ,φ〉
Σ (~χ), σ

〈Σ,ψ〉
Σ (~χ)〉 ∈ CQ

Σ({〈σ
〈Σ,φi〉
Σ (~χ), σ

〈Σ,ψi〉
Σ (~χ)〉 : i < n}),

i.e., that 〈φ,ψ〉 ∈ CQ

Σ(〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉). Therefore C ≤ CQ. Sup-

pose, for the sake of proving the reverse inequality, that

φ0, ψ0, . . . , φn−1, ψn−1, φ, ψ ∈ SEN(Σ),

such that 〈φ,ψ〉 ∈ CQ

Σ(〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉). Using the definition

of CQ and recursion on the number of steps in a Σ-proof of 〈φ,ψ〉 from

{〈φi, ψi〉 : i < n} in CQ, we must have one of the following:

• 〈φ,ψ〉 follows from {〈φi, ψi〉 : i < n} using one of the N -axioms

or N -rules of IN−FEQ, in which case, since C ≥ CN−FEQ, by the

hypothesis, we obtain that 〈φ,ψ〉 ∈ CΣ(〈φ0, ψ0〉, . . . , 〈φn−1, ψn−1〉).

• There exist σ, τ : SENk → SEN in N , such that Q |= σ ≈ τ and

~χ ∈ SEN(Σ)k, such that φ = σΣ(~χ) and ψ = τΣ(~χ). Therefore, by
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the definition of the N -equations holding in Q, there exist Σ′ ∈ |Sign|

and ζ, η ∈ SEN(Σ′), such that 〈ζ, η〉 ∈ CΣ′(∅), causing the existence of

the N -axiom 〈σ, τ〉 = 〈σ〈Σ
′,ζ〉, σ〈Σ

′,η〉〉 of C and of ~χ′ ∈ SEN(Σ′)k, such

that ζ = σΣ′(~χ′) and η = τΣ′(~χ′). Since 〈σ〈Σ
′,ζ〉, σ〈Σ

′,η〉〉 is an N -axiom

of C, we have that 〈φ,ψ〉 = 〈σΣ(~χ), τΣ(~χ)〉 = 〈σ
〈Σ′,ζ〉
Σ (~χ), σ

〈Σ′,η〉
Σ (~χ)〉 ∈

CΣ(∅).

• There exist σ0, τ0, . . . , σn−1, τn−1, σ, τ : SENk → SEN in N , such

that Q |=
∧
i<n σ

i ≈ τ i → σ ≈ τ , and ~χ ∈ SEN(Σ)k, such that φi =

σiΣ(~χ), ψi = τ iΣ(~χ), i < n, and φ = σΣ(~χ), ψ = τΣ(~χ). Hence by the

definition of the N -quasi-identities of Q, there exist Σ′ ∈ |Sign| and

ζi, ηi, ζ, η ∈ SEN(Σ′), i < n, such that 〈ζ, η〉 ∈ CΣ′(〈ζ0, η0〉, . . . , 〈ζn−1,

ηn−1〉), causing the existence of the N -rule of inference 〈{σ〈Σ
′,ζi〉 ≈

σ〈Σ
′,ηi〉 : i < n}, σ〈Σ

′,ζ〉 ≈ σ〈Σ
′,η〉〉 = 〈{σi ≈ τ i : i < n}, σ ≈ τ〉 of

C and of ~χ′ ∈ SEN(Σ′)k, such that σ
〈Σ′,ζi〉
Σ′ (~χ′) = ζi, σ

〈Σ′,ηi〉
Σ′ (~χ′) = ηi,

i < n, and σ
〈Σ′,ζ〉
Σ′ (~χ′) = ζ, σ

〈Σ′,η〉
Σ′ (~χ′) = η. Thus, we obtain

〈φ,ψ〉 = 〈σΣ(~χ), τΣ(~χ)〉

= 〈σ
〈Σ′,ζ〉
Σ (~χ), σ

〈Σ′,η〉
Σ (~χ)〉

∈ CΣ({〈σ
〈Σ′ ,ζi〉
Σ (~χ), σ

〈Σ′,ηi〉
Σ (~χ)〉 : i < n})

= CΣ({〈σiΣ(~χ), τ iΣ(~χ)〉 : i < n})

= CΣ({〈φi, ψi〉 : i < n}).

This shows that CQ ≤ C and concludes the proof that C is indeed of the

form CQ for the chosen N -quasivariety Q. �

.4 Syntactically Algebraizable π-Institutions

The class of syntactically N -algebraizable π-institutions is in the context

of categorical abstract algebraic logic an analog of the class of finitely al-

gebraizable finitary deductive systems, as originally presented by Blok and

Pigozzi in [3].

Let I = 〈Sign,SEN, C〉, with N a category of natural transforma-

tions on SEN, be a finitary π-institution. I is called syntactically N -

algebraizable if there exists an N -quasivariety Q and a nonempty set
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E(x, y) = {ǫ0(x, y), . . . , ǫn−1(x, y)} of binary natural transformations

ǫ0, . . . , ǫn−1 : SEN2 → SEN

in N and a nonempty set

K(x) ≈ L(x) = {κ0(x) ≈ λ0(x), . . . , κm−1(x) ≈ λm−1(x)}

of N -equations, with κi, λi : SEN → SEN in N , for all i < m, such that the

following conditions hold, for all Σ ∈ |Sign|, all Φ∪ {φ} ⊆ SEN(Σ) and all

Γ ≈ ∆ ∪ {φ ≈ ψ} ⊆ SEN(Σ)2 (usual abstract algebraic logic abbreviations

are used in this context):

φ ∈ CΣ(Γ) iff KΣ(φ) ≈ LΣ(φ) ⊆ CQ

Σ(KΣ(Γ) ≈ LΣ(Γ)); (1)

φ ≈ ψ ∈ CQ

Σ(Γ ≈ ∆) iff EΣ(φ,ψ) ⊆ CΣ(EΣ(Γ,∆)); (2)

CΣ(φ) = CΣ(EΣ(KΣ(φ), LΣ(φ))); (3)

CQ

Σ(φ ≈ ψ) = CQ

Σ(KΣ(EΣ(φ,ψ)) ≈ LΣ(EΣ(φ,ψ))). (4)

In fact, as is the case for deductive systems, Conditions (1) and (4)

imply the remaining two conditions and, similarly, Conditions (2) and (3)

also imply the remaining two conditions.

Proposition 8. Suppose that I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is a finitary π-institution and Q an N -

quasivariety. If E and K ≈ L are as above, then Conditions (1) and (4)

hold if and only if Conditions (2) and (3) hold.

Proof. Follow the steps in the proof of Corollary 2.9 of [3]. �

Suppose that I = 〈Sign,SEN, C〉, with N a category of natural trans-

formations on SEN, is a finitary π-institution and Q an N -quasivariety. A

finite system K(x) ≈ L(x), as above, satisfying Condition (1) is said to

be an N -interpretation of I in IQ. Similarly, a finite system E(x, y), as

above, satisfying Condition (2) is called an N -interpretation of IQ in I.

If, in addition, the two Conditions (3) and (4) also hold, then K(x) ≈ L(x)

and E(x, y) are said to be inverses of one another.

Thus, using this terminology, the definition of syntactic N -algebraizabi-

lity may be stated as follows: A finitary π-institution I = 〈Sign,SEN, C〉,
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with N a category of natural transformations on SEN, is syntactically N -

algebraizable if and only if there exists an invertible interpretation of I

into IQ, for some N -quasivariety Q. This N -quasivariety will be shown in

Section 5, following the original work of Blok and Pigozzi [3], to be uniquely

determined by I and will be called the equivalent N -quasivariety of I.

Still following original terminology established by Blok and Pigozzi, a

finitary π-institution I is called strongly syntactically N -algebraizable

if it is syntactically N -algebraizable and its equivalent N -quasivariety hap-

pens to be an N -variety.

Given a π-institution I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, we define the collection of N -algebraic systems

AN (I) as follows:

AN (I) = {〈SENθ, 〈N θ, F θ〉〉 :

∃ T ∈ ThFam
〈ISign,π

θ〉
I (SENθ)(ΩNθ

(T ) = ∆SENθ

)}.

The following lemma characterizes, given a π-institution I=〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, the AN (I)-N -con-

gruence systems on SEN.

Lemma 9. Let I = 〈Sign,SEN, C〉, with N a category of natural trans-

formations on SEN, be a finitary π-institution. Then we have

ConNAN (I)(SEN) = {ΩN (T ) : T ∈ ThFam(I)}.

Proof. Let T ∈ ThFam(I). To see that ΩN (T ) ∈ ConNAN (I)(SEN), it

suffices to show that 〈SENΩN (T ), 〈NΩN (T ), FΩN (T )〉〉 ∈ AN (I). But, since

T/ΩN (T ) is a theory family of the 〈ISign, π
ΩN (T )〉-min (N,NΩN (T ))-model

of I on SENΩN (T ), such that ΩNΩN (T )
(T/ΩN (T )) = ∆SENΩN (T )

, we do

indeed have 〈SENΩN (T ), 〈NΩN (T ), FΩN (T )〉〉 ∈ AN (I).

Suppose, conversely, that θ ∈ ConNAN (I)(SEN). Thus, 〈SENθ,〈N θ,F θ〉〉∈

AN (I). Hence, there exists a theory family T of the 〈ISign, π
θ〉-min (N,N θ)-

model of I on SENθ, such that ΩNθ

(T ) = ∆SENθ

. But, then, we have

θ = (πθ)−1(∆SENθ

)

= (πθ)−1(ΩNθ

(T )) (by hypothesis)

= ΩN ((πθ)−1(T )), (by Lemma 5.26 of [18])
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which, since, by Lemma 4.12 of [18], (πθ)−1(T ) ∈ ThFam(I), shows that

θ ∈ {ΩN (T ) : T ∈ ThFam(I)}. �

This section concludes with Theorem 10, which is an analog in the π-

institution framework of Theorem 13 of [11], which is, in turn, an improve-

ment of Theorem 2.17 of [3]. It provides an axiomatization by N -identities

and N -quasi-identities of the equivalent N -quasivariety of a syntactically

N -algebraizable π-institution I based on a given axiomatization of the fini-

tary consequence relation of I via N -axioms and N -rules of inference.

Theorem 10. Let I = 〈Sign,SEN, C〉 be a finitary π-institution, with

N a category of natural transformations on SEN, whose closure system

C is generated by a collection Ax of N -axioms and a collection IR of

N -inference rules. Suppose that I is syntactically N -algebraizable with

equivalent N -quasivariety Q. Let E(x, y) be an N -interpretation of IQ =

〈Sign,SEN2, CQ〉 in I with K(x) ≈ L(x) its inverse N -interpretation of I

in IQ. Then, the closure system CQ of the π-institution IQ is generated by

the following N -axioms and N -inference rules:

1. All rules of CN−FEQ;

2. K(σ(~x)) ≈ L(σ(~x)), for all σ(~x) ∈ Ax;

3.
∧
i<kK(σi(~x)) ≈ L(σi(~x)) → K(τ(~x)) ≈ L(τ(~x)), for all 〈{σi(~x) :

i < k}, τ(~x)〉 ∈ IR;

4. K(E(x, y)) ≈ L(E(x, y)) → x ≈ y.

Proof. First, it is shown that each one of the listed N -axioms and

N -rules is an N -rule of IQ. Since, by definition all N -rules of CN−FEQ are

also rules of CQ, this is definitely true for 1. For 2, suppose that σ(~x) ∈ Ax.

This means that, for every Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)l, σΣ(~φ) ∈ CΣ(∅).

Therefore, since K(x) ≈ L(x) is an N -interpretation of I in IQ, we get that

KΣ(σΣ(~φ)) ≈ LΣ(σΣ(~φ)) ∈ CQ

Σ(∅), for all Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)l.

This means that K(σ(~x)) ≈ L(σ(~x)) is an axiom of IQ. For 3, we work

very similarly as for the proof of 2. Finally, 4 follows from Condition (4) of

the definition of syntactic N -algebraizability.

Conversely, it must be shown that everyN -identity andN -quasi-identity

of Q is a consequence of N -identities and N -quasi-identities listed in 1-4.
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It is not difficult to see that K(E(x, x)) ≈ L(E(x, x)) are all conse-

quences of 1-4. In fact, since, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ),

φ ≈ φ ∈ CQ

Σ(∅), we have that EΣ(φ, φ) ⊆ CΣ(∅). Therefore, there exists a

Σ-proof of EΣ(φ, φ) in C, using Ax and IR. If K(x) ≈ L(x) is applied at

each element of the Σ-proof sequence, then a Σ-proof of KΣ(EΣ(φ, φ)) ≈

LΣ(EΣ(φ, φ)) is obtained using only N -axioms and N -inference rules of the

form 1-4. Since, this holds for all Σ ∈ |Sign| and all φ ∈ SEN(Σ), we have

that K(E(x, x)) ≈ L(E(x, x)) is a consequence of 1-4.

Having the N -identities K(E(x, x)) ≈ L(E(x, x)) at hand, suppose,

now, that σ0, . . . , σk−1, τ0, . . . , τk−1, σ, τ : SENl → SEN are in N , such that

Q |=
∧
i<k σ

i ≈ τ i → σ ≈ τ . K(E(x, x)) ≈ L(E(x, x)) is derivable from 1-4.

Thus, assuming σi ≈ τ i, i < k, we get that K(E(σi, τ i)) ≈ L(E(σi, τ i)), for

all i < k, based on 1-4. But, since Q |=
∧
i<k σ

i ≈ τ i → σ ≈ τ and E is an

N -interpretation of IQ in I, we get that 〈{E(σi, τ i) : i < k}, E(σ, τ)〉 is an

N -rule of I. Therefore, based on 3, we get that Q |=
∧
i<kK(E(σi, τ i)) ≈

L(E(σi, τ i)) → K(E(σ, τ)) ≈ L(E(σ, τ)). Hence K(E(σ, τ)) ≈ L(E(σ, τ))

is derivable from K(E(σi, τ i)) ≈ L(E(σi, τ i)), i < k, based on 1-4. Now

an application of rule 4, gives that σ ≈ τ is derivable from σi ≈ τ i, i < k,

based only on 1-4. �

.5 Uniqueness of the Equivalent Quasivariety

The goal in this section is to establish that the equivalent N -quasivariety se-

mantics associated to a syntactically N-algebraizable π-institution is unique-

ly determined. We follow very closely, as expected, Section 2.2.1 of the

seminal monograph of Blok and Pigozzi [3], where the analog of this result

is shown to hold for the case of finitary and finitely algebraizable deductive

systems.

We start, consequently, with pointing out a few simple properties of the

N -equivalence formulas E(x, y) that derive from the fact that E is an N -

interpretation of the equational consequence relation of IQ in the deductive

apparatus of I. We first start with the way E reflects the fact that equality

is a congruence system on any N -algebraic system.

Lemma 11. Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is a syntactically N -algebraizable π-insti-
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tution. Let Q be an equivalent N -algebraic semantics for I and K ≈ L

and E, respectively, a system of defining N -equations and N -equivalence

formulas witnessing the syntactic N -algebraizability of I. Then, for all

σ : SENn → SEN in N , all Σ ∈ |Sign|, and all

φ,ψ, χ, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ),

1. EΣ(φ, φ) ⊆ CΣ(∅);

2. EΣ(ψ, φ) ⊆ CΣ(EΣ(φ,ψ));

3. EΣ(φ,ψ) ⊆ CΣ(EΣ(φ, χ) ∪ EΣ(χ,ψ));

4. EΣ(σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1)) ⊆ CΣ(
⋃
i<nEΣ(φi, ψi)).

Proof. By the definition of IQ (more precisely, the fact that IQ is an

extension of IN−FEQ), we conclude that, for all σ : SENn → SEN, all

Σ ∈ |Sign| and all φ,ψ, χ, φ0, . . . , φn−1, ψ0, . . . , ψn−1 ∈ SEN(Σ),

1. 〈φ, φ〉 ∈ CQ

Σ(∅);

2. 〈ψ, φ〉 ∈ CQ

Σ(〈φ,ψ〉);

3. 〈φ,ψ〉 ∈ CQ

Σ(〈φ, χ〉, 〈χ,ψ〉);

4. 〈σΣ(φ0, . . . , φn−1), σΣ(ψ0, . . . , ψn−1)〉∈CQ

Σ(〈φ0, ψ0〉, . . . ,〈φn−1, ψn−1〉).

An application of the N -interpretation E to these CQ-relationships gives

the four C-relationships postulated in the statement of the lemma. �

Next the analog of Lemma 2.14 of [3], providing a detachment (or modus

ponens) property for the N -equivalence formulas, is presented.

Lemma 12. Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is a syntactically N -algebraizable π-insti-

tution. Let Q be an equivalent N -algebraic semantics for I and K ≈ L

and E, respectively, a system of defining N -equations and N -equivalence

formulas witnessing the syntactic N -algebraizability of I. Then, for all

Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

ψ ∈ CΣ(φ,EΣ(φ,ψ)).
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Proof. Because of the N -rules defining CQ, we have that KΣ(ψ) ≈

LΣ(ψ) ⊆ CQ

Σ(KΣ(φ) ≈ LΣ(φ), φ ≈ ψ). Now, from Condition (4) of the

definition of syntactic N -algebraizability, we get that

CQ

Σ(φ ≈ ψ) = CQ

Σ(KΣ(EΣ(φ,ψ)) ≈ LΣ(EΣ(φ,ψ))),

which, combined with the previous condition, yields that

KΣ(ψ) ≈ LΣ(ψ) ⊆ CQ

Σ(KΣ(φ) ≈ LΣ(φ),KΣ(EΣ(φ,ψ)) ≈ LΣ(EΣ(φ,ψ))).

Finally, Condition (1) of syntactic N -algebraizability yields that ψ ∈

CΣ(φ,EΣ(φ,ψ)). �

Theorem 13 is the promised analog of Theorem 2.15 of [3]. It asserts

that any two equivalent N -quasivarieties of a syntactically N -algebraizable

π-institution are identical. Therefore, any syntactically N -algebraizable

π-institution I has a unique equivalent N -quasivariety.

Theorem 13. Let I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, be a syntactically N -algebraizable π-institution,

with Q and Q′ two equivalent N -quasivarieties. Then Q = Q′.

Let, moreover, K ≈ L,K ′ ≈ L′ be defining N -equations for Q and Q′,

respectively, and E,E′ N -equivalence formulas for Q and Q′, respectively.

Then, for all Σ ∈ |Sign| and all φ,ψ ⊆ SEN(Σ),

CΣ(EΣ(φ,ψ)) = CΣ(E′
Σ(φ,ψ))

and

CQ

Σ(KΣ(φ) ≈ LΣ(φ)) = CQ

Σ(K ′
Σ(φ) ≈ L′

Σ(φ)).

Proof. It is shown, first, that, for all Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

CΣ(EΣ(φ,ψ)) = CΣ(E′
Σ(φ,ψ)). By Lemma 11, Part 4, since E′ consists of

natural transformations in N , we get that

EΣ(E′
Σ(φ, φ), E′

Σ(φ,ψ)) ⊆ CΣ(EΣ(φ,ψ)). (5)

But, by Lemma 11, Part 1, E′
Σ(φ, φ) ⊆ CΣ(∅). Therefore, by Lemma 12,

E′
Σ(φ,ψ) ⊆ CΣ(E′

Σ(φ, φ), EΣ(E′
Σ(φ, φ), E′

Σ(φ,ψ))) (by Lemma 12)

⊆ CΣ(EΣ(E′
Σ(φ, φ), E′

Σ(φ,ψ))) (by Lemma 11, Part 1)

⊆ CΣ(EΣ(φ,ψ)). (by Condition (5))
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Now, by symmetry, we have CΣ(E′
Σ(φ,ψ)) = CΣ(EΣ(φ,ψ)).

Hence, for all Σ ∈ |Sign|, Γ ≈ ∆ ∪ {φ ≈ ψ} ⊆ SEN(Σ)2, we have that

φ ≈ ψ ∈ CQ

Σ(Γ ≈ ∆) iff EΣ(φ,ψ) ⊆ CΣ(EΣ(Γ,∆)) (by Condition (2))

iff E′
Σ(φ,ψ) ⊆ CΣ(E′

Σ(Γ,∆))

(by what was shown above)

iff φ ≈ ψ ∈ CQ′

Σ (Γ ≈ ∆). (by Condition (2))

Thus CQ = CQ′ . This also shows that both Q and Q′ satisfy exactly the

same N -equations and N -quasi-equations and, hence, since they are both

N -quasivarieties, that Q = Q′.

Finally, let us see that, for all Σ ∈ |Sign|, φ ∈ SEN(Σ), CQ

Σ(KΣ(φ) ≈

LΣ(φ)) = CQ

Σ(K ′
Σ(φ) ≈ L′

Σ(φ)). We indeed have

CΣ(φ) = CΣ(φ) iff CΣ(EΣ(KΣ(φ), LΣ(φ))) = CΣ(E′
Σ(K ′

Σ(φ), L′
Σ(φ)))

(by Condition (3))

iff CΣ(EΣ(KΣ(φ), LΣ(φ))) = CΣ(EΣ(K ′
Σ(φ), L′

Σ(φ)))

(as shown above)

iff CQ

Σ(KΣ(φ) ≈ LΣ(φ)) = CQ

Σ(K ′
Σ(φ) ≈ L′

Σ(φ))

(by Condition (2)).

�

As Blok and Pigozzi point out, there exist distinct deductive systems

with the same algebraic semantics, showing that the same holds for arbi-

trary institutions as well. They present a concrete example in 5.2.4 of [3].

.6 Syntactic Protoalgebraicity and Equivalentiality

Recall from [18] that a π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is called N -protoalgebraic if, for every

theory family T ∈ ThFam(I), all Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

〈φ,ψ〉 ∈ ΩN
Σ (T ) implies that CΣ(TΣ, φ) = CΣ(TΣ, ψ), i.e., for all theory

families T and all Σ ∈ |Sign|, whenever φ,ψ ∈ SEN(Σ) are congruent

modulo the Leibniz N -congruence system of T , then, they are also Σ-

interderivable in I relative to T .

N -protoalgebraicity was characterized in Lemma 3.8 of [18] as being

equivalent to the condition that the N -Leibniz operator is monotone on



132 GEORGE VOUTSADAKIS

the theory families of I. That is I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is N -protoalgebraic if and only if, for

all T 1, T 2 ∈ ThFam(I), if T 1 ≤ T 2, then ΩN (T 1) ≤ ΩN (T 2).

In Corollary 4.20 of [18] another characterization of N -protoalgebraicity

was provided for the special case of π-institutions that are finitary and N -

rule based. First, recall that a π-institution I = 〈Sign,SEN, C〉, with N a

category of natural transformations on SEN, has the family N -correspon-

dence property if, for every functor SEN′ : Sign′ → Set, with N ′ a category

of natural transformations on SEN′, every surjective (N,N ′)-epimorphic

translation 〈F,α〉 : SEN →se SEN′, every theory family T of I and all

Σ ∈ |Sign|,

α−1
Σ (C ′

F (Σ)(αΣ(TΣ))) = CΣ(TΣ ∪ α−1
Σ (C ′

F (Σ)(∅))),

where by I ′ = 〈Sign′,SEN′, C ′〉 is denoted the 〈F,α〉-min (N,N ′)-model

of I on SEN′.

With this definition in mind, Corollary 4.20 of [18] states that a finitary

and N -rule based π-institution I = 〈Sign,SEN, C〉, where N is a category

of natural transformations on SEN, is N -protoalgebraic if and only if it has

the family N -correspondence property.

Note, also, that this property implies that, for all SEN′ : Sign′ → Set,

with N ′ a category of natural transformations on SEN′, and all surjective

〈F,α〉 : SEN →se SEN′, if I ′ = 〈Sign′,SEN′, C ′〉 is the 〈F,α〉-min (N,N ′)-

model of I on SEN′ and T ′ ∈ ThFam(I ′), then

α−1([T ′)ThFam(I′)) = [α−1(T ′))ThFam(I).

Recall, now, from Section 3 of [19] that, given a π-institution I =

〈Sign,SEN, C〉, with N a category of natural transformations on SEN, a

collection ∆ = {δi : i ∈ I} of natural transformations δi : SEN2 → SEN, i ∈

I, in N is called an N -implication system or an N -protoequivalence system

for I if, for all Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

∆Σ(φ, φ) ⊆ CΣ(∅) and ψ ∈ CΣ(φ,∆Σ(φ,ψ)),

i.e., if and only if δi(x, x), i ∈ I, are N -axioms of I and 〈{x,∆(x, y)}, y〉 is

an N -rule of inference of I. The first condition is referred to as ∆-reflexivity

and the second as ∆-modus ponens or ∆-detachment.
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It has been shown in Proposition 3.2 of [19] that if a π-institution I =

〈Sign,SEN, C〉, with N a category of natural transformations on SEN, has

an N -implication system, then it is N -protoalgebraic. Let us call those π-

institutions, as above, that possess an N -implication system syntactically

N -protoalgebraic. It has been conjectured that it is not true, in general,

that every N -protoalgebraic π-institution is syntactically N -protoalgebraic,

i.e., that syntactic N -protoalgebraicity is a properly stronger property than

N -protoalgebraicity, which may be termed (in contrast to the syntactic case

but also in reference to the use of the N -Leibniz operator in its definition)

semantic N -protoalgebraicity. In some sense, these two notions coin-

cide when one restricts attention to sentential logics (see, e.g., Theorem

1.1.3 of [9]).

Next, we switch from the presentation of N -protoalgebraic π-institutions

and of syntactically N -protoalgebraic π-institutions to the study of (seman-

tically) N -equivalential and of syntactically N -equivalential π-institutions.

At the level of deductive systems, equivalential deductive systems were first

introduced in [17] and, later, extensively studied by Czelakowski in [7, 8].

At the categorical level an analogous study has been carried out by the au-

thor in [22], following both the original work of Czelakowski in [7, 8] and his

subsequent exposition of equivalentiality in the context of protoalgebraic

logics in Chapter 3 of [9].

Suppose that I = 〈Sign,SEN, C〉 is a π-institution, with N a category

of natural transformations on SEN. A collection E = {ǫi : i ∈ I}, with

ǫi : SEN2 → SEN in N , for all i ∈ I, is said to be an N -equivalence

system for I if, for all σ : SENn → SEN in N , Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),
~φ, ~ψ ∈ SEN(Σ)n and all theory families T of I,

1. EΣ(φ, φ) ⊆ CΣ(∅);

2. If (∀i)(∀f)(EΣ′(SEN(f)2(φi, ψi)) ⊆ TΣ′), then

(∀f)(EΣ′(SEN(f)2(σΣ(~φ), σΣ(~ψ))) ⊆ TΣ′);

3. φ ∈ TΣ and (∀f)(EΣ′(SEN(f)2(φ,ψ)) ⊆ TΣ′) imply ψ ∈ TΣ;

where (∀f) is an abbreviation (∀f) := (∀Σ′ ∈ |Sign|)(∀f ∈ Sign(Σ,Σ′)).

In general, given a π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, and any collection E of natural trans-

formations SEN2 → SEN in N and T ∈ ThFam(I), the relation system
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E(T ) = {EΣ(T )}Σ∈|Sign| on SEN is defined by setting, for all Σ ∈ |Sign|,

EΣ(T ) = {〈φ,ψ〉 ∈ SEN(Σ)2 : (∀f)(EΣ′(SEN(f)2(φ,ψ)) ⊆ TΣ′)}. (6)

If E is an N -equivalence system for I, then E(T ) is in fact an N -

congruence system on SEN that is compatible with T , for every theory

family T of I. One may infer from this and the fact that, in case E(T )

happens to be an N -congruence system on SEN that is compatible with T ,

then it necessarily coincides with the N -Leibniz congruence system ΩN (T ),

that E is an N -equivalence system for I if and only if, for every T ∈

ThFam(I), E(T ) = ΩN (T ). This characterization of a collection of binary

natural transformations in N constituting an N -equivalence system for I

was presented in Theorem 5 of [22].

Proposition 9 of [22] states that, if I has an N -equivalence system, then

it is necessarily N -protoalgebraic.

Two other important characterization theorems for the existence of an

N -equivalence system, that are proved in [22] (see Theorems 13 and 15

of [22]) are now revisited to give the reader a better feeling about the

properties of the class of π-institutions possessing an N -equivalence system.

They both take after corresponding results holding at the deductive system

level (see Theorems 3.3.1 and 3.3.3 of [9]).

Let I = 〈Sign,SEN, C〉 be a π-institution, with N a category of natural

transformations on SEN. Denote by Emax the subcollection of all natural

transformations ǫ : SEN2 → SEN in N , such that, for all Σ ∈ |Sign|, φ ∈

SEN(Σ), ǫΣ(φ, φ) ∈ CΣ(∅), i.e.,

Emax = {ǫ : SEN2 → SEN in N :

(∀Σ ∈ |Sign|)(∀φ ∈ SEN(Σ))(ǫΣ(φ, φ) ∈ CΣ(∅))}.

Theorem 13 of [22] asserts that the π-institution I has an N -equivalence

system E if and only if Emax is also an N -equivalence system of I. This

yields as a corollary that, if I has an N -equivalence system, then Emax is

its largest N -equivalence system. That is also the reason why the notation

Emax has been adopted for this collection of binary natural transformations

in N .

Theorem 15 of [22], on the other hand, provides a characterization of

those π-institutions possessing an N -equivalence system inside the class

of N -protoalgebraic π-institutions. The corresponding result for deductive

systems is the so-called Herrmann’s Test [14].
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Suppose that I = 〈Sign,SEN, C〉 is a π-institution, with N a category

of natural transformations on SEN, and E a collection of natural transfor-

mations SEN2 → SEN in N . For all Σ0 ∈ |Sign|, φ, ψ ∈ SEN(Σ0), define

the theory system E〈Σ0,φ,ψ〉 = {E
〈Σ0,φ,ψ〉
Σ }Σ∈|Sign| of I by setting, for all

Σ ∈ |Sign|,

E
〈Σ0,φ,ψ〉
Σ = CΣ({EΣ(SEN(f)2(φ,ψ)) : f ∈ Sign(Σ0,Σ)}).

It was shown in Proposition 14 of [22] that E〈Σ0,φ,ψ〉 is in fact a theory

system of I, for all Σ0 ∈ |Sign| and all φ,ψ ∈ SEN(Σ0).

Herrmann’s Test for π-institutions states that, if I = 〈Sign,SEN, C〉,

with N a category of natural transformations on SEN, is an N -protoalge-

braic π-institution, and E a collection of natural transformations SEN2 →

SEN in N , then E is an N -equivalence system for I if and only if, for all

Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ),

EΣ(φ, φ) ⊆ CΣ(∅) and 〈φ,ψ〉 ∈ ΩN
Σ (E〈Σ,φ,ψ〉).

Recall from Theorem 3.3.4 of [9] that a deductive system S = 〈L,⊢S〉

is equivalential if and only if the Leibniz operator Ω is monotone and com-

mutes with inverse substitutions on the lattice ThS of all theories of S,

i.e., if and only if it is protoalgebraic and the Leibniz operator Ω com-

mutes with inverse substitutions on the lattice ThS of all theories of S. As

was the case with Proposition 3.2 of [19], that gave rise to the distinction

between syntactic N -protoalgebraicity and (semantic) N -protoalgebraicity,

in Theorem 16 of [22], an analog of only one of the two directions of this

characterization of equivalentiality for deductive systems seems to hold for

arbitrary π-institutions. Namely, Theorem 16 of [22] asserts that, if I has

an N -equivalence system E, then, the N -Leibniz operator ΩN is monotone

on theory families (i.e., I is N -protoalgebraic) and, for every (N,N)-logical

morphism 〈F,α〉 : I〉−seI, with F surjective,

α−1(ΩN (T )) = ΩN (α−1(T )), for all T ∈ ThFam(I).

This property is viewed in the π-institution framework as an analog of

the commutativity of the Leibniz operator with inverse substitutions in

the deductive system framework. This result gives in the context of N -

equivalentiality another duality, very similar to the one obtained for N -

protoalgebraicity. More precisely, because of this result, a π-institution
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I = 〈Sign,SEN, C〉, with N a category of natural transformations on

SEN, is said to be (finitely) syntactically N -equivalential if it has a

(finite) N -equivalence system and semantically N -equivalential if it is

N -protoalgebraic and, for every (N,N)-logical morphism 〈F,α〉 : I〉−seI,

with F surjective,

α−1(ΩN (T )) = ΩN (α−1(T )), for all T ∈ ThFam(I).

.7 Regularly Algebraizable π-Institutions

Suppose that I = 〈Sign,SEN, C〉, with N a category of natural trans-

formations on SEN, is a syntactically N -equivalential π-institution, with

E an N -equivalence system for I. I is said to satisfy the E-G-rule or

the G-rule relative to E, if, for all Σ ∈ |Sign|, all φ,ψ ∈ SEN(Σ), all

T ∈ ThFam(I) and all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

φ,ψ ∈ TΣ implies EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′ ,

or, equivalently, using Definition (6) of the relation system E(T ) associated

with the theory family T , if, for all Σ ∈ |Sign|, all φ,ψ ∈ SEN(Σ) and all

T ∈ ThFam(I),

φ,ψ ∈ TΣ implies 〈φ,ψ〉 ∈ EΣ(T ).

Note that the E-G-rule is not an N -inference rule of I, since it cannot be

entirely expressed in terms of natural transformations belonging to N . It

needs, in addition, a universal quantification over all signature morphisms

from Σ. This contrasts with the G-rule in the context of deductive systems.

Recall from Section 3 of [18] that, given a π-institution I = 〈Sign,SEN,

C〉, Σ ∈ |Sign|, Φ ⊆ SEN(Σ) and a theory system T of I, T 〈Σ,Φ〉 denotes

the least theory system T ′ of I, such that T ≤ T ′ and Φ ⊆ T ′
Σ. It is given,

for all Σ′ ∈ |Sign|, by

T
〈Σ,Φ〉
Σ′ = CΣ′(TΣ′ ∪ {SEN(f)(Φ) : f ∈ Sign(Σ,Σ′)}). (7)

Also recall that, given a π-institution I, by Thm (or Thm(I) if there are

many π-institutions considered in the same context) is denoted the theorem

system of I, i.e., for all Σ ∈ |Sign|, ThmΣ = CΣ(∅).
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As was pointed out before, it follows from the definition of the N -G-rule

that, if I is syntactically N -equivalential, with an N -equivalent system E,

then, for all Σ ∈ |Sign|, all φ,ψ ∈ SEN(Σ) and all theory families T of I,

φ,ψ ∈ TΣ implies EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′),

is equivalent, by the definition of E(T ), to

φ,ψ ∈ TΣ implies 〈φ,ψ〉 ∈ EΣ(T ),

which is, in turn, equivalent, by the characterization of N -equivalence sys-

tems (Theorem 5 of [22]), to

φ,ψ ∈ TΣ implies 〈φ,ψ〉 ∈ ΩN
Σ (T ). (8)

Therefore, if E and E′ are two N -equivalence systems for the syntactically

N -equivalential π-institution I, I possesses the E-G-rule if and only if it

possesses the E′-G-rule. Therefore, we are, in this context as well, free to

use the expression “I has the G-rule” to refer to any of the many possible

E-G-rules that may hold in I, as has been a common convention in abstract

algebraic logic.

If I = 〈Sign,SEN, C〉 satisfies the E-G-rule, then, as was shown in

Implication (8), for every theory family T of I, all Σ ∈ |Sign| and all

φ,ψ ∈ SEN(Σ), if φ,ψ ∈ TΣ, then 〈φ,ψ〉 ∈ ΩN
Σ (T ). If, conversely, for

every theory family T ∈ ThFam(I), all Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

φ,ψ ∈ TΣ implies that 〈φ,ψ〉 ∈ ΩN
Σ (T ), then, by following the reverse steps

in the reasoning proving Implication (8), we can show that the G-rule holds

in I. As a consequence, we have that the G-rule holds in a syntactically

N -equivalential π-institution if and only if, for every T ∈ ThFam(I) and

all Σ ∈ |Sign|, TΣ must be an equivalence class of the equivalence relation

ΩN
Σ (T ).

An alternative characterization of the G-rule in a syntactically N -equi-

valential π-institution I is provided by the following lemma, which forms

an analog for π-institutions of Lemma 27 of [11].

Proposition 14. Let I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, be a syntactically N -equivalential π-institution,

with E an N -equivalence system. The E-G-rule holds in I if and only if,
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for every T ∈ ThFam(I), all Σ ∈ |Sign| and all φ ∈ SEN(Σ), φ ∈ TΣ

if and only if EΣ′(SEN(f)(φ),SEN(f)(t)) ⊆ TΣ′ , for all Σ′ ∈ |Sign|, f ∈

Sign(Σ,Σ′), where t is an arbitrary Σ-theorem of I.

Proof. Suppose, first, that the E-G-rule holds in I and that Σ ∈

|Sign|, φ ∈ SEN(Σ) and t ∈ ThmΣ. If φ ∈ TΣ, then, since t ∈ ThmΣ,

φ, t ∈ TΣ, whence, by the G-rule, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

EΣ′(SEN(f)(φ),SEN(f)(t)) ⊆ TΣ′ .

If, on the other hand, for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

EΣ′(SEN(f)(φ),SEN(f)(t)) ⊆ TΣ′ ,

then, we have, by the definition of E(T ) and the characterization Theorem

5 of [22] of N -equivalence systems, that 〈φ, t〉 ∈ EΣ(T ) = ΩN
Σ (T ), whence,

using the fact that t ∈ ThmΣ ⊆ TΣ and the compatibility of ΩN (T ) with

T , we get that φ ∈ TΣ.

Suppose, conversely, that, for every T ∈ ThFam(I), all Σ ∈ |Sign| and

all φ ∈ SEN(Σ), φ ∈ TΣ if and only if EΣ′(SEN(f)(φ),SEN(f)(t)) ∈ TΣ′ , for

all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), and some t ∈ ThmΣ. Let T ∈ ThFam(I),

Σ ∈ |Sign|, φ, ψ ∈ SEN(Σ), such that φ,ψ ∈ TΣ. Then, by hypothesis,

for all Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′), EΣ′(SEN(f)(φ),SEN(f)(t)) ⊆ TΣ′

and EΣ′(SEN(f)(ψ),SEN(f)(t)) ⊆ TΣ′ . But, since E is an N -equivalence

system, E(T ) is symmetric and transitive, whence we obtain that, for all

Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′) EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′ . There-

fore, the E-G-rule holds in I. �

In the sequel attention will be restricted to a special class of finitary

and finitely syntactically N -equivalential π-institutions. To introduce this

class let us first call a given π-institution I = 〈Sign,SEN, C〉 systemic

if, for all Σ ∈ |Sign| and all Σ-theories XΣ of I, there exists a theory

system T = {TΣ}Σ∈|Sign|, such that TΣ = XΣ. Notice that every Σ-theory

is trivially the Σ-component of some theory family of I, but it need not

necessarily be the Σ-component of a theory system of I. If this happens

for all signatures Σ and all Σ-theories, then I is termed systemic. On the

other hand, call a π-institution I = 〈Sign,SEN, C〉 theory invariant if,

for every Σ ∈ |Sign| and every Σ-theory XΣ,

SEN(f)(XΣ) ⊆ XΣ, for all f ∈ Sign(Σ,Σ),
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i.e., I is theory invariant if every signature morphism from Σ to itself

preserves all Σ-theories, for every Σ ∈ |Sign|.

It will be shown, next, that systemicity and theory invariance are in

fact equivalent conditions.

Proposition 15. Let I = 〈Sign,SEN, C〉 be a π-institution. Then I

is systemic if and only if it is theory invariant.

Proof. Let Σ0 ∈ |Sign| and XΣ0 a Σ0-theory. Define the collection

T = {TΣ}Σ∈|Sign| by setting, for all Σ ∈ |Sign|,

TΣ = CΣ(
⋃

{SEN(f)(XΣ0) : f ∈ Sign(Σ0,Σ)}).

Denoting the theorem system of I by Thm, T is the same collection that

was denoted by Thm〈Σ0,XΣ0
〉 in Section 3 of [18] and whose definition was

recalled in Definition (7). It was shown in Lemma 3.6 of [18] that it is the

smallest theory system of I, such thatXΣ0 ⊆ TΣ0 . With this in mind, notice

that XΣ0 is the Σ0-component of a theory system if and only if XΣ0 = TΣ0

if and only if XΣ0 = CΣ0(
⋃
{SEN(f)(XΣ0) : f ∈ Sign(Σ0,Σ0)}) if and only

if, for all f ∈ Sign(Σ0,Σ0), SEN(f)(XΣ0) ⊆ XΣ0 . Therefore I is systemic

if and only if it is theory invariant. �

The following theorem will be very handy in investigating the relation-

ship between syntactically N -equivalential π-institutions satisfying some

additional conditions and syntactically N -algebraizable deductive systems.

It states that, if a π-institution is finitely syntactically N -equivalential,

with E an N -equivalence system for I, then it satisfies a condition similar

to Condition (2) of the definition of syntactic N -algebraizability relative to

the N -quasivariety ANI = Q(AN (I)) generated by the class AN (I).

Theorem 16. Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is a finitely syntactically N -equivalential

π-institution with E an N -equivalence system for I. Let ANI = Q(AN (I))

be the N -quasivariety of N -algebraic systems generated by the class AN (I)

and assume that the equational π-institution IAN

I is theory invariant. Then,

for all Σ ∈ |Sign| and all Γ ≈ ∆ ∪ {φ ≈ ψ} ⊆ SEN(Σ)2,

φ ≈ ψ ∈ C
AN

I

Σ (Γ ≈ ∆) iff Γ ≈ ∆ ∈ EΣ(T ) ⇒ φ ≈ ψ ∈ EΣ(T ),

for every T ∈ ThFam(I).



140 GEORGE VOUTSADAKIS

Proof. Suppose that I = 〈Sign,SEN, C〉, with N a category of nat-

ural transformations on SEN, is a finitely syntactically N -equivalential

π-institution, with E an N -equivalence system for I, Σ ∈ |Sign| and

Γ ≈ ∆ ∪ {φ ≈ ψ} ⊆ SEN(Σ)2. Then we have that φ ≈ ψ 6∈ C
AN

I

Σ (Γ ≈ ∆)

if and only if, there exists, by definition, θ ∈ ThFam(IAN

I ), such that

Γ ≈ ∆ ⊆ θΣ but φ ≈ ψ 6∈ θΣ. This is equivalent, by Proposition 6, to

the existence of θ ∈ ConfN
AN

I

(SEN), such that Γ ≈ ∆ ⊆ θΣ but φ ≈ ψ 6∈ θΣ,

which holds, by Lemma 9 and theory invariance, if and only if, there exists

T ∈ ThFam(I), such that Γ ≈ ∆ ∈ ΩN
Σ (T ) but φ ≈ ψ 6∈ ΩN

Σ (T ). This,

finally, is equivalent, in view of the fact that E is an N -equivalence system

for I, to the existence of a theory family T of I, such that Γ ≈ ∆ ⊆ EΣ(T )

but φ ≈ ψ 6∈ EΣ(T ). �

Suppose, now, that I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, is a theory invariant and finitely syntactically N -

equivalential π-institution, with E a (finite) N -equivalence system for I.

Note that, in this case, since, for every Σ ∈ |Sign| and every Σ-theory TΣ,

TΣ is the Σ-component of a theory system of I, instead of quantifying over

theory families in a specific context, we may quantify, equivalently, only over

theory systems. But for a theory system T , the condition 〈φ,ψ〉 ∈ EΣ(T ),

which is, by definition, equivalent to EΣ′(SEN(f)(φ),SEN(f)(ψ)) ⊆ TΣ′ ,

for all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′), is also equivalent to the much

simpler condition EΣ(φ,ψ) ⊆ TΣ, that does not need any quantifications

over signatures and signature morphisms.

These observations lead to simplified versions of both Proposition 14

and Theorem 16 in the context of theory invariant π-institutions. We

present them here without proof and use them in the formulation of The-

orem 19 below.

Proposition 17 (Systemic Version of Proposition 14). Let I =

〈Sign,SEN, C〉, with N a category of natural transformations on SEN,

be a theory invariant, syntactically N -equivalential π-institution, with E

an N -equivalence system. The E-G-rule holds in I if and only if, for all

Σ ∈ |Sign| and all φ ∈ SEN(Σ), CΣ(φ) = CΣ(EΣ(φ, t)), where t is an

arbitrary Σ-theorem of I, i.e., if and only if, for every T ∈ ThSys(I), all

Σ ∈ |Sign| and all φ ∈ SEN(Σ), φ ∈ TΣ if and only if EΣ(φ, t) ⊆ TΣ, where

t is an arbitrary Σ-theorem of I.
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Theorem 18 (Systemic Version of Theorem 16). Suppose that

I = 〈Sign,SEN, C〉, with N a category of natural transformations on SEN,

is a theory invariant, finitely syntactically N -equivalential π-institution

with E an N -equivalence system for I. Furthermore, assume that the equa-

tional π-institution IAN

I associated with the N -quasivariety ANI = Q(AN (I))

is theory invariant. Then, for all Σ ∈ |Sign| and all Γ ≈ ∆ ∪ {φ ≈ ψ} ⊆

SEN(Σ)2,

φ ≈ ψ ∈ C
AN

I

Σ (Γ ≈ ∆) iff EΣ(φ,ψ) ⊆ CΣ(EΣ(Γ,∆)).

The following result, an analog of a result first proved as Corollary 4.8

of [3] and then revisited as Theorem 28 of [11], shows that a finitary, theory

invariant and finitely syntactically N -equivalential π-institution I, that

• has the G-rule,

• is such that N contains a constant natural transformation ⊤ : SEN →

SEN, with ⊤Σ(φ) ∈ ThmΣ, for every Σ ∈ |Sign| and all φ ∈ SEN(Σ),

and

• is such that IAN

I is theory invariant

is syntactically N -algebraizable. In that case, if Q is the equivalent N -

quasivariety of I, then the N -interpretation of I in IQ is given by {x ≈

⊤(x)}.

Theorem 19. Let I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, be a finitary, theory invariant and finitely syntac-

tically N -equivalential π-institution I, that has the G-rule, is such that N

contains a constant natural transformation ⊤ : SEN → SEN, with ⊤Σ(φ) :=

⊤Σ ∈ ThmΣ, for every Σ ∈ |Sign| and all φ ∈ SEN(Σ) and such that IAN

I

is theory invariant. Then, I is syntactically N -algebraizable. Moreover, if

Q is the equivalent N -quasivariety of I, then the N -interpretation of I in

IQ is given by {x ≈ ⊤(x)}.

Proof. By Theorem 18, Condition (2) of syntactic N -algebraizability

is satisfied with Q = ANI , since I is assumed to be theory invariant and syn-

tactically N -equivalential, with E an N -equivalence system, and with IAN

I

theory invariant. So it suffices to show that Condition (3) is also satisfied.
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But, if K(x) ≈ L(x) = {x ≈ ⊤(x)}, then Condition (3) takes the form,

for all Σ ∈ |Sign| and all φ ∈ SEN(Σ), CΣ(φ) = CΣ(EΣ(φ,⊤Σ)), which is

the condition established in Proposition 17 for I, under the presence of the

G-rule. �

A finitary, theory invariant and finitely syntactically N -equivalential π-

institution I, that has the G-rule, is such thatN contains a constant natural

transformation ⊤ : SEN → SEN, with ⊤Σ(φ) := ⊤Σ ∈ ThmΣ, for every

Σ ∈ |Sign| and all φ ∈ SEN(Σ), and such that IAN

I is theory invariant will

be called regularly N -algebraizable. In that case, the constant natural

transformation ⊤ will be called an N -top.

Since, by Theorem 19, {x ≈ ⊤(x)} is a defining equation for a regu-

larly N -algebraizable π-institution I, Theorem 10 yields immediately the

following axiomatization result, which forms an analog in the framework of

π-institutions of Theorem 30 of [11].

Theorem 20. Suppose I = 〈Sign,SEN, C〉, with N a category of nat-

ural transformations on SEN, is a finitary π-institution, whose closure sys-

tem is generated by a collection Ax of N -axioms and a collection IR of

N -inference rules. Assume that I is regularly N -algebraizable, with a fi-

nite N -equivalence system E and N -top ⊤. Then, the unique equivalent

N -quasivariety of I is defined by the following N -identities and N -quasi-

identities:

1. All rules of CN−FEQ;

2. σ ≈ ⊤, for all σ(~x) ∈ Ax;

3.
∧
i<k σ

i ≈ ⊤ → τ ≈ ⊤, for all 〈{σi(~x) : i < k}, τ(~x)〉 ∈ IR;

4. E(x, y) ≈ ⊤ → x ≈ y.

.8 Relatively Point-Regular Quasivarieties

Let SEN : Sign → Set be a functor, with N a category of natural transfor-

mations on SEN, and Q an N -quasivariety. If there exists a natural trans-

formation σ : SENk → SEN in N , such that, for all 〈SEN′, 〈N ′, F ′〉〉 ∈ Q,

σ′Σ(~φ) = σ′Σ(~ψ), for all Σ ∈ |Sign| and all ~φ, ~ψ ∈ SEN′(Σ)k, then σ is said
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to be a constant N -term and Q is said to be pointed. The constant term

will be usually denoted by ⊤ and will be called the N -top.

A pointed N -quasivariety Q, as above, is called relatively point-regu-

lar if each Q-N -congruence system θ on SEN is uniquely determined by the

family of its ⊤-equivalence classes {⊤Σ/θΣ}Σ∈|Sign|.

Lemma 21. Suppose SEN : Sign → Set is a functor, with N a category

of natural transformations on SEN, and Q is a relatively point-regular N -

quasivariety. Then, for every N -algebraic system 〈SEN′, 〈N ′, F ′〉〉, such

that there exists at least one surjective 〈F,α〉 : SEN →se SEN′, every Q-N ′-

congruence system θ on 〈SEN′, 〈N ′, F ′〉〉 is completely determined by the

family of its ⊤′-equivalence classes.

Proof. Let θ, θ′ be two Q-N ′-congruence systems on 〈SEN′, 〈N ′, F ′〉〉

and suppose that, for all Σ ∈ |Sign|, ⊤′
F (Σ)/θF (Σ) = ⊤′

F (Σ)/θ
′
F (Σ). Then

αΣ(⊤Σ)/θF (Σ) = αΣ(⊤Σ)/θ′F (Σ).

This gives that α−1
Σ (αΣ(⊤Σ)/θF (Σ)) = α−1

Σ (αΣ(⊤Σ)/θ′
F (Σ)). Therefore, we

get that ⊤Σ/α
−1
Σ (θF (Σ)) = ⊤Σ/α

−1
Σ (θ′

F (Σ)). But, it is not difficult to see

that, since θ is a Q-N ′-congruence system on SEN′ and 〈F,α〉 is surjective,

α−1(θ) is also a Q-N -congruence system on SEN. Therefore, since Q is

relatively point-regular, we must have that α−1
Σ (θF (Σ)) = α−1

Σ (θ′
F (Σ)), for

all Σ ∈ |Sign|. This yields that αΣ(α−1
Σ (θF (Σ))) = αΣ(α−1

Σ (θ′
F (Σ))), for all

Σ ∈ |Sign|, which, by the surjectivity of 〈F,α〉, gives that θF (Σ) = θ′
F (Σ),

i.e., that θ = θ′. Hence θ is uniquely determined by {⊤′
Σ/θΣ}Σ∈|Sign′|. �

Let SEN : Sign → Set be a functor, with N a category of natural

transformations on SEN, and Q a pointed N -quasivariety. Define the triple

I〈Q,⊤〉 = 〈Sign,SEN, C〈Q,⊤〉〉 by setting, for all Σ ∈ |Sign| and all Φ∪{φ} ⊆

SEN(Σ),

φ ∈ C
〈Q,⊤〉
Σ (Φ) iff SEN(f)(Φ) ⊆ ⊤Σ′/θΣ′ implies SEN(f)(φ) ∈ ⊤Σ′/θΣ′ ,

for all θ ∈ ConfNQ (SEN),Σ′ ∈ |Sign|, f ∈ Sign(Σ,Σ′).

It will be shown, next, that, thus defined, I〈Q,⊤〉 is a finitary π-institu-

tion.

Proposition 22. Let SEN : Sign → Set be a functor, with N a cate-

gory of natural transformations on SEN, and Q a pointed N -quasivariety.

Then I〈Q,⊤〉 = 〈Sign,SEN, C〈Q,⊤〉〉 is a π-institution.
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Proof. It is very easy to see that, for Σ ∈ |Sign|, the operator

C
〈Q,⊤〉
Σ is reflexive and monotone. To see that it is idempotent, suppose

Φ ∪ {φ} ⊆ SEN(Σ), such that φ ∈ C
〈Q,⊤〉
Σ (C

〈Q,⊤〉
Σ (Φ)). Then we have

that, for all θ ∈ ConfNQ (SEN), all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′),

SEN(f)(C
〈Q,⊤〉
Σ (Φ)) ⊆ ⊤Σ′/θΣ′ implies that SEN(f)(φ) ∈ ⊤Σ′/θΣ′ . Thus,

again by the definition of C〈Q,⊤〉, we get that, if SEN(f)(Φ) ⊆ ⊤Σ′/θΣ′ , then

SEN(f)(C
〈Q,⊤〉
Σ (Φ)) ⊆ ⊤Σ′/θΣ′ , whence, by the hypothesis, SEN(f)(φ) ∈

⊤Σ′/θΣ′ . Therefore φ ∈ C
〈Q,⊤〉
Σ (Φ), showing that C

〈Q,⊤〉
Σ is idempotent.

Therefore C
〈Q,⊤〉
Σ is a closure operator on SEN(Σ), for all Σ ∈ |Sign|.

To see that C〈Q,⊤〉 is a closure system on SEN, it suffices now to show

that it is structural. To this end, suppose Σ1,Σ2 ∈ |Sign|, f ∈ Sign(Σ1,Σ2)

and Φ ∪ {φ} ⊆ SEN(Σ1), such that φ ∈ C
〈Q,⊤〉
Σ1

(Φ). Thus, for all θ ∈

ConfNQ (SEN), all Σ ∈ |Sign| and all g ∈ Sign(Σ1,Σ), we have that

Σ1 Σ2
-f

Σ

g
@

@
@

@R

h
�

�
�

�	

SEN(g)(Φ) ⊆ ⊤Σ/θΣ implies that SEN(g)(φ) ∈ ⊤Σ/θΣ. This gives that,

for all θ ∈ ConfNQ (SEN) and all h ∈ Sign(Σ2,Σ), SEN(hf)(Φ) ⊆ ⊤Σ/θΣ
implies that SEN(hf)(φ) ∈ ⊤Σ/θΣ, i.e., that, for all h ∈ Sign(Σ2,Σ),

SEN(h)(SEN(f)(Φ)) ⊆ ⊤Σ/θΣ implies that SEN(h)(SEN(f)(φ)) ∈ ⊤Σ/θΣ.

Thus, by the definition of C〈Q,⊤〉, we get that

SEN(f)(φ) ∈ C
〈Q,⊤〉
Σ2

(SEN(f)(Φ))

and C〈Q,⊤〉 is indeed structural, i.e., it forms a closure system on SEN. Thus

I〈Q,⊤〉 is a π-institution. �

Next we prove that the closure system of the π-institution I〈Q,⊤〉 and

that of the equational π-institution IQ are very closely related. Namely,

{x ≈ ⊤(x)} is an N -interpretation of I〈Q,⊤〉 into IQ. This will also yield

as a corollary the fact that the π-institution I〈Q,⊤〉 is indeed a finitary π-

institution.

Proposition 23. Let SEN : Sign → Set be a functor, with N a cate-

gory of natural transformations on SEN, and Q a pointed N -quasivariety.
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Then, for all Σ ∈ |Sign| and all Φ ∪ {φ} ⊆ SEN(Σ),

φ ∈ C
〈Q,⊤〉
Σ (Φ) iff φ ≈ ⊤Σ ∈ CQ

Σ(Φ ≈ ⊤Σ).

Proof. Suppose, first, that φ∈C
〈Q,⊤〉
Σ (Φ). Then, for all θ∈ConfNQ (SEN),

all Σ′ ∈ |Sign| and all f ∈ Sign(Σ,Σ′), SEN(f)(Φ) ⊆ ⊤Σ′/θΣ′ implies

that SEN(f)(φ) ∈ ⊤Σ′/θΣ′ . Thus, in particular, we get that Φ ⊆ ⊤Σ/θΣ
implies that φ ∈ ⊤Σ/θΣ. This is equivalent, by Proposition 6, to, for all

θ ∈ ThFam(IQ), Φ ≈ ⊤Σ ⊆ θΣ implies that φ ≈ ⊤Σ ∈ θΣ, which shows

that φ ≈ ⊤Σ ∈ CQ

Σ(Φ ≈ ⊤Σ).

Suppose, conversely, that φ ≈ ⊤Σ ∈ CQ

Σ(Φ ≈ ⊤Σ). Then, since CQ

is a closure system on SEN(Σ)2, we get that, for all Σ′ ∈ |Sign| and all

f ∈ Sign(Σ,Σ′), SEN(f)(φ) ≈ ⊤Σ′ ∈ CQ

Σ′(SEN(f)(Φ) ≈ ⊤Σ′). There-

fore, for all theory families θ ∈ ThFam(IQ) = ConfNQ (SEN), we have that

SEN(f)(Φ) ≈ ⊤Σ′ ⊆ θΣ′ implies SEN(f)(φ) ≈ ⊤Σ′ ∈ θΣ′ . But this is

equivalent to SEN(f)(Φ) ⊆ ⊤Σ′/θΣ′ implies SEN(f)(φ) ∈ ⊤Σ′/θΣ′ , which,

by the definition of C〈Q,⊤〉, yields that φ ∈ C
〈Q,⊤〉
Σ (Φ). �

Notice that Proposition 23 yields as a corollary that I〈Q,⊤〉 is a finitary

π-institution, a fact that is not obvious by its definition.

Corollary 24. Let SEN : Sign → Set be a functor, with N a category

of natural transformations on SEN, and Q a pointed N -quasivariety. Then

I〈Q,⊤〉 is finitary.

Proof. For all Σ ∈ |Sign| and all Φ ∪ {φ} ⊆ SEN(Σ), we have φ ∈

C
〈Q,⊤〉
Σ (Φ) if and only if, by Proposition 23, φ ≈ ⊤Σ ∈ CQ

Σ(Φ ≈ ⊤Σ) if and

only if, by Proposition 5, φ ≈ ⊤Σ ∈ CQ

Σ(Ψ ≈ ⊤Σ), for some finite Ψ ⊆ Φ,

if and only if, by Proposition 23, φ ∈ C
〈Q,⊤〉
Σ (Ψ), for some finite Ψ ⊆ Φ,

showing that C〈Q,⊤〉 is a finitary closure system on SEN. �

The next result is a partial analog in the context of π-institutions of The-

orem 34 of [11], which, in the context or regularly algebraizable deductive

systems, asserts that a deductive system is regularly algebraizable if and

only if it is the assertional logic of a relatively point-regular quasi-variety.

This fact had also been observed independently by Blok and Raftery in [5].

Theorem 25. If a π-institution I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is regularly N -algebraizable, then it is

of the form I〈Q,⊤〉 for some relatively point-regular N -quasivariety Q. In



146 GEORGE VOUTSADAKIS

fact, if I is regularly N -algebraizable, then ANI is a relatively point-regular

N -quasivariety, with an N -top ⊤, and I = I〈AN

I
,⊤〉.

Proof. Suppose that I is regularly N -algebraizable, with a finite N -

equivalence system E and N -top ⊤. Set Q := ANI . By the E-G-rule, we

have that, for all Σ ∈ |Sign| and all φ,ψ ∈ ThmΣ, EΣ(φ,ψ) ⊆ TΣ, which,

taking into account the theory invariance of I, shows that 〈φ,ψ〉 ∈ ΩN
Σ (T ),

i.e., by Lemma 9 and theory invariance, that 〈φ,ψ〉 ∈ θΣ, for every θ ∈

ConfNQ (SEN). This shows that all Σ-theorems of I are equivalent in I〈Q,⊤〉

with ⊤Σ. Q is pointed, with ⊤ its point. By Theorem 19, we get that {x ≈

⊤(x)} is an N -interpretation of I in IQ. By proposition 23, {x ≈ ⊤(x)} is

also an N -interpretation of I〈Q,⊤〉 in IQ. Therefore I = I〈Q,⊤〉. It suffices

now to show that Q is relatively point-regular. Suppose, to this end, that

θ ∈ ConNQ (SEN). If θ′ ∈ ConNQ (SEN), such that θ′ is compatible with ⊤/θ =

{⊤Σ/θΣ}Σ∈|Sign|, then ⊤/θ′ ≤ ⊤/θ. Thus, we get that ⊤/ΩN (⊤/θ) ≤ ⊤/θ.

But, on the other hand, θ is compatible with ⊤/θ, whence θ ≤ ΩN (⊤/θ)

and, hence ⊤/θ ≤ ⊤/ΩN (⊤/θ). This shows that ⊤/θ = ⊤/ΩN (⊤/θ). By

syntactic N -algebraizability, ΩN is a bijection between the theory systems

ThSys(I) = {⊤/θ : θ ∈ ConNQ (SEN)} and those in ConNQ (SEN). Therefore

ΩN (⊤/θ) = θ, for all θ ∈ ConNQ (SEN). Thus, each θ ∈ ConNQ (SEN) is

uniquely determined by ⊤/θ. �

.9 The Deduction-Detachment Theorem

Let I = 〈Sign,SEN, C〉, with N a category of natural transformations on

SEN, be a π-institution and ∆ a set of binary natural transformations in

N . ∆ is said to be an N -deduction-detachment system for I if, for all

Σ ∈ |Sign| and all Φ ∪ {φ,ψ} ∈ SEN(Σ),

ψ ∈ CΣ(Φ, φ) iff ∆Σ(φ,ψ) ⊆ CΣ(Φ).

The implication from left-to-right is the N -deduction theorem relative

to ∆ and the converse is the N -detachment theorem relative to ∆ or

the N -modus ponens.

A π-institution I will be said to have the N -deduction detachment

theorem if it has an N -deduction-detachment system and the N -uniterm

deduction-detachment theorem if it has a singleton N -deduction-de-

tachment system.
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Proposition 26. Suppose that I = 〈Sign,SEN, C〉, with N a category

of natural transformations on SEN, is a π-institution with an N -deduction-

detachment system ∆. Then I is N -protoalgebraic.

Proof. Since, for all Σ ∈ |Sign| and all φ ∈ SEN(Σ), we have that

φ ∈ CΣ(φ), we get, by N -deduction, that

∆Σ(φ, φ) ⊆ CΣ(∅). (9)

Moreover, by N -detachment, for all Σ ∈ |Sign| and all φ,ψ ∈ SEN(Σ),

ψ ∈ CΣ(φ,∆Σ(φ,ψ)). (10)

To show that I is N -protoalgebraic, suppose that T ∈ ThFam(I), Σ ∈

|Sign|, and φ,ψ ∈ SEN(Σ), such that 〈φ,ψ〉 ∈ ΩN
Σ (T ). Then, since ΩN (T )

is an N -congruence system on SEN and ∆ is a collection of natural trans-

formations in N , we get that 〈∆Σ(φ, φ),∆Σ(φ,ψ)〉 ⊆ ΩN
Σ (T ). But, by (9),

∆Σ(φ, φ) ⊆ CΣ(∅) ⊆ TΣ, whence, by the compatibility of ΩN (T ) with T ,

we get that ∆Σ(φ,ψ) ⊆ TΣ. Now we have, by (10), ψ ∈ CΣ(φ,∆Σ(φ,ψ)) ⊆

CΣ(TΣ, φ). By symmetry, we have that CΣ(TΣ, φ) = CΣ(TΣ, ψ), which

shows that I is in fact N -protoalgebraic. �

Following [11], we now define collections of Σ-sentences that support an

N -deduction-detachment theorem with multiple hypotheses.

To this end, assume that SEN : Sign → Set is a functor, with N

a category of natural transformations on SEN. Suppose that ∆(x, y) =

{δi(x, y) : i < n} is a collection of binary natural transformations in N .

Define, for every Σ ∈ |Sign| and all ~φ ∈ SEN(Σ)m,m ≥ 1, ψ ∈ SEN(Σ),

the collection ∆∗
Σ(~φ, ψ) of (m + 1)-ary natural transformations in N , by

recursion on the value of m ≥ 1, as follows:

For m = 1, we have that

∆∗
Σ(~φ, ψ) = ∆Σ(φ0, ψ).

For m > 1, suppose that ~φ = 〈φ0, ~φ′〉, with ~φ′ = 〈φ1, . . . , φm−1〉. Then

∆∗
Σ(~φ, ψ) =

⋃
{∆Σ(φ0, χ) : χ ∈ ∆∗

Σ(~φ′, ψ)}.

The following two lemmas lift to the π-institution framework Lemmas

40 and 41, respectively of [11].
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Lemma 27. Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is a π-institution and ∆ a finite system of

binary natural transformations in N , such that I has the N -modus ponens

relative to ∆. Then, for all Σ ∈ |Sign| and all φ0, . . . , φm−1, ψ ∈ SEN(Σ),

ψ ∈ CΣ(φ0, . . . , φm−1,∆
∗
Σ(~φ, ψ)).

Proof. We work by induction on m ≥ 1. If m = 1, then, the con-

clusion takes the form ψ ∈ CΣ(φ0,∆Σ(φ0, ψ)), which is simply the N -

modus ponens property of ∆. Assume, now, that the conclusion holds

for any sequence ~φ′ of length m − 1 and suppose that ~φ = 〈φ0, ~φ′〉, with
~φ′ = 〈φ1, . . . , φm−1〉. Then, by the N -modus ponens relative to ∆, we get

that, for all χ ∈ ∆∗
Σ(~φ′, ψ), we have that χ ∈ CΣ(φ0,∆Σ(φ0, χ)), whence,

using the induction hypothesis, we get

ψ ∈ CΣ(φ1, . . . , φm−1,∆
∗
Σ(~φ′, ψ))

⊆ CΣ(φ1, . . . , φm−1,
⋃
{CΣ(φ0,∆Σ(φ0, χ)) : χ ∈ ∆∗

Σ(~φ′, ψ)})

= CΣ(φ0, . . . , φm−1,
⋃
{∆Σ(φ0, χ) : χ ∈ ∆∗

Σ(~φ′, ψ)})

= CΣ(φ0, . . . , φm−1,∆
∗
Σ(~φ, ψ)).

�

Lemma 28. Suppose that I = 〈Sign,SEN, C〉, with N a category of

natural transformations on SEN, is a π-institution and ∆ a finite system

of binary natural transformations in N , such that I has the N -deduction-

detachment theorem relative to ∆. Then, for all Σ ∈ |Sign|, Φ ⊆ SEN(Σ)

and all φ0, . . . , φm−1, ψ ∈ SEN(Σ), such that ψ ∈ CΣ(Φ, φ0, . . . , φm−1),

∆∗
Σ(~φ, ψ) ⊆ CΣ(Φ).

Proof. The case m = 1 follows immediately by the N -deduction theo-

rem of I relative to ∆. Suppose, again, that the conclusion follows for

all sequences ~φ′ of length m − 1 and assume ~φ = 〈φ0, ~φ′〉, with ~φ′ =

〈φ1, . . . , φm−1〉, such that ψ ∈ CΣ(Φ, φ0, . . . , φm−1). Then, by the induction

hypothesis, we get that ∆∗
Σ(~φ′, ψ) ⊆ CΣ(Φ, φ0), whence by the N -deduction

theorem of I relative to ∆, we obtain that
⋃
{∆Σ(φ0, χ) : χ ∈ ∆∗

Σ(~φ′, ψ)} ⊆

CΣ(Φ). Thus, finally, by the definition of ∆∗, ∆∗
Σ(~φ, ψ) ⊆ CΣ(Φ). �

Theorem 29. Let I = 〈Sign,SEN, C〉, with N a category of natural

transformations on SEN, be a finitary N -rule based π-institution, with a
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finite N -deduction-detachment system ∆. Then I may be axiomatized via

N -axioms and N -inference rules in such a way that

x,∆(x, y)

y
(11)

is its only proper N -rule of inference.

Proof. By hypothesis, since I is N -rule based, there exists a collection

Ax of N -axioms and IR of (proper) N -inference rules that axiomatize I.

Consider the new collections Ax′ and IR′ of N -axioms and N -inference

rules constructed from Ax and IR as follows: Ax′ consists of the N -axioms

in Ax plus all N -axioms of the form ∆∗(~σ, τ), for each N -inference rule

〈{σ0, . . . , σm−1}, τ〉 in IR. IR′ consists only of the N -inference rule (11).

By Lemma 28, all N -axioms in Ax′ are N -axioms of I and, by hypothesis,

(11) is an N -inference rule of I. Let, now, I ′ = 〈Sign,SEN, C ′〉 be the π-

institution axiomatized by Ax′ and IR′. Then, obviously, by the preceding

remarks, C ′ ≤ C. On the other hand, since Ax ⊆ Ax′ and every N -rule

in IR is, by Lemma 27, a derivable N -rule of I ′, we get that C ≤ C ′.

Therefore I = I ′. �

Theorem 30. Suppose that I = 〈Sign,SEN, C〉, with N a category

of natural transformations, is a regularly N -algebraizable N -rule based π-

institution, with a finite N -deduction-detachment system ∆. Let E be a

finite N -equivalence system for I and ⊤ an N -top. Then the unique equiv-

alent N -quasivariety of I is axiomatized by the N -identities

E(x, x) ≈ ⊤,

the two N -quasi-identities

x ≈ ⊤ ∧ ∆(x, y) ≈ ⊤ → y ≈ ⊤, E(x, y) ≈ ⊤ → x ≈ y,

and additional N -identities of the form σ ≈ ⊤, where σ ranges over any

fixed set of N -axioms of an axiomatization of I that has the N -rule (11)

as its only proper N -inference rule.

Proof. Combine Theorems 20 and 29. �
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