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Abstract 

A general notion of a congruence system is introduced for π-institution. 
Congruence systems in this sense are collections of equivalence relations on the 
sets of sentences of the π-institution that are preserved both by signature 
morphisms and by fixed collections of natural transformations from finite tuples 
of sentences to sentences. Based on this notion of a congruence system, the 
notion of a Tarski congruence system, generalizing the notion of a Tarski 
congruence from sentential logics, is considered. Logical and bilogical 
morphisms are introduced for π-institution, also generalizing similar concepts 
from the theory of sentential logics, and their relationship with the familiar 
translations and interpretations of institutions is discussed. Finally, the 
interplay between these logical maps and the formation of logical quotients of   
π-institution and the way they transform the Tarski congruence systems is 
investigated. 
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1. Introduction 

In [4], Blok and Pigozzi introduced the concept of the Leibniz 
congruence associated with the theories of a deductive system. Leibniz 
congruences are, more generally, associated with filters of logical 
matrices; the case of theories, i.e., filters on formula algebras, being a 
special case. More specifically, given a logical matrix ,, FA=A  the 

Leibniz congruence associated with A  is the largest congruence on the 
algebra A that is compatible with F, in the sense that F is the union of 
equivalence classes of the congruence. Properties of the Leibniz 
congruence give rise to the abstract algebraic hierarchy of logics, 
consisting of the major classes of protoalgebraic [3], equivalential [7], and 
algebraizable [4] logics (see also [12] for an excellent overview). In 
subsequent work, Font and Jansana [11] generalized the work of Blok 
and Pigozzi by considering the notion of a Tarski congruence of an 
abstract logic. An abstract logic C,A=L  consists of an algebra A 

together with a closure operator C on A, the universe of A. The Tarski 
congruence associated with the abstract logic L  is the largest congruence 
that is compatible with all closed sets of the closure operator C. Both the 
Leibniz and the Tarksi congruence of a logic provide significant tools for 
the investigation of the algebraizability of a logic and for the study of the 
connections between metalogical properties of logics and corresponding 
algebraic properties. Except for [11] and [12], [8] and the very recent [1] 
are other excellent expositions of the rôle that congruences with 
compatibility properties play in studying the interaction between logical 
and algebraic properties. 

Despite the successful generalization of the algebraizability framework 
to a categorical, more abstract, level, initially by the author in [22, 21] 
and more recently by the work of a group of colleagues [15, 13, 14], able 
to cover the case of an institutional logic, there had not been any notion 
of “congruence” pertaining to ns,institutio-π  which would allow, at least 
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partially, carrying some of the universal algebraic results to this level. In 
the present paper, we introduce an abstract notion of a congruence 
system, which consists of a collection of equivalence relations on the 
sentences of a ninstitutio-π  that are preserved by both signature 

morphisms and selected classes of finitary natural transformations from 
sentences to sentences. It coincides with the usual universal algebraic 
notion of congruence in some special nsinstitutio-π  but is different, in 

general. Based on this notion, the notion of a Tarksi congruence system is 
defined for this framework. Roughly speaking, a Tarski congruence 
system is a congruence system in this new sense whose component over a 
given signature is compatible with every theory over that signature. This 
definition follows the definition of the Tarski congruences of Font and 
Jansana [11]. Tarski congruence systems are studied in the first part of 
the paper. 

In the second part, the notions of a logical and a bilogical morphism 
of the sentential logic framework (see [11]) are adapted to the 

ninstitutio-π  level. Roughly speaking, a logical morphism is an algebra 

homomorphism that preserves the logical closure structure in the 
forward direction, whereas a bilogical morphism is a surjective algebra 
homomorphism that preserves the logical structure both in the forward 
and the backward direction. As a result, a bilogical morphism between 
two abstract logics induces an isomorphism between the two closure 
structures. The adapted notions share similar properties and it is shown 
that, subject to having isomorphisms as signature functor components, 
the institutional bilogical morphisms also induce isomorphisms between 
the theory categories of the related ns.institutio-π  

An interesting, but not so surprising, result is that both logical and 
bilogical morphisms are intimately connected with notions of morphisms 
that had previously been considered in the categorical framework [21]. 
These are semi-interpretations and interpretations between ns.institutio-π  
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The connections are given in detail in the second part of the paper, where 
a result concerning preservation of Tarski congruence systems under 
bilogical morphisms is also presented. 

Finally, in the third part of the paper, logical quotients of 
nsinstitutio-π  by logical congruence systems are constructed. Many of 

the correspondence results between surjective homomorphisms and 
congruences that carry on from universal algebra into abstract logics in 
the form of correspondences between logical morphisms and logical 
quotients [11] are now lifted to the π-institution level. 

The reader is referred to either of [2, 5, 20] for all unexplained 
categorical notation, to [16, 17] for the introduction and the basic 
concepts pertaining to institutions and to [10] for those on ns,institutio-π  

and, finally, to [21] for the introduction of translations and 
interpretations between ns.institutio-π  In [19], a comparison is given of 

many of the different notions of morphisms that have been introduced in 
the theory of institutions, some of which are related to the ones used 
here. 

2. Sentential Logics and nsInstitutio-π  

In this section, bits of the theory of sentential logics, that serves as 
the paradigm for the present theory and may be viewed as the primary 
motivation for its development, are presented. Discussing these aspects 
from the theory of sentential logics and the theory of π-institutions will 
also facilitate the understanding of the notions and the results developed 
in later sections, where references and comparisons with these two 
theories will frequently be made. The primary reference sources for the 
material on sentential logics from the point of view of abstract algebraic 
logic are [11, 4, 8]. 
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Recall that a logical matrix F,A=A  is a pair consisting of an 

algebra AA L,A=  and a subset ,AF ⊆  called the filter of .A  A 

congruence θ  of A is said to be compatible with F if F is a union of           
θ-equivalence classes, i.e., if, for all θ∈∈ baAba ,,,  and Fa ∈  imply 

.Fb ∈  In this case θ  is called a matrix congruence of .A  The collection 
of all congruences of the algebra A forms a complete lattice under 
inclusion. The collection of all matrix congruences of A  forms a principal 
ideal of this lattice and its maximum element is called the Leibniz 
congruence of A  and denoted by ( )AΩ  or ( ).FAΩ  Blok and Pigozzi [4] 

introduced this congruence and they proved that, for all ,, Aba ∈  

( ) ( )

( ) ( ) ,,,

,Fm,iff,

FcbFca

AcqpFba

∈φ⇔∈φ

∈∀∈φ∀Ω∈

GG

GG

AA

A
k

L
 (1) 

where, by LFm  is denoted the set of formulas-L  in a fixed denumerable 

set of variables V and k is the length of the variable vector (of all 
variables different from p appearing in φ ) .qG  Extensive study of the 

properties of ,AΩ  viewed as an operator from the lattice of filters of A to 
the lattice of congruences of A, has given rise to an algebraic hierarchy of 
logics, which constitutes the backbone of the area of abstract algebraic 
logic. (A very good reference is [8], where the interested reader may find, 
apart from a description of the most important classes of this hierarchy, 
many more references to original works. Also, [12] provides a brief 
overview of the area and [1] contains a wealth of results pertaining to the 
so-called “operator approach” to abstract algebraic logic.) 

Recall from [11] that an abstract logic C,A=L  consists of an 

algebra AA L,A=  together with a closure operator C on A. In [23], an 

abstract logic was called a generalized matrix. A congruence θ  of A is 
said to be a logical congruence of ,L  if, for all ,, Aba ∈  

( ) ( ).implies, bCaCba =θ∈  
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This is equivalent to θ  being compatible with all C-closed sets of A. As in 
the case of a logical matrix, it is also the case here that the lattice of all 
logical congruences of L  is a principal ideal of the complete lattice of all 
congruences of A and its largest element is called the Tarski congruence 
of L  and denoted by ( )LΩ~  or ( ).~ CAΩ  The Tarski congruence of an 
abstract logic is the main tool of the theory developed in [11], where it is 
noted that the characterization of the Leibniz congruence (1) immediately 
yields the following characterization of the Tarski congruence: 

( ) ( )

( ( )) ( ( )).,,

,Fm,iff~,

cbCcaC

AcqpCba

GG

GG

AA

A

φ=φ

∈∀∈φ∀Ω∈ k
L

 

The following notions of morphisms in increasing strength, 
introduced in [6], relate abstract logics while respecting aspects of their 
deductive apparatuses. Let CC ′′=′= ,,, AA LL  be two abstract 

logics, where AA ′,  are similar algebras. An algebra homomorphism 

AA ′→:h  is a logical morphism from L  to L′  if, for every closed-C′  

set T ′  of ( )ThA ′′ −1,  is a C-closed set of A. L  is projectively generated 

from L′  by h if { ( ) }closed-:1 CTTh ′′′−  is the entire set of C-closed 

subsets of A. Finally, h is a bilogical morphism from L  onto L′  if it is an 
epimorphism and projectively generates L  from .L′  Font and Jansana 
([11], Proposition 1.5) show that an epimorphism AA ′→:h  is a 
bilogical morphism from L  onto L′  if and only if the lattices of C-closed 
sets of A and of C′-closed sets of A′  are isomorphic under  the 
correspondence 

( ) ( )., 1 ThTThT ′′ −66  

They also show ([11], Proposition 1.7) that, if LL ′→:h  is a biological 
morphism, then 

( ) ( ( )).~~ 1 LL ′Ω=Ω −h  

Two abstract logics L  and L′  are isomorphic when there is a bijective 
logical morphism from L  to L′  whose inverse is also a logical morphism. 
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Font and Jansana introduce, next, the notion of a logical quotient of 
an abstract logic ., CA=L  If θ  is a congruence of A, the closure 

system { ( ) },: 1 CC ∈πθ⊆=θ −
θ SAS  where θ→πθ AA:  is the 

natural projection and C  is the closure system corresponding to the 
closure operator C, defines an abstract logic θθ=θ C,AL  on the 

quotient algebra θA  in such a way that θ→πθ LL:  becomes a 

logical morphism. If it so happens that θ  is a logical congruence of ,L  

then θ→πθ LL:  is a biological morphism from L  onto .θL  In 

Theorems 1.8-1.10 of [11], analogs of the classical homomorphism 
theorems of universal algebra are proved for abstract logics. It is also 
shown in Corollary 1.11 that, if θ  is a logical congruence of an abstract 

logic ,L  then ( ) ( ) .~~ θΩ=θΩ LL  Perhaps the most central notion of the 

theory is the notion of a reduced abstract logic. L  is said to be reduced if 

( ) ,~
A∆=Ω L  i.e., if L  has a single logical congruence. For an arbitrary 

abstract logic ,L  its reduction ( )LLL Ω=∗ ~  is the quotient of L  by its 

Tarski congruence and it is always reduced. 

Finally, before introducing the basic analogs of the theory above in 
the context of π-institutions, the definition of a π-institution is provided, 
which will be the central object of our investigations. For many more 
details on institutions, the reader is referred to the original sources     
[16, 17], where many examples may also be found. For π-institutions the 
original reference is [10]. For other examples of logical nature the reader 
may consult [22, 21]. A lot of examples pertaining to theoretical  
computer science may be found in the literature, e.g., in [18, 19]. 
Moreover, the important rôle that institutions have played in the theory 
of formal specifications of data structures and programming languages, 
as well as their key service as the underlying structures on which a 
model theory that is independent of the adopted logical system may be 
developed, has led to the compilation of an excellent comprehensive 
survey [9]. 
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A π-institution { } SignSign ∈∑∑= C,SEN,I  consists of 

(i) a category Sign whose objects are called signatures; 

(ii) a functor SEN : Sign → Set, from the category Sign of signatures 
into the category Set of sets, called the sentence functor and giving, for 
each signature ,∑  a set whose elements are called sentences over that 
signature ,∑  or ∑ -sentences, and 

(iii) a mapping ( )( ) ( )( ),SENSEN: ∑→∑∑ PPC  for each ,Sign∈∑  

called ∑ -closure, such that 

(a) ( ),ACA ∑⊆  for all ( ),SEN, ∑⊆∈∑ ASign  

(b) ( ( )) ( ),ACACC ∑∑∑ =  for all ( ),SEN, ∑⊆∈∑ ASign  

(c) ( ) ( ),BCAC ∑∑ ⊆  for all ( ),SEN, ∑⊆⊆∈∑ BASign  

(d) ( ) ( ( )) ( ) ( )( ),SENSEN 21 AfCACf ∑∑ ⊆  for all ,, 21 Sign∈∑∑  

( ) ( ).SEN,, 121 ∑⊆∑∑∈ Af Sign  

Sometimes the focus will be on just the signature category and the 
sentence functor. In that case, we will suppress Sign and only speak of 
SEN : Sign → Set with the signature category being understood from 
context. 

The clone of all natural transformations on SEN is the category U 

with collection of objects { }ordinalan:SEN αα  and collection of 

morphisms βα → SENSEN:τ  β -sequences of natural transformations 

.SENSEN: →ατ  Composition of βα →β< SENSEN:: iiτ  with 
γβ →γ<σ SENSEN:: jj  

,SENSENSEN :: γγ<σββ<α  → →
ji jiτ  

is defined by 

( ) .:::: γ<β<σ=β<γ<σ jiij ijij ττD  
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A subcategory of this category with objects all objects of the form  

,:SEN ω<kk  and containing all projection morphisms ,SENSEN:, →kk ip  

,, ω<< kki  with ( ) SENSEN:, →∑∑
kk ip  given by 

( ) ( ) ,SENallfor,, kk ∑∈φφ=φ∑

GG
i

ip  

and such that, for every family { }A<→ ii :SENSEN: kτ  of natural 

transformations in AA SENSEN::, →< kiN iτ  is also in N, is 

referred to as a category of natural transformations on SEN. 

3. Tarski Congruence Systems 

Let Sign be a category and SEN : Sign → Set be a functor. In 
addition, let N be a category of natural transformations on SEN. Given 

,Sign∈∑  an equivalence relation ∑θ  on ( )∑SEN  is said to be an       

N-congruence if, for all SENSEN: →σ k  in N and all ( ) ,SEN, k∑∈/φ vG
G

 

( ) ( ).imply vv GGGG
/σθφσ/θφ ∑∑∑∑

k  

Let Sign and SEN : Sign → Set be as above. A collection { ∑θ∑=θ ,  

}Sign∈∑:  is called an equivalence system of SEN, if 

∑θ•  is an equivalence relation on ( )∑SEN  for all ,Sign∈∑  

( ) ( ) ,SEN 21
2

∑∑ θ⊆θ• f  for all ( ).,,, 2121 ∑∑∈∈∑∑ SignSign f  

If, in addition, N is a category of natural transformations on SEN and ∑θ  

is an N-congruence, for all ,Sign∈∑  then θ  is said to be an                

N-congruence system of SEN. 

Let now { } SignSign ∈∑∑= C,SEN,I  be a π-institution. An 

equivalence system θ  of SEN is called a logical equivalence system of I  
if, for all ( ),SEN,, ∑∈/φ∈∑ vSign  
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( ) ( ).implies, vCCv /=φθ∈/φ ∑∑∑  

An N-congruence system of SEN is an N-logical congruence system or a 
logical N-congruence system of I  if it is logical as an equivalence system 
of .I  

Sometimes, when the signature ∑  is clear from context, the             
∑ -equivalence ∑θ∑,  or the ∑ -N-congruence ∑θ∑,  will be denoted 

simply by .∑θ  The same convention will be followed often for ∑ -theories 

as well. 

Like equivalence relations on sets, equivalence systems on sentence 
functors form complete lattices under signature-wise inclusions. 

Proposition 1. Let Sign be a category and SEN : Sign → Set be a 
functor. The collection Eqv(SEN) of all equivalence systems of SEN forms 
a complete lattice ( ) ( ) ≤= ,SENEqvSENEqv  under signature-wise 

inclusion .≤  

Proof. It is clear that { },:, Sign∈∑∇∑=∇ ∑  where =∇∑  

( ) ,SEN 2∑  for all ,Sign∈∑  is an equivalence system of SEN. So, it is 

the maximum element of Eqv(SEN) under signature-wise inclusion. 

To prove the statement, it suffices, thus, to show that the collection 
Eqv(SEN) is closed under signature-wise intersections. Suppose to this 

end that { } ,,:, Iiii ∈∈∑θ∑=θ ∑ Sign  is a collection of equivalence 

systems of SEN. Clearly, since ,, Iii ∈θ∑  are all equivalences on  

( ) i
Ii ∑∈
θ∑ ∩,SEN  is also an equivalence relation on ( ).SEN ∑  Therefore, 

to see that { }Sign∈∑θ∑=θ ∑∈∈
:, i

Ii
i

Ii ∩∩  is an equivalence 

system of SEN, it suffices to show that, for all ,, 21 Sign∈∑∑  

( ) ( ) ( ) .SEN,,
21

2
21

i
Ii

i
Iiff ∑∈∑∈

θ⊆θ∑∑∈ ∩∩Sign  Indeed, if ,,
1

i
Iiv ∑∈
θ∈/φ ∩  
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then ,,
1

iv ∑θ∈/φ  for all ,Ii ∈  whence, since, for all iIi θ∈ ,  is an 

equivalence system of ( ) ( ) ,,SENSEN,
2

2 ivf ∑θ∈/φ  for all ,Ii ∈  whence 

( ) ( ) ,,SEN
2

2 i
Iivf ∑∈
θ∈/φ ∩  and, hence, i

Ii θ
∈∩  is an equivalence system 

of SEN.  

Furthermore, in analogy with congruences on a given algebra,         
N-congruence systems on a given sentence functor also form a complete 
lattice under signature-wise inclusion. 

Proposition 2. Let Sign be a category, SEN : Sign → Set be a 
functor and N be a category of natural transformations on SEN. The 

collection ( )SENConN  of all N-congruence systems on SEN forms a 

complete lattice ( ) ( ) ≤= ,SENConSEN NNCon  under signature-wise 

inclusion .≤  

Proof. Since { },:, Sign∈∑∇∑=∇ ∑  where ( ) ,SEN 2∑=∇∑  for 

all ,Sign∈∑  is an N-congruence system on SEN, regardless of which 

category N of natural transformations on SEN is under consideration, it 

suffices to show that the collection ( )SENConN  is closed under 

signature-wise intersections. Suppose, to this end, that 

{ } ,,:, Iiii ∈∈∑θ∑=θ ∑ Sign  is a collection of N-congruence 

systems of SEN. Clearly, since ,, Iii ∈θ∑  are all equivalences on 

( ) i
Ii ∑∈
θ∑ ∩,SEN 2  is also an equivalence relation on ( )∑SEN  and, by 

Proposition 1, it is preserved by all signature morphisms. Therefore, to 

see that { }Sign∈∑θ∑=θ ∑∈∈
:, i

Ii
i

Ii ∩∩  is an N-congruence system 

on SEN, it suffices to show that it is preserved by all SENSEN: →σ k   

in N. Suppose, to this end, that SENSEN: →σ k  in N and 
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( ) ,SEN, k∑∈/φ vG
G

 such that ( ) .vi
Ii

GG
∩ /θφ ∑∈

k  Then ( ) ,vi GG
/θφ ∑
k  for all .Ii ∈  

Hence, since for all iIi θ∈ ,  is an N-congruence system, ( ) ( ),vi GG
/σθφσ ∑∑∑  

for all .Ii ∈  Therefore ( ) ( ),vi
Ii

GG
∩ /σθφσ ∑∑∈∑  whence i

Ii θ
∈∩  is indeed 

an N-congruence system on SEN.  

Finally, as in the case of logical congruences on abstract logics, the 
collection of all logical N-congruence systems of a given π-institution 
forms a complete lattice under signature-wise inclusion. 

Theorem 3. Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution 

and N be a category of natural transformations on SEN. The collection 

( ),Con IN  sometimes also denoted by ( ),Con CN  of all logical N-congruence 

systems of I  forms a complete lattice ( ) ( ) ≤= ,ConCon II NN  under 

signature-wise inclusion .≤  

Proof. If ,, Iii ∈θ  with ,0/≠I  are in ( ),Con IN  then ( ),Con INi
Ii ∈θ

∈∩  

since, it is obviously an equivalence system of SEN, it is preserved by 

every morphism in Sign and by N, since every ,, Iii ∈θ  is, and, finally, if 

,, i
Iiv ∑∈
θ∈/φ ∩  then ,, iv ∑θ∈/φ  for all ,Ii ∈  whence, since iθ  is a 

logical N-congruence system of ( ) ( )., vCC /=φ ∑∑I  Therefore, i
Ii ∑∈
θ∩  is 

also a logical N-congruence system of .I  

It suffices, therefore, to show that ( )INCon  has a greatest element. 

The signature-wise union of every signature-wise directed subset of 

( )INCon  is an upper bound for that subset in ( )SENConN  and it is in 

( ),Con IN  since every member of the subset is. So, by Zorn’s lemma, 

( )INCon  has a maximal element. If θ′≠θ  are two such maximal 

elements, then, it is not difficult to verify that their join η  as                  
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N-congruence systems on SEN is a logical N-congruence system of .I  
This, however, contradicts the maximality of θ  and ,θ′  since, clearly, 

η<θ  and .η<θ′  Therefore, the maximal element of ( )INCon  is a 

largest element.  

The largest logical N-congruence system is called the Tarski              

N-congruence system of I  and is denoted by ( )INΩ~  or ( ).~ CNΩ  

As a notational convention, when referring to the U-Tarski 
congruence system of a π-institution ,I  where U is the category of all 

natural transformations on SEN, the accompanying superscript U  may 

occasionally be omitted from the notation. 

The following theorem is an adaptation of a characterization result of 
Font and Jansana ([11], Proposition 1.2) of the Tarski congruence of an 
abstract logic, which is, in turn, a generalization of a characterization 
result of Blok and Pigozzi [4] of the Leibniz congruence of a logical 
matrix. 

Theorem 4. Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution, 

with N a category of natural transformations on Sign∈∑,SEN  and 

( ).SEN, ∑∈/φ v  Then ( )INv ∑Ω∈/φ ~,  if and only if, for all ,Sign∈∑  all 

( ),, ∑′∑∈ Signf  all natural transformations SENSEN: →kτ  in N, all 

k<i  and all ( ) ,SEN k∑′∈χ
G  

( ( ( ) ( ) )1110 ,,,SEN,,, −+−∑′∑′ χχφχχ k…… ii fC τ  

( ( ( ) ( ) ).,,,SEN,,, 1110 −+−∑′∑′ χχ/χχ= k…… ii vfC τ  (2) 

Notational convention. Sometimes, for compactness, Equation (2) will 
be abbreviated as 

( ( ) ( )( )) ( ( ) ( )( )),,SEN,SEN χ/=χφ ∑′∑′∑′∑′
GG vfCfC ττ   (3) 
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with the understanding that ( ) ( ) ( ) ( )vff /φ SEN,SEN  may appear in 

positions other than the first in ,∑′τ  but that they must appear in the 

same position in both sides of the equation. 

Proof. Let { }Sign∈∑= ∑ :RR  denote the collection of relations 

defined by Equation (3). Obviously, ∑R  is an equivalence relation on 

( ) R.SEN ∑  is also an equivalence system of SEN, since, for all ∈∑∑ 21,  

( )21,, ∑∑∈ SignSign f  and ,, 1∑∈/φ Rv  we get, for all ,Sign∈∑′  

( ),,2 ∑′∑∈ Signg  

 

SENSEN: →kτ  in N and ( ) ,SEN k∑′∈χ
G  

( ( ( ) ( ) ( )( ) )) ( ( ( ) ( ) ))

( ( ( ) ( ) ))

( ( ( ) ( ) ( )( ) )),,SENSEN

,SEN

,SEN,SENSEN

χ/=

χ/=

χφ=χφ

∑′∑′

∑′∑′

∑′∑′∑′∑

G

G

GG

vfgC

vgfC

gfCfgC

τ

τ

ττ

 

where, passing from the first to the second lines above, we have used the 

fact that 1, ∑∈/φ Rv  and ( ).,1 ∑′∑∈ Signgf  Therefore, ( ) ( )vf /φ,SEN 2  

.2∑∈ R  Furthermore R is an N-congruence system on SEN. To see this, 

let ( ) ,SEN,, nv ∑∈/φ∈∑
GG

Sign  such that ,vRn GG
/φ ∑  and SENSEN: →σ n  

be in N. Then, for all ( ) SENSEN:,,, →∑′∑∈∈∑′ kτSignSign f  in 

N and ( ) ,SEN k∑′∈χ
G  
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( ( ( ) ( ( )) )) ( ( ( ( ) ( )) ))

( ( ( ( ) ( )) ))

( ( ( ) ( ( )) )),,SEN

,SEN

,SEN,SEN

χ/σ=

χ/σ=

χφσ=χφσ

∑∑′∑′

∑′∑′∑′

∑′∑′∑′∑∑′∑′

GG

GG

GGGG

vfC

vfC

fCfC

n

n

τ

τ

ττ

 

where, passing from the first to the second line, we have used the fact 

that ( ) SENSEN:, 1 →σ −+kn…τ  is in N and .vRn GG
/φ ∑  Thus, ( ) ∑∑ σφσ ,

G
 

( ) ∑∈/ RvG  and R is an N-congruence system on SEN. Finally, it is 

straightforward to see, taking the identity morphism ∑→∑∑ :i  and 

the identity natural transformation SENSEN: →ι  (which is in N) for    
f and ,τ  respectively, in Equation (3), that R is a logical N-congruence 

system of .I  Therefore, by the definition of ( ),~ IN
∑Ω  we get that 

( ),~ INR ∑∑ Ω⊆  for all .Sign∈∑  

Conversely, if ( ),~, INv ∑Ω∈/φ  then, since ( )INΩ  is an equivalence 

system of SEN, we get, for every ( ),,, ∑′∑∈∈∑′ SignSign f  

( ) ( ) ( ) ( ) ( ).~SEN,SEN INvff ∑′Ω∈/φ  

Now, since ( )IN
∑Ω~  is an equivalence relation on ( ),SEN ∑′  we get, for 

every ( ) ( ) ,~,SEN χΩχ∑′∈χ ∑′
GGG kk IN  whence, since ( )INΩ~  is an N-congruence 

system, we get, for every SENSEN: →kτ  in N, 

( ( ) ( ) ) ( ( ) ( ) ) ( ).~,SEN,,SEN INvff ∑′∑′∑′ Ω∈χ/χφ
GG

ττ  

Therefore, since ( )INΩ~  is a logical N-congruence system of ,I  we have 

( ( ( ) ( ) )) ( ( ( ) ( ) )).,SEN,SEN χ/=χφ ∑′∑′∑′∑′
GG vfCfC ττ  

Hence ∑∈/φ Rv,  and ( ) ∑∑ ⊆Ω RN I~  for every .Sign∈∑  This 

concludes the proof that ( ).~ INR Ω=   
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In the sequel, it is shown how the results of Blok and Pigozzi [4] and 
Font and Jansana [11] become special cases of the results presented 
above. To this end, given a language or similarity type ,L  an algebra-L  

AA L,A=  and an abstract logic ,, CA=L  denote by LI  the            

π-institution that has as its signature category the trivial category with 
the object A, as its sentence functor the functor sending the algebra A to 
its underlying universe A and as its closure system the closure system 
defined by ( ) ( ).: AACC PP →=A  It is not difficult to check that this is 

indeed a π-institution, which will be referred to as the π-institution 
associated with the abstract logic .L  Note that the clone N of algebraic 

operations generated by AL  forms a category of natural transformations 
on SEN in the sense of the present paper. The notation just introduced 
will be kept for the remainder of this section as the results above are 
related to the results of Blok and Pigozzi and of Font and Jansana. 

The following corollary of Theorem 3 is the result of Blok and Pigozzi 
for universal algebraic congruences compatible with given filters on their 
algebras. 

Corollary 5 (Blok-Pigozzi). Let AA L,A=  be an gebraal-L  and 

.AF ⊆  The collection of all scongruence-L  that are compatible with F 

forms a complete lattice under inclusion. 

Proof. Consider the π-institution LI  associated with the abstract 

logic ,,, CA AL=L  where C has F and A as its only two theories. 

Let N be the category of natural transformations on SEN corresponding 

to the clone of .AL  Then the result follows from Theorem 3.  

The largest congruence-L  that is compatible with a given subset F is 

called the Leibniz congruence of F,A  and is denoted by ( ).FAΩ  The 

name has been introduced by the inventors of the congruence, Blok and 
Pigozzi, and the reader may find an excellent account of some of its 
properties and of its rôle in abstract algebraic logic in their seminal 
“Memoirs monograph” [4]. 
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Theorem 3 has also as a corollary the following result of Font and 
Jansana ([11], Formula (1.2)). 

Corollary 6 (Font-Jansana). Let C,A=L  be an abstract logic. The 

collection of all logical congruences of L  forms a complete lattice under 
inclusion. 

Proof. Very similar to the proof of Corollary 5.  

The largest logical congruence is called the Tarski congruence of L  

and is denoted by ( ).~ CAΩ  The name has been introduced by the 

inventors of the congruence, Josep Maria Font and Ramon Jansana, and 
the reader may also find a fascinating treatment of its properties and rôle 
in abstract algebraic logic in their excellent treatise [11]. 

Theorem 4 has the following consequence. It is based on a result of 
Blok and Pigozzi characterizing the Leibniz congruence associated with a 
theory of a logic. Font and Jansana (see [11], Formula (1.3)) adapted the 
result and used it to characterize the Tarski congruence associated with 
an abstract logic. In the current version, the Tarski congruence system of 

the π-institution LI  associated with an abstract logic ,, CA=L  which 

can be identified with the Tarski congruence of the abstract logic, is 
characterized. 

Corollary 7 (Font-Jansana). Let { { } SignSign ∈∑∑= C,SEN,LI  be 

the π-institution associated with the abstract logic ,,, CA AL=L  and 

N be the category of natural transformations on SEN corresponding to the 

clone of AL  operations. Then, for all ( )CbaAba N
AΩ∈∈ ~,,,  if and only 

if, for every ( )qpformula G,- φL  and every ,kAc ∈
G  where k  is the length 

of ,qG  

( ( )) ( ( )).,, cbca GG A
A

A
A φ=φ CC   (4) 
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It is appropriate to pause here to pay tribute to the aforementioned 
works of Blok and Pigozzi [4] and of Font and Jansana [11], without 
which our work would not have existed. Also of equal importance has 
been the work of Janusz Czelakowski [7], that paved the way for the 
work of Blok and Pigozzi. More recently, Czelakowski has written an 
excellent overview of abstract algebraic logic [8]. All three works have 
been extremely important for abstract algebraic logic in general and, in 
particular, in placing an appropriate emphasis on the key rôle of 
congruences with logical compatibility properties. 

4. Logical and Bilogical Morphisms 

Let { { } { { } nSigSign nSigSign ′∈∑∑∈∑∑ ′′′== CC ,NSE,,,SEN, II  

be two π-institutions. A translation II ′→:αF,  from I  to I ′  [21] is 

a pair consisting of a functor nSigSign ′→:F  and a natural 

transformation .NSESEN: F′→α P  A translation is said to be a 

singleton translation, denoted ,: II ′→sαF,  if, for all ,Sign∈∑  

( ) ( ) .1,SEN =φα∑∈φ ∑  In that case, the set ( )φα∑  will be identified 

with the only element that it contains and α  will be treated as a natural 
transformation .NSESEN: F′→α  

A singleton translation II ′→sαF, :  is said to be surjective if 

(1) nSigSign ′→:F  is surjective and 

(2) ( ) ( )( )∑′→∑α∑ FNSESEN:  is surjective, for all .Sign∈∑  

If only condition (2) above holds, αF,  will be said to be α -surjective. 

A translation II ′→:, αF  is a semi-interpretation from I  to ,I ′  

written ,: II ′−αF,  if, for every { } ( ),, ∑⊆φΦ∈∑ SEN∪Sign  

( ) ( ) ( )( ( )).implies Φα′⊆ΦαΦ∈φ ∑∑∑∑ FCC  
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It is an interpretation from I  to ,I ′  denoted ,: II ′αF,  if, for all 

{ } ( ),, ∑⊆φΦ∈∑ SEN∪Sign  

( ) ( ) ( )( ( )).iff Φα′⊆φαΦ∈φ ∑∑∑∑ FCC  

Let SEN : Sign → Set be a sentence functor and N be a category of 
natural transformations on SEN. A functor ,:NSE SetnSig →′′  with a 

category N ′  of natural transformations on NSE ′  is called an N-(sentence) 
functor if there exists a surjective functor NN ′→:  that preserves all 
projection natural transformations and, as a result, also the arities of all 

natural transformations. In this case, the image of SENSEN: →σ k  in 

N under ′ will be denoted by .NSENSE: ′→′σ′ k  Similar conventions 
will be adopted throughout without explicit mention. 

Given N-functors SetnSig →′′ :NSE  and ,:NSE SetnSig →′′′′  

with categories NN ′′′,  of natural transformations on ,NSE,NSE ′′′  

respectively, an ( )NN ′′′, -morphism NSENSE:, ′′→′αF  consists of 

(1) a functor nSignSig ′′→′:F  and 

(2) a natural transformation ,NSENSE: F′′→′α  

satisfying, for all SENSEN: →kτ  in ,bN  all nSig ′∈∑  and all 

( ) ,k∑′∈φ NSE
G

 

 

( ( )) ( )( ( )).φα′′=φ′α ∑∑∑∑
GG k

Fττ  
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We assume in the sequel that all our sentence functors are           

( )NN ′′′, -functors, with reference to some fixed category bN  of natural 

transformations on a fixed base sentence functor .:SEN SetSign →bb  

Given π-institutions { } SignSign ∈∑∑= C,SEN,I  and ,nSig ′=′I  

{ } nSig ′∈∑′′ MC,NSE  and categories of natural transformations ,, NN ′′  

respectively, on ,NSE,SEN ′  a singleton translation (semi-interpretation or 

interpretation) α,F  from I  to I ′  is said to be an ( )NN ′, -translation 

(semi-interpretation or interpretation) if, in addition, NSE,SEN:, ′αF  

is an ( )NN ′, -morphism. 

An ( )NN ′, -logical morphism II ′→α :,F  from I  to I ′  is a 

(singleton) ( )NN ′, -semi-interpretation from I  to ,I ′  denoted 

accordingly by .:, II ′−α sF  A logical morphism is strong if it is an 

interpretation, denoted .:, II ′α sF   Finally, it is called an      

( )NN ′, -bilogical morphism if it is a surjective strong ( )NN ′, -logical 

morphism and an isomorphism if nSigSign ′→:F  and 

( ) NSESEN: ′→∑α∑  ( )( ),∑F  for all ,Sign∈∑  are isomorphisms. 

The following proposition gives a preservation property of the          
N-Tarski congruence system under the action of logical morphisms. 

Proposition 8. Suppose that { } SignSign ∈∑∑= C,SEN,I  and 

{ } nSignSig ′∈∑∑′′′=′ CNSE ,,I  are two π-institutions, NN ′,  are 

categories of natural transformations on ,NSE,SEN ′  respectively, and 

II ′−α sF :,  is an ( )NN ′, -logical morphism, such that α,F  is 

surjective. Then, for every ,Sign∈∑  

( ( )) ( )( ).~~ CC N
F

N ′Ω⊆Ωα ∑∑∑  
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Proof. Let ( ).SEN,, ∑∈/φ∈∑ vSign  Suppose that ( ).~, Cv N
∑Ω∈/φ  

Then, by Theorem 4, for all ( ) →∑′∑∈∈∑′ kSEN:,,, τSignSign f  

SEN  in N and ( ) ,SEN k∑′∈χ
G  we have 

( ( ( ) ( ) )) ( ( ( ) ( ) )),,SEN,SEN χ/=χφ ∑′∑′∑′∑′
GG vfCfC ττ  

whence ( ( ( ( )( ) ))) ( ( ( ( )( ) ))).,SEN,SEN χ/α=χφα ∑′∑′∑′∑′∑′∑′
GG vfCfC ττ  Thus, 

by Lemma 6.4 of [21], which is expressed for interpretations but is also 
valid for semi-interpretations, 

( )( ( ( ( ) ( ) ))) ( )( ( ( ( )( ) ))).,SEN,SEN χ/α′=χφα′ ∑′∑′∑′∑′∑′∑′
GG vfCfC FF ττ  

But then, since α,F  is an ( )NN ′, -morphism, 

( )( ( )( ( ( ) ( ) ))) ( )( ( )( ( ( ) ( ) ))),,SEN,SEN χ/α′′=χφα′′ ∑′∑′∑′∑′∑′∑′
GG vfCfC FFFF

kk ττ  

i.e., 

( )( ( )( ( ( ) ( )) ( )))χαφα′′ ∑′∑′∑′∑′
Gk,SEN fC FF τ  

( )( ( )( ( ( ) ( )) ( ))).,SEN χα/α′′= ∑′∑′∑′∑′
GkvfC FF τ  

Hence 

( )( ( )( ( )( ) ( ( )) ( )))χαφα′′′ ∑′∑∑′∑′
Gk,NSE fFC FF τ  

( )( ( )( ( )( )( ( )) ( ))).,NSE χα/α′′′= ∑′∑∑′∑′
GkvfFC FF τ  

Since α,F  is a surjective ( )NN ′, -morphism, this yields that 

( ( ( )( ( )) )) ( ( ( )( ( )) )),,NSE,NSE χ′/α′′σ′=χ′φα′′σ′ ∑∑′∑′∑∑′∑′
GG vfCfC  

for all ( )( ) NSESEN:,,, ′→σ∑′∑′∈′′∈∑′ kFf nSignSig  in N ′  and 

( ) .NSE k∑′′∈χ′
G  Therefore, again by Theorem 4, ( )( ).~, Cv N

F ′Ω∈/φ ′
∑    
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The preservation property of Proposition 8 translates to the following 
monotonicity property of the Tarski congruence systems of two closure 
operators acting on the same sentence functor. Corollary 9 generalizes 
Proposition 1.3 of [11]. 

Corollary 9. Suppose that { } ,,,SEN, SignSign Sign =′= ∈∑∑ II C  

{ } nSig ′∈∑∑′C,SEN  are two π-institutions with the same signature        

and sentence functors, such that ,CC ′≤  i.e., for all ,Sign∈∑  

( ) ( ) ( ).,SEN Φ′⊆Φ∑⊆Φ ∑∑ CC  Let also N be a category of natural 

transformations on SEN. Then, for every ( ) ⊆Ω∈∑ ∑ CN~,Sign  ( ),~ CN ′Ω∑  

i.e., ( ) ( ).~~ CC NN ′Ω≤Ω  

The following lemma provides a characterization of those singleton 
translations that are semi-interpretations in terms of their behavior on 
theories. Lemma 13, following Corollary 11, gives a similar 
characterization for interpretations. By adding the hypothesis that the 
translations respect natural transformations, one obtains as corollaries 
similar characterizations for logical morphisms and strong logical 
morphisms. 

Lemma 10. Suppose that { } SignSign ∑∈∑= C,SEN,I  and 

{ } nSignSig ′∈∑∑′′′=′ C,NSE,I  are two π-institutions and II ′→α sF :,  

is a singleton translation. α,F  is a singleton semi-interpretation 

:, αF II ′−s  if and only if, for all Sign∈∑  and every ( )∑F -theory 

T ′  of ( )T ′α′ −
∑
1,I  is a ∑ -theory of .I  

Proof. First, assume that, for all Sign∈∑  and all ( )∑F -theories 

T ′  of ( )T ′α′ −
∑
1,I  is a ∑ -theory of I  and ( ).Φ∈φ ∑C  Since 1−

∑α⊆Φ  

( ( )( ( ))),Φα∑∑FC  we have ( ) ( ( )( ( )))Φαα⊆Φ ∑∑
−
∑∑ FCC 1  and hence 

( ) ( ( )) ( )( ( )).Φα⊆Φα∈φα ∑∑∑∑∑ FCC  
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Assume, conversely, that T ′  is an ( )∑F -theory of I ′  and, also, that 

∈φ ( ( )).1 TC ′α−
∑∑  Then ( ) ( ( ( ))),1 TC ′αα∈φα −

∑∑∑∑  whence 

( ) ( )( ( ( ))) ( )( ) ,1 TTCTC FF ′=′⊆′αα∈φα ∑
−
∑∑∑∑  

and, therefore, ( ).1 T ′α∈φ −
∑  This proves that ( )T ′α−

∑
1  is a ∑ -theory. 

Corollary 11. Let { } SignSign ∈∑∑= C,SEN,I  and ,nSig ′=′I  

{ } nSig ′∈∑∑′′ C,NSE  be π-institutions, NN ′,  be categories of natural 

transformations on SEN and ,NSE ′  respectively, and II ′→α sF :,  

be an ( )NN ′, -translation. α,F  is an ( )NN ′, -logical morphism if and 

only if, for all Sign∈∑  and every ( )∑F -theory T ′  of ( )T ′α′ −
∑
1,I  is a 

∑ -theory of .I  

Next, interpretations from I  to I ′  are characterized via a similar 
condition on their action on theories. 

Lemma 12. Suppose that { } SignSign ∑∈∑= C,SEN,I  and 

{ } nSignSig ′∈∑∑′′′=′ C,NSE,I  are two π-institutions and II ′→α sF :,  

is a singleton translation. α,F  is a singleton interpretation II ′α sF :,  

if and only if, for all ,Sign∈∑  

{ ( ) ( ) },-:1 theoryFanisTT ∑′′α−
∑  

is the set of all ∑ -theories of ,I  i.e., iff ( ) ( ( )( )).1 II ′α= ∑
−
∑∑ FThTh  

Proof. Suppose, first, that .:, II ′α sF   Then, we do have  

,:, II ′−α sF  whence, by Lemma 10, we get ( ( )( )) ( ).ThTh1 II ∑∑
−
∑ ⊆′α F  

Therefore, it suffices to show that ( ) ( ( )( )).ThTh 1 II ′α⊆ ∑
−
∑∑ F  To see 

that this is true, let T be a ∑ -theory of .I  It will be shown that  

( ( )( ( ))).1 TCT F ∑∑
−
∑ α′α=  We do indeed have, for all ( ),SEN ∑∈φ  
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( ( ) ( ( ))) ( ) ( ) ( ( ))

( )

.iff

iff

iff1

T

TC

TCTC FF

∈φ

∈φ

α′∈φαα′α∈φ

∑

∑∑∑∑∑
−
∑

 

Suppose, conversely, that ( ( )( )) ( ).ThTh1 II ∑∑
−
∑ =′α F  Then, by 

Lemma 10, we have that .:, II ′−α sF  Thus, it suffices to show that, 
for all { } ( ) ( ) ( )( ( ))Φα′∈φα∑⊆φΦ∈∑ ∑∑∑ FC,SEN, ∪Sign  implies 

( ).Φ∈φ ∑C  Suppose, to this end that ( ) ( )( ( ))Φα′∈φα ∑∑∑ FC  and let T be a 

∑ -theory, such that .T⊆Φ  Then, there exists an ( )∑F -theory ,T ′  such 

that ( ),1 TT ′α= −
∑  whence ( ),1 T ′α⊆Φ −

∑  which yields ( ) .T ′⊆Φα∑  

Therefore, by our hypothesis, ( ) ,T ′∈φα∑  But this gives ( ),1 T ′α∈φ −
∑  i.e., 

.T∈φ  Since this holds for every ∑ -theory T, such that ,T⊆Φ  we must 
have ( ).Φ∈φ ∑C   

Corollary 13. Let { } SignSign ∈∑∑= C,SEN,I  and ,nSig ′=′I  

{ } nSig ′∈∑∑′′ CNSE ,  be π-institutions, NN ′,  be categories of natural 

transformations on SEN and ,NSE ′  respectively, and II ′→α sF :,  
an ( )NN ′, -translation. α,F  is an ( )NN ′, -strong logical morphism if 

and only if, for all { ( ) TT ′′α∈∑ −
∑ :, 1Sign  is an ( ) }theoryF -∑  is the set 

of all ∑ -theories of ,I  i.e., ( ) ( ( )( )).ThTh 1 II ′α= ∑
−
∑∑ F  

Using similar conditions, bilogical and strong bilogical morphisms 
may be characterized as follows: 

Lemma 14. Suppose { } ,,,SEN, nSigSign Sign ′=′= ∈∑∑ II C  

{ } nSig ′∈∑∑′′ C,NSE  are π-institutions. A surjective singleton translation 

II ′→α sF :,  is a surjective singleton interpretation .:, II ′α sF   
for all ( ),SEN, ∑∈φ∈∑ Sign  

( ( )( ( ))) ( ).1 φ=φα′α ∑∑∑
−
∑ CCF  
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Proof. Suppose that .:, II ′α sF   is surjective. Then, we have, for 

all ( ),SEN,, ∑∈/φ∈∑ vSign  

( ) ( ) ( ) ( ( ))

( ( ) ( ( ))),iff

iff

1 φα′α∈/

φα′∈/αφ∈/

∑∑
−
∑

∑∑∑∑

F

F

Cv

CvCv
 

whence ( ( )( ( ))) ( ).1 φ=φα′α ∑∑∑
−
∑ CCF  

Suppose, conversely, that the given condition holds. Then, for all 
{ } ( ),SEN, ∑⊆φΦ∈∑ ∪Sign  

( ) ( ( ) ( ( )))

( ) ( ) ( ( )),iff

iff 1

Φα′∈φα

Φα′α∈φΦ∈φ

∑∑∑

∑∑
−
∑∑

F

F

C

CC
 

whence II ′α sF :,  is a surjective singleton interpretation.  

Corollary 15. Let { } SignSign ∈∑∑= C,SEN,I  and ,nSig ′=′I  

{ } nSig ′∈∑∑′′ C,NSE  be π-institutions, with NN ′,  categories of natural 

transformations on SEN and ,NSE ′  respectively. A surjective ( )NN ′, -

translation II ′→α sF :,  is an ( )NN ′, -bilogical morphism :, αF  

II ′s  for all ( ),SEN, ∑∈φ∈∑ Sign  

( ( )( ( ))) ( ).1 φ=φα′α ∑∑∑
−
∑ CCF  

Corollary 16. Let { } SignSign ∈∑∑= C,SEN,I  and ,nSig ′=′I  

{ } nSig ′∈∑∑′′ C,NSE  be π-institutions, with NN ′,  categories of natural 

transformations on SEN and ,NSE ′  respectively. Let II ′α sF :,  be 

an ( )NN ′, -bilogical morphism. Then, for all ( ),SEN, ∑⊆Φ∈∑ Sign  

( ( )) ( )( ( )).Φα′=Φα ∑∑∑∑ FCC  



GEORGE VOUTSADAKIS 26

Proof. Immediate by applying Lemma 14.  

Next, it is shown that bilogical morphisms induce bijections between 
the classes of theories of the π-institutions they relate. First, a weaker 
result is proven for surjective singleton interpretations. 

Lemma 17. Suppose { } ,,,SEN, nSigSign Sign ′=′= ∈∑∑ II C  

{ } nSig ′∈∑∑′′ C,NSE  are π-institutions. Every surjective singleton 

interpretation II ′α sF :,  induces a bijection ( ) ( )( ) ,ThTh II ′≅ ∑∑ F  

for every .Sign∈∑  Moreover, this bijection is functorial in the sense 

that, for all Sign∈∑  and all ∑ -theories ( ) ( ),,, # ∑=∑ FTFT  

( )( ( )) ,TCF ∑∑ α′  and ( ) ( ),# fFfF =  for all ,,,: 2211 TTf ∑→∑  is a 

functor. 

Proof. Consider a theory ( ) .I∑∈ ThT  Then, by Lemma 14, we 

have ( ) ( )( ) .I ′∈α ∑∑ FT Th  Thus ( ) ( )( )II ′→α ∑∑∑ FThTh:  is a 

well-defined mapping from the set of all ∑ -theories of I  to the set of all 
( )∑F -theories of .I ′  It is an onto mapping since, by Lemma 14, we get 

( ( )) ,1 TT =αα −
∑∑  for all ( ) ,I∑∈ ThT  and, by Lemma 12, ( )T1−

∑α  is an 

( )∑F -theory of .I ′  Moreover, it is one-one, since, for all ∑ -theories ,, 21 TT  

( ) ( )21 TT ∑∑ α=α  implies ( ( )( ( ))) ( ( )( ( ))),2
1

1
1 TCTC FF ∑∑

−
∑∑∑

−
∑ α′α=α′α  

whence, by Lemma 14, we get ( ) ( ),21 TCTC ∑∑ =  i.e., .21 TT =  

That #F  is functorial follows directly from Theorem 8.1 (i) of [21].  

Lemma 17 has the following immediate corollary when translated to 
bilogical morphisms. 

Corollary 18. Let { } SignSign ∈∑∑= CSEN ,,I  and ,nSig ′=I  

{ } nSig ′∈∑∑′′ C,NSE  be π-institutions, with NN ′,  categories of natural 

transformations on SEN and ,NSE ′  respectively. An ( )NN ′, -bilogical 
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morphism II ′α sF :,  induces a bijection ( ) ( )( ) ,II ′≅ ∑∑ FThTh  

for every .nSig ′∈∑  Moreover, this bijection is functorial in the sense 

that, for all nSig ′∈∑  and all ∑ -theories ( ) ( ),,, # ∑= FTMFT  

( )( ( )) ,TCF ∑∑ α′  and ( ) ( ),# fFfF =  for all ,,,: 2211 TTf ∑→∑  is a 

functor. 

The following result asserts that surjective singleton interpretations 
with isomorphic signature functors give rise to isomorphisms between 
categories of theories. 

Lemma 19. Suppose { } ,NSE,,,SEN, ′′=′= ∈∑∑ nSigSign Sign II C  

{ } nSig ′∈∑∑′C  are π-institutions and II ′α sF :,  is a surjective 

singleton interpretation, such that F is an isomorphism. Then 

( ) ( ) ( ) ,,, 11# TFTG ′α∑′=′∑′ −
∑

−  for all nSig ′∈∑′  and ∑′ -theories 

,T ′  and ( ) ( ),1# fFfG −=  for all ,,,: 2211 TTf ′∑′→′∑′  is a functor 

and #G  and #F  establish an isomorphism between the categories of 
theories of I  and .I ′  

Proof. It suffices to show that, for all 2211 ,,: TTf ′∑′→′∑′′  in the 

category of theories of ,I ′  the mapping ( ) ( ) ( )2
1

1
11 : ∑′→∑′′ −−− FFfF  

in Sign is a well-defined theory morphism ( ) ( ),: 1
11 ∑′′ −− FfF  

( )
( ) ( )

( )
( ) ,, 2

1
2

1
1

1
2

1
1

1 TFT
FF

′α∑′→′α −
∑′

−−
∑′ −−  i.e., that, if ( ) ( ) ,NSE 21 TTf ′⊆′′′   

then 

( ( )) (
( )

( ))
( )

( ).SEN 2
1

1
11

2
1

1
1 TTfF

FF
′α⊆′α′ −

∑′
−

∑′
−

−−  

We in fact show that, for all ( ),,,, 2121 ∑′∑′′∈′′∈∑′∑′ nSignSig f  and 

( ),NSE 1∑′′∈/v  
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( ( )) (
( )

( ))
( )

( ) ( )( ).NSESEN 111
2

1
1

1 vfvfF
FF

/′′α⊆/α′ −
∑′

−
∑′

−
−−  

We have 

( ( )) (
( )

( ))vfF
F

/α′∈φ −
∑′

−
−

11
1

1SEN  

implies ( )( ) ( )( ( ( )) (
( )

( )))vfF
FFF /α′α∈φα −

∑′
−

∑′∑′ −−−
11

1
12

1
2

1 SEN  

implies ( )( ) ( ) ( ( )( ( )
( )))vf

FFF /αα′′∈φα −
∑′∑′∑′ −−−

1
1

11
1

2
1 NSE  

implies ( )( ) ( ) ( )vfF /′′∈φα
∑′− NSE

2
1  

implies 
( )

( ) ( )( )vf
F

/′′α∈φ −
∑′− NSE1

2
1  

Finally, #F  and #G  are inverses of each other by Lemma 17.  

The following theorem now follows by combining Lemmas 17 and 19. 

provides an analogue of Propositions 1.4 and 1.5 of [11]. 

Theorem 20. Let { } SignSign ∈∑∑= C,SEN,I  and ,NSE, ′′=′ nSigI  

{ } nSig ′∈∑∑′C  be π-institutions and II ′α sF :,  be a surjective 

singleton in terpretation, such that F is an isomorphism. Then the 
categories of theories of I  and I ′  are isomorphic categories via the 
isomorphisms 

( ) ( ) ( )( ( )) ,,,# TCFTF F ∑∑ α′∑=∑  
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( ) ( ) ( ) ,,, 11# TFTG ′α∑′=′∑′ −
∑

−  

for all ,, nSigSign ′∈∑′∈∑  and all ∑ -theories T and ∑′ -theories .T ′  

The last result of the section relates ( )NN ′, -bilogical morphisms 

between two π-institutions with the Tarski N ′ -congruence system of the 
first and the Tarski N ′ -congruence system of the second. Namely, it is 
shown that applying the inverse of an ( )NN ′, -bilogical morphism 

between I  and I ′  carries the Tarski N ′ -congruence system of I ′  to the 
Tarski N-congruence system of .I  This is the analogue of Proposition 1.7 
of [11]. 

Theorem 21. Let { } SignSign ∈∑∑= C,SEN,I  and ,nSig ′=′I  

{ } nSig ′∈∑∑′′ C,NSE  be π-institutions and NN ′,  be categories of natural 

transformations on ,NSE,SEN ′  respectively. Let II ′α sF :,  be an 

( )NN ′, -bilogical morphism. Then 

( ) ( ( )( )) .,~~ 1 Sign∈∑′Ωα=Ω ′
∑

−
∑∑ allforN

F
N II  

Proof. We have ( ( )( ))I ′Ωα∈/φ ′
∑

−
∑

N
Fv ~, 1  iff ( ) ( )) ( )

N
Fv ′

∑∑∑ Ω∈/αφα ~,  

( )I ′  iff, by Theorem 4, for all ( ) NSENSE:,,, ′→′′∑′∑∈∈∑′ kτSignSign f  

and all ( )( ) ,NSE k∑′′∈χ′ FG  

( )( ( )( ( )( ) ( ( )) ))χ′φα′′′ ∑∑′∑′
G,NSE fFC FF τ  

( )( ( )( ( )( ) ( ( )) )),,NSE χ′/α′′′= ∑∑′∑′
GvfFC FF τ  

iff, for all ( ) NSENSE:,,, ′→′′∑′∑∈∈∑′ kτSignSign f  and all 

( )( ) ,NSE k∑′′∈χ′ FG  

( )( ( )( ( ( )( ) )) ( )( ( )( ( ( ) ( )) )),,SEN,SEN χ′/α′′=χ′φα′′ ∑′∑′∑′∑′∑′∑′
GG vfCfC FFFF ττ  

iff, for all ( ) ( ) ,NSE,NSENSE:,,, kk ∑′′∈χ′→′′∑′∑∈∈∑′
G

τSignSign f  
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( )( ( )( ( ( ) ( ) ))) ( )( ( )( ( ( ) ( ) ))),,SEN,SEN χ/α′′=χφα′′ ∑′∑′∑′∑′∑′∑′
GG vfCfC FFFF

kk ττ  

iff, for all ( ) ( ) ,SEN,SENSEN:,,, kk ∑′∈χ→∑′∑∈∈∑′
G

τSignSign f  

( )( ( ( ( ) ( ) ))) ( )( ( ( ( ) ( ) ))),,SEN,SEN χ/α′=χφα′ ∑′∑′∑′∑′∑′∑′
GG vfCfC FF ττ  

iff, for all ( ) ( ) ,SEN,SENSEN:,,, kk ∑′∈χ→∑′∑∈∈∑′
G

τSignSign f  

( ( ( ) ( ) )) ( ( ( ) ( ) )),,SEN,SEN χ/=χφ ∑′∑′∑′∑′
GG vfCfC ττ  

iff, again by Theorem 4, ( ).~, INv ∑Ω∈/φ   

5. Logical Quotients 

Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution and θ  be a 

logical equivalence system of .I  Define the triple ,SEN, θ=θ SignI  

{ } Sign∈∑
θ
∑C  as follows: 

● SetSign →θ :SEN  is defined by ( ) ( ) ,SENSEN ∑
θ θ∑=∑  for all 

,Sign∈∑  and, given ( ) ( ),SEN,,,, 12121 ∑∈φ∑∑∈∈∑∑ SignSign f   

( ) ( ) ( ) ( ) .SENSEN 21 ∑∑
θ θφ=θφ ff  

● For all { } ( ),SEN, ∑⊆/Φ∈∑ v∪Sign  

( ) ( ).iff ∑
Φ∈φ

∑∑∑
θ
∑∑ θφ⊆θ/θΦ∈θ/ ∪CvCv  

The next proposition asserts that θI  is also a π-institution. 

Proposition 22. Given a π-institution C,SEN,Sign=I  and a 

logical equivalence system θ  of θθ=θ C,SEN,, SignII  is also a     

π-institution. 
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Proof. The sentence functor is well-defined at the morphism level, 
since, by the definition of an equivalence system, for all ,, 21 Sign∈∑∑  
and all ( ),, 21 ∑∑∈ Signf  we have ( ) ( ) .SEN 21 ∑∑ θ⊆θf  Also the 

closure θ
∑C  is well-defined, for all .Sign∈∑  To see this, let ,Sign∈∑  

{ } ( ),SEN, ∑⊆/ ′/Φ′Φ vv∪∪  such that ∑θ∈/ ′/ vv,  and .∑∑ θΦ′=θΦ  

Then, since θ  is a logical equivalence system, we get ( ) ( ),Φ′=Φ ∑∑ CC  

whence 

( ) ( )

( )

( ).iff

iff

iff

∑
θ
∑∑

∑∑∑

∑∑∑∑
θ
∑∑

θΦ′∈θ′/

θΦ′⊆θ′/

θΦ⊆θ/θΦ∈θ/

Cv

Cv

CvCv

∪
∪

 

It only remains to verify the four conditions of a closure system for .θC  
Conditions (a) and (c) are straightforward. So only (b) and (d) will be 
verified in detail. 

For (b), suppose that ( ( )).∑
θ
∑

θ
∑∑ θΦ∈θ/ CCv  Then we get 

({ ( )}),: ∑∑∑∑
θ
∑∑ θΦ⊆θχθχ∈θ/ ∪CCv  

whence ( { ( )}).: ∑∑∑∑∑∑ θΦ⊆θχθχ⊆θ/ ∪∪ CCv  Therefore, 

( ),∑∑∑ θΦ⊆θ/ ∪Cv  i.e., ( ).∑
θ
∑∑ θΦ∈θ/ Cv  

Finally, for (d), suppose that ( ).,,, 2121 ∑∑∈∈∑∑ SignSign f  
Then, if ( ),SEN 1∑⊆Φ  we need to show 

( ) ( ( )) ( ( ) ( )).SENSEN 1211 ∑
θθ

∑∑
θ
∑

θ θΦ⊆θΦ fCCf  

Suppose, to this end, that ( ).111 ∑
θ
∑∑ θΦ∈θ/ Cv  Then, we have 1∑θ/v  

( ).11 ∑∑ θΦ⊆ ∪C  Therefore ( )( ) ( ( )( )).SENSEN 121 ∑∑∑ θΦ⊆θ/ ∪fCvf  

But, for all ,1∑θ/∈′// vv  we have ( ) ( ) ( ) ( ) ,SENSEN 2∑θ/∈′/ vfvf  whence, 

since θ  is logical, 



GEORGE VOUTSADAKIS 32

( ( ) ( )) ( ( ) ( ) ),SENSEN 2212 ∑∑∑∑ θ′/=θ/ vfCvfC  

and, similarly, ( ( ) ( )) ( ( ) ( ) ).SENSEN 2212 ∑∑∑∑ θΦ=θΦ fCfC ∪∪  

Therefore, we obtain ( ) ( ) ( ( ) ( ) ),SENSEN 222 ∑∑∑ θΦ⊆θ/ fCvf ∪  i.e., 

( ) ( ) ( ( ) ( )).SENSEN 121 ∑
θθ

∑∑
θ θΦ∈θ/ fCvf  

 

Given a π-institution I  and a logical equivalence system θ  of ,I  the 

π-institution θI  will be called the logical quotient of I  by the logical 

equivalence system .θ  

Now consider a π-institution ,I  a logical equivalence system θ  of ,I  

and the logical quotient θI  of I  by .θ  Define ,:, θ→πθ II sISign  

by 

( ) ( ).SEN,allfor, ∑∈φ∈∑θφ=φπ ∑
θ
∑ Sign  

The pair θπ,SignI  is a singleton translation from I  to .θI  In fact, we 

have 

 

( )( )( ) ( )( )

( )( )

( )( ( )).SEN

SEN

SENSEN

1

1

22

φπ=

θφ=

θφ=φπ

θ
∑

θ

∑
θ

∑
θ
∑

f

f

ff
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Let I  be a π-institution, N be a category of natural transformations 
on SEN, and θ  be a logical N-congruence system of .I  Let 

SENSEN: →σ k  be in N. Since θ  is an N-congruence system on 

( ) ,SENSEN:, θθθ →σ kI  given by 

( ) ( ) ( ) ,SEN,allfor, k∑∈φ∈∑θφσ=θφσ ∑∑∑
θ
∑

GGG
Sign  

where ,,, 10 ∑−∑∑ θφθφ=θφ k…
G

 is well-defined. Furthermore,       

it is a natural transformation, since, for every ,, 21 Sign∈∑∑  

( ),, 21 ∑∑∈ Signf  

 

( ) ( ( )) ( ) ( ( ) )

( ) ( ( ))

( ( ) ( ))

( ( ) ( ) )

( ( ) ( )).SEN

SEN

SEN

SEN

SENSEN

12

22

22

21

1111

∑
θθ

∑

∑
θ
∑

∑∑

∑∑

∑∑
θ

∑
θ
∑

θ

θφσ=

θφσ=

θφσ=

θφσ=

θφσ=θφσ

G

G

G

G

GG

k

k

k

f

f

f

f

ff

 

Let θU  be the category of all natural transformations on θSEN  that 

are of the form ,θσ  for some σ  in U. Denote by θN  the subcategory of 

the category θU  consisting of the natural transformations of the form θσ  
for σ  in N. 
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Proposition 23. Let { } SignSign ∈∑∑= CSEN ,,I  be a π-institution. 

(1) If θ  a logical equivalence system of ,I  then θπθ II sI :,Sign  

is a surjective singleton interpretation from I  to .θI  

(2) If N is a category of natural transformations on SEN and θ  a 

logical N-congruence system of ,I  then θπθ II sI :,Sign  is a 

( )θNN , -bilogical morphism from I  to .θI  

Proof. It has already been shown that θπ,SignI  is a singleton 

translation and it is clearly surjective. Thus, for the first part, it suffices 
to show that it is an interpretation and for the second part that it is also 

an ( )θNN , -morphism. 

First, it is shown that θ→πθ II sI :,Sign  is an interpretation. 

To this end, suppose that { } ( ).SEN, ∑⊆φΦ∈∑ ∪Sign  Then we have 

( ) ( ) ( )

( ) ( )

( )

( ).iff

iff

iff

iff

∑
θ
∑∑

∑∑∑

∑∑∑∑

∑∑∑

θΦ∈θφ

θΦ⊆θφ

θΦ⊆θφ

Φ⊆φΦ∈φ

C

C

CC

CCC

∪
∪

 

Finally, for all SENSEN: →σ k  in N, and for all ,Sign∈∑  

( ) ,SEN k∑∈φ
K
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(( ) ( )) ( )

( ) )

( ( )).φσπ=

θφσ=

θφσ=φπσ

∑
θ
∑

∑∑

∑
θ
∑

θ
∑

θ
∑

G

G

GGk

 

Thus θπ,SignI  is also an ( )θNN , -morphism and, therefore, an 

( )θNN , -bilogical morphism from I  to .θI    

The surjective singleton interpretation (or ( )θNN , -bilogical 

morphism, if θ  is a logical N-congruence system) θ→πθ II:,SignI  

will be referred to as the canonical quotient interpretation or canonical 
projection of I  onto .θI  

Proposition 23 has as consequence the fact that the category of 
theories of I  and that of the theories of its logical quotient θI  are 

isomorphic categories via the isomorphism θ∏  induced by the singleton 

interpretation ., θπSignI  

Corollary 24. Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution. 

If θ  is a logical equivalence system of ,I  then ( ) ( ),: θ→∏θ II ThTh  

defined by 

( ) ( ) ( ) ,,,,, ITh∈∑π∑=∑∏ θ
∑

θ TallforTT  

and ( ) ,ff =∏θ  for all ( ),Mor Sign∈f  is an isomorphism between the 

categories of theories of I  and of .θI  

Proof. Follows by combining Proposition 23 with Theorem 20.  

Using Theorem 21, we also get the following: 
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Corollary 25. Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution 

and N be a category of natural transformations on SEN. Then, if θ  a 

logical N-congruence system of ,I  then ( ) ( ) ,~~ θΩ=θΩ
θ

II NN  i.e., 

( ) ( ) .,~~ Sign∈∑θΩ=θΩ ∑∑∑
θ

allforNN II  

6. Bilogical Morphisms and Logical Quotients 

Suppose that { } SignSign ∈∑∑= C,SEN,I  and ,NSE, ′′= nSigI  

{ } nSig ′∈∑∑′C  are two π-institutions and II ′α sF :,  is a singleton 

interpretation from I  to .I ′  Define { }Sign∈∑θ∑=θ α
∑

α :, ,, FF  

by setting, for all ,Sign∈∑  

{ ( ) ( ) ( )}.:SEN, 2, vvF
/α=φα∑∈/φ=θ ∑∑

α
∑  

Proposition 26. Let { } ,,,,SEN, NSEC ′′== ∈∑∑ nSigSign Sign II  

{ } nSig ′∈∑∑′C  be two π-institutions. 

(1) Given a singleton interpretation αθ′α ,,:, FsF II   is a 

logical equivalence system of .I  

(2) If N and N ′  are categories of natural transformations on SEN and 

NSE ′  respectively, and II ′α sF :,  is a strong ( )NN ′, -logical 

morphism, then αθ ,F  is a logical N-congruence system of .I  

Proof. It is obvious from the definition that α
∑θ

,F  is an equivalence 

relation on ( ),SEN ∑  for all .Sign∈∑  Moreover, αθ ,F  is an 

equivalence system on SEN, since, for all ( ) ( ),,,, , ∑′∑∈θ∈/φ α
∑ Signfv F  

we have ( ) ( )v/α=φα ∑∑  whence ( )( ( )) ( )( ∑∑ α=φα ff SENSEN ( ))v/  and, 

therefore, 
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( )( )( ) ( )( )( ),SENSEN vff /α=φα ∑′∑′  

i.e., ( ) ( ) ( ) ( ) .SEN,SEN , α
∑′θ∈/φ Fvff  It is a logical equivalence system, 

since, for all ( ),SEN,, ∑∈/φ∈∑ vSign  we have α
∑′θ∈/φ ,, Fv  implies 

( ) ( ),v/α=φα ∑∑  whence ( )( ( )) ( )( ( ))vCC FF /α′=φα′ ∑∑∑∑  and, therefore, 

since α,F  is an interpretation, ( ) ( ).vCC /=φ ∑∑  

For the second part, suppose that NN ′,  are categories of natural 

transformations on ,NSESEN, ′  respectively, and II ′α sF :,  is a 

strong ( )NN ′, -logical morphism. It suffices, taking into account, the 

first part, to show that αθ ,F  is preserved by every natural 

transformation SENSEN: →σ k  in N. We, in fact, have 

( ) ( ) ( )

( ) ( ( )) ( ) ( ( ))

( ( )) ( ( ))

( ) ( ) ,inallfor,,iff

,inallfor,iff

inallfor,implies

,allfor,iff,

,

,

Nv

N

Nv

ivv

F

FF

ii
F

σθ∈/σφσ

σφσα=φσα

σ′/ασ′=φασ′

</α=φαθ∈/φ

α
∑∑∑

∑∑∑∑

∑∑∑∑

∑∑
α

∑′

GG

GG

GG

GG

kk

k

 

whence αθ ,F  is a logical N-congruence system of .I  

The surjective singleton interpretation 
αθπ

,
,

F
ISign  will sometimes 

be denoted by ., ,απ FISign  According to the second part of 

Propositions 26 and 23, if II ′α sF :,  is a strong ( )NN ′, -logical 

morphism, αα θπ ,, :, FsFI II Sign  is an 
αθ ,

,
F

NN -bilogical 

morphism. 

Theorem 27. Suppose { } ,NSE,,,SEN, ′′=′= ∈∑∑ nSigSign Sign II C  

{ } ,nSig ′∈∑∑′C  are two π-institutions. 
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(1) If II ′α sF :,  is a singleton interpretation, then, there exists a 

unique singleton interpretation ,:, , II ′θβ α sFG   that makes the 

following triangle commute: 

 

(2) If NN ′,  are categories of natural transformations on ,NSESEN, ′  

respectively, and II ′α sF :,  is a strong ( )NN ′, -logical morphism, 

then the singleton interpretation II ′θβ α sFG ,:,  of Part 1 is a 

strong ( )NN
F

′
αθ ,

,
-logical morphism. 

Proof. For simplicity of notation, denote inside this proof αθ ,F  
simply by .θ  Let β,G  be given by FG =  and, for all ,Sign∈∑  

( ),SEN ∑∈φ  

( ) ( ).φα=θφβ ∑∑∑  

The family of mappings β  is well defined, since ∑θ∈/φ v,  implies 

( ) ( ).v/α=φα ∑∑  It is a natural transformation ,NSESEN: G′→β θ  

since, for every ( )2121 ,,, ∑∑∈∈∑∑ SignSign f  and ( ),SEN 1∑∈φ  
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( )( ) ( ( )) ( )( ) ( ( ))

( ) ( )( )

( ( ) ( ) )

( ( ) ( )).SEN

SEN

SEN

NSENSE

12

22

2

111

∑
θ

∑

∑∑

∑

∑∑∑

θφβ=

θφβ=

φα=

φα′=θφβ′

f

f

f

fFfG

 

The translation β,G  is singleton, since α,F  is singleton, and it is an 
interpretation, since, for all { } ( ),SEN, ∑⊆φΦ∈∑ ∪Sign  

( ) ( ) ( ( ) ( ) ( ) ( ( ))

( )

( ).iff

iff

iff

∑
θ
∑∑

∑

∑∑∑∑∑∑∑∑

θΦ∈θφ

Φ∈φ

Φα′∈φαθΦβ′∈θφβ

C

C

CC FG

 

Finally, ( ( )) ( ) ( ),φα=θφβ=φπβ ∑∑∑
θ
∑∑  for all ( ),SEN, ∑∈φ∈∑ Sign  

which concludes the proof of the first part. 

For the second part, observe that, for all SENSEN:, →∈∑ kτSign  
in N, we have commutativity of the following diagrams: 

 

where by NSENSE: ′→′′ kτ  is denoted the natural transformation 
corresponding to .τ  By combining these, together with the definition of 

,, βG  we get 
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( )( ( )) ( )( ( ))

( ( ))

( ( ) )

( ( )).∑
θ
∑∑

∑∑∑

∑∑

∑∑∑∑∑

θφβ=

θφβ=

φα=

φα′=θφβ′

G

G

G

GG

τ

τ

τ

ττ kk
GG

 

 

Theorem 28. (1) Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution 

and θ′θ,  be logical equivalence systems of I  such that .θ′≤θ  Then 

{ }Sign∈∑θθ′=θθ′ ∑∑ :  is a logical equivalence system of θI  

and, furthermore, ( ) ( ) .θ′≅θθ′θ II s  

(2) Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution, N be a 

category of natural transformations on SEN, and θ′θ,  be logical N-

congruence systems of ,I  such that .θ′≤θ  Then θθ′  is a logical θN -

congruence system of θI  and, furthermore, ( ) ( ) .θ′≅θθ′θ II s  

Proof. It is clear that ∑∑ θθ′  is an equivalence relation on 

( ) ,SEN ∑θ∑  for all .Sign∈∑  The collection θθ′  is an equivalence 

system on ,SENθ  since, for all ( )2121 ,,, ∑∑∈∈∑∑ SignSign f  and 

all ( ),SEN, 1∑∈/φ v  if ,, 1111 ∑∑∑∑ θθ′∈θ/θφ v  we get ,, 1∑θ′∈/φ v  

whence, since θ′  is an equivalence system, we get ( ) ( ) ( )ff SEN,SEN φ  

( ) ,2∑θ′∈/v  and, therefore, 

( ) ( ) ( ) ( ) ,SEN,SEN 2222 ∑∑∑∑ θθ′∈θ/θφ vff  

i.e., ( ) ( ) ( ) ( ) .SEN,SEN 2211 ∑∑∑
θ

∑
θ θθ′∈θ/θφ vff  To show that 

θθ′  is a logical equivalence system, suppose, Sign∈∑  and 
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( ).SEN, ∑∈/φ v  Then, if ,, ∑∑∑∑ θθ′∈θ/θφ v  we get ,, ∑θ′∈/φ v  

whence, since θ′  is logical, ( ) ( ),vCC /=φ ∑∑  i.e., ( ) ( ).∑
θ
∑∑

θ
∑ θ/=θφ vCC  

Hence θθ′  is logical. 

Now define ( ) ( )θθ′θ→θ′α II:,F  by ,SignIF =  the 

identity functor on Sign, and, for all ( ),SEN, ∑∈φ∈∑ Sign  

( ) ( ) ( ).∑∑∑∑∑ θθ′θφ=θ′φα  

Similarly, define ( ) ( ) θ′→θθ′θβ II:,G  by letting SignIG =  

and, for all ( ),SEN, ∑∈φ∈∑ Sign  

(( ) ( )) .∑∑∑∑∑ θ′φ=θθ′θφβ  

It is not difficult to check that α,F  and β,G  are surjective singleton 

interpretations and they are inverse of each other in the sense that 

( ( )) ,∑∑∑∑ θ′φ=θ′φαβ  

and, similarly, ( (( ) ( ))) ( ) ( ),∑∑∑∑∑∑∑∑ θθ′θφ=θθ′θφβα  for all 

( ).SEN, ∑∈φ∈∑ Sign  

Finally, for the second part, it suffices to show that, if N a category of 
natural transformations on SEN and θ′θ,  are logical N-congruence 

systems of ,I  such that ,θ′≤θ  then θθ′  is a logical θN -congruence 

system of αθ ,, FI  is an ( )θθ θθ′
NN , -bilogical morphism and β,G  

is an ( )
θθ′θθ′ NN , -bilogical morphism. 

To this end, suppose that Sign∈∑  and ( ).SEN, ∑∈/φ v  Then we 

have 
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( )k∑∑∑∑ θθ′∈θ/θφ vG
G

,  

( )

( ) ( )

( ) ( )

( ) ( ) ,inallfor,,iff

,inallfor,,iff

,inallfor,,implies

,iff

θθ
∑∑∑

θ
∑∑

θ
∑

∑∑∑∑∑∑

∑∑∑

∑

σθθ′∈θ/σθφσ

σθθ′∈θ/σθφσ

σθ′∈/σφσ

θ∈/φ

Nv

Nv

Nv

v

GG

GG

GG

GG k

 

whence θθ′  is an θN -logical congruence system of .θI  

Finally, given ( )k∑∈φ∈∑ SEN,
G

Sign  and SENSEN: →σ k  in N, 

 

( (( ) ( ))) ( ( ) ( ))

(( ( ) ) ( ))

( )

( )

( (( ) ( ))),∑∑∑∑
θ′
∑

∑
θ′
∑

∑∑

∑∑∑∑∑

∑∑∑
θ
∑∑∑∑∑

θ
∑∑

θθ′θ′φασ=

θ′φσ=

θ′φσ=

θθ′θφσα=

θθ′θφσα=θθ′θφσα
θθ′

G

G

G

G

GG

k

 

and, similarly, for ., βG   

Theorem 28, combined with Theorem 21, yield as a consequence that 
the Tarski congruence systems of θ′I  and of ( ) ( )θθ′θI  are in 

correspondence. 
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Corollary 29. Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution, 

N be a category of natural transformations on SEN, and θ′θ,  be logical 

N-congruence systems of ,I  such that .θ′≤θ  Then, 

( ) ( )( ) ( ( ) ) ( ).~~ θθ′θΩ=θθ′θΩ
θθ′θ

II NN  

Proof. Using (both the notation and the result of) Theorem 28, we 
get 

( ) ( )( ) ( ( )) ( )

( ( ) ) ( )

( ( ) ) ( ) ( ).ofdefinitionby~

25Corollaryby~

21Theoremby~~

∑∑∑∑∑

∑∑∑

∑∑∑

αθθ′θ′Ω=

θ′Ωα=

θ′Ωα=θθ′θΩ
θ′θθ′θ

I

I

II

N

N

NN

 

 

Now, taking into account Theorem 28, together with the fact that the 
Tarski congruence system of a π-institution is the greatest logical 
congruence system, and considering any category of natural 

transformations N together with the Tarski N-congruence system ( )INΩ~  

in place of ,θ′  we obtain the following analog of Proposition 1.13 of [11]. 

Proposition 30. Let { } SignSign ∈∑∑= C,SEN,I  be a π-institution, 

N be a category of natural transformations on SEN, and θ  be a logical     
N-congruence system of .I  Then, 

( ) ( ( ) ) ( ).~~ IIII NsN Ω≅θΩθ  

Given a π-institution { } SignSign ∈∑∑= C,SEN,I  and a category 

of natural transformations N on SEN, I  is said to be N-reduced if it has 

only one logical N-congruence system, i.e., when ( ) ,~ SENN ∆=Ω I  where 

{ ( )} .,:, Sign∈∑∑∈φφφ=∆∑ SENSEN  Moreover, given a π-institution 
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,I  as above, and a category N of natural transformations on SEN, set 

( )III NN Ω= ~  and call NI  the N-reduct of .I  This notation replaces 

in the present context the notation ,∗I  which would be suggested by 

analogy with [11], since there might be a need to make the category N of 
natural transformations on SEN explicit. 

Using this terminology and notation, Proposition 30 may be rephrased 
as following: 

Proposition 31. Let { } SignSign ∈∑∑= CSEN ,,I  be a π-institution, 

N be a category of natural transformations on SEN, and θ  be a logical   

N-congruence system of .I  Then ( ) .NsN II ≅θ
θ

 

It is shown next that, if two π-institutions are related by an    
( )NN ′, - bilogical morphism, with an isomorphic functor component, 

then their N and N ′ -reducts, respectively, are isomorphic π-institutions. 
This is the analog of Proposition 1.14 of [11] regarding abstract logics. 

Proposition 32. Let { } ,,,,, NSECSEN ′′=′= ∈∑∑ nSigSign Sign II  

{ } nSig ′∈∑∑′C  be two π-institutions and NN ′,  be categories of natural 

transformations on ,NSESEN, ′  respectively. If II ′α sF :,  is an 

( )NN ′, -bilogical morphism from I  to ,I ′  with →Sign:F nSig ′  an 

isomorphism, then there exists an isomorphism sNF ≅γ I:, .N ′′I  

Proof. Let SignnSig →′:G  denote the inverse functor of F. Define 
γ,F  by setting, for all Sign∈∑  and all ( ),SEN ∑∈φ  

( ( )) ( ) ( )( ) ( ) ( ) ..,i.e,~~ NNN
F

N ′
∑∑

′
∑∑∑∑ φα=φγ′Ωφα=Ωφγ II  

For all ∑γ∈∑ ,Sign  is well-defined. This follows from Theorem 21. 

Moreover, NN ′′→γ NSESEN:  is a natural transformation, since, for 

all ( )2121 ,,, ∑∑∈∈∑∑ SignSign f  and all ( ),SEN 1∑∈φ  
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( )( ) ( ( )) ( )( ) ( ( ) )

( )( ) ( ( ))

( ) ( )( )

( ( ) ( ) )

( ( ) ( )).SEN

SEN

SEN

NSE

NSENSE

2

2

2

1

11

NN

N

N

N

NNNN

f

f

f

fF

fFfF

φγ=

φγ=

φα=

φα′=

φα′=φγ′

∑

∑

′
∑

′
∑

′
∑

′
∑

′

 

It is clear that γ,F  is surjective. Theorem 21 shows that it is also 
injective. Thus, it suffices to show that, for all Sign∈∑  and all { }φΦ ∪  

( ) ( )NNN C Φ∈φ∑⊆ ∑,SEN  iff ( ) ( )( ( )).NN
F

N C Φγ′∈φγ ∑
′
∑∑  In fact, we 

have 

( ) ( )

( ) ( ) ( ( ))

( ) ( ) ( ( ) )

( ) ( ) ( ( )).iff

iff

iff

Ciff

NN
F

N

NN
F

N

F

NNN

C

C

C

C

Φγ′∈φγ

Φα′∈φα

Φα′∈φα

Φ∈φΦ∈φ

∑
′
∑∑

′
∑

′
∑

′
∑

∑∑∑

∑∑

 

Thus, NsNF ′′γ II :,  is an ( ( ) ( ) )II ′ΩΩ ′
′

NN
NN

~~
, -bilogical morphism. 

If one defines also NNG II →′δ ′:,  by setting, for all nSig ′∈∑  and 
all ( ),NSE ∑′∈φ  

( ) ( )( ),1 N
G

N ′−
∑

′
∑ φγ=φδ  

it is not difficult to verify that NsNG II ′′δ :,  is an ( ( ),
~ I ′Ω ′
′

N
N  

( ) )IN
NΩ~ -bilogical morphism inverse to .:, NsNF ′′γ II     
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